@inproceedings{lu-ng-2016-event,
title = "Event Coreference Resolution with Multi-Pass Sieves",
author = "Lu, Jing and
Ng, Vincent",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1631",
pages = "3996--4003",
abstract = "Multi-pass sieve approaches have been successfully applied to entity coreference resolution and many other tasks in natural language processing (NLP), owing in part to the ease of designing high-precision rules for these tasks. However, the same is not true for event coreference resolution: typically lying towards the end of the standard information extraction pipeline, an event coreference resolver assumes as input the noisy outputs of its upstream components such as the trigger identification component and the entity coreference resolution component. The difficulty in designing high-precision rules makes it challenging to successfully apply a multi-pass sieve approach to event coreference resolution. In this paper, we investigate this challenge, proposing the first multi-pass sieve approach to event coreference resolution. When evaluated on the version of the KBP 2015 corpus available to the participants of EN Task 2 (Event Nugget Detection and Coreference), our approach achieves an Avg F-score of 40.32{\%}, outperforming the best participating system by 0.67{\%} in Avg F-score.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lu-ng-2016-event">
<titleInfo>
<title>Event Coreference Resolution with Multi-Pass Sieves</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-pass sieve approaches have been successfully applied to entity coreference resolution and many other tasks in natural language processing (NLP), owing in part to the ease of designing high-precision rules for these tasks. However, the same is not true for event coreference resolution: typically lying towards the end of the standard information extraction pipeline, an event coreference resolver assumes as input the noisy outputs of its upstream components such as the trigger identification component and the entity coreference resolution component. The difficulty in designing high-precision rules makes it challenging to successfully apply a multi-pass sieve approach to event coreference resolution. In this paper, we investigate this challenge, proposing the first multi-pass sieve approach to event coreference resolution. When evaluated on the version of the KBP 2015 corpus available to the participants of EN Task 2 (Event Nugget Detection and Coreference), our approach achieves an Avg F-score of 40.32%, outperforming the best participating system by 0.67% in Avg F-score.</abstract>
<identifier type="citekey">lu-ng-2016-event</identifier>
<location>
<url>https://aclanthology.org/L16-1631</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>3996</start>
<end>4003</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Event Coreference Resolution with Multi-Pass Sieves
%A Lu, Jing
%A Ng, Vincent
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F lu-ng-2016-event
%X Multi-pass sieve approaches have been successfully applied to entity coreference resolution and many other tasks in natural language processing (NLP), owing in part to the ease of designing high-precision rules for these tasks. However, the same is not true for event coreference resolution: typically lying towards the end of the standard information extraction pipeline, an event coreference resolver assumes as input the noisy outputs of its upstream components such as the trigger identification component and the entity coreference resolution component. The difficulty in designing high-precision rules makes it challenging to successfully apply a multi-pass sieve approach to event coreference resolution. In this paper, we investigate this challenge, proposing the first multi-pass sieve approach to event coreference resolution. When evaluated on the version of the KBP 2015 corpus available to the participants of EN Task 2 (Event Nugget Detection and Coreference), our approach achieves an Avg F-score of 40.32%, outperforming the best participating system by 0.67% in Avg F-score.
%U https://aclanthology.org/L16-1631
%P 3996-4003
Markdown (Informal)
[Event Coreference Resolution with Multi-Pass Sieves](https://aclanthology.org/L16-1631) (Lu & Ng, LREC 2016)
ACL
- Jing Lu and Vincent Ng. 2016. Event Coreference Resolution with Multi-Pass Sieves. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 3996–4003, Portorož, Slovenia. European Language Resources Association (ELRA).