
Proceedings of NAACL HLT 2009: Short Papers, pages 245–248,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Quadratic Features and Deep Architectures for Chunking

Joseph Turian and James Bergstra and Yoshua Bengio
Dept. IRO, Université de Montréal

Abstract

We experiment with several chunking models.
Deeper architectures achieve better gener-
alization. Quadratic filters, a simplification
of a theoretical model of V1 complex cells,
reliably increase accuracy. In fact, logistic
regression with quadratic filters outperforms
a standard single hidden layer neural network.
Adding quadratic filters to logistic regression
is almost as effective as feature engineering.
Despite predicting each output label indepen-
dently, our model is competitive with ones
that use previous decisions.

1 Introduction
There are three general approaches to improving
chunking performance: engineer better features,
improve inference, and improve the model.

Manual feature engineering is a common direc-
tion. One technique is to take primitive features
and manually compound them. This technique is
common, and most NLP systems use n-gram based
features (Carreras and Màrquez, 2003; Ando and
Zhang, 2005, for example). Another approach is
linguistically motivated feature engineering, e.g.
Charniak and Johnson (2005).

Other works have looked in the direction of
improving inference. Rather than predicting each
decision independently, previous decisions can be
included in the inference process. In this work,
we use the simplest approach of modeling each
decision independently.

The third direction is by using a better model. If
modeling capacity can be added without introducing
too many extra degrees of freedom, generalization

could be improved. One approach for compactly
increasing capacity is to automatically induce
intermediate features through the composition of
non-linearities, for example SVMs with a non-linear
kernel (Kudo and Matsumoto, 2001), inducing
compound features in a CRF (McCallum, 2003),
neural networks (Henderson, 2004; Bengio and Le-
Cun, 2007), and boosting decision trees (Turian and
Melamed, 2006). Recently, Bergstra et al. (2009)
showed that capacity can be increased by adding
quadratic filters, leading to improved generalization
on vision tasks. This work examines how well
quadratic filters work for an NLP task. Compared to
manual feature engineering, improved models are
appealing because they are less task-specific.

We experiment on the task of chunking (Sang and
Buchholz, 2000), a syntactic sequence labeling task.

2 Sequence labeling

Besides Collobert and Weston (2008), previous
work on sequence labeling usually use previous
decisions in predicting output labels. Here we do
not take advantage of the dependency between suc-
cessive output labels. Our approach predicts each
output label independently of the others. This allows
us to ignore inference during training: The model
maximizes the conditional likelihood of each output
label independent of the output label of other tokens.

We use a sliding window approach. The output
label for a particular focus token xi is predicted
based upon k̄ tokens before and after xi. The entire
window is of size k = 2 · k̄ + 1. Nearly all work on
sequence labeling uses a sliding window approach
(Kudo and Matsumoto, 2001; Zhang et al., 2002;

245

204 204 204 204 204 204 204

150 150 150 150 150 150 150tok

win

out

in

400

23

ψh

σq

σq

Figure 1: Illustration of our baseline I-T-W-O model (see
Secs. 4 and 5.1). The input layer comprises seven tokens
with 204 dimensions each. Each token is passed through
a shared 150-dimensional token feature extractor. These
7 · 150 features are concatenated and 400 features are
extracted from them in the window layer. These 400 fea-
tures are the input to the final 23-class output prediction.
Feature extractors σq and ψh are described in Section 3.

Carreras and Màrquez, 2003; Ando and Zhang,
2005, for example). We assume that each token x
can be transformed into a real-valued feature vector
φ(x) with l entries. The feature function will be
described in Section 4.

A standard approach is as follows: We first
concatenate the features of k tokens into one vector
[φ(xi−k̄), . . . , φ(xi+k̄)] of length k · l entries. We can
then pass [φ(xi−k̄), . . . , φ(xi+k̄)] to a feature extractor
over the entire window followed by an output
log-linear layer.

Convolutional architectures can help when there
is a position-invariant aspect to the input. In machine
vision, parameters related to one part of the image
are sometimes restricted to be equal to parameters
related to another part (LeCun et al., 1998). A
convolutional approach to sequence labeling is as
follows: At the lowest layer we extract features from
individual tokens using a shared feature extractor.
These higher-level individual token features are then
concatenated, and are passed to a feature extractor
over the entire window.

In our baseline approach, we apply one convolu-
tional layer of feature extraction to each token (one
token layer), followed by a concatenation, followed
by one layer of feature extraction over the entire
window (one window layer), followed by a 23-D
output prediction using multiclass logistic regres-
sion. We abbreviate this architecture as I-T-W-O
(input�token�window�output). See Figure 1 for
an illustration of this architecture.

3 Quadratic feature extractors
The most common feature extractor in the literature
is a linear filter h followed by a non-linear squashing
(activation) function σ:

f (x) = σ(h(x)), h(x) = b +Wx. (1)

In our experiments, we use the softsign squash-
ing function σ(z) = z/(1 + |z|). n-class lo-
gistic regression predicts ψ(h(x)), where softmax
ψi(z) = exp(zi)/

∑
k exp(zk). Rust et al. (2005) argues

that complex cells in the V1 area of visual cortex
are not well explained by Eq. 1, but are instead
better explained by a model that includes quadratic
interactions between regions of the receptive field.
Bergstra et al. (2009) approximate the model of
Rust et al. (2005) with a simpler model of the
form given in Eq. 2.† In this model, the pre-squash
transformation q includes J quadratic filters:

f (x) = σ(q(x)), q(x) =

b +Wx +

√√√ J∑
j=1

(V jx)2

(2)

where b, W, and V1 . . .VJ are tunable parameters.
In the vision experiments of Bergstra et al.

(2009), using quadratic filters improved the gen-
eralization of the trained architecture. We were
interested to see if the increased capacity would
also be beneficial in language tasks. For our logistic
regression (I-O) experiments, the architecture is
specifically I–ψq�O, i.e. output O is the softmax
ψ applied to the quadratic transform q of the input
I. Like Bergstra et al. (2009), in architectures with
hidden layers, we apply the quadratic transform q
in all layers except the final layer, which uses linear
transform h. For example, I-T-W-O is specifically
I–σq�T–σq�W–ψh�O, as shown in Figure 1. Future
work will explore if generalization is improved by
using q in the final layer.

4 Features
Here is a detailed description of the types of features
we use, with number of dimensions:
• embeddings. We map each word to a real-valued
50-dimensional embedding. These embeddings
were obtained by Collobert and Weston (2008), and
†Bergstra et al. (2009) do not use a sqrt in Eq. 2. We found that

sqrt improves optimization and gives better generalization.

246

were induced based upon a purely unsupervised
training strategy over the 631 million words in the
English Wikipedia.
• POS-tag. Part-of-speech tags were assigned auto-
matically, and are part of the CoNLL data. 45 dim.
• label frequencies. Frequency of each label
assigned to this word in the training and validation
data. From Ando and Zhang (2005). 23 dim.
• type(first character). The type of the first charac-
ter of the word. type(x) = ‘A’ if x is a capital letter,
‘a’ if x is a lowercase letter, ‘n’ if x is a digit, and x
otherwise. From Collins (2002). 20 dim.
• word length. The length of the word. 20 dim.
• compressed word type. We convert each char-
acter of the word into its type. We then remove any
repeated consecutive type. For example, “Label-
making”⇒ “Aa-a”. From Collins (2002). 46 dim.
The last three feature types are based upon ortho-
graphic information. There is a combined total of
204 features per token.

5 Experiments
We follow the conditions in the CoNLL-2000
shared task (Sang and Buchholz, 2000). Of the 8936
training sentences, we used 1000 randomly sampled
sentences (23615 words) for validation.

5.1 Training details
The optimization criterion used during training is
the maximization of the sum (over word positions)
of the per-token log-likelihood of the correct deci-
sion. Stochastic gradient descent is performed using
a fixed learning rate η and early stopping. Gradients
are estimated using a minibatch of 8 examples. We
found that a learning rate of 0.01, 0.0032, or 0.001
was most effective.

In all our experiments we use a window size
of 7 tokens. In preliminary experiments, smaller
windows yielded poorer results, and larger ones
were no better. Layer sizes of extracted features
were chosen to optimize validation F1.

5.2 Results
We report chunk F-measure (F1). In some tables
we also report Acc, the per-token label accuracy,
post-Viterbi decoding.

Figure 2 shows that using quadratic filters reliably
improves generalization on all architectures. For
the I-T-W-O architecture, quadratic filters increase

91.5%

92%

92.5%

93%

93.5%

94%

94.5%

95%

0 1 2 4 8 16
91.5%

92%

92.5%

93%

93.5%

94%

94.5%

95%

of quadratic filters

I-T-W-O (baseline)
I-W-O (1 hidden layer NN)

I-O (LogReg)

Figure 2: Validation F1 (y-axis) as we vary the number
of quadratic filters (x-axis), over different model archi-
tectures. Both architecture depth and quadratic filters
improve validation F1.

Architecture #qf Acc F1
I-O 16 96.45 93.94

I-W(400)-O 4 96.66 94.39
I-T(150)-W(566)-O 2 96.85 94.77

I-T(150)-W(310)-W(310)-O 4 96.87 94.82

Table 1: Architecture experiments on validation data.
The first column describes the layers in the architecture.
(The architecture in Figure 1 is I-T(150)-W(400)-O.)
The second column gives the number of quadratic filters.
For each architecture, the layer sizes and number of
quadratic filters are chosen to maximize validation F1.
Deeper architectures achieve higher F1 scores.

validation F1 by an absolute 0.31. Most surpris-
ingly, logistic regression with 16 filters achieves
F1=93.94, which outperforms the 93.83 of a stan-
dard (0 filter) single hidden layer neural network.

With embeddings as the only features, logreg
with 0 filters achieves F1=85.36. By adding all
features, we can raise the F1 to 91.96. Alternately,
by adding 16 filters, we can raise the F1 to 91.60. In
other words, adding filters is nearly as effective as
our manual feature engineering.

Table 1 shows the result of varying the overall
architecture. Deeper architectures achieve higher
F1 scores. Table 2 compares the model as we lesion
off different features. POS tags and the embeddings
were the most important features.

We applied our best model overall (I-T-W-W-O
in Table 1) to the test data. Results are shown in

247

Feature set Acc F1
default 96.81 94.69
no orthographic features 96.84 94.62
no label frequencies 96.77 94.58
no POS tags 96.60 94.22
no embeddings 96.40 93.97
only embeddings 96.18 93.53

Table 2: Results on validation of varying the feature set,
for the architecture in Figure 1 with 4 quadratic filters.

NP F1 Prc Rcl F1
AZ05 94.70 94.57 94.20 94.39
KM01 94.39 93.89 93.92 93.91
I-T-W-W-O 94.44 93.72 93.91 93.81
CM03 94.41 94.19 93.29 93.74
SP03 94.38 - - -
Mc03 93.96 - - -
AZ05- - 93.83 93.37 93.60
ZDJ02 93.89 93.54 93.60 93.57

Table 3: Test set results for Ando and Zhang (2005), Kudo
and Matsumoto (2001), our I-T-W-W-O model, Carreras
and Màrquez (2003), Sha and Pereira (2003), McCallum
(2003), Zhang et al. (2002), and our best I-O model.
AZ05- is Ando and Zhang (2005) using purely supervised
training, not semi-supervised training. Scores are noun
phrase F1, and overall chunk precision, recall, and F1.

Table 3. We are unable to compare to Collobert and
Weston (2008) because they use a different training
and test set. Our model predicts all labels in the
sequence independently. All other works in Table 3
use previous decisions when making the current
label decision. Our approach is nonetheless compet-
itive with approaches that use this extra information.

6 Conclusions
Many NLP approaches underfit important linguistic
phenomena. We experimented with new techniques
for increasing chunker model capacity: adding
depth (automatically inducing intermediate features
through the composition of non-linearities), and
including quadratic filters. Higher accuracy was
achieved by deeper architectures, i.e. ones with
more intermediate layers of automatically tuned fea-
ture extractors. Although they are a simplification of
a theoretical model of V1 complex cells, quadratic
filters reliably improved generalization in all archi-
tectures. Most surprisingly, logistic regression with

quadratic filters outperformed a single hidden layer
neural network without. Also, with logistic regres-
sion, adding quadratic filters was almost as effective
as manual feature engineering. Despite predicting
each output label independently, our model is
competitive with ones that use previous decisions.

Acknowledgments
Thank you to Ronan Collobert, Léon Bottou, and
NEC Labs for access to their word embeddings, and
to NSERC and MITACS for financial support.

References
R. Ando and T. Zhang. A high-performance semi-
supervised learning method for text chunking. In ACL,
2005.
Y. Bengio and Y. LeCun. Scaling learning algorithms
towards AI. In Large Scale Kernel Machines. 2007.
J. Bergstra, G. Desjardins, P. Lamblin, and Y. Bengio.
Quadratic polynomials learn better image features. TR
1337, DIRO, Université de Montréal, 2009.
X. Carreras and L. Màrquez. Phrase recognition by
filtering and ranking with perceptrons. In RANLP, 2003.
E. Charniak and M. Johnson. Coarse-to-fine n-best pars-
ing and MaxEnt discriminative reranking. In ACL, 2005.
M. Collins. Ranking algorithms for named entity extrac-
tion: Boosting and the voted perceptron. In ACL, 2002.
R. Collobert and J. Weston. A unified architecture for
natural language processing: Deep neural networks with
multitask learning. In ICML, 2008.
J. Henderson. Discriminative training of a neural
network statistical parser. In ACL, 2004.
T. Kudo and Y. Matsumoto. Chunking with support
vector machines. In NAACL, 2001.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient
based learning applied to document recognition. IEEE,
86(11):2278–2324, November 1998.
A. McCallum. Efficiently inducing features of condi-
tional random fields. In UAI, 2003.
N. Rust, O. Schwartz, J. A. Movshon, and E. Simoncelli.
Spatiotemporal elements of macaque V1 receptive fields.
Neuron, 46(6):945–956, 2005.
E. T. Sang and S. Buchholz. Introduction to the
CoNLL-2000 shared task: Chunking. In CoNLL, 2000.
F. Sha and F. C. N. Pereira. Shallow parsing with
conditional random fields. In HLT-NAACL, 2003.
J. Turian and I. D. Melamed. Advances in discriminative
parsing. In ACL, 2006.
T. Zhang, F. Damerau, and D. Johnson. Text chunking
based on a generalization of Winnow. JMLR, 2, 2002.

248

