Towards Using Social Media to Identify Individuals at Risk for Preventable Chronic Illness

Dane Bell, Daniel Fried, Luwen Huangfu, Mihai Surdeanu, Stephen Kobourov


Abstract
We describe a strategy for the acquisition of training data necessary to build a social-media-driven early detection system for individuals at risk for (preventable) type 2 diabetes mellitus (T2DM). The strategy uses a game-like quiz with data and questions acquired semi-automatically from Twitter. The questions are designed to inspire participant engagement and collect relevant data to train a public-health model applied to individuals. Prior systems designed to use social media such as Twitter to predict obesity (a risk factor for T2DM) operate on entire communities such as states, counties, or cities, based on statistics gathered by government agencies. Because there is considerable variation among individuals within these groups, training data on the individual level would be more effective, but this data is difficult to acquire. The approach proposed here aims to address this issue. Our strategy has two steps. First, we trained a random forest classifier on data gathered from (public) Twitter statuses and state-level statistics with state-of-the-art accuracy. We then converted this classifier into a 20-questions-style quiz and made it available online. In doing so, we achieved high engagement with individuals that took the quiz, while also building a training set of voluntarily supplied individual-level data for future classification.
Anthology ID:
L16-1472
Volume:
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)
Month:
May
Year:
2016
Address:
Portorož, Slovenia
Editors:
Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
Venue:
LREC
SIG:
Publisher:
European Language Resources Association (ELRA)
Note:
Pages:
2957–2964
Language:
URL:
https://aclanthology.org/L16-1472/
DOI:
Bibkey:
Cite (ACL):
Dane Bell, Daniel Fried, Luwen Huangfu, Mihai Surdeanu, and Stephen Kobourov. 2016. Towards Using Social Media to Identify Individuals at Risk for Preventable Chronic Illness. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 2957–2964, Portorož, Slovenia. European Language Resources Association (ELRA).
Cite (Informal):
Towards Using Social Media to Identify Individuals at Risk for Preventable Chronic Illness (Bell et al., LREC 2016)
Copy Citation:
PDF:
https://aclanthology.org/L16-1472.pdf