@inproceedings{foucault-courtin-2016-automatic,
title = "Automatic Classification of Tweets for Analyzing Communication Behavior of Museums",
author = "Foucault, Nicolas and
Courtin, Antoine",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1480",
pages = "3006--3013",
abstract = "In this paper, we present a study on tweet classification which aims to define the communication behavior of the 103 French museums that participated in 2014 in the Twitter operation: MuseumWeek. The tweets were automatically classified in four communication categories: sharing experience, promoting participation, interacting with the community, and promoting-informing about the institution. Our classification is multi-class. It combines Support Vector Machines and Naive Bayes methods and is supported by a selection of eighteen subtypes of features of four different kinds: metadata information, punctuation marks, tweet-specific and lexical features. It was tested against a corpus of 1,095 tweets manually annotated by two experts in Natural Language Processing and Information Communication and twelve Community Managers of French museums. We obtained an state-of-the-art result of F1-score of 72{\%} by 10-fold cross-validation. This result is very encouraging since is even better than some state-of-the-art results found in the tweet classification literature.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="foucault-courtin-2016-automatic">
<titleInfo>
<title>Automatic Classification of Tweets for Analyzing Communication Behavior of Museums</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Foucault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Courtin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present a study on tweet classification which aims to define the communication behavior of the 103 French museums that participated in 2014 in the Twitter operation: MuseumWeek. The tweets were automatically classified in four communication categories: sharing experience, promoting participation, interacting with the community, and promoting-informing about the institution. Our classification is multi-class. It combines Support Vector Machines and Naive Bayes methods and is supported by a selection of eighteen subtypes of features of four different kinds: metadata information, punctuation marks, tweet-specific and lexical features. It was tested against a corpus of 1,095 tweets manually annotated by two experts in Natural Language Processing and Information Communication and twelve Community Managers of French museums. We obtained an state-of-the-art result of F1-score of 72% by 10-fold cross-validation. This result is very encouraging since is even better than some state-of-the-art results found in the tweet classification literature.</abstract>
<identifier type="citekey">foucault-courtin-2016-automatic</identifier>
<location>
<url>https://aclanthology.org/L16-1480</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>3006</start>
<end>3013</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Classification of Tweets for Analyzing Communication Behavior of Museums
%A Foucault, Nicolas
%A Courtin, Antoine
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F foucault-courtin-2016-automatic
%X In this paper, we present a study on tweet classification which aims to define the communication behavior of the 103 French museums that participated in 2014 in the Twitter operation: MuseumWeek. The tweets were automatically classified in four communication categories: sharing experience, promoting participation, interacting with the community, and promoting-informing about the institution. Our classification is multi-class. It combines Support Vector Machines and Naive Bayes methods and is supported by a selection of eighteen subtypes of features of four different kinds: metadata information, punctuation marks, tweet-specific and lexical features. It was tested against a corpus of 1,095 tweets manually annotated by two experts in Natural Language Processing and Information Communication and twelve Community Managers of French museums. We obtained an state-of-the-art result of F1-score of 72% by 10-fold cross-validation. This result is very encouraging since is even better than some state-of-the-art results found in the tweet classification literature.
%U https://aclanthology.org/L16-1480
%P 3006-3013
Markdown (Informal)
[Automatic Classification of Tweets for Analyzing Communication Behavior of Museums](https://aclanthology.org/L16-1480) (Foucault & Courtin, LREC 2016)
ACL