
NYU: DESCRIPTION OF THE JAPANESE NE SYSTEM USED

FOR MET-2

Satoshi Sekine

Computer Science Department

New York University

715 Broadway, 7th oor

New York, NY 10003, USA

sekine@cs.nyu.edu

INTRODUCTION

In this paper, experiments on the Japanese Named Entity task are reported. We employed a supervised
learning mechanism. Recently, several systems have been proposed for this task, but many of them use
hand-coded patterns. Creating these patterns is laborious work, and when we adapt these systems to a new
domain or a new de�nition of named entities, it is likely to need a large amount of additional work. On the
other hand, in a supervised learning system, what is needed to adapt the system is to make new training data
and maybe additional small work. While this is also not a very easy task, it would be easier than creating
complicated patterns. For example, based on our experience, 100 training articles can be created in a day.

There also have been several machine learning systems applied to this task. However, these either 1)
partially need hand-made rules, 2) have parameters which must be adjusted by hand 3) do not perform well
by fully automatic means or 4) need a huge training data. Our system does not work fully automatically, but
performs well with a small training corpus and does not have parameters to be adjusted by hand. We will
discuss one of the related systems later..

ALGORITHM

In this section, the algorithm of the system will be presented. There are two phases, one for creating the
decision tree from training data (training phase) and the other for generating the tagged output based on
the decision tree (running phase). We use a Japanese morphological analyzer, JUMAN [6] and a program
package for decision trees, C4.5 [7]. We use three kinds of feature sets in the decision tree:

� Part-of-speech tagged by JUMAN
We de�ne the set of our categories based on its major category and minor category.

� Character type information
Character type, like Kanji, Hiragana, Katakana, alphabet, number or symbol, etc. and some combina-
tions of these.

� Special Dictionaries
List of entities created based on JUMAN dictionary entries, lists distributed by SAIC for MUC, lists
found on the Web or based on human knowledge. Table 1 shows the number of entities in each
dictionary1. Organization name has two types of dictionary; one for proper names and the other for
general nouns which should be tagged when they co-occur with proper names. Also, we have a special
dictionary which contains words written in Roman alphabet but most likely these are not an organization
(e.g. TEL, FAX). We made a list of 93 such words.

1Some of the lists are available at [8]



Entity pre�x name su�x

Org. 14 10076/49 175
Person 0 17672 82
Loc. 0 14903 60
Date 24 199 29
Time 2 24 5
Money 15 0 39
Percent 0 99 3

Table 1: Special Dictionary Entries

Creating the special dictionaries is not very easy, but it is not very laborious work. The initial dictionary was
built in about a week. In the course of the system development, in particular during creating the training
corpus, we added some entities to the dictionaries.

The decision tree gives an output for each token. It is one of the 4 possible combinations of opening,
continuation and closing a named entity, and having no named entity, shown in Table 2. In this paper, we

Output beginning ending

OP-CL opening of NE closing of NE
OP-CN opening of NE cont. of NE
CN-CN cont. of NE cont. of NE
CN-CL cont. of NE closing of NE
none none none

Table 2: Five types of Output

will use two di�erent sets of terms in order to avoid the confusion between positions relative to a token and
regions of named entities. The terms beginning and ending are used to indicate positions, whereas opening
and closing are used to indicate the start and end of named entities. Note that there is no overlapping or
embedding of named entities. An example of real data is shown in Figure 1.

Training Phase

First, the training sentences are segmented and part-of-speech tagged by JUMAN. Then each token is
analyzed by its character type and is matched against entries in the special dictionaries. One token can
match entries in several dictionaries. For example, \Matsushita" could match the organization, person and
location dictionaries.

Using the training data, a decision tree is built. It learns about the opening and closing of named entities
based on the three kinds of information of the previous, current and following tokens. The three types of
information are the part-of-speech, character type and special dictionary information described above.

If we just use the deterministic decision created by the tree, it could cause a problem in the running phase.
Because the decisions are made locally, the system could make an inconsistent sequence of decisions overall.
For example, one token could be tagged as the opening of an organization, while the next token might be
tagged as the closing of person name. We can think of several strategies to solve this problem (for example,
the method by [2] will be described in a later section), but we used a probabilistic method.

The instances in the training corpus corresponding to a leaf of the decision tree may not all have the
same tag. At a leaf we don't just record the most probable tag; rather, we keep the probabilities of the
all possible tags for that leaf. In this way we can salvage cases where a tag is part of the most probable



globally-consistent tagging of the text, even though it is not the most probable tag for this token, and so
would be discarded if we made a deterministic decision at each token.

subsectionRunning Phase

In the running phase, the �rst three steps, token segmentation and part-of-speech tagging by JUMAN,
analysis of character type, and special dictionary look-up, are identical to that in the training phase. Then,
in order to �nd the probabilities of opening and closing a named entity for each token, the properties of the
previous, current and following tokens are examined against the decision tree. Figure 2 shows two example
paths in the decision tree. For each token, the probabilities of `none' and the four combinations of answer pairs
for each named entity type are assigned. For instance, if we have 7 named entity types, then 29 probabilities
are generated.

Once the probabilities for all the tokens in a sentence are assigned, the remaining task is to discover the
most probable consistent path through the sentence. Here, a consistent path means that for example, a path
can't have org-OP-CN and date-OP-CL in a row, but can have loc-OP-CN and loc-CN-CL. The output is
generated from the consistent sequence with the highest probability for each sentence. The Viterbi algorithm
is used in the search; this can be run in time linear in the length of the input.

EXAMPLE

Figure 1 shows an example sentence along with three types of information, part-of-speech, character type
and special dictionary information, and given information of opening and closing of named entities. Figure
2 shows two example paths in the decision tree. For the purpose of demonstration, we used the �rst and
second token of the example sentence in Figure 1. Each line corresponds to a question asked by the tree
nodes along the path. The last line shows the probabilities of named entity information which have more
than 0.0 probability. This instance demonstrates how the probability method works. As we can see, the
probability of none for the �rst token (Isuraeru = Israel) is higher than that for the opening of organization
(0.67 to 0.33), but in the second token (Keisatsu = Police), the probability of closing organization is much
higher than none (0.86 to 0.14). The combined probabilities of the two consistent paths are calculated. One
of these paths makes the two tokens an organization entity while along the other path, neither token is part
of a named entity. The probabilities are higher in the �rst case (0.28) than that in the latter case (0.09), So
the two tokens are tagged as an organization entity.

Token ISURAERU KEISATSU NI YORU TO , ERUSAREMU

POS PN-loc N postpos V postpos comma PN-loc

Char.type Kata Kanji Hira Hira Hira Comma Kata

Special Dict. loc org-S - - - - loc

NE answer org-OP-CN org-CN-CL - - - - loc-OP-CN

Token SHI HOKUBU DE 26 NICHI GOGO ,

POS N-suf N postpos number N-suf N comma

Char.type Kanji Kanji Hira Num Kanji Kanji Comma

Special Dict. loc-S - - - date-S time,time-P -

NE answer loc-CN-CL - - date-OP-CN date-CN-CL time-OP-CL -

Figure 1: Sentence Example

RESULTS

We will report results of �ve experiments described in Table 3. Here, \Training data", \Dry run data"
and \Formal run data" are the data distributed by SAIC, and \seefu data" is the data created by Oki, NTT
data and NYU (available through [8]). Note that all Training, Dry run and seefu data are in the topic of



ISURAERU (first token) KEISATSU (second token)

if current token is a location -> yes if current token is a location -> no

if next token is a loc-suffix -> no if current token is a organization -> no

if next token is a person-suffix -> no if current token is a time -> no

if next token is a org-suffix -> yes if current token is a loc-suffix -> no

if previous token is a location -> no if next token is a time-suffix -> no

THEN none = 0.67, org-OP-CN = 0.33 if current token is a time-suffix -> no

if next token is a date-suffix -> no

if current token is a date-suffix -> no

if current token is a date -> no

if next token is a location -> no

if current token is a org-suffix -> yes

if previous token is a location -> yes

THEN none = 0.14, org-CN-CL = 0.86

Figure 2: Decision Tree Path Example

vehicle crash, and only the Formal run data is on the topic of space craft launch. Numbers in the brackets
indicate the number of articles.

Experiment Training Data Test Data

1) Formal run Training data(114), seefu data(150), Formal run data
Dry run data(30)

2) Best in-house Dry run Training data(114), seefu data(150) Dry Run data

3) 75/25 experiment 75% of Formal run Data(75) 25% of Formal run data

4) All training + 75/25 Training data(114), seefu data(150), Dry 25% of Formal run data
run data(30),75% of Formal run data(75)

5) Add planet names same as 4) same as 4)

Table 3: Runs

The results of Formal run and the best in-house dry-run are shown in Table 4. We can clearly tell that
the recall of Named Entities (person, organization and location) are bad. This is caused by the change of the
topic. For example, there are very few foreign person names written in Katakana in the training data, (as
a foreign person would hardly be a victim of a crash in Japan). However, in the space craft launch, there
are many foreign person names written in Katakana. This is the reason why the recall of persons is so low.
Also, in the test documents, planet names, \the Sun","the Earth" or \Saturn" are tagged as locations, which
could not be predicted from the training topic. We missed all such names in the formal test.

The best in-house Dry run result was achieved before the formal run without looking at the test data. So
it should be regarded as an example of the performance if we know the topic of the material. We think this
is satisfactory, considering that the e�ort we made was just preparing dictionaries and no patterns.

Table 5 shows three experiments performed after the formal run. As the topic change may degrade of the
performance, we conducted experiments in which the training data includes documents in the same topic.
The �rst experiment used 75% of the formal run data for training and the rest of the data for testing. Four
such experiments were made to obtain the result for the entire corpus. The second experiment includes the
training data used in the formal run in addition to the 75% of the formal run data. The table shows about
1% improvement over the formal run. This is an encouraging result, the better performance was achieved
with only 75 articles on the same topic compared with 294 articles on a di�erent topic used in the formal
run. The result of the second experiment also shows a good sign that documents in a di�erent topic helped
to improve the performance. This result suggests an idea of \domain adaptation scheme". That is to have a



F-measure Formal run Best in-house dry run

Entity Recall Precision Recall Precision

Org. 75 83 78 87
Person 48 74 87 90
Loc. 70 87 91 95
Date 96 95 97 91
Time 95 96 98 98
Money 90 97 100 100
Percent 90 95 88 100

Overall 75 85 87 90

F-measure 79.49 88.62

Table 4: Result of Formal Run and the best in-house Dry run

large general corpus of tagged documents as the basis, and to add small domain speci�c documents to have a
domain speci�c system. Lastly, in the third experiment, we added the planet names in the location dictionary.
From the formal run result, it was clear that one of the main reasons of the performance degradation is the
lack of the planet names. The addition improves 3.5% which is better than the other trials. Although there
are several other obvious reasons to be �xed, the F-measure 86.34 is comparable to the best in-house Dry
run experiment described before (Experiment 2;F-measure = 88.62).

Experiment F-measure

3) 75/25 experiment 80.46
4) All training + 75/25 82.73
5) Add planet names 86.34

Table 5: Comparative Results

RELATED WORK

There have been several e�orts to apply machine learning techniques to the same task [4] [3] [5] [2]. In
this section, we will discuss a system which is one of the most advanced and which closely resembles our own
[2]. A good review of most of the other systems can be found in their paper.

Their system uses the decision tree algorithm and almost the same features. However, there are signi�cant
di�erences between the systems. The main di�erence is that they have more than one decision tree, each
of which decides if a particular named entity starts/ends at the current token. In contrast, our system has
only one decision tree which produces probabilities of information about the named entity. In this regard,
we are similar to [3], which also uses a probabilistic method in their N-gram based system. This is a crucial
di�erence which also has important consequences. Because the system of [2] makes multiple decisions at
each token, they could assign multiple, possibly inconsistent tags. They solved the problem by introducing
two somewhat idiosyncratic methods. One of them is the distance score, which is used to �nd an opening
and closing pair for each named entity mainly based on distance information. The other is the tag priority
scheme, which chooses a named entity among di�erent types of overlapping candidates based on the priority
order of named entities. These methods require parameters which must be adjusted when they are applied
to a new domain. In contrast, our system does not require such methods, as the multiple possibilities are
resolved by the probabilistic method. This is a strong advantage, because we don't need manual adjustments.

The result they reported is not comparable to our result, because the text and de�nition are di�erent.
But the total F-score of our system is similar to theirs, even though the size of our training data is much
smaller.



DISCUSSION

First, we have to consider topic or domain dependency of the task. It is clear that in order to achieve
good performance in the framework, we have to investigate dictionary entries for the task. It may or may not
easy to modify the dictionary. For example, a list of foreign person name written in Katakana is not so easy
to create, whereas a list of planet names is easy to �nd. This di�culty also exists in pattern-based methods,
but in our framework it is not necessary to create domain dependent patterns.

Currently creating dictionaries is done by hand. One possibility to automatize the process is to use a
bootstrapping method. Starting with core dictionaries, we can run the system on untagged texts, and increase
the entities in the dictionaries.

Another issue is aliases. In newspaper articles, aliases are often used. The full name is used only the
�rst time the company is mentioned (Matsushita Denki Sangyou Kabushiki Kaisya = Matsushita Electric
Industrial Co. Ltd.) and then aliases (Matsushita or Matsushita Densan = Matsushita E.I.) are used in
the later sections of the article. Our system cannot handle these aliases, unless the aliases are registered in
the dictionaries.

Also, lexical information should help the accuracy. For example, a name, possibly a person or an orga-
nization, in a particular argument slot of a verb can be disambiguated by the verb. For example, a name in
the object slot of the verb `hire' might be a person, while a name in the subject slot of verb `manufacture'
might be an organization.

REFERENCES

[1] Defense Advanced Research Projects Agency, \Proceedings of Workshop on Tipster Program Phase II"
Morgan Kaufmann Publishers (1996)

[2] Bennett, S., Aone, C. and Lovell, C., \Learning to Tag Multilingual Texts Through Observation" Con-

ference on Empirical Methods in Natural Language Processing (1997)

[3] Bikel, D., Miller, S., Schwartz, R. and Weischedel, R., \Nymble: a High-Performance Learning Name-
�nder" Proceedings of the Fifth Conference on Applied Natural Language Processing (1997)

[4] Cowie, J., \Description of the CRL/NMSU Systems Used for MUC-6" Proceedings of Sixth Message

Understanding Conference (MUC-6) (1995)

[5] Gallippi, A., \Learning to Recognize Names Across Languages" Proceedings of the 16th International

Conference on Computational Linguistics (COLING-96) (1996)

[6] Matsumoto, Y., Kurohashi, S., Yamaji, O., Taeki, Y. and Nagao, M., \Japanese morphological analyzing
System: JUMAN" Kyoto University and Nara Institute of Science and Technology (1997)

[7] Quinlan, R., \C4.5: Program for Machine Learning" Morgan Kaufmann Publishers (1993)

[8] Sekine, S., \Homepage of data related Japanese Named Entity"
http://cs.nyu.edu/cs/projects/proteus/met2j (1997)


