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Abstract
We explore the use of Convolutional Neural Networks (CNNs) for multi-label Authorship Attribution (AA) problems and propose a
CNN specifically designed for such tasks. By averaging the author probability distributions at sentence level for the longer documents
and treating smaller documents as sentences, our multi-label design adapts to single-label datasets and various document sizes, retaining
the capabilities of a traditional CNN. As a part of this work, we also create and make available to the public a multi-label Authorship
Attribution dataset (MLPA-400), consisting of 400 scientific publications by 20 authors from the field of Machine Learning. Proposed
Multi-label CNN is evaluated against a large number of algorithms on MLPA-400 and PAN-2012, a traditional single-label AA
benchmark dataset. Experimental results demonstrate that our method outperforms several state-of-the-art models on the proposed task.
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1. Introduction
Authorship Attribution uses textual features to distinguish
between texts written by different authors (Stamatatos,
2009). A typical AA problem is a single-label text-
categorization task: given a set of candidate authors for
whom text samples of undisputed authorship are available,
a text is assigned to one candidate author (Sebastiani and
Ricerche, 2002; Stamatatos, 2009). Less common yet
equally important is the case that involves identifying mul-
tiple co-authors of a document. This is the problem of
multi-label AA and as we will see it is significantly harder
than classical AA. We briefly review classical AA and then
introduce our work in multi-label AA.
Classification algorithms utilizing lexical, semantic, syn-
tactic, stylistic, and character n-gram features have been
explored by Graham et al. (2005), Gamon (2004), Sap-
kota et al. (2015), and Shrestha et al. (2017). Qian et al.
(2014) proposed a tri-training method to solve AA under
limited training data per author. It extended standard co-
training using three views: lexical, character and syntactic
and was shown to have better generalization performance.
This method assumes that a large set of unlabeled docu-
ments authored by the same given closed set of authors is
available. Sapkota et al. (2016) leveraged Domain Adap-
tation in an AA scenario where articles on different top-
ics may be written by the same author and labeled training
data is limited. The method introduced was a modifica-
tion of Structural Correspondence Learning (Blitzer et al.,
2006) and requires a large set of unlabeled documents per-
taining to the target domain and written by the same au-
thors. Seroussi et al. (2012) used latent topic features to
improve attribution. Although useful, it requires a large
text collection per author. AA via text distortion has been
used on traditional PAN corpora (Stamatatos, 2017). AA
with a large number of authors and limited training data has

∗The first two authors contributed equally to the work but are
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been studied by Luyckx and Daelemans (2008). A lazy
memory-based learner based on k-NN was shown to work
well with combinations of features. Ruder et al. (2016)
used character level and hybrid multi-channel Deep Neural
Networks for large scale multi-author AA to a great degree
of success; however, their work was concerned with classi-
cal single-label scenarios only.
We propose a CNN for multi-label AA tasks. Our design
treats a document as a set of sentences where each one
has multiple labels. Individual authorship of continuous
sections is taken into account together with the possibil-
ity of co-authors influencing each other’s style or editing
passages written by others. We name this strategy collabo-
rative section attribution. Multi-label CNN utilizes depth-
wise convolutions for the separate processing of the two in-
put channels, capturing information unique to each, which
helps filters activate on more relevant inputs. We conduct
a series of experiments using our model, the recently suc-
cessful version of CNN by Kim (2014) and a large num-
ber of baselines. Proposed Multi-label CNN outperforms
the competition by a significant margin on multi-label data
(MLPA-400) and matches or defeats relevant baselines on
single-label tasks (PAN 2012).
For evaluation, we consider a realistic problem of multi-
label AA in the realm of scientific publications by cre-
ating a publicly available dataset consisting of 400 Ma-
chine Learning papers, Machine Learning Papers’ Author-
ship 400 (MLPA-400)1. To the best of our knowledge,
multi-label AA of scientific publications has not received
a lot of attention. It deserves more attention because auto-
matic resolution of authorship issues in papers can have a
variety of downstream applications in intellectual property
managements, citation analysis, archival systems, and au-
thor disambiguation. The task is challenging: papers have
many authors whose writing style can evolve or influenced

1https://github.com/dainis-boumber/AA CNN/wiki/MLPA-
400-Dataset
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Figure 1: The architecture of proposed multi-label CNN.

by colleagues, they contain direct quotes from other works,
authors’ contribution to the paper in terms of the amount of
text written is unknown; the number of papers and authors
is large.
The contribution of our work is threefold: a CNN that em-
ploys collaborative section attribution and separate chan-
nels in depth-wise convolutions, a novel real-world multi-
label MLPA-400 corpus from top cited ML authors for an
AA scenario, a thorough performance evaluation of the pro-
posed algorithm with relevant baselines on the new MLPA-
400 dataset and PAN-2012.

2. Network Hierarchy
At a high level, our design is a multilayer CNN that either
computes a probability distribution for an entire document
(single-label problems) or an average of probability dis-
tributions over individual sentences of a document (multi-
label problems). Attributing multi-author work sentence by
sentence intuitively makes sense, because co-authors typi-
cally write different sections of the paper.

2.1. CNN Architecture
Let the document to be classified be D. Each D consists
of |S| number of sentences and each sentence consists of
|T | words. We classify each S and take the mean to ob-
tain predicted label of D. To allow the network to generate

consistent dimensions, we pad sentences to the same length
|T | = 128. Documents are padded to same number of sen-
tences |S| = 128. The ground truth label associated with
each document is denoted using vector y. Then |y| is equal
to the cardinality of the set of possible authors. An element
of y is marked 1 if the corresponding person is one of the
authors and 0 otherwise.
To get an edge over Kim (2014), we use fixed
word2vec (Mikolov et al., 2013) and Glove (Pennington et
al., 2014) embeddings, leveraging Glove’s superior general
performance (Pennington et al., 2014) and word2vec’s ad-
vantage when it comes to rare words or symbols (Shazeer
et al., 2016). Words in D are mapped into pre-trained
word2vec and Glove embedding space by replacing each
word with a corresponding row in the embedding matrix
Xword2vec and Xglove, where both have X ∈ R|V |×n, as-
suming a total vocabulary count of |V | and embedding di-
mension n. Hence replacing all word features in a sentence
with one of the embedding matrices will transform the sen-
tence into a matrix S ∈ R|T |×n.
To capture information that is distinctive to each embed-
ding space, we help filters activate on relevant inputs by
using depth-wise two-dimensional convolutions which pro-
cess input from word2vec and Glove channels separately.
In spirit with Kim (2014), multiple filters of multiple sizes
h are used to extract features from S. Unlike Kim, we
use 100 filters for each window size h ∈ {1, 2, 3, 4, 5}
to let smaller filters pick up on simple stylistic features
present, such as words unique to one author. Applying a
filter f ∈ Rh×n on one of the input channels at word win-
dow i to (i+ h− 1) amounts to

cfi = elu
(
f ·S[i:i+h−1] + bf

)
(1)

where bf is the bias term corresponding to filter f and
elu(x) is the exponential linear unit (ELU). ELUs have
negative values which pushes the mean of the activations
closer to zero, resulting in faster training and lower vari-
ance. The positive part of these functions is the identity;
their derivative is one and not contractive, thus the vanish-
ing gradient problem is alleviated (Clevert et al., 2015).
We denote the number of filter sizes as |h| and the number
of filters of each size as q. For |h| = 5 and q = 100, we
would have a total of 500 filters generating 500 features at
each word location. By concatenating feature values gener-
ated by each filter into a vector, a total of 500 vectors Cf s
are generated for each sentence in each embedding channel.

Cf =
[
cf1 , c

f
2 , . . . c

f
|T |−h+1

]
(2)

All vectors are batch-normalized (BN) to reduce over-
fitting (Ioffe and Szegedy, 2015).
Each Cf generated by the convolutional layer is max-
pooled to keep only the largest value out of all the values
across a sentence generated by one filter:

ĉf = max
{
Cf
}

(3)

All values resulting from max-pooling in both embedding
channels are concatenated into a vector o ∈ R|h|·q·2.
Dropout (Srivastava et al., 2014) at the rate of 0.5 is then
applied to o resulting in a vector ô.
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2.2. Predictions
Very short documents are unlikely to have more than one
author. If the average document in the training corpus is
shorter than the maximum sentence length |T | = 128, ô
is passed to a softmax output layer for single-label classi-
fication. Otherwise, we pass ô to a fully connected sig-
moid output layer of size |y|, with one element per can-
didate author. For single-label tasks, softmax cross en-
tropy loss was used. For multi-label tasks the loss used
is sigmoid cross-entropy. We average resulting values for
each sentence to determine the final document level result.
The code can be obtained at https://github.com/
dainis-boumber/AA_CNN

3. Datasets
3.1. MLPA-400
3.1.1. Considerations
Many approaches to creating a suitable corpus exist. For
example, papers can be chosen across domains. However,
even within one domain the stylistic differences between
venues are significant enough to make individual style hard
to detect. A random sample of authors can be taken, but
the number of multi-labeled documents would be few. An-
other possibility is taking the transitive closure of the set of
co-authors and extracting at least k papers per author. How-
ever, creation of such a dataset for any reasonable k results
in a very large transitive set.

3.1.2. Design
Using Google Scholar as a source, we created a list of
top 20 authors in Machine Learning, ranked by the num-
ber of citations. We ensured a reasonable number of pa-
pers had an overlap of authors (i.e., we also included pa-
pers that were jointly authored by the set of authors). For
each author, 20 papers were downloaded for a total of 400
publications for the entire dataset. Each work is assigned
20 binary labels. The labels indicate which of the authors
contributed to the paper’s creation. 100 papers out of 400
have more than one author from the 20 listed. The num-
ber of authors ranged from 1 to 3 and the average was
1.2925. The text was extracted from the PDF files using
pdfminer (Hinyama, 2017) and pre-processed. The title,
authorship information, and bibliography fields were re-
moved from each paper to ensure the classifier abides by
the rules of blind review instead of simply using author
list while learning authorship. Formulas, table and figure
captions were retained as they may contain valuable author
specific style and topic information. The dataset is avail-
able at https://github.com/dainis-boumber/
AA_CNN/wiki/MLPA-400-Dataset

3.2. PAN-2012
For classical AA, we use the PAN-2012 (Juola, 2012) cor-
pus and report performances on its 3 tasks: A, C and I.
Their training sets consist of 2 documents per author. The
test sets have 1 text per author, except Task A which has
2 texts from 3 authors, 800 to 6060 words each. Task C
has 8 authors; the texts are larger, up to 13000 words long.
Task I has 14 authors, with documents ranging from ap-

proximately 40,000 to 170,000 words. Further details on
this data is available in (Juola, 2012).

4. Experiments
4.1. Baselines
Our method was tested against a wide array of baselines.
We used n-grams with n ranging from 1 to 5 words and
1 to 8 characters. We experimented with TFIDF, hashing,
count vectorization, binary bow model and doc2vec (Le
and Mikolov, 2014). The resulting document vectors were
used as inputs to the baseline classifiers: Support Vec-
tor Machine (SVM) (Cortes and Vapnik, 1995), Gaussian
and Multinomial Naive Bayes (GNB and NB), Decision
Tree with AdaBoost, Gradient Boosting, Random Forest, K
Nearest Neighbors, Multilayer Perceptron (MLP) (Rumel-
hart et al., 1986), and Logistic Regression. We varied the
hyper-parameters of the algorithms in order to achieve the
best result (we vary kernels, the margin and the penalty be-
tween L1, L2, and L1 +L2 for hinge loss SVM with SGD;
breadth and number of layers for MLP, etc.). The baselines
were implemented using the scikit-learn library (Pedregosa
et al., 2011).
We implemented CNN-non-static, a sentence classification
approach proposed by Kim (2014) that has recently been
successful in text classification. It initializes embedding
layer with pre-trained word2vec vectors (Mikolov et al.,
2013) and optimizes the embedding layer together with the
rest of network’s parameters during training. The CNN
consists of one convolutional layer that samples from the
input using multiple window sizes, a max over time pooling
layer, and a fully connected output layer. Dropout (Srivas-
tava et al., 2014) and L2 are used for regularization.
The MLPA-400 problem is a multi-label task and cannot
be directly solved by most classifiers. We used One vs.
Rest Classification approach, fitting one binary classifier
per class. We then associated a set of positive examples
for a given class and a set of negative examples which rep-
resent all the other classes present within the training folds.
No class balancing was performed to retain the natural class
distribution in the data. As One vs Rest Classification
scheme requires a separate model for each author, it is not
feasible to use it with CNN-non-static on MLPA-400. In-
stead, we augmented CNN-non-static with the multi-label
modification described in section 2.2. We evaluated an al-
most exhaustive combination of models with a total of 16
classifiers and 4 vectorizers that employ n-grams, with the
maximum n equal to 5 for words and 8 for characters. This
resulted in 16x4x5 + 16x4x8 or 832 baselines. We tested
the CNN non-static and used doc2vec embeddings for each
classifier, giving 33 more for a total of 865. After varying
the hyper-parameters for those algorithms that allowed it,
the total number of models was 1685.
For PAN-2012, the top performing teams results’ in the
AA challenge are also considered beyond the 1685 base-
line models we trained.

4.2. Metrics
For the MLPA-400 data we use accuracy, micro and macro
F1, Jaccard index and Hamming loss. In PAN-2012 exper-
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Baseline
F1

macro
F1

micro
Jaccard

index
Hamming

loss Accuracy
multi-label CNN (word2vec+glove) 0.736 0.744 0.713 0.031 65.3%
CNN-non-static (Kim, 2014) 0.685 0.695 0.664 0.037 60.8%
K Nearest Neighbors (binary 3-gram) 0.666 0.737 0.633 0.033 52.0%
Perceptron (sgd, l2, binary 3-gram) 0.748 0.751 0.591 0.030 51.0%
SVM (sgd, squared hinge loss, l2, binary 1-gram) 0.681 0.690 0.516 0.034 45.3%
MLP (doc2vec) 0.569 0.640 0.461 0.041 40.0%

Table 1: ML Papers evaluation results.
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Figure 2: Varying the number of papers (left) and authors
(right) on accuracy and micro-F1.

iments, we follow the instructions provided by the creators
of the challenge and focus only on accuracy.
Exact label accuracy for multi-label problems is a particu-
larly unforgiving metric: incorrectly attributing a single au-
thor from what can be a long list of co-authors results in the
paper being marked as incorrectly classified. For this rea-
son we also report Hamming loss and Jaccard index (also
known as similarity coefficient), which are common met-
rics for multi-label tasks. Hamming loss is the fraction of
labels that are incorrectly predicted. Jaccard index is the
size of the intersection of the ground truths and the predic-
tions divided by the size of their union.

5. Results and Discussion
5.1. MLPA-400
On this dataset, our approach is significantly more accu-
rate, as seen in Table 1 yielding a confidence of p = 0.0828
against the next top competitor CNN non-static using a
paired t-test across five-fold cross validation. Next, binary
vectorization dominates all simple character and word vec-
torization approaches (not shown in Table 1 as they fall be-
low top-500). Character n-grams perform poorly.

5.1.1. Effect of the number of Documents/Author
To discover the correlation between the amount of train-
ing data and the performance of our multi-label CNN, we
explore the effect of the number of papers per author on
accuracy and micro F1. The latter was chosen because it
takes into account class and label balance. The # of papers
per author was set to 2, then increased to 5, 8, 11, 14, 17
and 20. We compare multi-label CNN and MLP in Figure
2 (left). As the amount of training data (# of papers per
author) available increases, so does the algorithms’ ability
to generalize. The improvement becomes minimal past 11
papers, but continues to increase. Because overfitting is re-
duced with the increased amount of training data (Brain and
Webb, 1999), increasing the size of the dataset can benefit

CNNs and other powerful models, allowing for deeper ar-
chitectures that may discover new style features.

5.1.2. Effect of the number of Authors
To determine the effect of the number of authors on pre-
diction accuracy, the number of papers was fixed at 20 per
authors and the number of authors was varied between 2,
5, 8, 11, 14, 17 and 20. In Figure 2 (right), performance
grows with the amount of training data, then decreases as
the problem gets difficult due to the number of labels. Simi-
lar situations were also observed in Luyckx and Daelemans
(2008) who recommend enriching the feature space by us-
ing combinations of features and employing a lazy learner.

5.2. PAN-2012
Task A: Our method, most baselines, and most competitors
such as Sapkota and Solorio (2012) tied at 100% accuracy2.
Task C: Our approach results in 100% classification ac-
curacy. Only three of the challenge participants attain the
same level of success (Grozea and Popescu, 2012; Sapkota
and Solorio, 2012; Giraud and Artières, 2012). CNN-non-
static performs very poorly, correctly classifying only 3
documents. SVM and NB achieve 87.5%, with other base-
lines falling far behind.
Task I: Kim-non-static and our method tie the state-of-the-
art (Grozea and Popescu, 2012; Sapkota and Solorio, 2012;
Tanguy et al., 2012) with the accuracy of 92.86%. SVM
and NB score 85.71% and are on par with most of the con-
testants. Remaining baselines fall short.

5.3. Sensitivity of CNN Parameters
We found that using L2 regularization improved training
speed at the expense of accuracy. Additional convolutional
layers failed to produce any effect.

6. Conclusion
This paper presented a CNN architecture designed to
address multi-label Authorship Attribution problems. To
test our design in non-traditional AA environment and
alleviate the lack of relevant corpora, we created and made
available to the public MLPA-400 — a dataset consisting of
publications from well-known researchers. Experimental
results show our method significantly outperforming the
competition in a multi-label scenario and matching or
surpassing state-of-the-art on traditional AA tasks.
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