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Abstract 
This paper shows that two uncertainty-
based active learning methods, combined 
with a maximum entropy model, work 
well on learning English verb senses. 
Data analysis on the learning process, 
based on both instance and feature levels, 
suggests that a careful treatment of feature 
extraction is important for the active 
learning to be useful for WSD. The 
overfitting phenomena that occurred 
during the active learning process are 
identified as classic overfitting in machine 
learning based on the data analysis. 

1 Introduction 
Corpus-based methods for word sense 
disambiguation (WSD) have gained popularity in 
recent years. As evidenced by the SENSEVAL 
exercises (http://www.senseval.org), machine 
learning models supervised by sense-tagged 
training corpora tend to perform better on the 
lexical sample tasks than unsupervised methods. 
However, WSD tasks typically have very limited 
amounts of training data due to the fact that 
creating large-scale high-quality sense-tagged 
corpora is difficult and time-consuming. Therefore, 
the lack of sufficient labeled training data has 
become a major hurdle to improving the 
performance of supervised WSD.  

A promising method for solving this problem 
could be the use of active learning. Researchers 
use active learning methods to minimize the 
labeling of examples by human annotators. A 
decrease in overall labeling occurs because active 
learners (the machine learning models used in 

active learning) pick more informative examples 
for the target word (a word whose senses need to 
be learned) than those that would be picked 
randomly. Active learning requires human labeling 
of the newly selected training data to ensure high 
quality. 

We focus here on pool-based active learning 
where there is an abundant supply of unlabeled 
data, but where the labeling process is expensive.  
In NLP problems such as text classification (Lewis 
and Gale, 1994; McCallum and Nigam, 1998), 
statistical parsing (Tang et al., 2002), information 
extraction (Thompson et al., 1999), and named 
entity recognition (Shen et al., 2004), pool-based 
active learning has produced promising results.  

This paper presents our experiments in applying 
two active learning methods, a min-margin based 
method and a Shannon-entropy based one, to the 
task of the disambiguation of English verb senses. 
The contribution of our work is not only in 
demonstrating that these methods work well for the 
active learning of coarse-grained verb senses, but 
also analyzing the behavior of the active learning 
process on two levels: the instance level and the 
feature level. The analysis suggests that a careful 
treatment of feature design and feature generation 
is important for a successful application of active 
learning to WSD. We also accounted for the 
overfitting phenomena that occurred in the learning 
process based on our data analysis.  

The rest of the paper is organized as follows. In 
Section 2, we introduce two uncertainty sampling 
methods used in our active learning experiments 
and review related work in using active learning 
for WSD. We then present our active learning 
experiments on coarse-grained English verb senses 
in Section 3 and analyze the active learning 
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process in Section 4. Section 5 presents 
conclusions of our study.        

2 Active Learning Algorithms 
The methods evaluated in this work fit into a 
common framework described by Algorithm 1 (see 
Table 1). The key difference between alternative 
active learning methods is how they assess the 
value of labeling individual examples, i.e., the 
methods they use for ranking and selecting the 
candidate examples for labeling. The framework is 
wide open to the type of ranking rule employed. 
Usually, the ranking rule incorporates the model 
trained on the currently labeled data.  This is the 
reason for the requirement of a partial training set 
when the algorithm begins. 
                                Algorithm 1 
Require: initial training set, pool of unlabeled examples 
  Repeat 

Select T random examples from pool 
      Rank T examples according to active learning rule 
     Present the top-ranked example to oracle for labeling 
     Augment the training set with the new example 
  Until Training set reaches desirable size 

Table 1. A Generalized Active Learning Loop 
 

In our experiments we look at two variants of 
the uncertainty sampling heuristic: entropy 
sampling and margin sampling. Uncertainty 
sampling is a term invented by Lewis and Gale 
(Lewis and Gale, 1994) to describe a heuristic 
where a probabilistic classifier picks examples for 
which the model’s current predictions are least 
certain. The intuitive justification for this approach 
is that regions where the model is uncertain 
indicate a decision boundary, and clarifying the 
position of decision boundaries is the goal of 
learning classifiers. Schein (2005) demonstrates 
the two methods run quickly and compete 
favorably against alternatives when combined with 
the logistic regression classifier. 

2.1 Entropy Sampling 
A key question is how to measure uncertainty.  
Different methods of measuring uncertainty will 
lead to different variants of uncertainty sampling.  
We will look at two such measures.  As a 
convenient notation we use q (a vector) to 
represent the trained model’s predictions, with cq  
equal to the predicted probability of class c .  One 
method is to pick the example whose prediction 
vector q displays the greatest Shannon entropy: 

∑−
c

cc qq log    (1) 

Such a rule means ranking candidate examples 
in Algorithm 1 by Equation 1.  

2.2 Margin Sampling 
An alternative method picks the example with the 
smallest margin: the difference between the largest 
two values in the vector q (Abe and Mamitsuka, 
1998). In other words, if c and 'c are the two most 
likely categories for example nx , the margin is 
measured as follows: 

)|'Pr()|Pr( nnn xcxcM −=   (2) 
In this case Algorithm 1 would rank examples 

by increasing values of margin, with the smallest 
value at the top of the ranking. 

Using either method of uncertainty sampling, 
the computational cost of picking an example from 
T candidates is: O(TD) where D is the number of 
model parameters.   

2.3 Related Work 
To our best knowledge, there have been very few 
attempts to apply active learning to WSD in the 
literature (Fujii and Inui, 1999; Chklovski and 
Mihalcea, 2002; Dang, 2004). Fujii and Inui (1999) 
developed an example sampling method for their 
example-based WSD system in the active learning 
of verb senses in a pool-based setting. Unlike the 
uncertainty sampling methods (such as the two 
methods we used), their method did not select 
examples for which the system had the minimal 
certainty. Rather, it selected the examples such that 
after training using those examples the system 
would be most certain about its predictions on the 
rest of the unlabeled examples in the next iteration. 
This sample selection criterion was enforced by 
calculating a training utility function. The method 
performed well on the active learning of Japanese 
verb senses. However, the efficient computation of 
the training utility function relied on the nature of 
the example-based learning method, which made 
their example sampling method difficult to export 
to other types of machine learning models. 

Open Mind Word Expert (Chklovski and 
Mihalcea, 2002) was a real application of active 
learning for WSD. It collected sense-annotated 
examples from the general public through the Web 
to create the training data for the SENSEVAL-3 
lexical sample tasks. The system used the 
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disagreement of two classifiers (which employed 
different sets of features) on sense labels to 
evaluate the difficulty of the unlabeled examples 
and ask the web users to tag the difficult examples 
it selected. There was no formal evaluation for this 
active learning system.  

Dang (2004) used an uncertainty sampling 
method to get additional training data for her WSD 
system. At each iteration the system selected a 
small set of examples for which it had the lowest 
confidence and asked the human annotators to tag 
these examples. The experimental results on 5 
English verbs with fine-grained senses (from 
WordNet 1.7) were a little surprising in that active 
learning performed no better than random 
sampling. The proposed explanation was that the 
quality of the manually sense-tagged data was 
limited by an inconsistent or unclear sense 
inventory for the fine-grained senses. 

3 Active Learning Experiments 
3.1 Experimental Setting 
We experimented with the two uncertainty 
sampling methods on 5 English verbs that had 
coarse-grained senses (see Table 2), as described 
below. By using coarse-grained senses, we limit 
the impact of noisy data due to unclear sense 
boundaries and therefore can get a clearer 
observation of the effects of the active learning 
methods themselves.  
verb # of 

sen. 
baseline 
acc. (%) 

Size of data for 
active learning 

Size of 
test data  

Add 3 91.4 400 100 
Do 7 76.9 500 200 
Feel 3 83.6 400 90 
See 7 59.7 500 200 
Work 9 68.3 400 150 
Table 2. The number of senses, the baseline 
accuracy, the number of instances used for active 
learning and for held-out evaluation for each verb 
 

The coarse-grained senses are produced by 
grouping together the original WordNet senses 
using syntactic and semantic criteria (Palmer et al., 
2006). Double-blind tagging is applied to 50 
instances of the target word. If the ITA < 90%, the 
sense entry is revised by adding examples and 
explanations of distinguishing criteria. 

Table 2 summarizes the statistics of the data. 
The baseline accuracy was computed by using the 
“most frequent sense” heuristic to assign sense 

labels to verb instances (examples). The data used 
in active learning (Column 4 in Table 2) include 
two parts: an initial labeled training set and a pool 
of unlabeled training data. We experimented with 
sizes 20, 50 and 100 for the initial training set. The 
pool of unlabeled data had actually been annotated 
in advance, as in most pool-based active learning 
experiments. Each time an example was selected 
from the pool by the active learner, its label was 
returned to the learner. This simulates the process 
of asking human annotators to tag the selected 
unlabeled example at each time. The advantage of 
using such a simulation is that we can experiment 
with different settings (different sizes of the initial 
training set and different sampling methods).  

The data sets used for active learning and for 
held-out evaluation were randomly sampled from a 
large data pool for each round of the active 
learning experiment. We ran ten rounds of the 
experiments for each verb and averaged the 
learning curves for the ten rounds. 

In the experiments, we used random sampling 
(picking up an unlabeled example randomly at 
each time) as a lower bound. Another control 
(ultimate-maxent) was the learner’s performance 
on the test set when it was trained on a set of 
labeled data that were randomly sampled from a 
large data pool and equaled the amount of data 
used in the whole active learning process (e.g., 400 
training data for the verb add).  

The machine learning model we used for active 
learning was a regularized maximum entropy 
(MaxEnt) model (McCallum, 2002). The features 
used for disambiguating the verb senses included 
topical, collocation, syntactic (e.g., the subject, 
object, and preposition phrases taken by a target 
verb), and semantic (e.g., the WordNet synsets and 
hypernyms of the head nouns of a verb’s NP 
arguments) features (Chen and Palmer, 2005). 

3.2 Experimental Results 
Due to space limits, Figure 1 only shows the 
learning curves for 4 verbs do, feel, see, and work 
(size of the initial training set = 20). The curve for 
the verb add is similar to that for feel. These curves 
clearly show that the two uncertainty sampling 
methods, the entropy-based (called entropy-maxent 
in the figure) and the margin-based (called 
min_margin-maxent), work very well for active 
learning of the senses of these verbs. 
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Figure 1 Active learning for four verbs  

Both methods outperformed the random 
sampling method in that they reached the upper-
bound accuracy earlier and had smoother learning 
curves. For the four verbs add, do, feel and see, 
their learning curves reached the upper bound at 
about 200~300 iterations, which means 1/2 or 1/3 
of the annotation effort can be saved for these 
verbs by using active learning, while still achieving 
the same level of performance as supervised WSD 
without using active learning. Given the large-
scale annotation effort currently underway in the 
OntoNotes project (Hovy et al., 2006), this could 
provide considerable savings in annotation effort 
and speed up the process of providing sufficient 
data for a large vocabulary. The OntoNotes project 
has now provided coarse-grained entries for over 
350 verbs, with corresponding double–blind 
annotation and adjudication in progress.  As this 
adjudicated data becomes available, we will be 
able to train our system accordingly. Preliminary 
results for 22 of these coarse-grained verbs (with 
an average grouping polysemy of 4.5) give us an 
average accuracy of 86.3%. This will also provide 
opportunities for more experiments with active 
learning, where there are enough instances.  Active 
learning could also be beneficial in porting these 
supervised taggers to new genres with different 
sense distributions. 

We also experimented with different sizes of 
the initial training set (20, 50 and 100) and found 
no significant differences in the performance at 
different settings. That means, for these 5 verbs, 
only 20 labeled training instances will be enough 
to initiate an efficient active learning process.        

From Figure 1, we can see that the two 
uncertainty sampling methods generally perform 
equally well except that for the verb do, the min-
margin method is slightly better than the entropy 
method at the beginning of active learning. This 
may not be so surprising, considering that the two 
methods are equal for two-class classification tasks 
(see Equations 1 and 2 for their definition) and the 
verbs used in our experiments have coarse-grained 
senses and often have only 2 or 3 major senses.   

An interesting phenomenon observed from 
these learning curves is that for the two verbs add 
and feel, the active learner reached the upper 
bound very soon (at about 100 iterations) and then 
even breached the upper bound. However, when 
the training set was extended, the learner’s 
performance dropped and eventually returned to 
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the same level of the upper bound. We discuss the 
phenomenon below.  

4 Analysis of the Learning Process 
In addition to verifying the usefulness of active 
learning for WSD, we are also interested in a 
deeper analysis of the learning process. For 
example, why does the active learner’s 
performance drop sometimes during the learning 
process? What are the characteristics of beneficial 
features that help to boost the learner’s accuracy? 
How do we account for the overfitting phenomena 
that occurred during the active learning for the 
verbs add and feel? We analyzed the effect of both 
instances and features throughout the course of 
active learning using min-margin-based sampling.  

4.1 Instance-level Analysis  
Intuitively, if the learner’s performance drops after 
a new example is added to the training set, it is 
likely that something has gone wrong with the new 
example. To find out such bad examples, we 
define a measure credit_inst for instance i as: 

∑∑
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where Accl and Accl+1 are the classification 
accuracies of the active learner at the lth and 
(l+1)th iterations. n is the total number of 
iterations of active learning and m is the number of 
rounds of active learning (m=10 in our case). 

),( lisel is 1 iff instance i is selected by the active 
learner at the lth iteration and is 0 if otherwise. 

An example is a bad example if and only if it 
satisfies the following conditions: 

a)  its credit_inst value is negative 
b) it increases the learner’s performance, if it 
does, less often than it decreases the 
performance in the 10 rounds. 
We ranked the bad examples by their 

credit_inst values and their frequency of 
decreasing the learner’s performance in the 10 
rounds. Table 3 shows the top five bad examples 
for feel and work. There are several reasons why 
the bad examples may hurt the learner’s 
performance. Column 3 of Table 3 proposes 
reasons for many of our bad examples. We 
categorized these reasons into three major types. 

I. The major senses of a target verb depend 
heavily on the semantic categories of its NP 
arguments but WordNet sometimes fails to provide 

the appropriate semantic categories (features) for 
the head nouns of these NP arguments. For 
example, feel in the board apparently felt no 
pressure has Sense 1 (experience). In Sense 1, feel 
typically takes an animate subject. However, 
board, the head word of the verb’s subject in the 
above sentence has no animate meanings defined 
in WordNet. Even worse, the major meaning of 
board, i.e., artifact, is typical for the subject of feel 
in Sense 2 (touch, grope). Similar semantic type 
mismatches hold for the last four bad examples of 
the verb work in Table 3.  

II. The contexts of the target verb are difficult 
for our feature exaction module to analyze. For 
example, the antecedent for the pronoun subject 
they in the first example of work in Table 3 should 
be ringers, an agent subject that is typical for 
Sense 1 (exert oneself in an activity). However, the 
feature exaction module found the wrong 
antecedent changes that is an unlikely fit for the 
intended verb sense. In the fourth example for feel, 
the feature extraction module cannot handle the 
expletive “it” (a dummy subject) in “it was felt 
that”, therefore, it cannot identify the typical 
syntactic pattern for Sense 3 (find, conclude), i.e., 
subject+feel+relative clause. 

III. Sometimes, deep semantic and discourse 
analyses are needed to get the correct meaning of 
the target verb. For example, in the third example 
of feel, “…, he or she feels age creeping up”, it is 
difficult to tell whether the verb has Sense 1 
(experience) or Sense 3 (find) without an 
understanding of the meaning of the relative clause 
and without looking at a broader discourse context. 
The syntactic pattern identified by our feature 
extraction module, subject+feel+relative clause, 
favors Sense 3 (find), which leads to an inaccurate 
interpretation for this case. 

Recall that the motivation behind uncertainty 
samplers is to find examples near decision 
boundaries and use them to clarify the position of 
these boundaries. Active learning often does find 
informative examples, either ones from the less 
common senses or ones close to the boundary 
between the different senses. However, active 
learning also identifies example sentences that are 
difficult to analyze. The failure of our feature 
extraction module, the lack of appropriate semantic 
categories for certain NP arguments in WordNet, 
the lack of deep analysis (semantic and discourse 
analysis) of the context of the target verb can all 
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         Table 3 Data analysis of the top-ranked bad examples found for two verbs 

produce misleading features. Therefore, in order to 
make active learning useful for its applications, 
both identifying difficult examples and getting 
good features for these examples are equally 
important. In other words, a careful treatment of 
feature design and feature generation is necessary 
for a successful application of active learning. 

There is a positive side to identifying such 
“bad” examples; one can have human annotators 
look at the features generated from the sentences 
(as we did above), and use this to improve the data 
or the classifier. Note that this is exactly what we 
did above: the identification of bad sentences was 
automatic, and they could then be reannotated or 
removed from the training set or the feature 
extraction module needs to be refined to generate 
informative features for these sentences. 

Not all sentences have obvious interpretations; 
hence the two question marks in Table 3. An 
example can be bad for many reasons: conflicting 
features (indicative of different senses), misleading 
features (indicative of non-intended senses), or just 
containing random features that are incorrectly 
incorporated into the model. We will return to this 

point in our discussion of the overfitting 
phenomena for active learning in Section 4.3. 

4.2 Feature-level Analysis 

The purpose of our feature-level analysis is to 
identify informative features for verb senses. The 
learning curve of the active learner may provide 
some clues. The basic idea is, if the learner’s 
performance increases after adding a new example, 
it is likely that the good example contains good 
features that contribute to the clarification of sense 
boundaries. However, the feature-level analysis is 
much less straightforward than the instance-level 
analysis since we cannot simply say the features 
that are active (present) in this good example are 
all good. Rather, an example often contains both 
good and bad features, and many other features 
that are somehow neutral or uninformative. The 
interaction or balance between these features 
determines the final outcome. On the other hand, a 
statistics based analysis may help us to find 
features that tend to be good or bad. For this 
analysis, we define a measure credit_feat for 
feature i as: 

feel Proposed reasons for bad examples Senses 
Some days the coaches make you feel as though you 
are part of a large herd of animals . 

? S1: experience 

And , with no other offers on the table , the board 
apparently felt no pressure to act on it.  

subject: board, no “animate” meaning in 
WordNet  

S1: experience 

Sometimes a burst of aggressiveness will sweep over a 
man -- or his wife -- because he or she feels age 
creeping up.  

syntactic pattern: sbj+feel+relative clause 
headed by that, a typical pattern for Sense 
3 (find) rather than Sense 1 (experience)  

S1: experience 

At this stage it was felt I was perhaps more pertinent as 
chief. executive . 

syntactic pattern: sbj+feel+relative clause, 
typical for Sense 3 (find) but has not been 
detected by the feature exaction module 

S3: find, conclude

I felt better Tuesday evening when I woke up. ? S1: experience 
Work    
When their changes are completed, and after they have 
worked up a sweat, ringers often …… 

subject: they, the feature exaction module 
found the wrong antecedent (changes 
rather than ringers) for they 

S1: exert oneself 
in an activity 

Others grab books, records , photo albums , sofas and 
chairs , working frantically in the fear that an 
aftershock will jolt the house again . 

subject: others (means people here), no 
definition in WordNet 

S1: exert oneself 
in an activity 

Security Pacific 's factoring business works with 
companies in the apparel, textile and food industries …

subject: business, no “animate” meaning 
in WordNet 

S1: exert oneself 
in an activity 

… ; blacks could work there , but they had to leave at 
night . 

subject: blacks, no “animate” meaning in 
WordNet 

S1: exert oneself 
in an activity 

… has been replaced by alginates (gelatin-like material 
) that work quickly and accurately and with least 
discomfort to a child . 

subject: alginates, unknown by WordNet S2: perform, 
function, behave 
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where ),( liactive is 1 iff feature i is active in the 
example selected by the active learner at the lth 
iteration and is 0 if otherwise. actl is the total 
number of active features in the example selected 
at the lth iteration. n and m have the same 
definition as in Equation 3.  

A feature is regarded as good if its credit_feat 
value is positive. We ranked the good features by 
their credit_feat values.  By looking at the top-
ranked good features for the verb work (due to 
space limitations, we omit the table data), we 
identify two types of typically good features.  

The first type of good feature occurs frequently 
in the data and has a frequency distribution over 
the senses similar to the data distribution over the 
senses. Such features include those denoting that 
the target verb takes a subject (subj), is not used in 
a passive mode (morph_normal), does not take a 
direct object (intransitive), occurs in present tense 
(word_work, pos_vb, word_works, pos_vbz), and 
semantic features denoting an abstract subject 
(subjsyn_16993 1) or an entity subject (subjsyn_ 
1742), etc. We call such features background 
features. They help the machine learning model 
learn the appropriate sense distribution of the data. 
In other words, a learning model only using such 
features will be equal to the “most frequent sense” 
heuristic used in WSD.  

Another type of good feature occurs less 
frequently and has a frequency distribution over 
senses that mismatches with the sense distribution 
of the data. Such features include those denoting 
that the target verb takes an inanimate subject 
(subj_it), takes a particle out (prt_out), is followed 
directly by the word out (word+1_out), or occurs at 
the end of the sentence. Such features are 
indicative of less frequent verb senses  that still 
occur fairly frequently in the data. For example, 
taking an inanimate subject (subj_it) is a strong 
clue for Sense 2 (perform, function, behave) of the 
verb work. Occurring at the end of the sentence is 
also indicative of Sense 2 since when work is used 
in Sense 1 (exert oneself in an activity), it tends to 
take adjuncts to modify the activity as in He is 
working hard to bring up his grade. 

                                                           
1 Those features are from the WordNet. The numbers are 
WordNet ids of synsets and hypernyms. 

There are some features that don’t fall into the 
above two categories, such as the topical feature 
tp_know and the collocation feature pos-2_nn. 
There are no obvious reasons why they are good 
for the learning process, although it is possible that 
the combination of two or more such features 
could make a clear sense distinction. However, this 
hypothesis cannot be verified by our current 
statistics-based analysis. It is also worth noting that 
our current feature analysis is post-experimental 
(i.e., based on the results). In the future, we will try 
automatic feature selection methods that can be 
used in the training phase to select useful features 
and/or their combinations.  

We have similar results for the feature analysis 
of the other four verbs. 

4.3 Account for the Overfitting Phenomena 
Recall that in the instance-level analysis in Section 
4.1, we found that some examples hurt the learning 
performance during active learning but for no 
obvious reasons (the two examples marked by ? in 
Table 3). We found that these two examples 
occurred in the overfitting region for feel. By 
looking at the bad examples (using the same 
definition for bad example as in Section 4.1) that 
occurred in the overfitting region for both feel and 
add, we identified two major properties of these 
examples. First, most of them occurred only once 
as bad examples (19 out 23 for add and 40 out of 
63 for feel). Second, many of the examples had no 
obvious reasons for their badness. 

Based on the above observations, we believe 
that the overfitting phenomena that occurred for 
the two verbs during active learning is typical of 
classic overfitting, which is consistent with a 
"death by a thousand mosquito bites" of rare bad 
features, and consistent with there often being (to 
mix a metaphor) no "smoking gun" of a bad 
feature/instance that is added in, especially in the 
region far away from the starting point of active 
learning. 

5 Conclusions 
We have shown that active learning can lead to 
substantial reductions (often by half) in the number 
of observations that need to be labeled to achieve a 
given accuracy in word sense disambiguation, 
compared to labeling randomly selected instances. 
In a follow-up experiment, we also compared a 
larger number of different active learning methods. 
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The results suggest that for tasks like word sense 
disambiguation where maximum entropy methods 
are used as the base learning models, the minimum 
margin active criterion for active learning gives 
superior results to more comprehensive 
competitors including bagging and two variants of 
query by committee (Schein, 2005). By also taking 
into account the high running efficiency of the 
min-margin method, it is a very promising active 
learning method for WSD. 

We did an analysis on the learning process on 
two levels: instance-level and feature-level. The 
analysis suggests that a careful treatment of feature 
design and feature generation is very important for 
the active learner to take advantage of the difficult 
examples it finds during the learning process. The 
feature-level analysis identifies some 
characteristics of good features. It is worth noting 
that the good features identified are not particularly 
tied to active learning, and could also be obtained 
by a more standard feature selection method rather 
than by looking at how the features provide 
benefits as they are added in.   

For a couple of the verbs examined, we found 
that active learning gives higher prediction 
accuracy midway through the training than one 
gets after training on the entire corpus.  Analysis 
suggests that this is not due to bad examples being 
added to the training set. It appears that the widely 
used maximum entropy model with Gaussian 
priors is overfitting: the model by including too 
many features and thus fitting noise as well as 
signal.  Using different strengths of the Gaussian 
prior does not solve the problem. If a very strong 
prior is used, then poorer accuracy is obtained. We 
believe that using appropriate feature selection 
would cause the phenomenon to vanish. 
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