@inproceedings{park-etal-2016-classifying,
title = "Classifying Out-of-vocabulary Terms in a Domain-Specific Social Media Corpus",
author = "Park, SoHyun and
Fazly, Afsaneh and
Lee, Annie and
Seibel, Brandon and
Zi, Wenjie and
Cook, Paul",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}`16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1474/",
pages = "2971--2975",
abstract = "In this paper we consider the problem of out-of-vocabulary term classification in web forum text from the automotive domain. We develop a set of nine domain- and application-specific categories for out-of-vocabulary terms. We then propose a supervised approach to classify out-of-vocabulary terms according to these categories, drawing on features based on word embeddings, and linguistic knowledge of common properties of out-of-vocabulary terms. We show that the features based on word embeddings are particularly informative for this task. The categories that we predict could serve as a preliminary, automatically-generated source of lexical knowledge about out-of-vocabulary terms. Furthermore, we show that this approach can be adapted to give a semi-automated method for identifying out-of-vocabulary terms of a particular category, automotive named entities, that is of particular interest to us."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="park-etal-2016-classifying">
<titleInfo>
<title>Classifying Out-of-vocabulary Terms in a Domain-Specific Social Media Corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">SoHyun</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afsaneh</namePart>
<namePart type="family">Fazly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brandon</namePart>
<namePart type="family">Seibel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Zi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Cook</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we consider the problem of out-of-vocabulary term classification in web forum text from the automotive domain. We develop a set of nine domain- and application-specific categories for out-of-vocabulary terms. We then propose a supervised approach to classify out-of-vocabulary terms according to these categories, drawing on features based on word embeddings, and linguistic knowledge of common properties of out-of-vocabulary terms. We show that the features based on word embeddings are particularly informative for this task. The categories that we predict could serve as a preliminary, automatically-generated source of lexical knowledge about out-of-vocabulary terms. Furthermore, we show that this approach can be adapted to give a semi-automated method for identifying out-of-vocabulary terms of a particular category, automotive named entities, that is of particular interest to us.</abstract>
<identifier type="citekey">park-etal-2016-classifying</identifier>
<location>
<url>https://aclanthology.org/L16-1474/</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>2971</start>
<end>2975</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Classifying Out-of-vocabulary Terms in a Domain-Specific Social Media Corpus
%A Park, SoHyun
%A Fazly, Afsaneh
%A Lee, Annie
%A Seibel, Brandon
%A Zi, Wenjie
%A Cook, Paul
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F park-etal-2016-classifying
%X In this paper we consider the problem of out-of-vocabulary term classification in web forum text from the automotive domain. We develop a set of nine domain- and application-specific categories for out-of-vocabulary terms. We then propose a supervised approach to classify out-of-vocabulary terms according to these categories, drawing on features based on word embeddings, and linguistic knowledge of common properties of out-of-vocabulary terms. We show that the features based on word embeddings are particularly informative for this task. The categories that we predict could serve as a preliminary, automatically-generated source of lexical knowledge about out-of-vocabulary terms. Furthermore, we show that this approach can be adapted to give a semi-automated method for identifying out-of-vocabulary terms of a particular category, automotive named entities, that is of particular interest to us.
%U https://aclanthology.org/L16-1474/
%P 2971-2975
Markdown (Informal)
[Classifying Out-of-vocabulary Terms in a Domain-Specific Social Media Corpus](https://aclanthology.org/L16-1474/) (Park et al., LREC 2016)
ACL