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Abstract

This paper investigates adapting a lexicalized
probabilistic context-free grammar (PCFG) to
a novel domain, using maximuma posteriori
(MAP) estimation. The MAP framework is gen-
eral enough to include some previous model
adaptation approaches, such as corpus mixing in
Gildea (2001), for example. Other approaches
falling within this framework are more effec-
tive. In contrast to the results in Gildea (2001),
we show F-measure parsing accuracy gains of as
much as 2.5% for high accuracy lexicalized pars-
ing through the use of out-of-domain treebanks,
with the largest gains when the amount of in-
domain data is small. MAP adaptation can also be
based on either supervised or unsupervised adap-
tation data. Even when no in-domain treebank is
available, unsupervised techniques provide a sub-
stantial accuracy gain over unadapted grammars,
as much as nearly 5% F-measure improvement.

1 Introduction

A fundamental concern for nearly all data-driven ap-
proaches to language processing is the sparsity of la-
beled training data. The sparsity of syntactically anno-
tated corpora is widely remarked upon, and some recent
papers present approaches to improving performance in
the absence of large amounts of annotated training data.
Johnson and Riezler (2000) looked at adding features to a
maximum entropy model for stochastic unification-based
grammars (SUBG), from corpora that are not annotated
with the SUBG, but rather with simpler treebank annota-
tions for which there are much larger treebanks. Hwa (2001)
demonstrated how active learning techniques can reduce
the amount of annotated data required to converge on the
best performance, by selecting from among the candidate
strings to be annotated in ways which promote more in-
formative examples for earlier annotation. Hwa (1999) and
Gildea (2001) looked at adapting parsing models trained on
large amounts of annotated data from outside of the domain
of interest (out-of-domain), through the use of a relatively
small amount of in-domain annotated data. Hwa (1999)
used a variant of the inside-outside algorithm presented

in Pereira and Schabes (1992) to exploit a partially labeled
out-of-domain treebank, and found an advantage to adapta-
tion over direct grammar induction. Gildea (2001) simply
added the out-of-domain treebank to his in-domain training
data, and derived a very small benefit for his high accuracy,
lexicalized parser, concluding that even a large amount of
out-of-domain data is of little use for lexicalized parsing.

Statistical model adaptation based on sparse in-domain
data, however, is neither a new problem nor unique to pars-
ing. It has been studied extensively by researchers work-
ing on acoustic modeling for automatic speech recognition
(ASR) (Legetter and Woodland, 1995; Gauvain and Lee,
1994; Gales, 1998; Lamel et al., 2002). One of the meth-
ods that has received much attention in the ASR literature is
maximuma posteriori(MAP) estimation (Gauvain and Lee,
1994). In MAP estimation, the parameters of the model are
considered to be random variables themselves with a known
distribution (the prior). The prior distribution and the max-
imum likelihood distribution based on the in-domain obser-
vations then give a posterior distribution over the parame-
ters, from which the mode is selected. If the amount of in-
domain (adaptation) data is large, the mode of the posterior
distribution is mostly defined by the adaptation sample; if
the amount of adaptation data is small, the mode will nearly
coincide with the mode of the prior distribution. The intu-
ition behind MAP estimation is that once there are sufficient
observations, the prior model need no longer be relied upon.

Bacchiani and Roark (2003) investigated MAP adapta-
tion of n-gram language models, in a way that is straight-
forwardly applicable to probabilistic context-free grammars
(PCFGs). Indeed, this approach can be used for any gen-
erative probabilistic model, such as part-of-speech taggers.
In their language modeling approach, in-domain counts are
mixed with the out-of-domain model, so that, if the num-
ber of observations within the domain is small, the out-
of-domain model is relied upon, whereas if the number of
observations in the domain is high, the model will move
toward a Maximum Likelihood (ML) estimate on the in-
domain data alone. The case of a parsing model trained via
relative frequency estimation is identical: in-domain counts
can be combined with the out-of-domain model in just such
a way. We will show below that weighted count merging
is a special case of MAP adaptation; hence the approach
of Gildea (2001) cited above is also a special case of MAP
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adaptation, with a particular parameterization of the prior.
This parameterization is not necessarily the one that opti-
mizes performance.

In the next section, MAP estimation for PCFGs is pre-
sented. This is followed by a brief presentation of the PCFG
model that is being learned, and the parser that is used
for the empirical trials. We will present empirical results
for multiple MAP adaptation schema, both starting from
the Penn Wall St. Journal treebank and adapting to the
Brown corpus, and vice versa. We will compare our su-
pervised adaptation performance with the results presented
in Gildea (2001). In addition to supervised adaptation, i.e.
with a manually annotated treebank, we will present results
for unsupervised adaptation, i.e. with an automatically an-
notated treebank. We investigate a number of unsupervised
approaches, including multiple iterations, increased sample
sizes, and self-adaptation.

2 MAP estimation

In the maximuma posteriori estimation framework de-
scribed in detail in Gauvain and Lee (1994), the model pa-
rametersθ are assumed to be a random vector in the space
Θ. Given an observation samplex, the MAP estimate is ob-
tained as the mode of the posterior distribution ofθ denoted
asg(. | x)

θMAP = argmax
θ

g(θ | x) = argmax
θ

f(x | θ)g(θ) (1)

In the case of n-gram model adaptation, as discussed in
Bacchiani and Roark (2003), the objective is to estimate
probabilities for a discrete distribution across words, en-
tirely analogous to the distribution across mixture compo-
nents within a mixture density, which is a common use for
MAP estimation in ASR. A practical candidate for the prior
distribution of the weightsω1, ω2, · · · , ωK , is its conjugate
prior, the Dirichlet density,

g(ω1, ω2, · · · , ωK | ν1, ν2, · · · , νK) ∝
K∏
i=1

ωνi−1
i (2)

whereνi > 0 are the parameters of the Dirichlet distribu-
tion. With such a prior, if the expected counts for thei-th
component is denoted asci, the mode of the posterior distri-
bution is obtained as

ω̂i =
(νi − 1) + ci∑K

k=1(νk − 1) +
∑K
k=1 ck

1 ≤ i ≤ K. (3)

We can use this formulation to estimate the posterior, but we
must still choose the parameters of the Dirichlet. First, let
us introduce some notation. A context-free grammar (CFG)
G = (V, T, P, S†), consists of a set of non-terminal symbols
V , a set of terminal symbolsT , a start symbolS† ∈ V , and

a set of rule productionsP of the form: A → γ, where
A ∈ V andγ ∈ (V ∪ T )∗. A probabilistic context-free
grammar (PCFG) is a CFG with a probability assigned to
each rule, such that the probabilities of all rules expanding a
given non-terminal sum to one; specifically, each right-hand
side has a probability given the left-hand side of the rule1.

LetA denote the left-hand side of a production, andγi the
i-th possible expansion ofA. Let the probability estimate
for the productionA → γi according to the out-of-domain
model be denoted as̃P(γi | A) and let the expected adapta-
tion counts be denoted asc(A → γi). Then the parameters
of the prior distribution for left-hand sideA are chosen as

νAi = τAP̃(γi | A) + 1 1 ≤ i ≤ K. (4)

whereτA is the left-hand side dependent prior weighting pa-
rameter. This choice of prior parameters defines the MAP
estimate of the probability of expansionγi from the left-
hand sideA as

P̂(γi | A) =
τAP̃(γi | A) + c(A→ γi)

τA +
∑K
k=1 c(A→ γk)

1 ≤ i ≤ K. (5)

Note that the MAP estimates with this parameterization re-
duce to the out-of-domain model parameters in the absence
of adaptation data.

Each left-hand sideA has its own prior distribution, pa-
rameterized withτA. This presents an over-parameterization
problem. We follow Gauvain and Lee (1994) in adopt-
ing a parameter tying approach. As pointed out in
Bacchiani and Roark (2003), two methods of parameter ty-
ing, in fact, correspond to two well known model mixing
approaches, namely count merging and model interpolation.

Let P̃ and̃c denote the probabilities and counts from the
out-of-domain model, and letP andc denote the probabili-
ties and counts from the adaptation model (i.e. in-domain).

2.1 Count Merging

If the left-hand side dependent prior weighting parameter is
chosen as

τA = c̃(A)
α

β
, (6)

the MAP adaptation reduces to count merging, scaling the
out-of-domain counts with a factorα and the in-domain
counts with a factorβ:

P̂(γi | A) =
c̃(A)αβ P̃(γi | A) + c(A→ γi)

c̃(A)αβ + c(A)

=
αc̃(A→ γi) + βc(A→ γi)

αc̃(A) + βc(A)
(7)

1An additional condition for well-formedness is that the PCFG
is consistent or tight, i.e. there is no probability mass lost to in-
finitely large trees. Chi and Geman (1998) proved that this con-
dition is met if the rule probabilities are estimated using relative
frequency estimation from a corpus.



2.2 Model Interpolation

If the left-hand side dependent prior weighting parameter is
chosen as

τA =
{

c(A) λ
1−λ , 0 < λ < 1 if c(A) > 0

1 otherwise
(8)

the MAP adaptation reduces to model interpolation using
interpolation parameterλ:

P̂(γi | A) =
c(A) λ

1−λ P̃(γi | A) + c(A→ γi)

c(A) λ
1−λ + c(A)

=
λ

1−λ P̃(γi | A) + P(γi | A)
λ

1−λ + 1

= λP̃(γi | A) + (1− λ)P(γi | A) (9)

2.3 Other Tying Candidates

While we will not be presenting empirical results for other
parameter tying approaches in this paper, we should point
out that the MAP framework is general enough to allow
for other schema, which could potentially improve perfor-
mance over simple count merging and model interpolation
approaches. For example, one may choose a more com-
plicated left-hand side dependent prior weighting parameter
such as

τA =
{

c(A) λ
1−λ , 0 < λ < 1 if c̃(A)� c(A) > θ

c̃(A)αβ otherwise
(10)

for some thresholdθ. Such a schema may do a better job
of managing how quickly the model moves away from the
prior, particularly if there is a large difference in the respec-
tive sizes of the in-domain and out-of domain corpora. We
leave the investigation of such approaches to future research.

Before providing empirical results on the count merging
and model interpolation approaches, we will introduce the
parser and parsing models that were used.

3 Grammar and parser

For the empirical trials, we used a top-down, left-to-right
(incremental) statistical beam-search parser (Roark, 2001a;
Roark, 2003). We refer readers to the cited papers for de-
tails on this parsing algorithm. Briefly, the parser maintains
a set of candidate analyses, each of which is extended to
attempt to incorporate the next word into a fully connected
partial parse. As soon as “enough” candidate parses have
been extended to the next word, all parses that have not
yet attached the word are discarded, and the parser moves
on to the next word. This beam search is parameterized
with a base beam parameterγ, which controls how many
or how few parses constitute “enough”. Candidate parses
are ranked by a figure-of-merit, which promotes better can-
didates, so that they are worked on earlier. The figure-of-
merit consists of the probability of the parse to that point

times a look-ahead statistic, which is an estimate of how
much probability mass it will take to connect the parse with
the next word. It is a generative parser that does not require
any pre-processing, such as POS tagging or chunking. It has
been demonstrated in the above papers to perform compet-
itively on standard statistical parsing tasks with full cover-
age. Baseline results below will provide a comparison with
other well known statistical parsers.

The PCFG is aMarkov grammar (Collins, 1997; Char-
niak, 2000), i.e. the production probabilities are estimated
by decomposing the joint probability of the categories on the
right-hand side into a product of conditionals via the chain
rule, and making a Markov assumption. Thus, for example,
a first order Markov grammar conditions the probability of
the category of thei-th child of the left-hand side on the cat-
egory of the left-hand side and the category of the (i-1)-th
child of the left-hand side. The benefits of Markov gram-
mars for a top-down parser of the sort we are using is de-
tailed in Roark (2003). Further, as in Roark (2001a; 2003),
the production probabilities are conditioned on the label of
the left-hand side of the production, as well as on features
from the left-context. The model is smoothed using standard
deleted interpolation, wherein a mixing parameterλ is esti-
mated using EM on a held out corpus, such that probability
of a productionA → γ, conditioned onj features from the
left context,Xj

1 = X1 . . . Xj , is defined recursively as

P(A→ γ | Xj
1) = P(γ | A,Xj

1) (11)

= (1− λ)P̂(γ | A,Xj
1) + λP(γ | A,Xj−1

1 )

whereP̂ is the maximum likelihood estimate of the condi-
tional probability. These conditional probabilities decom-
pose via the chain rule as mentioned above, and a Markov
assumption limits the number of previous children already
emitted from the left-hand side that are conditioned upon.
These previous children are treated exactly as other con-
ditioning features from the left context. Table 1 gives the
conditioning features that were used for all empirical trials
in this paper. There are different conditioning features for
parts-of-speech (POS) and non-POS non-terminals. Deleted
interpolation leaves out one feature at a time, in the reverse
order as they are presented in the table 1.

The grammar that is used for these trials is a PCFG that
is induced using relative frequency estimation from a trans-
formed treebank. The trees are transformed with a selec-
tive left-corner transformation (Johnson and Roark, 2000)
that has been flattened as presented in Roark (2001b). This
transform is only applied to left-recursive productions, i.e.
productions of the formA → Aγ. The transformed trees
look as in figure 1. The transform has the benefit for a top-
down incremental parser of this sort of delaying many of
the parsing decisions until later in the string, without un-
duly disrupting the immediate dominance relationships that
provide conditioning features for the probabilistic model.
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Figure 1: Three representations of NP modifications: (a) the original treebank representation; (b) Selective left-corner
representation; and (c) a flat structure that is unambiguously equivalent to (b)

Features for non-POS left-hand sides

0 Left-hand side (LHS)
1 Last child of LHS
2 2nd last child of LHS
3 3rd last child of LHS
4 Parent of LHS (PAR)
5 Last child of PAR
6 Parent of PAR (GPAR)
7 Last child of GPAR
8 First child of conjoined category
9 Lexical head of current constituent

Features for POS left-hand sides

0 Left-hand side (LHS)
1 Parent of LHS (PAR)
2 Last child of PAR
3 Parent of PAR (GPAR)
4 POS of C-Commanding head
5 C-Commanding lexical head
6 Next C-Commanding lexical head

Table 1: Conditioning features for the probabilistic CFG
used in the reported empirical trials

The parse trees that are returned by the parser are then de-
transformed to the original form of the grammar for evalua-
tion2.

For the trials reported in the next section, the base beam
parameter is set atγ = 10. In order to avoid being pruned, a
parse must be within a probability range of the best scoring
parse that has incorporated the next word. Letk be the num-
ber of parses that have incorporated the next word, and letp̃
be the best probability from among that set. Then the prob-
ability of a parse must be abovep̃k

3

10γ to avoid being pruned.

2See Johnson (1998) for a presentation of the transform/de-
transform paradigm in parsing.

4 Empirical trials

The parsing models were trained and tested on treebanks
from the Penn Treebank II. For the Wall St. Journal portion,
we used the standard breakdown: sections 2-21 were kept
training data; section 24 was held-out development data; and
section 23 was for evaluation. For the Brown corpus por-
tion, we obtained the training and evaluation sections used
in Gildea (2001). In that paper, no held-out section was used
for parameter tuning3, so we further partitioned the training
data into kept and held-out data. The sizes of the corpora
are given in table 2, as well as labels that are used to refer to
the corpora in subsequent tables.

4.1 Baseline performance

The first results are for parsing the Brown corpus. Table
3 presents our baseline performance, compared with the
Gildea (2001) results. Our system is labeled as ‘MAP’. All
parsing results are presented as labeled precision and recall.
Whereas Gildea (2001) reported parsing results just for sen-
tences of length less than or equal to 40, our results are for
all sentences. The goal is not to improve upon Gildea’s
parsing performance, but rather to try to get more benefit
from the out-of-domain data. While our performance is 0.5-
1.5 percent better than Gildea’s, the same trends hold – low
eighties in accuracy when using the Wall St. Journal (out-of-
domain) training; mid eighties when using the Brown corpus
training. Notice that using the Brown held out data with the
Wall St. Journal training improved precision substantially.
Tuning the parameters on in-domain data can make a big
difference in parser performance. Choosing the smoothing
parameters as Gildea did, based on the distribution within
the corpus itself, may be effective when parsing within the
same distribution, but appears less so when using the tree-
bank for parsing outside of the domain.

3According to the author, smoothing parameters for his parser
were based on the formula from Collins (1999).



Corpus;Sect Used for Sentences Words
WSJ;2-21 Training 39,832 950,028
WSJ;24 Held out 1,346 32,853
WSJ;23 Eval 2,416 56,684
Brown;T Training 19,740 373,152
Brown;H Held out 2,078 40,046
Brown;E Eval 2,425 45,950

Table 2: Corpus sizes

System Training Heldout LR LP
Gildea WSJ;2-21 80.3 81.0
MAP WSJ;2-21 WSJ;24 81.3 80.9
MAP WSJ;2-21 Brown;H 81.6 82.3
Gildea Brown;T,H 83.6 84.6
MAP Brown;T Brown;H 84.4 85.0

Table 3: Parser performance on Brown;E, baselines. Note
that the Gildea results are for sentences≤ 40 words in
length.

Table 4 gives the baseline performance on section 23 of
the WSJ Treebank. Note, again, that the Gildea results are
for sentences≤ 40 words in length, while all others are for
all sentences in the test set. Also, Gildea did not report per-
formance of a Brown corpus trained parser on the WSJ. Our
performance under that condition is not particularly good,
but again using an in-domain held out set for parameter tun-
ing provided a substantial increase in accuracy, somewhat
more in terms of precision than recall. Our baseline results
for a WSJ section 2-21 trained parser are slightly better than
the Gildea parser, at more-or-less the same level of perfor-
mance as Charniak (1997) and Ratnaparkhi (1999), but sev-
eral points below the best reported results on this task.

4.2 Supervised adaptation

Table 5 presents parsing results on the Brown;E test set for
models using both in-domain and out-of-domain training
data. The table gives the adaptation (in-domain) treebank
that was used, and theτA that was used to combine the adap-
tation counts with the model built from the out-of-domain
treebank. Recall thatαc̃(A) times the out-of-domain model
yields count merging, withα the ratio of out-of-domain
to in-domain counts; andαc(A) times the out-of-domain
model yields model interpolation, withα the ratio of out-of-
domain to in-domain probabilities. Gildea (2001) merged
the two corpora, which just adds the counts from the out-of-
domain treebank to the in-domain treebank, i.e.α = 1.
This resulted in a 0.25 improvement in the F-measure. In
our case, combining the counts in this way yielded a half
a point, perhaps because of the in-domain tuning of the
smoothing parameters. However, when we optimizeα em-
pirically on the held-out corpus, we can get nearly a full
point improvement. Model interpolation in this case per-

System Training Heldout LR LP
MAP Brown;T Brown;H 76.0 75.4
MAP Brown;T WSJ;24 76.9 77.1
Gildea WSJ;2-21 86.1 86.6
MAP WSJ;2-21 WSJ;24 86.9 87.1

Charniak (1997) WSJ;2-21 WSJ;24 86.7 86.6
Ratnaparkhi (1999) WSJ;2-21 86.3 87.5
Collins (1999) WSJ;2-21 88.1 88.3
Charniak (2000) WSJ;2-21 WSJ;24 89.6 89.5
Collins (2000) WSJ;2-21 89.6 89.9

Table 4: Parser performance on WSJ;23, baselines. Note
that the Gildea results are for sentences≤ 40 words in
length. All others include all sentences.

forms nearly identically to count merging.

Adaptation to the Brown corpus, however, does not ad-
equately represent what is likely to be the most common
adaptation scenario, i.e. adaptation to a consistent domain
with limited in-domain training data. The Brown corpus is
not really a domain; it was built as a balanced corpus, and
hence is the aggregation of multiple domains. The reverse
scenario – Brown corpus as out-of-domain parsing model
and Wall St. Journal as novel domain – is perhaps a more
natural one. In this direction, Gildea (2001) also reported
very small improvements when adding in the out-of-domain
treebank. This may be because of the same issue as with the
Brown corpus, namely that the optimal ratio of in-domain to
out-of-domain is not 1 and the smoothing parameters need
to be tuned to the new domain; or it may be because the new
domain has a million words of training data, and hence has
less use for out-of-domain data. To tease these apart, we par-
titioned the WSJ training data (sections 2-21) into smaller
treebanks, and looked at the gain provided by adaptation as
the in-domain observations grow. These smaller treebanks
provide a more realistic scenario: rapid adaptation to a novel
domain will likely occur with far less manual annotation of
trees within the new domain than can be had in the full Penn
Treebank.

Table 6 gives the baseline performance on WSJ;23, with
models trained on fractions of the entire 2-21 test set. Sec-
tions 2-21 contain approximately 40,000 sentences, and we
partitioned them by percentage of total sentences. From ta-
ble 6 we can see that parser performance degrades quite dra-
matically when there is less than 20,000 sentences in the
training set, but that even with just 2000 sentences, the sys-
tem outperforms one trained on the Brown corpus.

Table 7 presents parsing accuracy when a model trained
on the Brown corpus is adapted with part or all of the WSJ
training corpus. From this point forward, we only present
results for count merging, since model interpolation con-
sistently performed 0.2-0.5 points below the count merging



System Training Heldout Adapt τA Baseline Adapted ∆F
LR LP F LR LP F

Gildea WSJ;2-21 Brown;T,H c̃(A) 83.6 84.6 84.1 83.9 84.8 84.35 0.25
MAP WSJ;2-21 Brown;H Brown;T c̃(A) 84.4 85.0 84.7 84.9 85.6 85.25 0.55
MAP WSJ;2-21 Brown;H Brown;T 0.25̃c(A) 84.4 85.0 84.7 85.4 85.9 85.65 0.95
MAP WSJ;2-21 Brown;H Brown;T 0.20c(A) 84.4 85.0 84.7 85.3 85.9 85.60 0.90

Table 5: Parser performance on Brown;E, supervised adaptation

System Training % Heldout LR LP
MAP WSJ;2-21 100 WSJ;24 86.9 87.1
MAP WSJ;2-21 75 WSJ;24 86.6 86.8
MAP WSJ;2-21 50 WSJ;24 86.3 86.4
MAP WSJ;2-21 25 WSJ;24 84.8 85.0
MAP WSJ;2-21 10 WSJ;24 82.6 82.6
MAP WSJ;2-21 5 WSJ;24 80.4 80.6

Table 6: Parser performance on WSJ;23, baselines

approach4. TheτA mixing parameter was empirically opti-
mized on the held out set when the in-domain training was
just 10% of the total; this optimization makes over a point
difference in accuracy. Like Gildea, with large amounts of
in-domain data, adaptation improved our performance by
half a point or less. When the amount of in-domain data
is small, however, the impact of adaptation is much greater.

4.3 Unsupervised adaptation

Bacchiani and Roark (2003) presented unsupervised MAP
adaptation results for n-gram models, which use the same
methods outlined above, but rather than using a manually
annotated corpus as input to adaptation, instead use an auto-
matically annotated corpus. Their automatically annotated
corpus was the output of a speech recognizer which used the
out-of-domain n-gram model. In our case, we use the pars-
ing model trained on out-of-domain data, and output a set
of candidate parse trees for the strings in the in-domain cor-
pus, with their normalized scores. These normalized scores
(posterior probabilities) are then used to give weights to the
features extracted from each candidate parse, in just the way
that they provide expected counts for an expectation maxi-
mization algorithm.

For the unsupervised trials that we report, we collected
up to 20 candidate parses per string5. We were interested in
investigating the effects of adaptation, not in optimizing per-
formance, hence we did not empirically optimize the mixing
parameterτA for the new trials, so as to avoid obscuring the
effects due to adaptation alone. Rather, we used the best

4This is consistent with the results presented in
Bacchiani and Roark (2003), which found a small but con-
sistent improvement in performance with count merging versus
model interpolation for n-gram modeling.

5Because of the left-to-right, heuristic beam-search, the parser
does not produce a chart, rather a set of completed parses.

performing parameter from the supervised trials, namely
0.20̃c(A). Since we are no longer limited to manually anno-
tated data, the amount of in-domain WSJ data that we can
include is essentially unlimited. Hence the trials reported go
beyond the 40,000 sentences in the Penn WSJ Treebank, to
include up to 5 times that number of sentences from other
years of the WSJ.

Table 8 shows the results of unsupervised adaptation as
we have described it. Note that these improvements are had
without seeing any manually annotated Wall St. Journal
treebank data. Using the approximately 40,000 sentences
in f2-21, we derived a 3.8 percent F-measure improvement
over using just the out of domain data. Going beyond the
size of the Penn Treebank, we continued to gain in accuracy,
reaching a total F-measure improvement of 4.2 percent with
200 thousand sentences, approximately 5 million words. A
second iteration with this best model, i.e. re-parsing the 200
thousand sentences with the adapted model and re-training,
yielded an additional 0.65 percent F-measure improvement,
for a total F-measure improvement of 4.85 percent over the
baseline model.

A final unsupervised adaptation scenario that we inves-
tigated is self-adaptation, i.e. adaptation on the test set it-
self. Because this adaptation is completely unsupervised,
thus does not involve looking at the manual annotations at
all, it can be equally well applied using the test set as the un-
supervised adaptation set. Using the same adaptation proce-
dure presented above on the test set itself, i.e. producing the
top 20 candidates from WSJ;23 with normalized posterior
probabilities and re-estimating, we produced a self-adapted
parsing model. This yielded an F-measure accuracy of 76.8,
which is a 1.1 percent improvement over the baseline.

5 Conclusion

What we have demonstrated in this paper is that maximuma
posteriori(MAP) estimation can make out-of-domain train-
ing data beneficial for statistical parsing. In the most likely
scenario – porting a parser to a novel domain for which there
is little or no annotated data – the improvements can be quite
large. Like active learning, model adaptation can reduce the
amount of annotation required to converge to a best level
of performance. In fact, MAP coupled with active learning
may reduce the required amount of annotation further.

There are a couple of interesting future directions for this



System % of τA Baseline Adapted ∆F
WSJ;2-21 LR LP F LR LP F

Gildea 100 c̃(A) 86.1 86.6 86.35 86.3 86.9 86.60 0.25
MAP 100 0.20̃c(A) 86.9 87.1 87.00 87.2 87.5 87.35 0.35
MAP 75 0.20̃c(A) 86.6 86.8 86.70 87.1 87.3 87.20 0.50
MAP 50 0.20̃c(A) 86.3 86.4 86.35 86.7 86.9 86.80 0.45
MAP 25 0.20̃c(A) 84.8 85.0 84.90 85.3 85.5 85.40 0.50
MAP 10 0.20̃c(A) 82.6 82.6 82.60 84.3 84.4 84.35 1.75
MAP 10 c̃(A) 82.6 82.6 82.60 83.2 83.4 83.30 0.70
MAP 5 0.20̃c(A) 80.4 80.6 80.50 83.0 83.1 83.05 2.55

Table 7: Parser performance on WSJ;23, supervised adaptation. All models use Brown;T,H as the out-of-domain treebank.
Baseline models are built from the fractions of WSJ;2-21, with no out-of-domain treebank.

Adaptation Iter- LR LP F- ∆F
Sentences ation measure

0 0 76.0 75.4 75.70

4000 1 78.6 77.9 78.25 2.55
10000 1 78.9 78.0 78.45 2.75
20000 1 79.3 78.5 78.90 3.20
30000 1 79.7 78.9 79.30 3.60
39832 1 79.9 79.1 79.50 3.80

100000 1 79.7 79.2 79.45 3.75
200000 1 80.2 79.6 79.90 4.20
200000 2 80.6 80.5 80.55 4.85

Table 8: Parser performance on WSJ;23, unsupervised
adaptation. For all trials, the base training is Brown;T, the
held out is Brown;H plus the parser output for WSJ;24, and
the mixing parameterτA is 0.20̃c(A).

research. First, a question that is not addressed in this paper
is how to best combine both supervised and unsupervised
adaptation data. Since each in-domain resource is likely to
have a different optimal mixing parameter, since the super-
vised data is more reliable than the unsupervised data, this
becomes a more difficult, multi-dimensional parameter op-
timization problem. Hence, we would like to investigate au-
tomatic methods for choosing mixing parameters, such as
EM. Also, an interesting question has to do with choosing
which treebank to use for out-of-domain data. For a new
domain, is it better to choose as prior the balanced Brown
corpus, or rather the more robust Wall St. Journal treebank?
Perhaps one could use several out-of-domain treebanks as
priors. Most generally, one can imagine usingk treebanks,
some in-domain, some out-of-domain, and trying to find the
best mixture to suit the particular task.

The conclusion in Gildea (2001), that out-of-domain tree-
banks are not particularly useful in novel domains, was pre-
mature. Instead, we can conclude that, just as in other sta-
tistical estimation problems, there are generalizations to be
had from these out-of-domain trees, providing more robust
estimates, especially in the face of sparse training data.
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