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Abstract
The current study was motivated to understand the relationship between the external behavior and inner affective state of two team
members (“instructor”-“defuser”) during a demanding operational task (i.e., bomb defusion). In this study we assessed team member’s
verbal responses (i.e., length of duration) in relation to their external as well as internal affective cues. External behavioral cues include
defuser’s verbal expressions while inner cues are based on physiological signals. More specifically, we differentiate between “defusers’”
physiological patterns occurring after the “instructor’s” turns according to whether they belong to a short or a long turn-taking response
interval. Based on the assumption that longer turn-taking behaviors are likely to be caused by demanding cognitive task events and/or
stressful interactions, we hypothesize that inner mechanisms produced in these intense affective activity intervals will be reflected on
defuser’s physiology. A dyadic team corpus was used to examine the association between the “defusers” physiological signals following
the “instructor’s” questions to predict whether they occurred in a short or long turn-taking period of time. The results suggest that an
association does exist between turn taking and inner affective state. Additionally, it was our goal to further unpack this association
by creating diverse ensembles. As such, we studied various base learners and different ensemble sizes to determine the best approach
towards building a stable diverse ensemble that generalizes well on the external and inner cues of individuals.
Keywords: Turn-takings, Physiological features, MEAP, Dyadic Team Corpus, Ensemble Learning

1. Introduction
Lack of emotional expressivity is one of the main deficits

that characterizes periods of stress when team members
perform highly cognitive cooperative tasks. In cases such
as this, teammates may find it more difficult to express their
conscious feelings and show different patterns in perceiv-
ing and conveying emotional information when working
together to meet a common goal(Jones and George, 1998;
Prati et al., 2003). In light of these observations, having a
way to monitor the internal state of teammates within such
contexts might provide us new insights with respect to the
mechanisms of their interaction and affectivity.

During high workload and high stress tasks, the sympa-
thetic nervous system is accountable for activating glands
and organs that are responsible for defending the body
from perceived threats. This activation is associated with
changes in arousal that are further influenced by emotion,
cognition or attention. Stress results in increased sympa-
thetic activity and can be tracked for example through bod-
ily reactions, such as an increase in heart rate, greater blood
flow to extremities and an increase in the respiration rate
etc. Thus, a combination of more than one physiological
indicator would be considered a more sensitive measure of
changes in stress and can be used to provide estimations of
emotion, arousal and general cognition (McEwen, 2007).

In this paper, we shed light on the association be-
tween two team members’ physiological states and their
speech, measured via their conversational turn-taking dura-
tion. Team members in highly-demanding operational tasks
do not often notice triggers that cause them to be emotion-
ally and mentally stressed (Murphy, 1996; Stein, 2001).

Thus, they might communicate with their teammates and
express their emotions in ways that may not be noticed in
observable audio-visual cues. For instance, one would ex-
pect that asking an individual to disarm a simulated bomb
would result in high levels of (internal) stress. This inher-
ent gap between teammates’ external observable behavior
and their inner affective state is not well understood and
can be potentially bridged by monitoring their physiology.
The duration of response utterances is also reported to be
very important, as it can be indicative of conflicting mental
and stress procedures (Raux and Eskenazi, 2009). Because
physiological indicators reflect aspects of underlying men-
tal states and specifically the amount of distress (El-Sheikh
et al., 1989), we explore whether physiological signals of
long and short response utterance durations exhibit differ-
ent physiological patterns. To further capture and interpret
this ongoing and evolving interplay, we examine the use
of two ensemble learning strategies. We believe that the
investigation of physiological changes during the response
periods can provide a better understanding of a team dy-
namics.

2. Related Work
There has been a lot of research on dialogue dynamics as

well as the relationship of stress to underlying physiology,
but these fields have largely been separate in the literature.
For example, work on turn-taking behavior in dialogue sys-
tems (Raux and Eskenazi, 2009) could benefit from an un-
derstand of interpersonal dynamics of physiological stress
response during a cooperative task (Dennison et al., 2016).
Links between turn-taking behavioral responses and phys-
iology have been studied for assessing how adults’ anger
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levels affected children (El-Sheikh et al., 1989). Moreover,
previous studies have shown the advantages of using en-
semble learning in both unimodal (Schuller et al., 2005b;
Scherer et al., 2008; Schels and Schwenker, 2010) and mul-
timodal behavioral analysis(Glodek et al., 2011; Schels et
al., 2012; Schuller et al., 2005a).

To the best of our knowledge, there is no experimental
evidence of applying ensemble learning to study the link
between external behavior of turn-taking responses (Sec-
tion 4.) and inner affective states inferred from physio-
logical signal indicators (Section 5.) of two teammates
(instructor-defuser) trying to disarm a simulated bomb
(Section 3.)(Neubauer et al., 2016). This work is an ef-
fort to unfold this association based on the experimental
evidence from the Dyadic Team Corpus. Our results indi-
cate that physiological patterns convey information about
the defuser’s inner state, because they differ according to
the duration of turn-taking behavioral replies with respect
to the instructor’s turns (Section 6.2.). Finally, our results
are further enhanced through ensemble learning methods,
which outperform the individual base learners in most cases
and interesting observations are discussed in the Section 7..

3. Corpus Description
The dyadic cooperative team corpus (Neubauer et al.,

2016) employed a 2x2 between subjects design resulting
in a total of 2 experimental conditions with 20-gender-
matched pairs in the following two conditions: The Ice
Breaker conversation (IB) condition which consisted of al-
lowing teammates to garner familiarity through a series of
“getting to know you” questions prior to the start of the task
and the Control (CT) condition, where teammates simply
began the task with no prior familiarity. The corpus con-
sists of a series of simulated “bomb defusion” scenarios.
In each scenario one team member served as the “defuser”
and one team member served as the “instructor”. The “in-
structor” was given a manual with instructions on how to
diffuse the bomb. The “instructor” was told that it was their
responsibility to provide information that would allow the
defuser to successfully complete the task. After each sepa-
rate task the team members switched roles (i.e., each team
member was given the opportunity to be both the “defuser”
and the “instructor” twice during the main task), which re-
sulted in a total of 4 main tasks, each lasting an average of
5mins. For this work, we take into account only 10-gender-
matched pairs (5 from each condition) and we examine only
the case in which participant A is the instructor and partic-
ipant B is the defuser, (i.e. we didn’t examine the case of
asking members to switch roles).

4. Turn-taking behavioral responses
One of the main indicators of an interactional speech

episode is often called a “turn-taking” and is defined as the
time duration between the end of someone’s turn and the
beginning of the other interlocutor’s corresponding turn.
Turn-taking responses may span from very short to very
long, which may indicate shorter or longer emotional and
stressful episodes. In a similar way, in our teammate cor-
pus, longer turn taking behavioral responses provided valu-
able information about the defuser’s perceived cognition

and affective state, reflected their external observable as
well as implicit inner affective states. We choose to in-
vestigate that type of interactional context between the two
teammates, motivated by the fact that the instructor’s be-
havior is more controllable, thus minimizing the effect of
the instructor’s variability on the defuser’s behavior.

To further distinguish between short and long turn-taking
behavioral responses (Figure 1) we draw a threshold at
the 70th percentile of response values. This threshold was
computed empirically after plotting the histograms of turn-
taking behavioral response instances from the data of each
defuser separately. Negative values of this measure mean
that the defuser started talking before the instructor had
finished the current turn. Phenomena such as overlapped
speech and very short utterances are aligned with high lev-
els of stress in highly-demanding operational tasks (Held-
ner and Edlund, 2010).

After carefully inspecting various turn-taking behavioral
instances in our corpus, we came across a number of in-
teresting tendencies. There were examples during the in-
teractional context in which the instructor explained how
the blue and red wires are connected. In that case, the de-
fuser’s reply is short (i.e., the defuser uses words such as
ok/yes/no). Then, as a follow up, the instructor explained
with more detail the process of bomb defusion to check
whether the defuser is really following his instructions. In
the first case, where the statement is simple and elicits low
cognitive effort, a short reply occurred, while a long one
occurred in the second case, where the defuser repeated the
instructor’s guidelines to confirm that he correctly under-
stood the task. In this case, it was expected that the defuser
was much more mentally alert.

5. Extraction of Physiological Features
A BIOPAC MP150, with a standard lead II electrode con-

figuration was used to record electrocardiography (ECG),
real-time changes in blood pressure, and impedance cardio-
graphy (ZKG). Continuous data were recorded for each par-
ticipant throughout each task and analyzed offline. The raw
time series for each task segmented into thirty second inter-
vals relative to the end of each session, such that a few sec-
onds from the beginning of the “bomb defusion” task were
cut out. This was done because a minimum of 30 seconds
of cardiovascular data are necessary for further analysis.
The Moving Ensemble Average Program (MEAP)(Cieslak,
2017) was used to extract features from the data by com-
puting an ensembled average over each epoch.

We extracted 24 cardiovascular features. Some of these
features, presented in Table 1, included heart rate (HR),
LVET (left ventral (systolic) ejection time), p time, s time,
t time, x time, systole time, pre-ejection period (PEP),
ventricular contractility (VC), cardiac output (CO) and to-
tal peripheral resistance (TPR). PEP is the time from the
onset of the heart muscle depolarization to the opening of
the aortic valve. When PEP decreases, VC increases. VC
has been shown to be related to task engagement (Newlin
and Levenson, 1979; Richter and Gendolla, 2009; Spangler
and Friedman, 2015; Seery, 2011). CO is the amount of
blood pumped in liters per minute. TPR reflects vasodi-
lation (more blood flow) and vasoconstriction (less blow
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(a) P100 (b) P101 (c) P102 (d) P103 (e) P104

(f) P200 (g) P201 (h) P202 (i) P203 (j) P204

Figure 1: Frequency counts (y axis) for 10 defusers in IB and CT conditions and distributions of their responses (x axis) measured in
seconds with respect to the instructor’s turns. The vertical dashed blue line distinguishes between the short and long replies.

Participants Condition Selected Physiological Features
P100 IB s time, systole time
P101 IB hr
P102 IB lvet,p time, x time
P103 IB hr
P104 IB t time
P200 CT diastole time
P201 CT hr
P202 CT pep
P203 CT hr
P204 CT hr

Table 1: Most frequently selected Physiological Features for ten
defusers, five from the IB and CT conditions respectively during
the “bomb defusion” task. The features are labeled as follows:
heart rate (hr), left ventral (systolic) ejection time (LVET) and
pre-ejection period (pep).

flow), which are related to parasympathetic and sympa-
thetic activity, respectively. Prior work has shown that TPR
unambiguously increases when an individual is in a threat
state and decreases in a challenge state, whereas CO ei-
ther remains unchanged or decreases in a threat state and
increases in a challenge state (Tomaka et al., 1997).

6. Experiments
The purpose of our experiment is to unfold the direct link

between levels of external socio-cognitive behavioral de-
mand and inner-affective mechanisms. Through an ensem-
ble learning task we attempted to exploit different behaviors
of the selected base learners to enhance the accuracy of our
overall learning system. Our aim is to show that defusers’
physiological patterns differ between periods of longer and
shorter replies and that there exist a range of stress levels
across defusers.

6.1. Methodology
Feature Selection: Due to the fact that some of the features
are highly correlated, we reduce the set with correlation
feature selection (CFS). CFS selects features that correlate
with the class label but are not correlated with previously
selected features.
Ensemble Learning: To maintain diversity of base learn-

ers (Dietterich, 2002) we use two heterogeneous learner
schemes: Voting (Shipp and Kuncheva, 2002) and Meta-
learning (Wolpert, 1992). Under the Voting scheme, we
combine the individual base by applying the average com-
bination rule to the outputs. Meta-learning employs sev-
eral base learners to get class predictions, which are then
used by a meta-learning algorithm during the training phase
to predict when the base learners are incorrect. Addi-
tionally, we comment on the ensemble size of the learn-
ers. Both ensemble schemes were built by combining the
following base learners: K-Nearest Neighbor with K=5
(KNN)1, Naive Bayes (NB), Decision Tree (DT), Ran-
dom Tree (RT), Support Vector Machines with RBF ker-
nel (SVM-RBF), Multi-layer Perceptron (MLP) and Ran-
dom Forest (RF)(Breiman, 2001)2. The experiments were
performed using leave-one-instance-out cross validation,
where instance denotes a turn-taking behavioral response.
We applied this approach for every defuser separately, for
both conditions IB and CT respectively, as we wanted to in-
vestigate the unique individual trends of each defuser par-
ticipant with respect to their behavior, their physiology and
their their experimental condition (Ice Breaker or Control).

6.2. Results
The individual base learners and the ensemble learning

methods chosen for our study are shown in Table 2.
Our experimental results range from 43.75% to 88.89%,
suggesting that physiological signals contain information
relevant to the amount of behavioral verbal replies. Ad-
ditionally, we notice a great difference in performance
across defusers, underlying once again the individual traits
of every defuser. Particularly, the selected physiological
cues of defusers P100, P102, P202, P203 and P204 appear
to be more closely associated to the type of behavioral
reply instances (short/long) compared to the corresponding
patterns of P101, P103, P104 and P201 defusers.

1K=5 was empirically found to give better performance con-
sidering the limitation of small number of instances for 2 defusers
(P104 and P202 with 9 and 10 instances respectively).

2This learner as a base one is robust and works relatively well
without excessive need of meta parameter tuning.
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Base Learners Ensemble Learners

Participants Condition KNN(5) NB DT RT SVM-RBF MLP RF Voting Meta-learning

P100 IB 68.97 75.86 62.07 75.86 72.41 65.52 75.86 72.41 72.41
P101 IB 43.75 56.25 50.00 50.00 43.75 50.00 50.00 43.75 62.50
P102 IB 80.00 73.33 73.33 73.33 40.00 66.67 73.33 73.33 73.33
P103 IB 34.38 46.88 53.13 43.75 59.38 53.13 43.75 59.38 62.50
P104 IB 66.67 44.44 88.89 66.67 55.56 66.67 66.67 55.56 55.56
P200 CT 77.78 66.67 88.89 88.89 88.89 77.78 88.89 88.89 83.33
P201 CT 43.75 43.75 56.25 18.75 31.25 50.00 25.00 31.25 62.50
P202 CT 70.00 80.00 90.00 60.00 60.00 80.00 80.00 60.00 70.0
P203 CT 88.00 88.00 88.00 72.00 88.00 84.00 72.00 88.00 88.00
P204 CT 77.78 66.67 77.78 77.78 77.78 66.67 66.67 77.78 66.67

Table 2: The individual base learners and the ensemble learning methods chosen for ten defusers, five from the IB and CT conditions
respectively during the “bomb defusion” task. The best method(s) for every participant is highlighted.

Ensemble learning performance and ensemble size: We
notice that ensembles for the two different combination
schemes either outperform the best individual base learner
(P101, P103, P201) or reach similar performance with
that (P200, P203, P204). After experimenting with a size
ranging from 5 to 10 base learners, we present only those,
whose combination determined the best approach towards
building a stable diverse ensemble that generalizes well
on the external and inner cues of individual. Furthermore,
we have experimented with an odd and even number of
ensemble size. Experimentally, we found that using an odd
number for the ensemble size provides a higher learning
performance. That could be explained if we consider that,
when an even number of base learners is used, there is a
potential for a tie when half of the base learners vote for
one class while the other half vote for the opposite class.
Most frequently selected physiological features: We elab-
orate on the features presented in Table 1 in terms of
their importance with respect to the “bomb defusion”
task. We observe that for 50% of the defusers the most
selected physiological signal is HR. Based on this, we
assume that HR is associated with arousal levels and is
of high importance for the examined task for this work.
Regarding the remaining selected physiological features,
we notice that these features range across defusers. This
finding enhances the original assumption of uniqueness of
individual personal traits across participants. Finally, the
former finding is also aligned with our experimental results
and observations that suggest that the “teammate prior
familiarity” parameter does not have an impact on our task.

7. Discussion
As discussed in Section 6.2., there is a wide variability

across defusers with respect to the given task. This observa-
tion indicates that there might be mechanisms triggered in
defusers with high learning accuracy, reflected their physi-
ological signals, which are not present in defusers with low
learning performance (i.e. P101, P103, P201). It is also
noteworthy that for these three defusers, the selected phys-
iological feature is HR. To further elaborate on this ten-
dency, we go through the audiovisual recordings and the
HR signals. We notice that there is a difference in the
arousal levels (i.e., stress) with respect to the type of be-
havioral replies (short/long) and that arousal affectivity is
present both in short and long turn-taking responses, de-

pending on the defuser.
More specifically, we come across examples of defusers

who took a long time to respond after having given a wrong
answer once and were asked to try again to confirm the
bomb defusion steps. Hence, it appears that the task was
a sufficiently stressful stimulus for them. In these long
turn-taking examples, it is also reasonable to assume that
high cognitive activity or stressor events occurred. At the
same time, high levels of arousal are noticed in short turn-
taking examples, in which for example the defuser uses
words such ok/yes/no. This tendency is not aligned with
the “bomb defusion” task, considering that we were expect-
ing that short turn-taking examples would reflect low levels
of arousal. On the contrary, our observation suggests that
even though there may be no obvious (audible/visible) sig-
nals of arousal, physiological signals may provide a com-
plementary, not overlaid though, view of a person’s state.
This finding is of particular importance, especially in cog-
nitively demanding tasks in which one of the teammates
manipulates the discussion and is also aligned with pre-
vious research studies (Tomaka et al., 1997; Gellatly and
Meyer, 1992; Calkins and Fox, 2002).

8. Conclusions and Future Work
This study provides an analysis of physiological signals

in a dyadic team “bomb defusion” scenario in association
with their expressive behavioral cues. The results suggest
that physiological responses convey information about the
defuser’s inner state. They also reflect the amount of the
defuser’s verbal responses with respect to a stimuli and
can be further linked with the amount of underlying socio-
cognitive activity, which is not always obvious through tra-
ditional observational methods. Last, we proposed two ex-
isting ensemble learning methods which are new to the field
of generalizing external and inner cues of speakers, show-
ing that these methods can yield improvements over tradi-
tional analysis methods.

One of the limitations of our study is its reliance on a
small part of the corpus. Future plans include the analysis
and discussion of the identified trends over the whole cor-
pus, as well as the examination of the uniqueness of per-
sonal traits of every participant after switching roles (each
team member was given the opportunity to be both the de-
fuser and the instructor). Also, considering that this study
relied on observational cues concerning turn taking dura-
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tion measures, we believe that the examination of expres-
sive cues with a more detailed analysis of participants’ lex-
ical features will provide an insight into whether these can
be linked with their inner physiological signals. In terms
of the lexical features, we would like to focus on the num-
ber of words, the length of the utterances, the number of
laughs, the richness of the vocabulary as well as the use
of backchannels in terms of short feedback such as “mm-
hmm”, “yeah’.

Additionally, the investigation of singular pronouns (I,
me, mine), assents (OK, yes), non-fluencies (hm, umm),
fillers (I mean, you know) prepositions or words indicating
prior familiarity could extend the pool of the used features.
Apart from that, we intend to apply more advanced lexical
modeling such as topic modeling, to better capture word us-
age, word choice and to unfold all aspects of the defuser’s
specific grammar employed in such stressful interactions.
But, mostly we do believe that such an investigation could
provide an insight with respect to the relevant vocabulary
that is used in such particular tasks and the speaking style
of every team member while sessions progress. This cor-
pus serves as a technical springboard for developing dia-
logue agents that not only capture turn-taking behavior in a
stressful task, but also underlying physiological states dur-
ing the dyadic task.
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