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Abstract
This paper presents a novel prototype for biomedical term normalization of electronic health record excerpts with the Unified Medical
Language System (UMLS) Metathesaurus, a large, multi-lingual compendium of biomedical and health-related terminologies. Despite
the prototype being multilingual and cross-lingual by design, we first focus on processing clinical text in Spanish because there is no
existing tool for this language and for this specific purpose. The tool is based on Apache LuceneTM to index the Metathesaurus and
generate mapping candidates from input text. It uses the IXA pipeline for basic language processing and resolves lexical ambiguities
with the UKB toolkit. It has been evaluated by measuring its agreement with MetaMap –a mature software to discover UMLS concepts
in English texts– in two English-Spanish parallel corpora. In addition, we present a web-based interface for the tool.
Keywords: term normalization, UMLS, information extraction, biomedical text

1. Introduction
Biomedical text mining technologies are becoming a key
tool for the efficient exploitation of information contained
in unstructured data repositories, including scientific litera-
ture, Electronic Health Records (EHRs), patents, biobank
metadata, clinical trials and social media. Natural Lan-
guage Processing (NLP) and specifically Information Ex-
traction (IE) tools, such as term normalization tools, can fa-
cilitate knowledge discovery, exchange, and reuse by find-
ing relevant terms and semantic structure in those texts.
This paper presents a preliminary application that enriches
EHRs with links to the Unified Medical Language System
(UMLS)1, a multilingual repository of biomedical termi-
nologies. The tool is multilingual and cross-lingual by de-
sign, but we first focus on Spanish EHR processing be-
cause there is no existing tool for this language and for
this specific purpose. We propose a sequential pipeline
that retrieves mapping candidates from an indexed UMLS
Metathesaurus, uses the IXA pipeline (Agerri et al., 2014)
for basic language processing and UKB (Agirre and Soroa,
2009) for word sense disambiguation (WSD). In addition to
the pipeline itself, this paper also presents a demonstration
interface for the tool that will be available on-line2.

2. Related Work
Biomedical term normalization is a long-established re-
search field in English-speaking countries where termi-
nological resources and basic-processing tools for the
biomedical domain and this language have been available
for decades. Thus, there already exist several mature ap-
plications that are being effectively exploited for different
purposes and by different organizations as of today. In what
follows, we present some of the better-known applications.
MetaMap (Aronson, 2001; Aronson, 2006) enriches
biomedical text with links to the UMLS Metathesaurus. It
is “knowledge intensive” as it relies heavily on the SPE-
CIALIST Lexicon, a large syntactic lexicon of biomedical
and general English. Meystre and Haug (2005) evaluated

1https://www.nlm.nih.gov/research/umls/
2http://demos-v2.vicomtech.org/umlsmapper/,

user:vicomtech, password:umlsmapper

MetaMap with 160 clinical documents of diverse nature
(radiology reports, exam reports, and so on). MetaMap’s
results were compared to annotations by 8 physicians; the
reported precision and recall for detecting a set of 80 dis-
eases were 76% and 74%.
MedLEE (Friedman et al., 1994; Friedman, 2000) is one of
the earliest English term mapping systems for the clinical
domain, alongside MetaMap. It exploits several knowledge
sources of their own. In Friedman et al. (1994), MedLEE
is evaluated by measuring its precision and recall at detect-
ing the presence of four diseases in a collection of health
records; the results were 70% recall and 87% precision.
NCBO Annotator is a web service provided by the Na-
tional Center for Biomedical Ontology (NCBO) that an-
notates textual data with terms from the UMLS and Bio-
Portal ontologies. The details of how MGREP —the con-
cept recognition tool— works are limited to the conference
poster by Dai et al. (2008). Shah et al. (2009) experimented
with the task of large-scale indexing of online biomedical
resources: MetaMap recognized more concepts but with a
lower precision than MGREP, and MGREP turned to be
faster than MetaMap.
cTakes (Savova et al., 2010) is a comprehensive plat-
form for performing many clinical information extraction
tasks, including enriching text with terms from the UMLS
Metathesaurus. cTakes does dictionary lookup to recognize
and identify clinical entities. They report that mapping to
the UMLS accuracy is high for exact span matches.
As for Spanish, there have been a few attempts to process
clinical free text in this language. Next, we present some
of these attempts that are relevant to the work presented in
this paper.
GALEN (Carrero et al., 2008a; Carrero et al., 2008b) pro-
posed a “Spanish MetaMap” that combines machine trans-
lation techniques with the use of MetaMap. Unfortunately,
they did not apply this system to any task, so performance
scores cannot be reported.
The system by Castro et al. (2010) aims at retriev-
ing SNOMED CT R© concepts based on an input phrase
(SNOMED CT R© is the most complete biomedical termi-
nology, and it is included in the UMLS). Term normal-
ization is done by querying an Apache LuceneTM index
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of SNOMED CT R© and re-ranking the candidates with a
function of their own. In order to evaluate the performance
of this system, they obtained a set of 100 health records
manually tagged by two specialists with “disruptions” or
“procedures” concepts in SNOMED CT R©. For the exact-
matching assessment, they report an average precision of
39% and a recall of 0.65%. Partial matching increases pre-
cision to 71%, but recall is still 0.75%.
FreelingMed (Oronoz et al., 2013) uses the Freeling an-
alyzer (Carreras et al., 2004) and extend its linguistic
data with various knowledge sources including SNOMED
CT R©, a list of medical abbreviations (Yetano, 2003), Bot
PLUS, and ICD-9. The actual task that the tool is meant to
perform is term recognition, not term normalization. The
system was assessed against a Gold Standard of 100 health
records annotated with drug names, diseases and sub-
stances, counting as true positives approximate matches.
The final result was 0.90 per the F-measure.
As can be seen, none of the tools presented offers a com-
plete pipeline to perform biomedical term normalization in
Spanish clinical text with the UMLS.

3. Pipeline Description
The overall architecture for the prototype is schematized in
Figure 1. It consists of components executed in sequence,
some of which use a knowledge base, our adaptation of the
UMLS Metathesaurus. This section provides a description
of the knowledge base and the overall workflow. We also
report a first approximation for assessing the performance
of the prototype.

3.1. The Knowledge Base
The knowledge base of the prototype has been derived from
the 2016AA Full Release UMLS Metathesaurus. It gathers
196 terminology sources in 25 different languages, amount-
ing to 3,250,226 concepts and 10,586,865 unique terms in
total. For this prototype we focus on the subset of sources in
Spanish, which consists of 451,297 concepts and 1,255,377
unique terms. Table 1 shows the amount of concepts and
unique terms per source available in Spanish –7 out of 196
–, both in their English and Spanish versions. The table re-
veals that the Spanish versions have much less conceptual
and lexical coverage.
To build the knowledge base for our prototype, we use
specifically Metathesaurus terms that a) are in Spanish, b)
do not belong to LOINC R© 3, c) are shorter than 15 tokens,
d) are not obsolete or suppressible, e) do not consist of a
single character, f) do not consist of just numbers, and g)
do not consist of only stopwords. We consider 303 common
Spanish words except “no”, “sin” and “con” (no, without,
and with, respectively) because they may alter the polarity
of expressions, which is essential to be processed in this
domain (Ceusters et al., 2007). Applying these filters, we
are left with 352,075 concepts and 546,309 unique terms.
The application proposed needs the knowledge base in
three formats:

3LOINC R© descriptors look typically like “especie de Thri-
chomonas:número areico:punto en el tiempo:sedimento uri-
nario:cuantitativo:microscopia.de luz.campo de gran aumento”,
so they are not suited for the task at hand.

English Spanish

Concepts Terms Concepts Terms

All sources 3,250,226 10,586,865 451,297 1,255,377
CPT R© 39,152 61,923 2,720 2,484
ICPC 748 1,017 722 688
LOINC R© 157,645 390,425 48,609 48,631
MedDRA 51,961 78,528 45,488 61,103
MeSH R© 359,116 837,305 35,970 64,804
SCT R© 357,448 1,115,865 306,539 746,600
WHO-ART 3,175 3,831 2,566 3,102

Table 1: UMLS 2016AA Full Release Metathesaurus
counts for English and Spanish subsets of sources available
in Spanish

The UMLS index. We use Apache LuceneTM in order to
be able to make fast searches in our subset of the UMLS
Metathesaurus. An index has been created where each en-
try represents a term of the subset and contains the follow-
ing information: the term itself, a normalized version of
the term, the concept identifier(s) it is related to, and its
source(s). The normalized string is obtained after erasing
spurious parenthetical content, punctuation, and stopwords.
The list of the spurious parenthetical content has been cu-
rated manually after studying the Metathesaurus. As for the
stopwords, they are the same 303 used to filter the UMLS
Spanish subset.
The UKB Knowledge Graph. This graph contains all the
relations in the 2016AA Metathesaurus whose origin and
target concepts are both included in our UMLS subset. For
each relation, it encodes the source and target concepts, the
direction of the relation, and its type. Overall, the graph
consists of 352,075 vertices and 8,381,482 edges. All the
concepts indexed participate in one relation at least.
The UKB Dictionary. It maps the terms in our UMLS
subset to their respective concept or concepts, in the case
of those that are ambiguous.

3.2. Overview of the Workflow
Let us describe the proposed processing flow by means of
an example; take the input text to be the following:

“acude por lesión grave en rodilla dcha”
[patient] comes due to serious injury in rt knee

First, the text received is analyzed in search of abbrevia-
tions and acronyms, which are expanded to their corre-
sponding full expressions. The tool employed to identify
abbreviation- or acronym-like elements in texts (Montoya,
2017) exploits a set of rules and a 2,312-item long list of ab-
breviation/acronym and corresponding expansions, curated
after manual annotations by health care professionals. In
our example, this step would produce

“acude por lesión grave en rodilla derecha”
[patient] comes due to serious injury in right knee

Next, the system does basic linguistic processing with the
IXA pipeline (Agerri et al., 2014): tokenization, part-of-
speech tagging, and constituent parsing. The linguistic in-
formation obtained serves as basis to perform boundary
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Figure 1: Architecture of the pipeline

detection, that is, to recognize in the text spans or se-
quences of tokens that are likely to be mapped to a medical
concept. In order to maximize recall, we explore two meth-
ods: extracting n-grams of varying sizes, and extracting
nominal phrases based on a simple set of rules that uses the
linguistic information, allowing for discontinuous spans.
After extracting textual spans, the system attempts to find
mapping candidates of the Metathesaurus terms indexed by
lexical proximity. This is the role of the matching module.
It queries the index with the spans, obtaining as a result of
each query a collection of Metahesaurus terms, which are in
turn related to one or more concepts and a relevance score.
The reranking module assigns new scores to the can-
didates using a function other than the one provided by
Lucene. We explore two such functions: the one by Castro
et al. (2010), and the one by Aronson (2001) implemented
in MetaMap. Furthermore, a threshold can be applied to
discard candidates with low scores.
Matching, reranking and thresholding are not done with all
the spans detected; the mapping candidate generation al-
gorithm prefers longer matches:

1. the system orders the spans by subsumption creating
oriented trees as depicted in Figure 2;

2. then, it queries the index with the root of the tree and
its direct children, reranks the results and applies a
threshold;

3. if any of the children obtains a better result than their
parent, then the results retrieved for the parent span are
ruled out, and the algorithm is repeated recurrently for
the children nodes;

4. if a parent has a result better than any of its children’s,
the results retrieved for the parent are accepted as can-
didates and the system does not attempt to map any of
its descendants.

Following this algorithm, textual spans that overlap can be
annotated with different concepts, but not spans that are
nested within a bigger one.
At this point, a span can have zero, one or multiple mapping
candidates. Then,

a) if no candidate is available, one must conclude that ei-
ther the span in question was never a term in the first

Figure 2: Oriented tree of detected spans

place, or that it is a term but does not have an explicit
or convincing enough mapping to a UMLS Metathe-
saurus entry indexed;

b) if one candidate is available, the system takes it as a
final mapping for the span;

c) if more than one is available, the system takes as a final
mapping the one scored highest; and

d) if more than one candidate become tied in first posi-
tion, the system needs to carry out a disambiguation
step in order to choose the correct mapping. This pro-
cess is performed by the UKB module.

The algorithm behind UKB is Personalized PageRank
(Haveliwala, 2002). Agirre et al. (2010) and Stevenson
et al. (2012) prove that UMLS’s conceptual graph can be
used as a knowledge base for WSD. Here we implement a
little variation of their approach. The context to initialize
the Knowledge Graph consists of the tokens in the text; the
system is able to provide this information as early as the ba-
sic linguistic processing is done. When the disambiguation
module is required, it just needs to choose the mapping can-
didate with highest activation in the Personalized PageRank
Vector.
The pipeline ends by gathering the final mappings and dis-
playing them to the user.
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3.3. Evaluation
At the moment there is no corpus available in Spanish anno-
tated with UMLS concepts that can serve as Gold Standard
to evaluate this application. For this reason, we propose the
following evaluation framework as a first approximation to
measure the performance of the tool proposed.

3.3.1. Design
Having created/obtained two English-Spanish parallel cor-
pora of biomedical text, the English documents have been
annotated with MetaMap and the Spanish ones with the
prototype proposed; then, the agreement between the sys-
tems has been measured by means of Cohen’s Kappa (Co-
hen, 1960). Crucially, MetaMap’a knowledge source has
been reduced so that both systems can annotate only the
same 352.075 concepts, in order to make the annotations
comparable. MetaMap’s mapping strategy has also been
configured so that it prefers longer matches, as the proto-
type does.

Corpora. One of the corpora is a manually revised subset
of the Scielo Corpus (Neves et al., 2016), resulting in 1,895
titles and abstracts of scientific literature. The other corpus
consists of 10 EHR texts originally in Spanish and their
English translations, plus 8 EHR texts originally in English
and their translations to Spanish. Table 2 shows the sizes of
the corpora.

Scielo EHR

es en es en

# documents 1,895 1,895 18 18
# words 26,490 23,374 23,311 21,093

Table 2: Corpora used for evaluation

Metric. Cohen’s Kappa k is defined as follows:

k =
po − pe
1− pe

(1)

where po is the proportion of units in which the annotators
agree and pe is the proportion of units for which agreement
is expected by chance. The units are the 352.075 concepts
in the index; MetaMap and our system agree only when
both say that a given concept is present in the input docu-
ment.
There is no universally accepted interpretation of Cohen’s
kappa as to what is considered high or low agreement.
(Landis and Koch, 1977) proposed the following, which is
widely cited, but has no evidential grounding:

k < 0.00 No agreement
0.00 ≤ k ≤ 0.20 Slight agreement
0.21 ≤ k ≤ 0.40 Fair agreement
0.41 ≤ k ≤ 0.60 Moderate agreement
0.61 ≤ k ≤ 0.80 Substantial agreement
0.81 ≤ k ≤ 1.00 Almost perfect agreement

Variables. The experiment has been carried out with the
following prototype settings:

• Boundary detection: ngram or phrase.
• Re-ranking function: Lucene (L), Castro et al. (2010)

(C), or (Aronson, 2001) (A); L is simply using the
scores given by Lucene, that is, not re-ranking at all.

• Disambiguation: UKB or random disambiguation as
baseline (rand).

The results reported can only be taken as hints for the differ-
ences in performance between the possible configurations
of the modules. Therefore, a qualitative error and disagree-
ment analysis has been carried out in an attempt to elucidate
these issues.

WSD score ngram phrase

Scielo

rand
L(.0) 0.323 ± 0.006 0.304 ± 0.006
A(.5) 0.331 ± 0.006 0.308 ± 0.006
C(.7) 0.398 ± 0.006 0.372 ± 0.006

UKB
L(.0) 0.343 ± 0.006 0.328 ± 0.005
A(.5) 0.349 ± 0.006 0.330 ± 0.006
C(.7) 0.412 ± 0.006 0.387 ± 0.006

EHR

rand
L(.0) 0.286 ± 0.007 0.266 ± 0.007
A(.5) 0.330 ± 0.008 0.316 ± 0.008
C(.7) 0.403 ± 0.008 0.389 ± 0.008

UKB
L(.0) 0.321 ± 0.007 0.306 ± 0.007
A(.5) 0.365 ± 0.008 0.354 ± 0.008
C(.7) 0.432 ± 0.008 0.414 ± 0.008

Table 3: Agreement between MetaMap and the prototype

3.3.2. Results
Results show that our prototype can reach moderate agree-
ment with MetaMap. They suggest that the scoring func-
tion proposed in Castro et al. (2010) makes the results
of our prototype substantially more similar to the ones
from MetaMap than the other two functions. Using n-
grams to create textual spans yields always a slightly better
agreement with MetaMap. Furthermore, agreement with
MetaMap also improves when using UKB to perform dis-
ambiguation compared to the baseline proposed.
A manual analysis of the results has shown that the
main source of disagreement is, of course, the fact that
MetaMap and our application annotate different texts
–parallel texts; furthermore, they use different sources of
knowledge, in spite of the efforts to make them as similar
as possible by limiting the knowledge base of MetaMap
to contain only the concepts indexed for our system. To
illustrate these facts, let us consider the following input:

en: “Should we rule out congenital anesplenia?”
es: “¿Debemos descartar una asplenia congénita?”

MetaMap and our best system (UKB+C+ngram) find
mappings for these spans:
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MetaMap: “rule”, “out”, “congenital”
Ours: “descartar”, “asplenia congénita”

To begin with, “rule out” is translated as “descartar”
in Spanish. When MetaMap creates —in this case,
incorrect— annotations for “rule” and “out”, it is impos-
sible to produce the same annotations, since the Spanish
“descartar” does not have the meaning of any of the two
English words separately. We can also see that MetaMap
does not recognize the concept “congenital anesplenia”. As
it happens, MetaMap’s knowledge base contains “congeni-
tal asplenia” but not “congenital anesplenia”, and so it does
not annotate it. Of course, problems like these occur in both
directions.
As for the errors that our prototype commits, many false
positive errors are produced due to the fact that the
Metathesaurus does not capture all the possible meanings
of the terms it contains; because candidates are scored sim-
ply by means of lexical similarity, the system will annotate
a term that is similar enough to an entry in the Metathe-
saurus even if they denote different concepts. Let us illus-
trate the problem: the term “clavo” in Spanish has at least
three meanings: a) clove (a spice), b) nail or rod (a metallic
object), and c) corn of toe (a disease). However, the term
“clavo” is only related to sense a) and c) in the Metathe-
saurus. This is not to say that sense b) is not represented in
the Spanish subset, but that it is not represented as “clavo”.
As a consequence, whenever an input text contains “clavo”
(and it does not form a bigger concept with its surrounding
words), it will be annotated as being a disease or a spice,
even if it is neither of the two.
Another important source of false positives is the over-
generation of spans: both n-gram-based and phrase-based
detection generate incorrect spans that eventually can also
be annotated. The n-gram strategy clearly generates spans
that are not meant to form syntactic units, and thus neither
intended meaning units. For example, in the text fragment
“[...] arteria torácica en radiografı́a [...]” (chest artery in x-
ray), the bigram [torácica, radiografı́a] would form a span
that would, in turn, trigger mapping candidates consisting
of concepts referring to chest x-ray, which is not actually
mentioned in the text. Although the phrase-based strategy
was meant to overcome this problem by leveraging syn-
tactic information, the fact that it allows for discontinuous
spans also produces over-generation sometimes, especially
when coordination and/or enumeration are involved.
Regarding false negatives, there are two main reasons
for our system to miss a biomedical concept: on the one
hand, it can happen that the concept is not captured in the
Metathesaurus at all; on the other hand, it could be that
the concept is captured but not as expressed in the text, be
it because it is misspelled, abbreviated in a way that the
Metathesaurus does not contemplate, or formulated in any
other non-standard way. That is, false negatives are caused
by a poor lack of the Metathesaurus and the lexical variabil-
ity of clinical narrative. MetaMap relies on a powerful tool
to deal with variability –the SPECIALIST Lexicon; we do
not address variability but for a closed list of abbreviations.
As a consequence, our system is much more likely to pro-
duce this type of error, in any of its possible configurations.

Additionally, phrase-based span detection is another source
of false negatives, as it can miss noun phrases due to errors
in the lower-level processing of the input texts: if it misses
a noun phrase and the noun phrase happens to be a relevant
term, the term is not annotated.

4. Demo
A web-based demonstrator has been developed to allow
users to introduce a text of their choosing and visualize the
mappings produced by the application in an interactive user
interface. The client side of the demonstrator has been de-
veloped in Angular24. It is a webservice that communi-
cates with the application via HTTP. In order to enrich the
demonstrator with information about the concepts that have
been mapped, the demonstrator also communicates with an
additional webservice that provides an API to query the
UMLS Metathesaurus and the Semantic Network, which
is a hierarchical classification of the concepts in the UMLS
Metathesaurus, and a source of the Metathesaurus itself.
In the home page, users can introduce their text and config-
ure the application. Users can also choose which semantic
types of the Semantic Network of the UMLS they are inter-
ested in; the bottom part of the page contains the whole Se-
mantic Network in the form of a tree that can be expanded
and collapsed by the users in order to select the semantic
types of the concepts to be used by the mapping procedure.
The result page is divided into three columns. An exam-
ple is shown in Figure 3. The middle column contains the
submitted text; annotations are marked in the text with dif-
ferent colors, depending on the semantic type of the con-
cepts. On the left side is a list of the found concepts’ se-
mantic types. By clicking on any of the semantic types,
one can see below the actual concepts or annotations, rep-
resented by their preferred names. The example given in
Figure 3 shows, for instance, that two signs or symptoms
haven been found in the text (i.e. “tos” –cough– and “dis-
nea” –dyspnea–). When the user clicks on one of the con-
cept names, information about that concept appears on the
right side of the page: preferred name, semantic types, a
definition, and so on. Moreover, the user can also see hy-
pernym and hyponym relations, and navigate through the
concepts within this hierarchy. In the case of Figure 3,
the user clicked on the concept “Asperguillus” —which
is mentioned twice in the last paragraph of the processed
text—. The figure shows that this concept, with identi-
fier C0004034 in the UMLS, has 6 terms related to it in
the Spanish extension of SNOMED-CT (SCTSPA) and one
more in the Spanish translation of Medical Subject Head-
ings (MSHSPA). It also shows, among other information,
that “Aspergillus” is a “Ascomycota”, and that “Aspergillus
clavatus”, “Aspergillus fumigatus” and “Aspergillus flavus”
are all “Aspergillus”.

5. Conclusions
We have presented a prototype to perform biomedical term
normalization in clinical texts with the UMLS Metathe-
saurus. The tool performs abbreviation/acronym expan-
sion and WSD. Mapping candidate generation is done by

4https://angular.io/

2049

https://angular.io/


Figure 3: Results page of the demo website

querying an index of the Metathesaurus with spans of
the input text. As a preliminary evaluation, agreement
with MetaMap has been measured in two parallel cor-
pora; our best system has reached moderate agreement with
MetaMap. We have also presented a web-based user inter-
face for the prototype. As future work, we plan to assess
the tool with texts in languages other than Spanish. We
must also address misspellings, morphological variants and
synonyms of the terms covered in the UMLS. Furthermore,
other evaluation frameworks for evaluation should be de-
signed, in order to better understand the shortages that the
current version of the prototype has and how the tool could
be improved.

6. Acknowledgements
This work has been funded by the Department of Economic
Development and Infrastructure of the Basque Government
under the project BERBAOLA (KK-2017/00043), and by
the Spanish Ministry of Economy and Competitiveness
(MINECO/FEDER, UE) under the projects CROSSTEXT
(TIN2015-72646-EXP) and TUNER (TIN2015-65308-C5-
1-R).

7. Bibliographical References
Agerri, R., Bermudez, J., and Rigau, G. (2014). IXA

pipeline: Efficient and Ready to Use Multilingual NLP
tools. In Proceedings of the Tenth International Con-
ference on Language Resources and Evaluation (LREC
2014), pages 3823–3828. European Language Resources
Association (ELRA).

Agirre, E. and Soroa, A. (2009). Personalizing PageRank
for Word Sense Disambiguation. Proceedings of the 12th
Conference of the European Chapter of the ACL, pages
33–41.

Agirre, E., Soroa, A., and Stevenson, M. (2010). Graph-
based word sense disambiguation of biomedical docu-
ments. Bioinformatics, 26(22):2889–2896.

Aronson, A. R. (2001). Effective Mapping of Biomedical
Text to the UMLS Metathesaurus: The MetaMap Pro-
gram. In Proceedings of the AMIA Symposium, pages
17–21. American Medical Informatics Association.

Aronson, A. R. (2006). MetaMap: Mapping Text to
the UMLS Metathesaurus. Bethesda, MD: NLM, NIH,
DHHS.

Carreras, X., Chao, I., Padró, L., and Padró, M. (2004).
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