@inproceedings{nasution-etal-2016-constraint,
title = "Constraint-Based Bilingual Lexicon Induction for Closely Related Languages",
author = "Nasution, Arbi Haza and
Murakami, Yohei and
Ishida, Toru",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}`16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1524/",
pages = "3291--3298",
abstract = "The lack or absence of parallel and comparable corpora makes bilingual lexicon extraction becomes a difficult task for low-resource languages. Pivot language and cognate recognition approach have been proven useful to induce bilingual lexicons for such languages. We analyze the features of closely related languages and define a semantic constraint assumption. Based on the assumption, we propose a constraint-based bilingual lexicon induction for closely related languages by extending constraints and translation pair candidates from recent pivot language approach. We further define three constraint sets based on language characteristics. In this paper, two controlled experiments are conducted. The former involves four closely related language pairs with different language pair similarities, and the latter focuses on sense connectivity between non-pivot words and pivot words. We evaluate our result with F-measure. The result indicates that our method works better on voluminous input dictionaries and high similarity languages. Finally, we introduce a strategy to use proper constraint sets for different goals and language characteristics."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nasution-etal-2016-constraint">
<titleInfo>
<title>Constraint-Based Bilingual Lexicon Induction for Closely Related Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arbi</namePart>
<namePart type="given">Haza</namePart>
<namePart type="family">Nasution</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohei</namePart>
<namePart type="family">Murakami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toru</namePart>
<namePart type="family">Ishida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The lack or absence of parallel and comparable corpora makes bilingual lexicon extraction becomes a difficult task for low-resource languages. Pivot language and cognate recognition approach have been proven useful to induce bilingual lexicons for such languages. We analyze the features of closely related languages and define a semantic constraint assumption. Based on the assumption, we propose a constraint-based bilingual lexicon induction for closely related languages by extending constraints and translation pair candidates from recent pivot language approach. We further define three constraint sets based on language characteristics. In this paper, two controlled experiments are conducted. The former involves four closely related language pairs with different language pair similarities, and the latter focuses on sense connectivity between non-pivot words and pivot words. We evaluate our result with F-measure. The result indicates that our method works better on voluminous input dictionaries and high similarity languages. Finally, we introduce a strategy to use proper constraint sets for different goals and language characteristics.</abstract>
<identifier type="citekey">nasution-etal-2016-constraint</identifier>
<location>
<url>https://aclanthology.org/L16-1524/</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>3291</start>
<end>3298</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Constraint-Based Bilingual Lexicon Induction for Closely Related Languages
%A Nasution, Arbi Haza
%A Murakami, Yohei
%A Ishida, Toru
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC‘16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F nasution-etal-2016-constraint
%X The lack or absence of parallel and comparable corpora makes bilingual lexicon extraction becomes a difficult task for low-resource languages. Pivot language and cognate recognition approach have been proven useful to induce bilingual lexicons for such languages. We analyze the features of closely related languages and define a semantic constraint assumption. Based on the assumption, we propose a constraint-based bilingual lexicon induction for closely related languages by extending constraints and translation pair candidates from recent pivot language approach. We further define three constraint sets based on language characteristics. In this paper, two controlled experiments are conducted. The former involves four closely related language pairs with different language pair similarities, and the latter focuses on sense connectivity between non-pivot words and pivot words. We evaluate our result with F-measure. The result indicates that our method works better on voluminous input dictionaries and high similarity languages. Finally, we introduce a strategy to use proper constraint sets for different goals and language characteristics.
%U https://aclanthology.org/L16-1524/
%P 3291-3298
Markdown (Informal)
[Constraint-Based Bilingual Lexicon Induction for Closely Related Languages](https://aclanthology.org/L16-1524/) (Nasution et al., LREC 2016)
ACL