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5MTA-SZTE Research Group on Artificial Intelligence
H-6720 Szeged, Tisza Lajos krt. 103.

{varadi.tamas,simon.eszter,sass.balint,mittelholcz.ivan}@nytud.mta.hu,
{novak.attila,indig.balazs}@itk.ppke.hu, {rfarkas,vinczev}@inf.u-szeged.hu

Abstract
e-magyar is a new toolset for the analysis of Hungarian texts. It was produced as a collaborative effort of the Hungarian language
technology community integrating the best state-of-the-art tools, enhancing them where necessary, making them interoperable and
releasing them with a clear license. It is a free, open, modular text processing pipeline which is integrated in the GATE system offering
further prospects of interoperability. From tokenizing to parsing and named entity recognition, existing tools were examined and those
selected for integration underwent various amount of overhaul in order to operate in the pipeline with a uniform encoding, and run in
the same Java platform. The tokenizer was re-built from ground up and the flagship module, the morphological analyzer, based on the
Humor system (Prószéky and Kis, 1999), was given a new annotation system and was implemented in the HFST framework (Lindén
et al., 2009). The system is aimed for a broad range of users, from language technology application developers to digital humanities
researchers alike. It comes with a drag-and-drop demo on its website: http://e-magyar.hu/en/.
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1. Introduction
The paper describes e-magyar, a new integrated text pro-
cessing pipeline for Hungarian. While Hungarian can be
considered an under-resourced language it does have an
active and cooperating language technology community
which has been developing various tools to cover the ba-
sic text processing steps. However, earlier fragmented ef-
forts suffered from a number of factors such as the lack
of interoperability, openness, clearly defined license con-
ditions and/or have become limited in some technological
aspects such as encoding and annotation systems used as
well as efficiency and implementation platform. All these
reasons served as the motivation for a collaborative effort
by key Hungarian language technology partners to overhaul
(sometimes quite radically) the existing tools and, more im-
portantly, to make them interoperable so that they can be
integrated into a single coherent technological pipeline.
The objectives of the e-magyar system were to serve
as an open, free and modular text processing toolset that
serves the needs of commercial developers and individual
researchers in language technology as well as (digital) hu-
manities and social sciences. It is open and free in that the
system as a whole and its individual components are typ-
ically available for download through Github repositories,
freely available often not just for research and development
but for commercial use and they certainly come with clear
license terms.
Technologically, the aim was to take the state-of-the-art
tools available, eliminate their shortcomings either in spec-

ifications, functionality or efficiency and integrate them in
a single system so that the performance of the individual
module in the e-magyar system should be at least equal
that of the original tool before its overhaul.
Specific attention was paid to ensure that the toolset was ac-
cessible and useful not just for developers but researchers
in the social sciences and humanities (SSH). This reflects
an increasing awareness within user involvement efforts in
the CLARIN community1 that SSH researchers are less in-
terested in pre-annotated datasets than in toolsets that are
capable to process their own data. To serve the needs of
non-language technology specialists, a web service was set
up for them to process their data in a drag-and-drop fash-
ion and integration in the GATE system, which has a user-
friendly graphical interface, which also facilitates the use
of the e-magyar toolset.

2. Text Modules
The e-magyar digital text processing system is assem-
bled as follows. Starting from raw text, the first module
(called emToken) performs word and sentence segmen-
tation (see Section 2.1.). Then full-fledged morphologi-
cal analyses and the lemma of the tokens are identified
(emMorph and emLem modules, Section 2.2.). Morpho-
logical disambiguation is performed by the emTag part
of speech (POS) tagger module (Section 2.3.). Syntac-
tic analysis is accomplished in two different ways: con-

1https://www.clarin.eu/

1307



stituency analysis (emCons module) and dependency anal-
ysis (emDep module) are also assigned to sentences (Sec-
tion 2.4.). Finally, maximal noun phrases (emChunk mod-
ule, Section 2.5.) and named entities (emNer module, Sec-
tion 2.6.) are identified as well. The modules are built on
one another as Figure 1 shows.

2.1. Tokenizer and Sentence Splitter
A brand new Hungarian tokenizer and sentence splitter has
been developed, called quntoken2, which is based on the
Quex3 lexical analyzer generator and was implemented in
C++. This tool was integrated into the e-magyar lan-
guage processing system under the name emToken.
In its features, it mainly follows HunToken4, which is a
rule-based tokenizer and sentence boundary detector for
Hungarian (and English) texts. However, emToken differs
in several properties, e.g. its input is plain text in UTF-8 en-
coding, and its output is the text segmented into sentences
and words in XML or JSON format. The output can be
detokenized, i.e. the input can be reproduced from the out-
put. It can be run as a standalone program or via an API.
It comes with test cases covering all the built-in tokenizing
rules.
The evaluation of the performance of emToken was made
on the Szeged Treebank (Csendes et al., 2005). As for the
sentence segmentation, the emToken failed in 2,131 cases
of 81,648, which means a 97.39% accuracy. As for the to-
kenization, we counted word accuracy, which was 99.27%
(10,903 false segmentation for 1,478,300 tokens). Most of
the mistakes are due to the differences between the word
and sentence segmentation schemes applied in the Szeged
Treebank and in emToken.

2.2. Morphological Analyzer and Lemmatizer
The emMorph morphological analyzer (MA) integrated in
the system was implemented using the Helsinki Finite-State
Transducer (HFST) toolkit (Lindén et al., 2009). The mor-
phological database is primarily based on the Hungarian
computational morphology (Novák, 2003; Novák, 2015)
originally created for the Humor morphological analyzer
(Prószéky and Kis, 1999), which was extended with vocab-
ulary from the morphdb.hu database (Trón et al., 2006).
The grammar implemented in the constraint-based Humor
formalism was converted to a finite-state description fol-
lowing the procedure described in Novák (2014). The mor-
phological grammar development platform generates de-
scriptions of allomorphs including their features and morph
adjacency constraints from morpheme definitions applying
a procedural rule system. The word grammar describing
well-formed morpheme sequences (including the descrip-
tion of non-local constraints between morphemes) is de-
fined using an extended finite-state automaton. All these
data structures are implemented as a single finite-state lex-
ical transducer in the HFST representation of the morphol-
ogy, including a flag-diacritics-based representation of the
word grammar automaton.

2https://github.com/dlt-rilmta/quntoken/
3http://quex.sourceforge.net/
4https://github.com/zseder/huntoken

The hfst-lookup MA engine was extended in several
ways to improve its performance. Dynamic FST compo-
sition was added to the implementation, so that the FST
performing case conversion of capitalized words and those
in all caps need not be composed with the lexical trans-
ducer off-line. This reduces runtime memory requirement
of the MA to 1/3. Moreover, in addition to the lexical form,
the MA can now also return the surface form of each mor-
pheme.
The latter is used in the lemmatizer integrated in the system,
emLem, which was implemented in Java. Most upstream
tools do not need the amount of detail present in the anal-
yses returned by the MA (e.g. compound members, deriva-
tional suffixes, alternative equivalent analyses of different
granularities of lexicalized polymorphemic stems and their
productive analyses). The emLem module merges com-
pound members and derivational suffixes into a single stem
using the surface form of non-final stem elements and the
lexical form of the stem-final morpheme. It computes the
resulting POS, adds the morphosyntactic features exposed
by inflections, and discards identical results. The lemma-
tizer is also capable of optionally returning detailed analy-
ses corresponding to each lemma (including surface forms
of each morph) in addition to the lemmatized output. The
algorithm implemented in the lemmatizer also handles non-
trivial Hungarian word constructions (e.g. when inflectional
suffixes are present in a non-word-final position) and re-
turns a correct lemma also in those cases.
Previous morphological analyzers for Hungarian used var-
ious ad hoc tagsets. In contrast, the tagset used by
emMorph and emLem contains tags suggested in the
Leipzig Glossing Rules (Comrie et al., 2008) widely used
by linguists. The tags in Wikipedia’s list of glossing abbre-
viations5 were also used and extended to include all Hun-
garian affixes and POS categories.
The MA was tested on the Hungarian Webcorpus (Halácsy
et al., 2004) containing 589M words fully filtered. Word
token coverage was found to be 99.36% corresponding to
a word type coverage of 85.73%. As for analysis speed,
hfst-optimized-lookup is 6.14 times faster than the
original Humor implementation. Run-time data segment
memory consumption of hfst-optimized-lookup is
on the other hand at least 26.11 times higher than that of
Humor (148 MB if case conversions are not composed with
the lexicon vs. 5.6 MB ). The engines themselves consume
4-6 MB memory.

2.3. POS Tagger
The emTag POS tagger is based on PurePOS (Orosz and
Novák, 2013), which is the continuation and extension of
HunPOS (Halácsy et al., 2007), the first POS tagger written
directly to handle agglutination in Hungarian. Even though
all the aforementioned systems are based on TnT (Brants,
2000), the well-known HMM tagger, each implementation
has its own new features to handle Hungarian and similar
highly agglutinating languages better.
The main advantage of emTag lies in its line of predeces-
sors, which were developed with performance in mind with

5https://en.wikipedia.org/wiki/List_of_
glossing_abbreviations
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Figure 1: Modules of the e-magyar digital language processing system as they are built on one another.

new improved features. PurePOS is the first tagger in the
line to add lemmatization support and the possibility to use
pre-analyzed input, which essentially improves tagging and
lemmatization performance.
From the technical perspective: the de facto standard
CoNLL-style vertical input and output format is now sup-
ported along with the original PurePOS notation. The user
is also to set different parameters on lemmatization (e.g. to
cut characters from the right side of the token only (suffix)
or use a longest common substring-based transformation
(circumfixes)) and dump the created model into a human-
readable format to check what has been learned. Even
though this feature greatly improves the explanatory power
of the model, its really rare among mainstream taggers,
which makes emTag more valuable.
Nonetheless, POS taggers based on supervised learning
heavily rely on the quality of the training corpus, the tag-
ging scheme and the morphological analyzer. The perfor-
mance of emTag is on a par with that of PurePOS (Orosz,
2015), which means a 97.58% full disambiguation accu-
racy on token level when applying lemmatization support
as well.

2.4. Constituency and Dependency Parsers
The e-magyar toolchain includes constituency and de-
pendency parsers, making it possible to apply two popular
approaches for syntactic parsing. The input for both parsers
is the output of the previous modules, i.e. tokenized and
POS tagged sentences.
Our parser builds heavily on the techniques presented at the
workshop on Statistical Parsing of Morphologically Rich
Languages (SPMRL), which was dedicated to the parsing
of morphologically rich languages, such as Hungarian. An
adapted version (Szántó and Farkas, 2014) of the Berkeley
Parser (Petrov et al., 2006) – a stochastic context free model
– was integrated into the system.
The preprocessing toolkit called magyarlanc (Zsibrita
et al., 2013) also contains a dependency parser, based
on the Bohnet parser (Bohnet, 2010), a language inde-
pendent dependency parser. The model integrated was
trained on the Szeged Dependency Treebank (Vincze et
al., 2010). This dependency parser was integrated into
the e-magyar toolkit, with small modifications, one of
whose being the different morphological coding systems
applied in e-magyar and in the Szeged Treebank. As the
constituency and dependency parsers exploit the Hungarian

version of the morphological coding system of the Univer-
sal Dependencies (UD) project (Vincze et al., 2017), the
output of the emTag module needed to be converted to the
UD morphology.

2.5. NP Chunker
The emChunk module identifies maximal noun phrases
(NPs), i.e. NPs which are not part of any other higher level
NPs. Its input is a text that had previously been processed
in the toolchain, i.e. they had been segmented into words
and sentences, and words are assigned their full morpho-
logical analyses. These pieces of information are necessary
for the NP chunker module to be effective. The module
assigns a tag to every token in the input text. The tag in-
dicates whether the word is part of a maximal NP, and if
yes, whether the NP has one or several components. If the
latter, it also indicates whether the given word is an initial,
medial or final component of the NP. The output keeps the
analyses of the previous processing levels and adds the tags
of the chunker module.
The emChunk module is based on HunTag3 (Endrédy
and Indig, 2015), which is a sequential tagger for several
NLP tasks using maximum entropy and HMM. Its prede-
cessor is HunTag6, which has been used, among others, for
Hungarian named entity recognition (Simon, 2013) under
the name hunner and for shallow syntactic analysis of
Hungarian texts (Recski and Varga, 2010) under the name
hunchunk. Depending on the training data, HunTag3
can be used for several sequential tagging tasks.
The gold standard dataset used here was a subcorpus of
the Szeged Treebank (Csendes et al., 2005), which con-
tains morphological, syntactic and named entity annotation
as well. This subcorpus is actually the same as the one
published under the name Szeged NER Corpus (Szarvas et
al., 2006), which only contained morphological annotation
(earlier in MSD then in UD format) and named entity anno-
tation. The NP chunking annotation was generated from the
constituency annotation of the Szeged Treebank, while the
morphological annotation had to be converted to the format
of emMorph.
The model was built by using the whole corpus as the
training dataset, which comprises more than 220,000 to-
kens. Since there is no other Hungarian dataset containing
all the required annotation layers in the required format to
which the output of emChunk could be compared, here we

6https://github.com/recski/HunTag
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cannot provide an evaluation of the module’s performance.
As Recski and Varga (2010) reports, hunchunk performs
86.06% F-score when recognizing maximal NPs in Hun-
garian texts.

2.6. Named Entity Recognizer
The emNer module is an automatic Named Entity Recog-
nizer, which identifies named entities (NEs) in running text
and assigns them to one of the predetermined categories.
We follow the standard NE classes of CoNLL-2002 (Tjong
Kim Sang, 2002) tagging person names, organization
names, place names and the so called Miscellaneous
category which mostly comprises everything else falling
outside of the main categories.
Similarly to the other modules, the input of emNer is a
text that had previously been processed in the toolchain,
i.e. they had been segmented into words and sentences,
and words are assigned their full morphological analyses.
These pieces of information are necessary for the NER tag-
ger module to be effective (Simon, 2013).
The module assigns a tag to every token in the text, indi-
cating whether the given word is a named entity, and if yes,
what category it belongs to, and whether it has one or sev-
eral elements, and if the latter, whether the given word has
an initial, medial or final position in the named entity. The
output keeps the analyses of the previous processing levels
and adds the tags of the NER tagger module.
The emNer module is also based on HunTag3, and the
training data is the same as was in the case of emChunk.
The model was also built by using the whole corpus as the
training dataset, therefore here we cannot provide a thor-
ough evaluation of the emNer module. What we can pro-
vide is the best performance of hunner trained on the
90% of the Szeged NER Corpus and tested on the remain-
ing 10% which was 97.87% F-measure. However, cross-
corpus and cross-domain evaluation always result in a 20-
30% decrease in overall F-measure as reported by Nothman
et al. (2008) and Simon (2013) among others, thus the per-
formance of emNer highly depends on the input text type
given by the user.

3. GATE Integration
The integration of the e-magyar modules described in
Section 2. into a unified text analysis toolchain has been
implemented in the GATE framework (Cunningham et al.,
2011). During the integration, the main task was to enable
the modules to take their input from the form corresponding
to the offset-based annotation model of GATE and produce
their output in this form as well. For this reason, we have
created a GATE wrapper for each module that performs the
required data conversions. It was also necessary to fit the
non-Java language tools into the Java language framework:
we have solved this by calling directly the binary of the
non-Java modules.
Modules are built on one another as Figure 1 shows. The
fixed basic processing chain consisting of a tokenizer, a
morphological analyzer, a lemmatizer and a morphological
disambiguator is followed by additional tools which utilizes
the output of the fixed chain and which can be run indepen-
dently of each other.

The modules are complemented by additional facilities.
First, a human-readable format from the detailed morpho-
logical analysis is produced. Second, separated verbal par-
ticles and verbs are combined together based on the depen-
dency analysis, so providing the full verbal form. Third, the
IOB-type (specifically BIE-1) encoding provided by the
emChunk and emNer modules are converted into a more
convenient standalone (NP and NE) annotation format.
The processing chain can be used in four ways. On
the website (see Section 4.), the user can simply copy-
paste a short text and analyze this text by running the
full processing chain with just a mouse click. For
more serious text analysis tasks or for digital humani-
ties research, the GUI of the GATE system called GATE
Developer is recommended, into which the e-magyar
chain can be easily installed. Installation instructions are
available at https://github.com/dlt-rilmta/
hunlp-GATE along with the entire system. If needed, the
user can improve the system with adding custom built-in
modules to the chain. For processing larger corpora, us-
ing GATE command line access is recommended, which
is also available via the URL provided above. As a fourth
method, the so-called gate-server can be used. This is an-
other command line technology, which operates behind the
e-magyar web service.

4. Online Interface
The project’s objectives included the ability to access and
use the text processing chain by users who are not neces-
sarily familiar with the field of language technology. This
demand is addressed by the online text analysis service7

of e-magyar, which allows the user to easily test each
of the analytic modules or even the entire tool chain via
a web interface without using any other software than the
web browser.
The text analyzer is based on a web service that uses GATE
software libraries. It takes the text and the list of analytical
modules that the user wants to run as input and provides
GATE generated XML containing the annotations as out-
put. The site processes the output XML and displays the
data in an easily interpretable, visualized form.
The analyzer interface consists of two main parts: an input
panel and an output panel. The text box on the input panel
lets the user specify the text to be analyzed (currently, the
length of the text is limited to 6000 characters), then the
user can piece together the list of modules wanted to run on
the text.
The result of the processing can be seen on the output
panel. The analysis can be displayed in two different lay-
outs: ‘text’ view and ‘list’ view. In ‘text’ view, tokens
follow each other sequentially, annotations for each token
show up in a small bubble when moving the cursor over a
given token or clicking on it. In the case of separated verbal
particles, the main verb is also highlighted. In ‘list’ view,
each token has its own row in a tabular form, while anno-
tations added by the text analyzer are placed in successive
columns. This layout is more suitable for displaying lots
of annotations together. In ‘list’ view, it is possible to filter

7http://e-magyar.hu/en/parser
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Figure 2: A screenshot of the ‘text’ view of the e-magyar online interface. The example sentence is Kovács Péter olvassa
ezt a regényt. ‘Kovács Péter reads this novel.’ Lemma and morphological analysis is shown in a bubble for a token. Here
we see that regényt is the accusative form of regény ‘novel’ which is a noun. Noun phrases are highlighted, and named
entities are underlined.

the tokens based on different criteria: the user can filter for
a word form, for elements of the morphological analysis,
for POS tags or for several grammatical functions. In both
views, it is possible to highlight certain segments (of one
or more tokens) created by some analyzer modules: tokens,
sentences, noun phrases, and named entities. An illustra-
tion can be seen in Figure 2. The results of the syntac-
tic analyses can be accessed in the ‘text’ view by clicking
on the icons next to each sentence: a dependency tree and
a constituent tree diagram, the output of the dependency
parser and the constituency parser, respectively.
The result of the analysis – the text with all added annota-
tions – can be downloaded for further use. The downloaded
zipped file contains three files: raw text sent for processing
as a plain text file, the GATE generated output XML file,
and an extract of the ‘list’ view in tsv format.
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