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Abstract
The rise in accessibility of web to the mass has led to a spurt in the use of social media making it convenient and powerful way to express
and exchange information in their own language(s). India, being enormously diversified country have more than 168 millions users on
social media. This diversity is also reflected in their scripts where a majority of users often switch between their native languages to
be more expressive. These linguistic variations make automatic entity extraction both a necessary and a challenging problem. In this
paper, we report our work for entity extraction in a code-mixed environment. Our proposed approach is based on the popular deep
neural network based Gated Recurrent Unit (GRU) archirecture that automatically discovers the higher level features from the text. We
do not make use of any handcrafted features or rules, and therefore our proposed model is quite generic in nature. Our experiments on
two benchmark datasets of English-Hindi and English-Tamil language pairs show the F-scores of 66.04% and 53.85%, respectively.
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1. Introduction
The phenomenal growth in user-generated contents on pop-
ular social media platforms like Twitter and Facebook has
established a new perspective in Natural Language Pro-
cessing (NLP). It incurs several challenges ranging from
the incorrect spellings to the highly creative words (“f9”
for “fine” ), word lengthening (“gooooood” for “good”),
phonetic typing, abbreviation (“IDK” for “I don’t know”)
and so on. In recent times there has been a rising interest
in building several applications on social media contents
such as mood identification, opinion mining, etc. How-
ever, a majority of the existing research is restricted to-
wards resource-rich languages such as English, some of the
European languages and few Asian languages. The grow-
ing contents of underprivileged languages in the Web has
necessitated investigating automated techniques that could
build solutions involving these. Code-mixing refers to the
mixing of more than one language that often makes the task
more complex for building automated techniques. Non-
native English speakers do not always use unicode encod-
ing scheme to write in social media. Instead, they often
use the most frequently used transliterated forms with the
English words or phrases. These multilingual speakers of-
ten mix multiple languages in addition to anglicisms to be
more expressive. There are 22 official languages mentioned
in the Indian constitution. The report also reveals that
30 languages are spoken by more than one million native
speakers, and 122 are spoken by more than 10,000 people.
Language diversity and dialect changes instigate frequent
code-mixing in Indian languages. Hence, Indians are multi-
lingual by adaptation and necessity, and frequently change
and mix languages while writing in social media platforms.
These pose additional difficulties in building automated
tools for social media analytics. Named Entity Recognition
(NER) is a primary task in information extraction. It aims
at identifying the names of entities and classifying them
into some predefined categories such as people, location,

organization and product. This task can also be thought
of as a two-step process, viz. entity detection and entity
classification (Grishman and Sundheim, 1996). There are
a significantly large body of works existing in Indian lan-
guages, but these are mostly related to the domains such
as newswire. Nowadays, information extraction in micro-
blogs has become an active research topic (Cano Basave et
al., 2013), following the early experiments which showed
this genre to be extremely challenging for the state-of-the-
art algorithms (Derczynski et al., 2015; Bontcheva et al.,
2014). The shortness of micro-blogs makes them hard to
interpret. The social media text normally carries less dis-
course information per document, and threaded structure is
fragmented across multiple documents. Apart from this,
short text (tweets) also exhibits more language variations,
tend to be less grammatical than the longer posts, contains
unorthodox capitalization, and makes use of frequent ab-
breviations, hashtags and emoticons. These information
also participates to decide the intention or meaning of a
short text. To combat these problems, researcher has fo-
cused on microblog-specific information extraction algo-
rithms, e.g. NER on Twitter data using Conditional Ran-
dom Field (CRF) (Ritter et al., 2011) or hybrid methods
(Van Erp et al., 2013). Particular attention is given to micro-
text normalization (Han and Baldwin, 2011), as a way of re-
moving some of the linguistic noise prior to Part-of-Speech
(PoS) tagging and NER. Several Machine Learning (ML)
techniques have already been applied for the NER tasks
such as Hidden Markov Model(HMM) (Bikel et al., 1997),
Maximum Entropy (Borthwick, 1999; Kumar and Bhat-
tacharyya, 2006), Support vector Machine (SVM) (Isozaki
and Kazawa, 2002), Conditional Random Field (CRF) (Li
and McCallum, 2003) etc. Few systems for entity extrac-
tion in social media texts involving Indian language have
been reported in FIRE-2015 workshop (Rao et al., ). In re-
cent times, a benchmark setup for entity extraction involv-
ing Indian languages was introduced in FIRE-2016 shared
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task (Rao and Devi, 2016). Some of the challenges for en-
tity extraction in a code-mixed environment are as follows:

• The dataset contains tweets utterance in code mixed as
well as in mono-lingual text.

• Introduction of a diverse set of entities, not limited to
the only traditional set of entity types such as person,
location, organization etc. There are 22 different types
of entities that need to be extracted from text.

• Various resources and/or tools such as sentence split-
ter, tokenizer, PoS tagger, chunker etc. are not read-
ily available in the required measure. In our current
work, we develop a system for entity extraction us-
ing a deep Gated Recurrent Unit (GRU) architecture.
We evaluate the proposed system for two language
pairs, namely English-Hindi (EN-HI) and English-
Tamil (EN-TA).

2. Methodology
In this section at first we define the code mixed entity ex-
traction problem, and then present our proposed deep neu-
ral network based model.

2.1. Problem Definition
The problem of code-mixed entity extraction comprises of
two sub-problems, viz. entity extraction and entity classi-
fication. Mathematically, the problem of code-mixed en-
tity extraction can be described as follows: Let be S a
code-mixed sentence having n tokens t1, t2 . . . tn. A set
of pre-defined entity category C = {C1,C2, . . .Ck}. The
goal is to extract set of code mixed entities CME={x ∈ S ∣
x is a token or pharse}. Thereafter, each of the code mixed
entities ce ∈ CME has to be classified into one of the pre-
defined categories denoted by C. More formally the input
of the system is a tweet associated with a user id and tweet
id. The output of the system is all the entities with their
corresponding categories present in the tweet. Some of the
tweets from the dataset are shown in Table 1.

Langauage Pair Sample Tweet

English-Hindi

awesome track , listening to
Toota Jo Kabhi Tara - A Flying
Jatt - Atif Aslam; Sumedha Karmahe
RiftWood Productions presents to you the
season finale of Le’ Bill & Giddy,La Muje’r

English-Tamil

@adhu idu111 @7hillsm @beingsalmankhan
@memephobhia @rajinifc salman sultan
did 580cr. and for salman 200 crs cakewlk;
IruMugan will be a Class + Mass movie like
Thani Oruvan. The biggest plus is the
screenplay - Thambi Ramaiyah..

Table 1: Some of the tweets from the dataset. The colored
words represent the entities.

2.2. Approach for Entity Extraction
In order to recognize the entity from a code-mixed sen-
tence, it is necessary to have a model which can process
forward and backward tokens together in order to decide
the type of the current token. Inspired by these works

(Dernoncourt et al., 2017; Yao et al., 2013), we adapted a
bi-directional GRU-based deep learning model for code
mixed entity extraction which can use their memory to
process arbitrary sequences of inputs in both the directions.
Our proposed model is a layered architecture that follows
the following steps:

1. Character and word level embedding layer

2. Input sequence processing layer

3. Output sequence optimization layer

We will begin by the first describing the bi-directional gated
recurrent unit (GRU). Thereafter, each of the component
layers is described.

2.2.1. Bi-directional gated recurrent units
Gated recurrent unit (GRU) was proposed by (Cho et al.,
2014) to make each recurrent unit to adaptively capture de-
pendencies at different time scales. GRU is very similar to
the Long Short Term Memory (LSTM) model (Hochreiter
and Schmidhuber, 1997). Similar to LSTM unit, GRU has
gating units that modulate the flow of information inside the
unit, however, without having separate memory cells. GRU
has two neural gates, update and reset, that control the flow
of information, as in LSTM. The update gate controls how
much of past state should matter now. Similarly, reset gate
allows the model to drop information that is irrelevant in
future. Specifically, a GRU network successively reads the
input token ti, as well as the previous hidden state hi−1, and
generate the new memory content ci and hidden unit hi.

zi = σ(Wzti +Vzhi−1 + bz)
ri = σ(Wrti +Vrhi−1 + br)
ci = tanh(Wti +V(ri ⊙ hi−1) + b)
hi = zi ⊙ hi−1 + (1 − zi)⊙ ci

(1)

where z and r are the input and reset gates, re-
spectively. Here σ, ⊙ represents the sigmoid func-
tion and element-wise multiplication, respectively. The
{Wz,Wr,W,Vz, Vr, V } and {bz, br, b} are the weight-
matrices and bias vectors, respectively. Eq 1 can compute
the forward an backward hidden state at time i by mov-
ing the forward or backward along the input sequence. We
compute the forward hidden state

Ð→
ht and backward hidden

state
←Ð
ht. The final hidden state zi computed by augmenting

both the hidden states, i.e. zi = [Ð→hi ⊕
←Ð
hi] where ⊕ is the

concatenation operator.

2.2.2. Character and word level embedding layer
The input to this layer is the word t at time i from the code
mixed sentence S. It produces output as the word vector.
The representation of the word in higher dimensional space
is known as word embedding which can be obtained from
the pre-trained embedding model trained on the huge un-
labeled corpus using several methods, such as Glove (Pen-
nington et al., 2014), word2vec (Mikolov et al., 2013) or
fastText (Bojanowski et al., 2016). The word embedding is
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Entity Types No. of Entities
(EN-HI / EN-TA) Entity Type No. of Entities

(EN-HI / EN-TA)
COUNT 132 / 94 FACILITIES 10 / 23
PLANTS 1 / 3 PERSON 712 / 661
PERIOD 44 / 53 MATERIALS 24 / 28

LOCOMOTIVE 13 / 5 LOCATION 194 / 188
ENTERTAINMENT 810 / 260 YEAR 143 / 54

MONEY 25 / 66 DATE 33 / 14
TIME 22 / 18 ORGANIZATION 109 / 68

LIVTHINGS 7 / 16 QUANTITY 2 / 0
DISEASE 7 / 5 DAY 67 / 15

ARTIFACT 25 / 18 SDAY 23 / 6
MONTH 10 / 25 DISTANCE 0 / 4

Total no. of entity (EN-HI /EN-TA) 2413 / 1624

Table 2: Statistics of the dataset for English-Hindi and English-Tamil language pairs

obtained through the Glove pre-trained word embedding1.
It has the desirable properties in capturing the syntactic and
semantic representation of words. This property helps the
model to identify the similar entities. However, it still suf-
fers from several issues such as, they cannot handle out-of-
vocabulary words, misspelled words and variations in noun
or verb phrase. When comes to the code mixing text this
issue even becomes more crucial to resolve. One way to
resolve this issue is by utilizing character based word em-
bedding which incorporates each individual character of a
token to generate its vector representation. This approach,
therefore, allows the model to learn lexical patterns (e.g.
suffix or prefix) which eventually can help in capturing out-
of-vocabulary words and some other information which are
difficult to capture through word embedding.
Now we define the way to compute the character embed-
ding. Let ci1, . . . c

i
l be the character sequence of word ti

having length l. We initialize the character representation
V (cik) randomly of each character k in token ti. By this
way, we generate the sequence of character representations
c1∶k. The generated sequence is provided as an input to
the Bi-GRU model, which outputs the character word em-
bedding C(i). Finally, the output of word embedding for
the ith word is the concatenation of word embedding W (i)
and the character word embedding C(i). In short, the layer
takes the sequence of words t1∶n as input and produces a
sequence of word embeddings e1∶n as output.

2.2.3. Input sequence processing layer
This layer takes the previous layer’s output i.e. the se-
quence of word embedding e1∶n as the input and passes
this sequence to a Bi-GRU unit. Bi-GRU unit as discussed
in Section-2.2.1. generates the output states hi for the ith

element of the input sequence e1∶n. Thereafter, each hi
of the Bi-GRU unit is given to a feed-forward neural net-
work. This network computes the vectors of probability
score pi. The length of the probability vector len(pi) =
(2 × number of possible named entity category + 1). This
length exhibits the BIO (B-beginning, I-intermediate and
O-outside) encoding of the entity classes.

2.2.4. Output sequence optimization layer
This layer takes the output (sequence of probability vector)
of the previous layer as input and produces the label se-
quence as the output. However, the label sequence C1∶n can
be obtained for Ci as follows: Ci = argmaxk(pi[k]). This

1http://nlp.stanford.edu/data/glove.840B.300d.zip

greedy approach costs the performance of a model where
the final output is the sequence of labels. This strategy does
not account the dependencies between the subsequent la-
bels. However, these dependencies capture at certain level
in the input sequencing layer. But, we can still allow the
model to directly learn these dependencies in the last layer
of the model. To achieve this transition probability two
subsequent labels are utilized. The final score of a label
sequence can be defined as follows:

Score(C1∶n) =
n

∑
k=2

M[Ck−1][Ck] +
n

∑
k=1

pi[Ck] (2)

Where M is 2-D matrix that contains the transition prob-
abilities between the two subsequent labels. While train-
ing, model maximizes the log-likelihood probability of the
gold label sequence. In the testing phase, a sequence of
predicted labels which maximize the score is chosen as the
final label sequence.

3. Dataset and Experimental Setup
In this section, we report the datasets used in the experi-
ments and experimental setup.

3.1. Dataset
In order to evaluate the system performance, we use two
language pairs: English-Hindi (EN-HI) and English-Tamil
(EN-TA), which have been made available through the
CMEE shared task (Rao and Devi, 2016). Datasets are
crawled from the tweeter. The tweets are mixed in na-
ture containing English-Hindi and English-Tamil scripts.
The dataset contains a total of 22 different type of enti-
ties. Majority of entities are from ‘Entertainment’, ‘Person’
‘Location’ and ‘Organization’ categories. A brief statistics
of the dataset is provided in Table-2. English-Hindi tweet
dataset contains a total of 2,700 tweets from 2,699 tweeter
users. Similarly, English-Tamil tweet dataset contains a to-
tal of 2,183 tweets from 1,866 tweeter users. As some of
the tweets from EN-TA language pair dataset are in Tamil
script, in order to keep everything in English we translit-
erate2 those tweets into English. We evaluate the system
performance using the standard metrics, precision, recall
and F-score.

2https://github.com/deepak1357/indic-trans
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Models English-Hindi English-Tamil
Precision Recall F-Score Precision Recall F-Score

SVM 72.25 50.12 59.18 69.38 36.12 47.50
MEMM 73.89 51.07 60.39 68.75 37.61 48.62

CRF 75.14 52.29 61.66 69.27 38.02 49.09
Our model 74.29 59.44 66.04 67.93 44.15 53.85

Table 3: Performance comparison of our proposed model with ML based baseline classifier.

(a) English-Hindi (b) English-Tamil

Figure 1: Validation curve for both pair of dataset

3.2. Experimental Setup
We perform 5-fold cross validation on the both language
pair datasets as described in Section 3.1.
We optimize the network by setting the following hyper-
parameters through 5-fold cross-validation experiments:
word embedding dimension=300, character embedding di-
mension=50, character-based word embedding GRU di-
mension=50, input sequence processing GRU dimension:
100, dropout probability: 0.5, dropout probability=0.3,
batch size=50, # epochs=100.The network is trained using
Adam optimization algorithm (Kingma and Ba, 2014) by
updating all the parameters. This reflects the generalization
of our optimum hyper-parameter selection over two com-
pletely different language pair datasets.

4. Result and Analysis
For comparison, we design three strong baselines based
on traditional supervised techniques. Our baseline systems
are based on Support vector machine (SVM) 3, Maximum
entropy markov model 4 and Conditional random field
5 classifiers. In order to train the classifier the feature
set described in (Gupta et al., 2016) is extracted. We
evaluate the performance of all three baselines using 5-fold
cross validation to be consistent with our proposed neural
network.
Table-3 reports the performance of our proposed approach
with all the three baselines for both the language pair
datasets. We also plot the validation curve for both the

3http://chasen.org/ taku/software/yamcha/
4https://nlp.stanford.edu/software/classifier.html
5https://taku910.github.io/crfpp/

language pair datasets. Fig 1 shows the validation curve
between F-score and no. of epochs. The model achieves
the best F-score value of 66.04% in 79 epochs for EN-HI
(i.e. English-Hindi). Similarly, we obtain the best F-score
value of 53.85% for EN-TA language pair dataset with 67
epochs. There could be two possible reasons behind the
low F-score values on EN-TA dataset :

1. less instances of entities in the dataset as compared to
EN-HI.

2. lower hit ratio (availability of word) of EN-TA word
(37.46%) as compared to EN-HI word (55.70%) in
word embedding matrix.

We further improve the system performance by using the
word embedding trained on an appropriate code-mixing
dataset. Our proposed approach outperforms all the
baselines for both the language pairs. We observe that we
achieve significant gains in terms of recall as compared
to the baselines. This may be attributed to the fact our
proposed network learns the hidden and useful features
from a text, which handcrafted features can not infer
always.
The best-performing system (Bhat et al., 2016) in the
shared task reported the F-score value of 68.24% in
English-Hindi language pair. They have used several hand-
crafted features to train the feed-forward neural network.
For English-Tamil language pair the best- performing
system (Gupta et al., 2016) reported the F-score value
of 44.12 using the handcrafted features with CRF as
the underlying classifier. The evaluation shows that our
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proposed system achieves higher performance compared to
these systems. However, it is to be noted that our reported
results are on cross-validation and we have not been able to
perform experiments on the test data as this is not publicly
available. Hence, it will not be fair to compare these
existing systems with our proposed system.
Our obtained results are reliable as we perform exper-
iments on cross-validation Significance test shows that
the improvement over all the baselines are statistically
significant as (p-value < 0.044).

4.1. Error Analysis
In order to get an idea about the errors, we perform in-
depth analysis of the outputs of the systems. We have seg-
regated our prediction inaccuracies based on its genre and
have mentioned some of the observations below:
(1) Incorrect Entity: This error is caused when the pre-
dicted entity is misclassified into the incorrect entity type.
This appears mainly due to the irregular casing of multiple
words in a tweet. One possible reason for incorrect classi-
fication of tags also includes words that convey more than
one semantic information.
(2) Missed Entity: This error is generated when the sys-
tem fails to predict the entity tag and mis-classified it into
other-than-NE. The possible causes for this error include:

• Contextual information: Words appearing at the start
and end of tweets are easily recognized as NE, but
the system fails to predict many entities present in the
middle of a tweet.

• Presence of abbreviated words: Due to the presence
of a large number of abbreviations, many words were
left un-categorized by our system. Words like SRK
and FB were often confused with “Shah Rukh Khan”
and Facebook, leading to incorrect predictions by our
system.

5. Conclusion and Future Works
In this paper, we have described an approach for entity ex-
traction from the code-mixed tweets. We have proposed
a deep learning model utilizing bi-directional GRU archi-
tecture. The proposed deep learning architectures discover
the hidden features from the tweets automatically to cate-
gorize them into one of the pre-defined classes. The system
has been evaluated for two language pairs, namely English-
Hindi and English-Tamil. Experimental results show that
our system achieves encouraging performance for both the
language pairs. Empirical evaluation shows that our pro-
posed system performs better as compared to the feature-
based supervised model. In future, we will investigate the
usages of shared representation of code mixed words in dif-
ferent languages.
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