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Abstract
Natural language definitions of terms can serve as a rich source of knowledge, but structuring them into a comprehensible semantic
model is essential to enable them to be used in semantic interpretation tasks. We propose a method and provide a set of tools for
automatically building a graph world knowledge base from natural language definitions. Adopting a conceptual model composed of a
set of semantic roles for dictionary definitions, we trained a classifier for automatically labeling definitions, preparing the data to be
later converted to a graph representation. WordNetGraph, a knowledge graph built out of noun and verb WordNet definitions according
to this methodology, was successfully used in an interpretable text entailment recognition approach which uses paths in this graph to
provide clear justifications for entailment decisions.
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1. Introduction

Natural language lexical definitions of terms can be used
as a source of knowledge in a number of semantic tasks,
such as Question Answering, Information Extraction and
Text Entailment. While formal, structured resources such
as ontologies are still scarce and usually target a very spe-
cific domain, a large number of linguistic resources gather-
ing dictionary definitions is available not only for particular
domains, but also addressing wide-coverage commonsense
knowledge.

However, in order to make the most of those resources, it is
necessary to capture the semantic shape of natural language
definitions and structure them in a way that favors both the
information extraction process and the subsequent informa-
tion retrieval, allowing the effective construction of seman-
tic models from these data sources while keeping the result-
ing model easily searchable and interpretable. Furthermore,
by using these models, systems can increase their own in-
terpretability, benefiting from the structured data for per-
forming traceable reasoning and generating explanations –
features which are becoming even more valuable given the
growing importance of Explainable AI (Gunning, 2017).

In this work, we propose a method for automatically build-
ing commonsense knowledge bases out of natural language
dictionary definitions, which is easily extensible to any
domain where natural language glossaries are available.
Building upon a conceptual model based on a set of seman-
tic roles for definitions, we classify each segment in a def-
inition according to its relation to the entity being defined,
and convert the classified data into a knowledge graph
where each node is a meaningful phrase which contains a
piece of self-contained information about the definiendum.
Following this methodology, we processed the whole noun
and verb databases of WordNet (Fellbaum, 1998) and built
the WordNetGraph, and then used this knowledge graph to
recognize text entailments in an interpretable way, provid-
ing concise justifications for the entailment decisions.

2. Related Work
The construction of structured databases from dictionary
definitions has been largely explored, and most approaches
rely on syntactic parsers for the identification of patterns
that point to relationships between words (Calzolari, 1991;
Vossen, 1991; Vossen, 1992; Vossen and Copestake, 1994).
Among early efforts, it is remarkable the creation of LKB,
a Lexical Knowledge Base (Copestake, 1991) based on
typed-feature structures that can be seen as a set of at-
tributes for a given concept, such as “origin”, “color”,
“smell”, “taste” and “temperature” for the concept drink,
for example. The definitions from a machine-readable dic-
tionary are parsed to extract the definiendum’s genus and
differentiae, and the values represented by the differentiae
will fill in the feature structures for that genus. Since the
features, that is, the relevant attributes for a given entity,
must be defined in advance, only a restricted domain was
considered in their approach.
Dolan et al. (1993) also describe an automated strategy
to build a structured lexical knowledge base but, instead
of the entity-attributes structure, they use syntactic pars-
ing to identify semantic relations such as is-a, part-of, etc.,
to build a directed graph. Recski (2016) also derives a
graph representation from dictionary definitions, but in the
adopted conceptual model there are only three types of
edges, numbered from 0 to 2: the 0-edge represents unary
predicates and the 1 and 2-edges connects binary predicates
to their arguments. In common, most approaches work at
the word-level, converting each single word in the defini-
tion into a different attribute or node. In the graph knowl-
edge base scenario, this can increase the information re-
trieval complexity, given that it may be necessary to con-
catenate the contents of several nodes to obtain meaningful
enough information about an entity.
The work proposed by (Bovi et al., 2015) go beyond the
word-level representation, being able to identify multi-
word expressions. They perform a syntactic-semantic anal-
ysis of textual definitions for Open Information Extraction
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(OIE). Although they generate a syntactic-semantic graph
representation of the definitions, the resulting graphs are
used only as an intermediary resource for the final goal of
extracting semantic relations between the entities present in
the definition.

3. Graph Conceptual Model
To build the definition graph, we adopted the conceptual
model proposed by Silva et al. (2016). This model ex-
tends the genus-differentia definition pattern from Aristo-
tle’s classic theory of definition (Berg, 1982; Lloyd, 1962;
Granger, 1984) by defining a set of entity-centered semantic
roles for lexical definitions. Differently from the commonly
used event-centered semantic roles, which define the se-
mantic relations holding among a predicate (the main verb
in a clause) and its associated participants and properties
(Màrquez et al., 2008), definition’s semantic roles express
the part played by an expression in a definition, showing
how it relates to the definiendum, that is, the entity being
defined.
In this model, the genus concept was replaced by the more
general role supertype, which can be not only the definien-
dum’s immediate superclass but also an ancestor higher
in the concepts hierarchy. The differentia component was
split into two roles: differentia quality and differentia event.
These three roles can be seen as the representatives of an
entity’s essential properties, while other roles, such as as-
sociated fact, purpose or accessory quality, for example,
define non-essential properties. The conceptual model is
depicted in Figure 1, and Table 1 presents a summarized
description for each of the roles defined in this model.
This set of semantic roles captures the semantic “shape”
of natural language definitions and allows the extraction
of structured representations from linguistic resources, en-
abling them to be used as knowledge sources in a wide
range of semantic tasks.

4. Construction Methodology
Structuring natural language definitions as a graph allows
us to select the portions of information regarding an entity’s
description that are relevant for a certain reasoning task.
For example, consider the definition (from WordNet) for
the concept “lake poets”, which was classified according
to the model described in Section 3., illustrated in Figure
2. When retrieving data related to this concept, we could
be interested only in origin- (lake poets are English poets),
time- (lake poets are poets at the beginning of the 19th cen-
tury) or space- (lake poets are poets who lived in the Lake
District) related information. When each of those roles is
represented as a node in a graph we can focus only on the
path containing the nodes of interest. Moreover, since the
definition is split into segments rather than single words,
each node contains a comprehensible amount of informa-
tion, avoiding the need to visit several nodes to gather in-
telligible phrases.
To generate the WordNetGraph1 – a knowledge graph fol-
lowing the RDF data model – from WordNet’s noun and

1https://github.com/Lambda-3/WordnetGraph

Role Description
Supertype the immediate or ancestral en-

tity’s superclass
Differentia quality a quality that distinguishes the

entity from the others under the
same supertype

Differentia event an event (action, state or pro-
cess) in which the entity par-
ticipates and that is mandatory
to distinguish it from the others
under the same supertype

Event location the location of a differentia
event

Event time the time in which a differentia
event happens

Origin location the entity’s location of origin
Quality modifier degree, frequency or manner

modifiers that constrain a dif-
ferentia quality

Purpose the main goal of the entity’s ex-
istence or occurrence

Associated fact a fact whose occurrence is/was
linked to the entity’s existence
or occurrence

Accessory determiner a determiner expression
that doesn’t constrain the
supertype-differentia scope

Accessory quality a quality that is not essential to
characterize the entity

[Role] particle a particle, such as a phrasal
verb complement, non-
contiguous to the other role
components

Table 1: Semantic roles for dictionary definitions

verb glosses, we adopted the following methodology for
classifying and structuring the definitions:
Synsets sample selection: in order to use a supervised ma-
chine learning model to classify the data, we needed a ini-
tial set of annotated definitions. To build this set, we ran-
domly selected 2,000 WordNet synsets, being 1,732 noun
synsets and 268 verb synsets (the verb database size is
around 17% of the noun database size).
Automatic pre-annotation: the set of 2,000 definitions
was automatically pre-annotated according to a rule-based
heuristic that takes into account the syntactic patterns iden-
tified by statistical analysis as described by Silva et al.
(2016). Using the Stanford parser (Manning et al., 2014),
we generated the syntactic parse tree for each definition,
identified the relevant phrasal nodes and then assigned the
semantic roles more often associated to them. For exam-
ple: the supertype for a noun definition is usually the inner-
most and leftmost noun phrase (NP) that contains at least
one noun (NN); a differentia event is usually either a sub-
ordinate clause (SBAR) or a verb phrase (VP); an event
location is normally a prepositional phrase (PP) inside a
SBAR or VP and possibly containing a location named en-
tity, and so on. Figure 3 shows the parse tree generated for
the definition of the term “Scotch” – whiskey distilled in
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Figure 1: Conceptual model for the semantic roles for lexical definitions. Relationships between [role] particle and every
other role in the model are expressed as dashed lines for readability.

Figure 2: Example of role labeling for the definition of the “lake poets” synset.

Scotland – and the semantic roles automatically assigned
to each phrasal node.

Figure 3: Syntactic parse tree for the definition of the con-
cept “Scotch” and assigned semantic role labels. After be-
ing classified as a differentia event, the VP is further an-
alyzed and a PP containing an event location is identified
and assigned its own role label.

Data curation: after the automatic pre-annotation, the def-
initions were manually curated with the aid of the Brat2 an-
notation tool. Misclassifications were fixed and segments
missing a role were assigned the appropriate one. Mis-
classifications and missing roles are due to parser errors
or insufficient information (for instance, a PP inside a VP
may not contain any named entity, making it hard to cor-
rectly distinguish between an event time and an event loca-
tion). The manual data curation ensured that every segment
in each definition, apart of leading determiners and con-
junctions between roles (as opposed to conjunctions inside
roles), was associated with a semantic role label.

2http://brat.nlplab.org/

Classifier training: the curated data was then used to
train a Recurrent Neural Network (RNN) machine learning
model designed for sequence labeling. We used the RNN
implementation provided by Mesnil et al. (2015), which
reports state-of-the-art results for the slot filling task. The
dataset was split into training (68%), validation (17%) and
test (15%) sets. The best accuracy reached during training
was of 80.35%.

Database classification: the trained classifier was then
used to label all WordNet’s noun and verb definitions. For
simplicity, example sentences and parentheses were ex-
cluded from the original glosses. The classification was
performed over WordNet 3.0; 82,112 noun definitions and
13,761 verb definitions were labeled.

Data post-processing: since some of the classified defini-
tions lacked the supertype role, the labeled data had to pass
through a post-processing phase. The supertype is a manda-
tory component in a well-formed definition and, as will be
detailed later, the RDF model is structured around it. Fol-
lowing the same syntactic rules adopted for pre-annotation,
missing supertypes were identified and the roles around it
had its limits adjusted, while the remaining classification
was kept unchanged. Figure 4 shows an example of defini-
tion (for the term “spur”) fixed in the post-processing phase.

RDF conversion: finally, the labeled definitions were seri-
alized in RDF format. In the final graph, a synset is a node
and each role in its definition is another node. The synset
node is linked to the supertype role, which is, in turn, linked
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Figure 4: Classified definition missing a supertype fixed in
the post-processing phase.

to all the other roles. More specifically, a supertype linked
to a role is a reified node, and this reified node is linked
to the synset node. Reification is also used when a role
has components, such as event time and/or location for a
differentia event and quality modifier for a differentia qual-
ity. In this case, the component is linked to its main role,
composing a reified node which is linked to the supertype,
creating another reified node which is eventually linked to
the synset node. This structure allows the relationships to
be fully contextualized. As an example, consider the defini-
tion depicted in Figure 2. The node defined by the concept
“poet” may be linked to several other nodes in the graph,
but it is linked to the differentia quality node “English” only
in the context of this definition. Supertype nodes are always
represented as resources. The differentia quality and differ-
entia event nodes can be represented as either resources,
when they have components (event times and/or locations,
or quality modifiers) to be linked to, or literals otherwise.
All the other roles are represented as literals, and properties
are named after role names3. Figure 5 shows the simplified
(without reification) RDF representation for the definition
in Figure 2.

Figure 5: RDF representation for the definition of the “lake
poets” synset.

Besides WordNetGraph, which is available in both XML
and N-Triples format, we provide a set of tools4 that im-
plement the methodology described above. Routines for
pre-processing definitions to generate sample data for man-
ual curation, post-processing data returned by a machine
learning classifier, and generating the RDF model from the
classified data are freely available, along with some auxil-
iary routines to prepare the data for external tools, such as
converting to the standoff file format required by the Brat
annotation tool and generating a python script that will cre-
ate the dataset for the RNN classifier.

3Complete list of the model’s properties and namespaces at
https://github.com/Lambda-3/WordnetGraph

4https://github.com/ssvivian/DefRelExtractor

5. Application
WordNetGraph is one of the main components in a text
entailment recognition approach aimed at justifying entail-
ment decisions where reasoning over world knowledge is
required. Text entailment is defined as a directional rela-
tionship between an entailing text T and a entailed hypothe-
sis H, holding true whenever a human reading T would infer
that H is most likely true (Dagan et al., 2006). Using Word-
NetGraph as the world knowledge base, we implemented
a navigation algorithm based on distributional semantics
(Freitas et al., 2014) to find a path in this graph linking T to
H, and used the contents of the nodes in this path to build
a human-readable justification for the entailment decision.
The entailment is rejected if no path is found.
Consider, as an example the entailment pair 39.3 from the
BPI dataset5:

39.3 T: Many cellphones have built-in digital cameras.
39.3 H: Many cellphones can take pictures.

First, we look for pairs of terms that have a strong semantic
relationship and that can prove this entailment to be true,
and then send these pairs as input for the graph navigation
algorithm. In this example, the best pair is composed by
the terms “digital camera”, which is our source, and “pic-
tures”, our target. Starting from the source, we retrieve
all the nodes in WordNetGraph linked to it, compute the
semantic similarity between each node and the target and
choose the one having the highest value as the next node to
be visited, and do this recursively until we reach the target.
The following segments (triples) are found by the naviga-
tion algorithm:

<digital camera has supertype camera>
<camera has supertype equipment>

<equipment has diff qual for taking photographs>

Since “photograph” and “picture” are in the same synset
node, the search stops at this point, confirming the entail-
ment and producing the following justification, built from
the path segments:

A digital camera is a kind of camera
A camera is an equipment for taking photographs
Photograph is synonym of picture

Experiments with the BPI dataset and a sample of the
Guardian Headlines dataset6 show the results are compara-
ble to those of well-established text entailment algorithms,
such as tree edit-distance based (Kouylekov and Magnini,
2005) and classification based (Wang and Neumann, 2008),
while providing clear human-like explanations, an impor-
tant feature still missing in most text entailment recognition
approaches. A detailed description of the entailment recog-
nition application, including experiment results and further
justification examples can be found in (Silva et al., 2018).

5http://www.cs.utexas.edu/users/∼pclark/bpi-test-suite/
6https://goo.gl/4iHdbX
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6. Conclusion
We presented a method for automatically building a graph
world knowledge base from natural language dictionary
definitions. Adopting a conceptual model based on entity-
centered semantic roles, we trained a supervised machine
learning classifier for automatic role labeling and then con-
verted the labeled data into an RDF graph representa-
tion. Following this methodology, we created the Word-
NetGraph, a graph built from the definitions of nouns and
verbs in WordNet. A set of tools implementing the method-
ology is also freely available.
WordNetGraph was successfully used in a text entailment
recognition approach based on distributional navigation
over definition graphs. Besides using paths in this graph
to recognize the entailment, this approach also provides
a human-readable justification for the entailment decision.
Since each graph node encloses a self-contained amount of
information rather than always representing single words,
an intelligible justification can be built from a path made
up by only a few nodes. As future work, we intend to ap-
ply this methodology to other language resources, such as
Wiktionary.
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