@inproceedings{couto-vale-etal-2016-automatic,
title = "Automatic Recognition of Linguistic Replacements in Text Series Generated from Keystroke Logs",
author = "Couto-Vale, Daniel and
Neumann, Stella and
Niemietz, Paula",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1574",
pages = "3617--3623",
abstract = "This paper introduces a toolkit used for the purpose of detecting replacements of different grammatical and semantic structures in ongoing text production logged as a chronological series of computer interaction events (so-called keystroke logs). The specific case we use involves human translations where replacements can be indicative of translator behaviour that leads to specific features of translations that distinguish them from non-translated texts. The toolkit uses a novel CCG chart parser customised so as to recognise grammatical words independently of space and punctuation boundaries. On the basis of the linguistic analysis, structures in different versions of the target text are compared and classified as potential equivalents of the same source text segment by {`}equivalence judges{'}. In that way, replacements of grammatical and semantic structures can be detected. Beyond the specific task at hand the approach will also be useful for the analysis of other types of spaceless text such as Twitter hashtags and texts in agglutinative or spaceless languages like Finnish or Chinese.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="couto-vale-etal-2016-automatic">
<titleInfo>
<title>Automatic Recognition of Linguistic Replacements in Text Series Generated from Keystroke Logs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Couto-Vale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stella</namePart>
<namePart type="family">Neumann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paula</namePart>
<namePart type="family">Niemietz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces a toolkit used for the purpose of detecting replacements of different grammatical and semantic structures in ongoing text production logged as a chronological series of computer interaction events (so-called keystroke logs). The specific case we use involves human translations where replacements can be indicative of translator behaviour that leads to specific features of translations that distinguish them from non-translated texts. The toolkit uses a novel CCG chart parser customised so as to recognise grammatical words independently of space and punctuation boundaries. On the basis of the linguistic analysis, structures in different versions of the target text are compared and classified as potential equivalents of the same source text segment by ‘equivalence judges’. In that way, replacements of grammatical and semantic structures can be detected. Beyond the specific task at hand the approach will also be useful for the analysis of other types of spaceless text such as Twitter hashtags and texts in agglutinative or spaceless languages like Finnish or Chinese.</abstract>
<identifier type="citekey">couto-vale-etal-2016-automatic</identifier>
<location>
<url>https://aclanthology.org/L16-1574</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>3617</start>
<end>3623</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Recognition of Linguistic Replacements in Text Series Generated from Keystroke Logs
%A Couto-Vale, Daniel
%A Neumann, Stella
%A Niemietz, Paula
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F couto-vale-etal-2016-automatic
%X This paper introduces a toolkit used for the purpose of detecting replacements of different grammatical and semantic structures in ongoing text production logged as a chronological series of computer interaction events (so-called keystroke logs). The specific case we use involves human translations where replacements can be indicative of translator behaviour that leads to specific features of translations that distinguish them from non-translated texts. The toolkit uses a novel CCG chart parser customised so as to recognise grammatical words independently of space and punctuation boundaries. On the basis of the linguistic analysis, structures in different versions of the target text are compared and classified as potential equivalents of the same source text segment by ‘equivalence judges’. In that way, replacements of grammatical and semantic structures can be detected. Beyond the specific task at hand the approach will also be useful for the analysis of other types of spaceless text such as Twitter hashtags and texts in agglutinative or spaceless languages like Finnish or Chinese.
%U https://aclanthology.org/L16-1574
%P 3617-3623
Markdown (Informal)
[Automatic Recognition of Linguistic Replacements in Text Series Generated from Keystroke Logs](https://aclanthology.org/L16-1574) (Couto-Vale et al., LREC 2016)
ACL