@inproceedings{llanos-etal-2016-managing,
title = "Managing Linguistic and Terminological Variation in a Medical Dialogue System",
author = "Llanos, Leonardo Campillos and
Bouamor, Dhouha and
Zweigenbaum, Pierre and
Rosset, Sophie",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}`16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1505/",
pages = "3167--3173",
abstract = "We introduce a dialogue task between a virtual patient and a doctor where the dialogue system, playing the patient part in a simulated consultation, must reconcile a specialized level, to understand what the doctor says, and a lay level, to output realistic patient-language utterances. This increases the challenges in the analysis and generation phases of the dialogue. This paper proposes methods to manage linguistic and terminological variation in that situation and illustrates how they help produce realistic dialogues. Our system makes use of lexical resources for processing synonyms, inflectional and derivational variants, or pronoun/verb agreement. In addition, specialized knowledge is used for processing medical roots and affixes, ontological relations and concept mapping, and for generating lay variants of terms according to the patient`s non-expert discourse. We also report the results of a first evaluation carried out by 11 users interacting with the system. We evaluated the non-contextual analysis module, which supports the Spoken Language Understanding step. The annotation of task domain entities obtained 91.8{\%} of Precision, 82.5{\%} of Recall, 86.9{\%} of F-measure, 19.0{\%} of Slot Error Rate, and 32.9{\%} of Sentence Error Rate."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="llanos-etal-2016-managing">
<titleInfo>
<title>Managing Linguistic and Terminological Variation in a Medical Dialogue System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leonardo</namePart>
<namePart type="given">Campillos</namePart>
<namePart type="family">Llanos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhouha</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Zweigenbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophie</namePart>
<namePart type="family">Rosset</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a dialogue task between a virtual patient and a doctor where the dialogue system, playing the patient part in a simulated consultation, must reconcile a specialized level, to understand what the doctor says, and a lay level, to output realistic patient-language utterances. This increases the challenges in the analysis and generation phases of the dialogue. This paper proposes methods to manage linguistic and terminological variation in that situation and illustrates how they help produce realistic dialogues. Our system makes use of lexical resources for processing synonyms, inflectional and derivational variants, or pronoun/verb agreement. In addition, specialized knowledge is used for processing medical roots and affixes, ontological relations and concept mapping, and for generating lay variants of terms according to the patient‘s non-expert discourse. We also report the results of a first evaluation carried out by 11 users interacting with the system. We evaluated the non-contextual analysis module, which supports the Spoken Language Understanding step. The annotation of task domain entities obtained 91.8% of Precision, 82.5% of Recall, 86.9% of F-measure, 19.0% of Slot Error Rate, and 32.9% of Sentence Error Rate.</abstract>
<identifier type="citekey">llanos-etal-2016-managing</identifier>
<location>
<url>https://aclanthology.org/L16-1505/</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>3167</start>
<end>3173</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Managing Linguistic and Terminological Variation in a Medical Dialogue System
%A Llanos, Leonardo Campillos
%A Bouamor, Dhouha
%A Zweigenbaum, Pierre
%A Rosset, Sophie
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F llanos-etal-2016-managing
%X We introduce a dialogue task between a virtual patient and a doctor where the dialogue system, playing the patient part in a simulated consultation, must reconcile a specialized level, to understand what the doctor says, and a lay level, to output realistic patient-language utterances. This increases the challenges in the analysis and generation phases of the dialogue. This paper proposes methods to manage linguistic and terminological variation in that situation and illustrates how they help produce realistic dialogues. Our system makes use of lexical resources for processing synonyms, inflectional and derivational variants, or pronoun/verb agreement. In addition, specialized knowledge is used for processing medical roots and affixes, ontological relations and concept mapping, and for generating lay variants of terms according to the patient‘s non-expert discourse. We also report the results of a first evaluation carried out by 11 users interacting with the system. We evaluated the non-contextual analysis module, which supports the Spoken Language Understanding step. The annotation of task domain entities obtained 91.8% of Precision, 82.5% of Recall, 86.9% of F-measure, 19.0% of Slot Error Rate, and 32.9% of Sentence Error Rate.
%U https://aclanthology.org/L16-1505/
%P 3167-3173
Markdown (Informal)
[Managing Linguistic and Terminological Variation in a Medical Dialogue System](https://aclanthology.org/L16-1505/) (Llanos et al., LREC 2016)
ACL