
fastSense: An Efficient Word Sense Disambiguation Classifier

Tolga Uslu, Alexander Mehler, Daniel Baumartz, Wahed Hemati
TTLab, Goethe University Frankfurt

Frankfurt, Germany
{uslu, mehler, baumartz, hemati}@em.uni-frankfurt.de

Abstract
The task of Word Sense Disambiguation (WSD) is to determine the meaning of an ambiguous word in a given context. In spite of its
importance for most NLP pipelines, WSD can still be seen to be unsolved. The reason is that we currently lack tools for WSD that
handle big data – “big” in terms of the number of ambiguous words and in terms of the overall number of senses to be distinguished.
This desideratum is exactly the objective of fastSense, an efficient neural network-based tool for word sense disambiguation
introduced in this paper. We train and test fastSense by means of the disambiguation pages of the German Wikipedia. In addition,
we evaluate fastSense in the context of Senseval and SemEval. By reference to Senseval and SemEval we additionally perform a
parameter study. We show that fastSense can process huge amounts of data quickly and also surpasses state-of-the-art tools in terms
of F-measure.

Keywords: WSD, Big Data, Wikipedia

1. Introduction
One of the core tasks in natural language processing is Word
Sense Disambiguation. Without disambiguation, we just
consider a word as a combination of characters and not
the meaning behind it. Without properly disambiguating
the lexical constituents of a text, it is almost impossible
to process its content automatically. Our goal is to solve
this problem and to make it applicable to large amounts
of data. To this end, we present a neural network-based
classifier for WSD called fastSense. We take sequences of
words as input and compute a sense label per ambiguous
word in that sequence as output. This approach was mo-
tivated by the classifier called fastText (Joulin et al.,
2016). As the name suggests, fastText is designed to
perform text classifications as quickly as possible. How-
ever, fastText is not suitable for disambiguating words.
In addition, the neural network used by fastText does
not support training of multi-labels. Therefore, we imple-
mented our own word embedding-based neural network by
analogy to the architecture of fastText. This allows us
to apply fastSense to WSD efficiently even on big data.
In order to test the time complexity of our approach, we cre-
ated a disambiguation corpus from the German Wikipedia
with over 50,000,000 training and test sets. We use the
disambiguation pages and the link structure of Wikipedia
to match words with their corresponding Wikipedia senses.
In this paper, we deal with the German Wikipedia. In terms
of size or space complexity, its sense model is far beyond
what is normally studied, for example, in the framework of
Senseval or SemEval. However, in order to show that our
approach is language independent, we additionally perform
multiple tests related to Senseval and SemEval. These tests
show that our model keeps up with state-of-the-art tools by
reaching 73.47% at Senseval-2, 73.48% at Senseval-3 and
up to 87,57% on SemEval 2007 tasks.
The paper is structured as follows: In Section 2., we con-
trast fastSensewith related approaches to WSD. In Sec-
tion 3. we introduce the architecture of fastSense. In
Section 4., we explain the experiments carried out to eval-

uate fastSense and show the results achieved by it. In
Section 4.3., we discuss our findings and in Section 5., we
give a summary of the paper.

2. Related Work
Our approach is motivated by fastText (Joulin et al.,
2016). This relates to the very efficient and successful way
by which fastText allows for classifying data. The main
purpose of fastText is text classification. Its architecture
is similar to word2vec (Mikolov et al., 2013): both ap-
proaches are based on a bag-of-words model. Further, both
of them use a single hidden layer. The difference between
word2vec and fastText is that the latter requires to
define a label for any input text, while word2vec uses
context windows of lexical units to predict single words or
vice versa. We transpose fastText to word sense disam-
biguation in order to efficiently determine the meaning of
ambiguous words even in cases in which we face big data.
By this we mean scenarios in which hundreds of thousands
of different words are ambiguous.
fastSense is characterized by its simplicity, speed and
quality. This distinguishes it from similar tools. For
instance, (Mihalcea and Csomai, 2007; Ferragina and
Scaiella, 2010; Ratinov et al., 2011b; Ratinov et al., 2011a;
Agerri et al., 2014; Moro et al., 2014) present approaches
to Entity Linking. More specifically, they link tokens in
texts to knowledge databases such as DBpedia, Wikipedia
or WordNet to identify instances of entities. These ap-
proaches are similar to ours, with the difference that we
focus on ambiguous words, while the latter approaches also
link words that have only one meaning. The disadvantage
of these approaches is their speed. For large amounts of
data, they may take weeks to produce an output (see Ta-
ble 2 for an estimation of this time effort). (Mihalcea,
2007) uses a technique similar to the one presented here to
build a sense-tagged Wikipedia corpus using the link struc-
ture of Wikipedia to match senses. However, this corpus
has not been used to disambiguate ambiguous words ac-
cording to Wikipedia’s disambiguation pages, but to com-

1042



pare them with the data of Senseval 2. (Mihalcea et al.,
2004) use a PageRank algorithm operating on semantic net-
works to perform WSD. The underlying network is spanned
by means of semantic relations of synsets, entailment and
other WordNet relations. The PageRank algorithm assigns
scores to words and chooses the disambiguating synset of
highest score. (Yuan et al., 2016) present two WSD al-
gorithms, achieving the best results by means of a semi-
supervised algorithm combining labeled sentences with un-
labeled ones and propagating labels based on sentence sim-
ilarity. (Tripodi and Pelillo, 2016) describe an approach to
WSD based on evolutionary game theory, in which words
tend to adapt senses of their neighborhood so that WSD is
reformulated as a kind of constraint satisfaction. (Zhong
and Ng, 2010) present a framework for English all-words
WSD. It disambiguates each content word of a given sen-
tence using a linear kernel-based SVM (Joachims, 2002).
(Iacobacci et al., 2016) show that the use of word em-
beddings achieves an improvement in WSD compared to
standard features. (Chaplot et al., 2015) propose a graph
based unsupervised WSD system which requires Word-
Net, a dependency parser and a POS-Tagger. They model
WSD as a maximum-a-posteriori inference query operating
on a Markov random field. (Raganato et al., 2017a) de-
fine WSD in terms of a sequence learning problem. This
is done by means of a bidirectional LSTM-based neural
network (Hochreiter and Schmidhuber, 1997). (Melamud
et al., 2016) present context2vec which is also based
on bidirectional LSTMs for learning disambiguating word
contexts.
Unlike these approaches, we present a method that can han-
dle big data: in terms of the number of senses to be distin-
guished and in terms of the number of units to be disam-
biguated. On the one hand, knowledge driven approaches
using, for example, WordNet and related resources are lim-
ited in terms of the number of senses distinguished by
them. GermaNet, for example, distinguishes 33,630 senses
of 13,445 ambiguous words – that is much less than consid-
ered by us. On the other hand, approaches that rely on al-
gorithms like PageRank or classifiers like SVMs or LSTMs
are limited in terms of their time efficiency: it is a compu-
tational challenge to maintain, for example, SVMs for each
of the 825,179 senses of the 221,965 ambigous words of
the German Wikipedia which, however, are easily covered
by our approach. Thus, we are in need of a flexible, easy-
to-compute, but efficient method for WSD as presented in
the next section.

3. Model architecture
During training, fastSense requires text as input and
the corresponding senses as output (see Figure 1). Its sin-
gle hidden layer is an embedding layer in which word in-
dexes from the input layer are converted into word vectors.
More specifically, the number of hidden nodes corresponds
to the dimension of the pre-trained word embedding vec-
tors so that the weights of edges between input and hidden
nodes correspond to the respective coordinates of the lat-
ter vectors. We computed the word embeddings by means
of word2vec (Mikolov et al., 2013) using Wikipedia as
the underlying corpus. The embeddings are then merged in

the hidden layer according to the global averaging pooling
principle (Lin et al., 2013).

Input

w1

w2

...

wi

...
wn−1

wn Hidden layer

Output

s1

s2

si

sm−1

sm

...

...

Figure 1: Model architecture of fastSense.

To support multi-label training we used the sigmoid func-
tion as an activation function of the output layer. For the
sake of optimizing, Adamax, a special variant of Adam
(Kingma and Ba, 2014), is a very efficient choice in prac-
tice. It uses the infinity norm, which makes it possible to
stabilize the training over longer periods of time and, thus,
to achieve faster and better results. To prevent overfitting,
we used Dropout (Srivastava et al., 2014) as regularization
method. Dropout removes nodes during each training ses-
sion, ignores them and does not train with them. After the
training process, the nodes are reinserted with their original
weights.
To apply this model to WSD, we additionally developed
a method for post-processing the output of the neural net-
work. Usually, the sense of highest probability is selected
as output. However, since the output layer contains all
senses of all ambiguous words, it is unlikely that the tar-
get sense of a word x to be disambiguated equals the top
ranked sense. Thus, we do not necessarily select the la-
bel of highest probability, but go through the list of rank-
ordered candidates until the first occurrence of x tagged by
a corresponding sense number is reached. This sense unit
is then produced as the output of disambiguating x. As an
example, consider processing the ambiguous word bank as
depicted in Figure 2: when observing an occurrence of this
word in a sentence about a financial topic, a classifier like
fastText will likely suggest topic labels such as finance,
money or financial institute because of the fact that the input
sentence is about such a topic. However, what we are look-
ing for is the sense of the word and not the most strongly
associated topic label. Thus, we descend the sorted output
of fastSense given the input sentence until we reach a
candidate sense prefixed by bank (i.e., bank 2) that is taken
to predict the sense of the word in this sentence. In this
way, fastSense can be used as a tool for WSD. Con-
versely speaking, we reconstructed WSD as a kind of topic

1043



labeling that is performed by fastSense by analogy to
fastText.

Input

c−n

...

c−2

c−1

w

c+1

c+2

...

c+m

bank

R
E
Y
A
L

N
E
D
D
I
H

l1

l2

l3

l3

l4

...

lk

...

li

Sorted Output

finance_3

money_1

building_2

bank_2

business_4

bank_1

beach_2

Figure 2: fastSense in work: bank 2 is selected as the
first occurrence prefixed by bank.

4. Experiment
We perform two disambiguation experiments. The first one
uses the German Wikipedia to demonstrate the efficiency
of fastSense. The second one is based on Senseval and
SemEval. It aims at comparing fastSense with state-
of-the-art tools. Table 1 lists the parameters used for these
evaluations.

Short Description

POS Part of speech is considered.
Lemma Lemma information is considered.
Token Token information is considered.

WP POS information is added.
x-Nb x neighbors (left and right) are consid-

ered as context.

MinContext(k) Any input text must contain at least k
tokens to be used in training or testing.

Table 1: Parameters used for evaluating fastSense.

4.1. Wikipedia-based Disambiguation
In order to show that our approach allows for capturing
large amounts of data, we created a corpus using the dis-
ambiguation pages of the whole German Wikipedia. For
preprocessing this data we used the TextImager (Hemati
et al., 2016) pipeline. Every word listed on a disam-
biguation page in Wikipedia corresponds to a different
meaning of the corresponding lemma (page title). In to-
tal, we processed 221,965 disambiguation pages related
to 825,179 senses. On average, this gives 3.72 senses

per word. The disambiguation page Bank1, for exam-
ple, distinguishes 42 senses. For classification, we take
each paragraph in Wikipedia that contains one of the tar-
get words to be disambiguated as a sample for training
semantic representations of these words. This results in
a corpus of 55,796,534 instances (49.9 GB) . Using this
corpus, we trained fastSense on 51,067,054 instances
(46GB) and tested it on the remaining 4,729,480 instances
(3.9GB). The test takes only 20 minutes on a single thread.
This runtime can be further reduced linearly by distribut-
ing fastSense over different threads. The results of the
Wikipedia-based evaluation are shown in Table 3.
We compared several entity linking tools with
fastSense in terms of time expenditure. With the
same hardware, these tools take 6 to 188 days to process
our test set. The effort was estimated based on a sub-
set of elements as documented in Table 2. Obviously,
fastSense outperforms these competitors. However,
since these tools link to different resources (e.g., DBpedia,
WordNet or Wikipedia), this comparison only holds for
time effort.

Tools 1 500 1000 5000 4729480

Wikifier 0:01 8:20 16:41 1:24:06 ≈55 days
Illinois 3:28 5:05 6:53 24:40 ≈14 days
IXA 0:03 28:20 58:49 4:47:32 ≈188 days
Babelfy 0:01 0:55 1:50 - ≈6 days
TAGME 1:19 3:20 5:42 28:40 ≈18 days
fastSense 0:07 0:07 0:10 0:13 20:46

Table 2: Runtime-related evaluation regarding similar tools
using 1, 500, 1000 and all test instances.

Type Min-Context F1-score

fastSense 1 0.735
fastSense 2 0.778
fastSense 5 0.810
fastText 1 0.071
MFS Baseline 1 0.627

Table 3: Wikipedia-based evaluation of fastSense in
comparison to fastText and the most frequent sense
(MFS) baseline. We used a learning rate of 0.05, a hidden
layer size of 10 and 5 training epochs.

4.2. Senseval and SemEval related
Disambiguation

SemCor (Mihalcea, 2016) provides texts with semanti-
cally annotated WordNet senses, which are automatically
mapped to WordNet. We trained on SemCor 3.0 for per-
forming Senseval and SemEval related tests. Because of
the small amount of data provided by this corpus (234,136
disambiguated words), we were able to perform a parame-
ter study to search for the best performing parameter set-
tings. Candidates for feature selection are POS, token,

1https://de.wikipedia.org/wiki/Bank_
(Begriffskl%C3%A4rung)

1044

https://de.wikipedia.org/wiki/Bank_(Begriffskl%C3%A4rung)
https://de.wikipedia.org/wiki/Bank_(Begriffskl%C3%A4rung)


lemma and combinations thereof (see Table 1). Next, we
tested different word context sizes (Context), word-n-grams
(NGrams), learning rates (LR), dimensions of the hidden
layer (Dim) and the number of epochs (Epoch). After each
optimization step, we used the best performer of the pre-
liminary round (see Table 4).

1. Type SE2

Token WP 0.703
Lemma WP 0.697
POS 0.662
Token 0.701
Lemma 0.699

2. Context SE2

S 0.703
1-Nb 0.732
2-Nb 0.718
3-Nb 0.720
4-Nb 0.706

3. NGrams SE2

1 0.723
2 0.730
3 0.732

4. LR SE2

0.025 0.718
0.05 0.724
0.1 0.732
0.5 0.724

5. Dim SE2

5 0.710
10 0.732
25 0.711
50 0.712

6. Epoch SE2

5 0.727
10 0.732
15 0.735
25 0.724
50 0.719

Table 4: Parameter study based on Senseval 2 and SemCor
3.0.

After completion we applied the optimal settings on Sen-
seval 2 (English all-words) (SE2) and Senseval 3 (En-
glish all-words) (SE3). We also tested fastSense on
SemEval-2007 Task 17 Subtask 1 (SE7) and Subtask 3
(SE7’), SemEval-2013 Task 12 (SE13) and SemEval-2015
Task 13 (SE15).
Since no information about lemmas or POS was given in
the SE7 test sets, we carried out these experiments only
on token basis. The results are listed in Table 5 and are
compared to those of state-of-the-art tools in Table 6.

Input SE2 SE3 SE7 SE7’ SE13 SE15

Token WP 0.735 0.735 – – 0.662 0.732
Token – – 0.876 0.624 – –

Table 5: F1-scores of the Senseval/SemEval-related tasks.

4.3. Discussion
We successfully used Wikipedia as a disambiguation cor-
pus and show that fastSense can handle such a large
amount of data (see Table 3). fastSense not only stands
out for its speed, but also for the quality of its classifica-
tion. We outperform the baseline considerably and show
that similar approaches cannot keep up with fastSense
in terms of runtime. Thus fastSense is a step towards
performing WSD in relation to large amounts of data.
Since the SemCor data is many times smaller than the data
derived from Wikipedia, we were able to carry out a pa-
rameter study in the Senseval- and SemEval-related exper-

Model SE2 SE3 SE7 SE7’ SE13 SE15

Iacobacci, 2016 0.634 0.653 0.894 0.578 0.6732 0.7152

Tripodi, 2016 0.660 0.647 0.828 0.565 – –
Yuan, 2016 0.736 0.692 0.828 0.642 0.670 –
Chaplot, 2015 0.605 0.586 – 0.506 – –
Zhong, 2010 0.6251 0.6501 0.8791 0.5651 0.6532 0.6952

Raganato, 2017 0.720 0.702 – 0.648 0.669 0.724
Melamud, 2016 0.7182 0.6912 – 0.6132 0.6562 0.7192

fastSense 0.735 0.735 0.876 0.624 0.662 0.732
1 (Iacobacci et al., 2016) 2 (Raganato et al., 2017b)

Table 6: Comparison of state-of-the-art WSD tools on the
Senseval 2, 3 and SemEval 7, 13 and 15 tasks using SemCor
for training.

iments. Most interesting is our finding concerning the size
of the context window. Using one neighbor of a word as
context (1-Nb) and word-3-grams perform best. We also
found that token in combination with POS-related informa-
tion (see the parameter list in Table 1 and Table 4) perform
best.
Note that fastSense is comparably fast: it takes only
20 minutes for disambiguating 4,729,480 instances on a
single thread – that is, ca. 3,941 senses per second. Fur-
ther, as mentioned in Section 3., fastText is less suited
for WSD; accordingly, it performs worse compared to
fastSense (see Table 3). In this sense, though being
based on a related architecture, fastSense better fits the
needs of WSD.

5. Conclusion
We presented a novel approach to word sense disam-
biguation called fastSense. We tested this model in
the framework of Senseval and SemEval tasks as well as
in terms of a big data-experiment based on the German
Wikipedia. We achieve an F-score of up to 81.00% using
the Wikipedia-based data. Further, we achieved 73.47%
and 73.48% on Senseval 2 and 3, 87.57% and 62.40% on
SE7 and SE7’ and also 66.20% and 73.20% on SE13 and
SE15. We show that fastSense cannot only work with
huge data sets, but also surpasses state-of-the-art tools. Fu-
ture work will address a parameter study on the Wikipedia-
based data sets derived from different language releases.
We will also account for dependency structures of sen-
tences to gain an additional source of information for WSD.
Our tool and all Wikipedia-based training and test data used
in this paper will be made available open source on GitHub.

6. Bibliographical References
Agerri, R., Bermudez, J., and Rigau, G. (2014). Ixa

pipeline: Efficient and ready to use multilingual nlp
tools. In LREC, volume 2014, pages 3823–3828.

Chaplot, D. S., Bhattacharyya, P., and Paranjape, A.
(2015). Unsupervised word sense disambiguation using
markov random field and dependency parser. In AAAI,
pages 2217–2223.

Ferragina, P. and Scaiella, U. (2010). Tagme: on-the-fly
annotation of short text fragments. In Proceedings of the
19th ACM international conference on Information and
knowledge management, pages 1625–1628. ACM.

1045



Hemati, W., Uslu, T., and Mehler, A. (2016). Textimager:
a distributed uima-based system for nlp. In Proceedings
of the COLING 2016 System Demonstrations. Federated
Conference on Computer Science and Information Sys-
tems.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural computation, 9(8):1735–1780.

Iacobacci, I., Pilehvar, M. T., and Navigli, R. (2016). Em-
beddings for word sense disambiguation: An evaluation
study. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers.

Joachims, T. (2002). Learning to classify text using sup-
port vector machines. Kluwer, Boston.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T.
(2016). Bag of tricks for efficient text classification.
arXiv preprint arXiv:1607.01759.

Kingma, D. and Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Lin, M., Chen, Q., and Yan, S. (2013). Network in net-
work. arXiv preprint arXiv:1312.4400.

Melamud, O., Goldberger, J., and Dagan, I. (2016). con-
text2vec: Learning generic context embedding with bidi-
rectional lstm. In CoNLL, pages 51–61.

Mihalcea, R. and Csomai, A. (2007). Wikify!: linking
documents to encyclopedic knowledge. In Proceedings
of the sixteenth ACM conference on Conference on in-
formation and knowledge management, pages 233–242.
ACM.

Mihalcea, R., Tarau, P., and Figa, E. (2004). Pagerank on
semantic networks, with application to word sense dis-
ambiguation. In Proceedings of the 20th international
conference on Computational Linguistics, page 1126.
Association for Computational Linguistics.

Mihalcea, R. (2007). Using wikipedia for automatic word
sense disambiguation. In HLT-NAACL, pages 196–203.

Mihalcea, R. (2016). Rada mihalcea. http:
//web.eecs.umich.edu/˜mihalcea/
downloads.html#semcor. Accessed: 2016-12-05.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Moro, A., Raganato, A., and Navigli, R. (2014). Entity
linking meets word sense disambiguation: a unified ap-
proach. Transactions of the Association for Computa-
tional Linguistics, 2:231–244.

Raganato, A., Bovi, C. D., and Navigli, R. (2017a). Neural
sequence learning models for word sense disambigua-
tion. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, pages
1167–1178.

Raganato, A., Camacho-Collados, J., and Navigli, R.
(2017b). Word sense disambiguation: A unified evalu-
ation framework and empirical comparison. In Proc. of
EACL, pages 99–110.

Ratinov, L., Roth, D., Downey, D., and Anderson, M.

(2011a). Local and global algorithms for disambiguation
to wikipedia. In ACL.

Ratinov, L., Roth, D., Downey, D., and Anderson, M.
(2011b). Local and global algorithms for disambigua-
tion to wikipedia. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies-Volume 1, pages
1375–1384. Association for Computational Linguistics.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: a simple way
to prevent neural networks from overfitting. Journal of
machine learning research, 15(1):1929–1958.

Tripodi, R. and Pelillo, M. (2016). A game-theoretic ap-
proach to word sense disambiguation. arXiv preprint
arXiv:1606.07711.

Yuan, D., Doherty, R., Richardson, J., Evans, C.,
and Altendorf, E. (2016). Word sense disambigua-
tion with neural language models. arXiv preprint
arXiv:1603.07012.

Zhong, Z. and Ng, H. T. (2010). It makes sense: A wide-
coverage word sense disambiguation system for free text.
In Proceedings of the ACL 2010 System Demonstrations,
pages 78–83. Association for Computational Linguistics.

1046

http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor
http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor
http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor

	Introduction
	Related Work
	Model architecture
	Experiment
	Wikipedia-based Disambiguation
	Senseval and SemEval related Disambiguation
	Discussion

	Conclusion
	Bibliographical References

