@inproceedings{iosif-potamianos-2016-crossmodal,
title = "Crossmodal Network-Based Distributional Semantic Models",
author = "Iosif, Elias and
Potamianos, Alexandros",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1627",
pages = "3973--3979",
abstract = "Despite the recent success of distributional semantic models (DSMs) in various semantic tasks they remain disconnected with real-world perceptual cues since they typically rely on linguistic features. Text data constitute the dominant source of features for the majority of such models, although there is evidence from cognitive science that cues from other modalities contribute to the acquisition and representation of semantic knowledge. In this work, we propose the crossmodal extension of a two-tier text-based model, where semantic representations are encoded in the first layer, while the second layer is used for computing similarity between words. We exploit text- and image-derived features for performing computations at each layer, as well as various approaches for their crossmodal fusion. It is shown that the crossmodal model performs better (from 0.68 to 0.71 correlation coefficient) than the unimodal one for the task of similarity computation between words.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="iosif-potamianos-2016-crossmodal">
<titleInfo>
<title>Crossmodal Network-Based Distributional Semantic Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elias</namePart>
<namePart type="family">Iosif</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Potamianos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Despite the recent success of distributional semantic models (DSMs) in various semantic tasks they remain disconnected with real-world perceptual cues since they typically rely on linguistic features. Text data constitute the dominant source of features for the majority of such models, although there is evidence from cognitive science that cues from other modalities contribute to the acquisition and representation of semantic knowledge. In this work, we propose the crossmodal extension of a two-tier text-based model, where semantic representations are encoded in the first layer, while the second layer is used for computing similarity between words. We exploit text- and image-derived features for performing computations at each layer, as well as various approaches for their crossmodal fusion. It is shown that the crossmodal model performs better (from 0.68 to 0.71 correlation coefficient) than the unimodal one for the task of similarity computation between words.</abstract>
<identifier type="citekey">iosif-potamianos-2016-crossmodal</identifier>
<location>
<url>https://aclanthology.org/L16-1627</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>3973</start>
<end>3979</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Crossmodal Network-Based Distributional Semantic Models
%A Iosif, Elias
%A Potamianos, Alexandros
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F iosif-potamianos-2016-crossmodal
%X Despite the recent success of distributional semantic models (DSMs) in various semantic tasks they remain disconnected with real-world perceptual cues since they typically rely on linguistic features. Text data constitute the dominant source of features for the majority of such models, although there is evidence from cognitive science that cues from other modalities contribute to the acquisition and representation of semantic knowledge. In this work, we propose the crossmodal extension of a two-tier text-based model, where semantic representations are encoded in the first layer, while the second layer is used for computing similarity between words. We exploit text- and image-derived features for performing computations at each layer, as well as various approaches for their crossmodal fusion. It is shown that the crossmodal model performs better (from 0.68 to 0.71 correlation coefficient) than the unimodal one for the task of similarity computation between words.
%U https://aclanthology.org/L16-1627
%P 3973-3979
Markdown (Informal)
[Crossmodal Network-Based Distributional Semantic Models](https://aclanthology.org/L16-1627) (Iosif & Potamianos, LREC 2016)
ACL
- Elias Iosif and Alexandros Potamianos. 2016. Crossmodal Network-Based Distributional Semantic Models. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 3973–3979, Portorož, Slovenia. European Language Resources Association (ELRA).