@inproceedings{kaplan-etal-2016-solving,
title = "Solving the {AL} Chicken-and-Egg Corpus and Model Problem: Model-free Active Learning for Phenomena-driven Corpus Construction",
author = "Kaplan, Dain and
Rubens, Neil and
Teufel, Simone and
Tokunaga, Takenobu",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Goggi, Sara and
Grobelnik, Marko and
Maegaard, Bente and
Mariani, Joseph and
Mazo, Helene and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
month = may,
year = "2016",
address = "Portoro{\v{z}}, Slovenia",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L16-1697",
pages = "4402--4409",
abstract = "Active learning (AL) is often used in corpus construction (CC) for selecting {``}informative{''} documents for annotation. This is ideal for focusing annotation efforts when all documents cannot be annotated, but has the limitation that it is carried out in a closed-loop, selecting points that will improve an existing model. For phenomena-driven and exploratory CC, the lack of existing-models and specific task(s) for using it make traditional AL inapplicable. In this paper we propose a novel method for model-free AL utilising characteristics of phenomena for applying AL to select documents for annotation. The method can also supplement traditional closed-loop AL-based CC to extend the utility of the corpus created beyond a single task. We introduce our tool, MOVE, and show its potential with a real world case-study.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kaplan-etal-2016-solving">
<titleInfo>
<title>Solving the AL Chicken-and-Egg Corpus and Model Problem: Model-free Active Learning for Phenomena-driven Corpus Construction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dain</namePart>
<namePart type="family">Kaplan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Neil</namePart>
<namePart type="family">Rubens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simone</namePart>
<namePart type="family">Teufel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takenobu</namePart>
<namePart type="family">Tokunaga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marko</namePart>
<namePart type="family">Grobelnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helene</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association (ELRA)</publisher>
<place>
<placeTerm type="text">Portorož, Slovenia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Active learning (AL) is often used in corpus construction (CC) for selecting “informative” documents for annotation. This is ideal for focusing annotation efforts when all documents cannot be annotated, but has the limitation that it is carried out in a closed-loop, selecting points that will improve an existing model. For phenomena-driven and exploratory CC, the lack of existing-models and specific task(s) for using it make traditional AL inapplicable. In this paper we propose a novel method for model-free AL utilising characteristics of phenomena for applying AL to select documents for annotation. The method can also supplement traditional closed-loop AL-based CC to extend the utility of the corpus created beyond a single task. We introduce our tool, MOVE, and show its potential with a real world case-study.</abstract>
<identifier type="citekey">kaplan-etal-2016-solving</identifier>
<location>
<url>https://aclanthology.org/L16-1697</url>
</location>
<part>
<date>2016-05</date>
<extent unit="page">
<start>4402</start>
<end>4409</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Solving the AL Chicken-and-Egg Corpus and Model Problem: Model-free Active Learning for Phenomena-driven Corpus Construction
%A Kaplan, Dain
%A Rubens, Neil
%A Teufel, Simone
%A Tokunaga, Takenobu
%Y Calzolari, Nicoletta
%Y Choukri, Khalid
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Grobelnik, Marko
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Helene
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16)
%D 2016
%8 May
%I European Language Resources Association (ELRA)
%C Portorož, Slovenia
%F kaplan-etal-2016-solving
%X Active learning (AL) is often used in corpus construction (CC) for selecting “informative” documents for annotation. This is ideal for focusing annotation efforts when all documents cannot be annotated, but has the limitation that it is carried out in a closed-loop, selecting points that will improve an existing model. For phenomena-driven and exploratory CC, the lack of existing-models and specific task(s) for using it make traditional AL inapplicable. In this paper we propose a novel method for model-free AL utilising characteristics of phenomena for applying AL to select documents for annotation. The method can also supplement traditional closed-loop AL-based CC to extend the utility of the corpus created beyond a single task. We introduce our tool, MOVE, and show its potential with a real world case-study.
%U https://aclanthology.org/L16-1697
%P 4402-4409
Markdown (Informal)
[Solving the AL Chicken-and-Egg Corpus and Model Problem: Model-free Active Learning for Phenomena-driven Corpus Construction](https://aclanthology.org/L16-1697) (Kaplan et al., LREC 2016)
ACL