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This note describes a scoring scheme for the coreference task in MUC6 . It improves o n
the original approach l by: (1) grounding the scoring scheme in terms of a model ; (2)
producing more intuitive recall and precision scores ; and (3) not requiring explici t
computation of the transitive closure of coreference . The principal conceptual differenc e
is that we have moved from a syntactic scoring model based on following coreferenc e
links to an approach defined by the model theory of those links .

In brief, the scheme operates by comparing the equivalence classes defined by the link s
in the key and the response, rather than the links themselves (thus, this is only wel l
defined for identity links, at the moment) . These classes are of course the models of the
IDENT equivalence relation, and this strategy is preferable for a number of reasons, on e
being that the scores are independent of the particular links used to encode th e
equivalence relation . The scores themselves are obtained by determining the minima l
perturbations to the response that are required to transform its corresponding equivalenc e
classes into those of the key . Specifically, the recall (respectively precision) error term s
are found by calculating the least number of links that need to be added to the respons e
(respectively the key) in order to have the classes align . Although at first blush thi s
seems combinatorially explosive, due to references to minimal spanning subsets of th e
equivalence relation, it turns out it can be accomplished with a very simple countin g
scheme .

A PROBLEMATIC CAS E

Consider the first problematic example from the coreference task guidelines :

• Key Links : <A-B B-C B-D>

• Response Links: <A-B C-D>

Note that the key links generate an equivalence class, the set (A B C D I . Technically ,
the links are a spanning tree of the set's implicit equivalence graph, i .e., thefully -
connected graph whose nodes are the entities A, B, C, and D . The following figure
shows the spanning tree in dark lines, and the rest of the graph in gray lines .

This is just one such spanning tree for the overall equivalence class ; there are of course

I Coreference task defmition ., version 2.0 and earlier.
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others, including the "non-problematic" case of <A-B B-C C-D> . Either way, a minimal
spanning tree of the equivalence relation will always be of size 3, which aligns with th e
intuitive notion that three links will always be necessary to make four entitie s
coreferential under the criterion of strict identity .

Returning to the task of scoring coreference for this problematic case, we note that a
response of <A-B C-D> induces two equivalence classes, thus partitioning the set of ke y
entities into subsets {A B } and { C DI . It is intuitive that the precision score for thi s
response should be 2/2 = 1, since 2 out of 2 of the response links are "correct" . That is,
both response links are arcs in the equivalence graph generated by the key . For recall,
Sundheim et al . advance the desirable score of 2/3, which is not obtained by the syntacti c
scoring measure. This score appeals to the intuitive notion that of the three links neces-
sary to make the key entities fully coreferential, the response only provides two .

Thinking model-theoretically, we note that the response corresponds to a subgraph of the
fully-connected equivalence graph .

The recall score of 2/3 aligns with the fact that one equivalence arc is required to
"complete" the response graph, yielding one of the following four spanning trees .
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Note that the problem with the syntactic (link-wise) scorer is that there are combina-
tonally many such spanning trees for a given equivalence class, while keys only list one .

COMPUTING MODEL-THEORETIC RECALL

How then can we turn this notion of minimal missing links into a computationall y
effective scoring procedure that works in the general case? Roughly stated, the scorin g
mechanism for recall must form the equivalence sets generated by the key, and then
determine for each such key set how many subsets the response partitions the key set
into. The score then follows by simple arithmetic .

Getting a bit more formal (but not much), let us define recall using these notions . First,
let S be an equivalence set generated by the key, and let R1 . . .Rm be equivalent classe s
generated by the response. Then we define the following functions over S :

• p(S) is a partition of S relative to the response . Each subset of S in the partition is
formed by intersecting S and those response sets Ri that overlap S . Note that the
equivalence classes defined by the response may include implicit singleton sets —
these correspond to elements that are mentioned in the key but not in the response .
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For example, say the key generates the equivalence class S= { A B C D and the
response is simply <A-B> . The relative partition p(S) is then {A B} {C} and {D} .

• c(S) is the minimal number of "correct" links necessary to generate the equivalenc e
class S. It is clear that c(S) is one less than the cardinality of S, i .e . ,

c(S) = (ISI -1)

• m(S) is the number of "missing" links in the response relative to the key set S . As
noted above, this is the number of links necessary to fully reunite any components o f
the p(S) partition. We note that this is simply one fewer than the number of element s
in the partition, that is ,

m(S) = (Ip(S)I – 1 )

Looking in isolation at a single equivalence class in the key, the recall error for that clas s
is just the number of missing links divided by the minimal number of correct links, i .e . ,

m(S)
c(S)

Recall in turn i s

_ ISI – Ip(S) I
–

	

ISI– 1

To see how this works in practice, consider the second problematic example noted b y
Sundheim et al .

• Key Links: <A-B B-C>

• Response Links: <A-C>

The key generates a single equivalence class S : (A B C}. The size of the class i s

ISI=3,

and the minimum number of links necessary to establish the class i s

c(S) = (ISI – 1) =2 .

The response partitions this class into a partition p(S) of size 2, containing {A C} an d
{ B }, where the latter element is implicitly defined . Working through the arithmetic, we
have :

R _ ISI – Ip(S) 1
– ISI– 1

3– 2

This score of 1/2 is the intuitively "correct" one that the syntactic measure fails t o
calculate .

c(S) – m(S )
c(S)

(ISI – 1) – (Ip(S)I -1)
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Finally, we note that extending this measure from a single key equivalence class to a n
entire test set T simply requires summing over the key equivalence classes . That is ,

E(ISiI — Ip(Si)I )

SCORING PRECISION

The recall scoring procedure operates by merging the subsets of a key equivalence clas s
that are defined by equivalence classes in the response . It is of course the case that the
response classes may not be proper subsets of the key . When the response overlaps the
key in such a way as to produce a non-trivial set difference, as in the following figure, the
response contains precision errors.

How may we use our model-theoretic notions to provide a scoring mechanism for
precision? In the case of recall, we conceptually needed to add links to the response ,
building up the response's equivalence classes so as to end up with the key . In the case
of precision, we need to do the converse : add links to equivalence classes in the key so
as to yield equivalence classes in the response . We are switching the "figure" and th e
"ground"; that is we are switching our notion of where the base sets come from (th e
response rather than the key), and of what defines the partitions on those base sets (the
key rather than the response) .

More precisely, given an equivalence class S' defined by the response, we mus t
determine the minimal number of links to be added to the key, so as to ensure that each o f
the members of the response set is in the same key set. Once again, we proceed by
generating a relative partition, in this case the partition of the response equivalence class
S' relative to key equivalence classes K1 . . .Kn. Elements of the response that are not
found in the key once again generate implicit subsets, one per element. The number of
missing elements is once again 1 less than the size of the partition .

For the example above, we see that the response generates an equivalence class of size 3 ,
namely the set S' = {A B C) . The key partitions this class into subsets {B C) and {A) ,
where the latter is implicit . The partition is of size 2, and so the minimal number of links
that need to be added to reunite the partition is just 1 .

Switching the figure and ground in the recall formula, the scoring arithmetic for precisio n
works itself out as follows, where S' is now an equivalence class from the response, an d
p'(S') is the partition of S' vis-a-vis the key(s) . We then have :

c'(S') = (IS'I — 1)

	

size of spanning tree for S'

m'(S') = (Ip'(S')I — 1)

	

number of missing links

RT =
1(IS;I — 1)
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PT
1(IS'il – 1 )

I(IS'il — Ip ' (S' i) I )

c'(S')—m'(S' )
P –

	

'c (S )
(IS'I — 1) — (Ip'(S')I -1)

IS'I -1

Precision

IS'I - 1
IS'I — Ip'(S') I

Thus, like the scheme proposed in Sundheim et al ., we have an aesthetically pleasing
inverse relationship between precision and recall . For the example above, these formul a
yield a precision of 1/2, which is intuitively appropriate, since of the two minimum link s
needed to generate the response class {A B C}, the key only provides one, B-C . To
extend from a single response to a complete test set T, we once again sum over the tes t
set, this time iterating over response equivalence classes .

Table 1 shows the precision and recall scores, using the model-theoretic measures , for al l
of the examples given in Sundheim et al. Note that these results agree with the origina l
scoring proposal for the first three cases, but agree with intuition for the last two .

Key

	

Response

	

R

	

P

A-B B-C C-D A-B C-D 2/3 2/2

A-B C-D A-B B-C C-D 2/2 2/3

A-B B-C B-D A-B B-C C-D 3/3 3/3

A-B B-C B-D A-B C-D 2/3 2/2

A-B B-C A-C 1/2 1/1

Table 1: Recall and precision scores for coreference example s

EXAMPLES WITH MORE COMPLEXITY

The examples so far have been purposefully simplified in that we have only considere d
cases that defined one key class and one response class . Let us now consider some more-
complex examples where keys and responses don't so neatly overlap .

To begin with, imagine that the key and response are as follows .

• Key: <B-C C-D D-E E-G G-H H-J>

• Response : <A-B B-C D-E E-F G-H-H-I >

The key establishes a single equivalence class, while the response defines three : {A B
C}, {D E F}, {G H I} . In addition, the key contains the element J, which is missin g
entirely from the response . These are shown in the following figure, where the thic k
lines denote the key class, and thin ones denote response classes .
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Eyeballing the problem, we note that as there are seven elements in the key, six links
must minimally be provided to achieve 100% recall. The response only provides thre e
correct ones, so we would expect recall to come out at 50% . Precision should be 50% a s
well, as half of the links indicated in the response are not in the key . Working through
the math, we note that p(S), the partition of the key with respect to the response yield s
four subsets, shown in the followin'figure with thin lines .

A

Evaluating for recall :

R _ ISI – Ip(S) I
– ISI - 1

_7– 4
- 7– 1

= 3/6, or 50%

For precision, we must consider the three equivalence classes defined in the response.
Partitioning these three classes with respect to the key yields two subsets in each of the
classes, for a total of six subsets. These are shown in thick lines in the following figure .

To evaluate for precision, we must use the corpus-wide formula:
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I(IS'iI — Ip ' (S ' i) I )
PT =

E(IS'il -1 )

(3—2)+(3—2)+(3—2 )
(3—1)+(3—1)+(3—1)

= 3/6, or 50%

Before closing, let us consider an even more complex example with multiple sets in bot h
the key and the response .

• Key: <A-B B-C D-E E-F F-G >
• Response: <A-B C-D F-G G-H>

Figure 1 shows the equivalence classes corresponding to the key and response . Figure 2
shows how the response partitions the two key sets . Based on this, we can compute recall
using the corpus-wide formula for recall . Since there are two key sets, there will be tw o
terms each in the numerator and the denominator .

l(IS;I — Ip(Si)I )

E(ISiI — 1 )

(3—2)+(4—3)
(3—1)+(4—1)

= 2/5 or 40%

This is consistent with the observation that the response only provides two out of the fiv e
links that are minimally required to fully designate all the coreference relations . Turning
to precision, Figure 3 shows the partitions induced on the three response sets by the key .

RT

Thick = key
Thin = response

Figure 1 : Key and response

H

Thick = ke y
Thin = partition wrt/response

Figure 2 : Recall

Thick = partition wrt/key
Thin = Respons e

Figure 3: Precision
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E(IS'iI – I p ' (S' i) I )
PT =

1(IS'il — 1 )

(2—1)+(2—2)+(3—2)
(2—1)+(2—1)+(3—1 )

= 2/4, or 50 %

It is delightful that the formula yields exactly what intuition would dictate in this case .

COMPUTATIONAL CONSIDERATIONS, BRIEFLY EXPLORE D

Our scoring expressions are easy to compute . The key step is the formation of
equivalence classes, which can be accomplished by many algorithms . Tarjan's classic
UNION-FIND, to cite the obvious example, operates in time effectively linear with th e
number of entities under consideration . This is substantially less expensive than
enumerating the transitive closure of keys and answers, as is required by the origina l
syntactic scoring procedure . Not often does attention to model theory yield efficient
algorithms, but in this particular case the effort was well worth the while .
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