@inproceedings{nouri-yangarber-2016-novel,
title = "A Novel Evaluation Method for Morphological Segmentation",
author = "Nouri, Javad and
Yangarber, Roman",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1495",
pages = "3102--3109",
abstract = "Unsupervised learning of morphological segmentation of words in a language, based only on a large corpus of words, is a challenging task. Evaluation of the learned segmentations is a challenge in itself, due to the inherent ambiguity of the segmentation task. There is no way to posit unique {``}correct{''} segmentation for a set of data in an objective way. Two models may arrive at different ways of segmenting the data, which may nonetheless both be valid. Several evaluation methods have been proposed to date, but they do not insist on consistency of the evaluated model. We introduce a new evaluation methodology, which enforces correctness of segmentation boundaries while also assuring consistency of segmentation decisions across the corpus.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nouri-yangarber-2016-novel">
<titleInfo>
<title>A Novel Evaluation Method for Morphological Segmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Javad</namePart>
<namePart type="family">Nouri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Yangarber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Unsupervised learning of morphological segmentation of words in a language, based only on a large corpus of words, is a challenging task. Evaluation of the learned segmentations is a challenge in itself, due to the inherent ambiguity of the segmentation task. There is no way to posit unique “correct” segmentation for a set of data in an objective way. Two models may arrive at different ways of segmenting the data, which may nonetheless both be valid. Several evaluation methods have been proposed to date, but they do not insist on consistency of the evaluated model. We introduce a new evaluation methodology, which enforces correctness of segmentation boundaries while also assuring consistency of segmentation decisions across the corpus.</abstract>
<identifier type="citekey">nouri-yangarber-2016-novel</identifier>
<location>
<url>https://aclanthology.org/L16-1495</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>3102</start>
<end>3109</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Novel Evaluation Method for Morphological Segmentation
%A Nouri, Javad
%A Yangarber, Roman
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F nouri-yangarber-2016-novel
%X Unsupervised learning of morphological segmentation of words in a language, based only on a large corpus of words, is a challenging task. Evaluation of the learned segmentations is a challenge in itself, due to the inherent ambiguity of the segmentation task. There is no way to posit unique “correct” segmentation for a set of data in an objective way. Two models may arrive at different ways of segmenting the data, which may nonetheless both be valid. Several evaluation methods have been proposed to date, but they do not insist on consistency of the evaluated model. We introduce a new evaluation methodology, which enforces correctness of segmentation boundaries while also assuring consistency of segmentation decisions across the corpus.
%U https://aclanthology.org/L16-1495
%P 3102-3109
Markdown (Informal)
[A Novel Evaluation Method for Morphological Segmentation](https://aclanthology.org/L16-1495) (Nouri & Yangarber, LREC 2016)
ACL
- Javad Nouri and Roman Yangarber. 2016. A Novel Evaluation Method for Morphological Segmentation. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 3102–3109, Portorož, Slovenia. European Language Resources Association (ELRA).