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Abstract

Cross Document Coreference (CDC) is the
problem of resolving the underlying identity
of entities across multiple documents and is a
major step for document understanding.

We develop a framework to efficiently
determine the identity of a person based on
extracted information, which includes unary
properties such as gender and title, as well as
binary relationships with other named entities
such as co-occurrence and geo-locations.
At the heart of our approach is a suite of
similarity functions (specialists) for matching
relationships and a relational density-based
clustering algorithm that delineates name
clusters based on pairwise similarity. We
demonstrate the effectiveness of our methods
on the WePS benchmark datasets and point
out future research directions.

1 Introduction

The explosive growth of web data offers users both
the opportunity and the challenge to discover and
integrate information from disparate sources. As
alluded to in the title, a search query of the common
name “Mark Johnson” refers to as many as 70
namesakes in the top 100 search results from the
Yahoo! search engine, only one of whom is the
Brown University professor and co-author of an
ACL 2006 paper (see experiments). Cross document
coreference (CDC) (Bagga and Baldwin, 1998) is a
distinct technology that consolidates named entities
across documents according to their real referents.
Despite the variety of styles and content in different
text, CDC can break the boundaries of documents
and cluster those mentions referring to the same
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Mark Johnson. As unambiguous person references
are key to many tasks, e.g. social network analysis,
this work focuses on person named entities. The
method can be later extended to organizations.

We highlight the key differences between our
proposed CDC system with past person name
search systems. First, we seek to transcend the
simple bag of words approaches in earlier CDC
work by leveraging state-of-the-art information
extraction (IE) tools for disambiguation. The
main advantage is that our IE based approach has
access to accurate information such as a person’s
work titles, geo-locations, relationships and other
attributes. Traditional IR approaches, on the other
hand, may naively use the terms in a document
which can significantly hamper accuracy. For
instance, an article about Hillary Clinton may
contain references to journalists, politicians who
make comments about her. Even with careful word
selection, such textual features may still confuse the
disambiguation system about the true identity of the
person. The information extraction process in our
work can thus be regarded as an intelligent feature
selection step for disambiguation. Second, after
coreferencing, our system not only yields clusters
of documents, but also structured information
which is highly useful for automated document
understanding and data mining.

We review related work on CDC next and
describe our approach in Section 3. The methods
are evaluated on benchmark datasets in Section 4.
We discuss directions for future improvement in
Section 5 and conclude in Section 6.

2 Related Work

There is a long tradition of work on the within
document coreference (WDC) problem in NLP,
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which links named entities with the same referent
within a document into a WDC chain. State-of-
the-art WDC systems, e.g. (Ng and Cardie, 2001),
leverage rich lexical features and use supervised
and unsupervised machine learning methods.

Research on cross document coreference began
more recently. (Bagga and Baldwin, 1998) proposed
a CDC system to merge the WDC chains using the
Vector Space Model on the summary sentences.
(Gooi and Allan, 2004) simplified this approach by
eliminating the WDC module without significant
deterioration in performance. Clustering approaches
(e.g. hierarchical agglomerative clustering (Mann
and Yarowsky, 2003)) have been commonly used
for CDC due to the variety of data distributions
of different names. Our work goes beyond the
simple co-occurrence features (Bagga and Baldwin,
1998) and the limited extracted information (e.g.
biographical information in (Mann and Yarowsky,
2003) that is relatively scarce in web data) using
the broad range of relational information with the
support of information extraction tools. There
are also other related research problems. (Li et
al., 2004) solved the robust reading problem by
adopting a probabilistic view on how documents are
generated and how names are sprinkled into them.
Our previous work (Huang et al., 2006) resolved
the author name ambiguity problem based on the
metadata records extracted from academic papers.

3 Methods

The overall framework of our CDC system works
as follows. Given a document, the information
extraction tool first extracts named entities and
constructs WDC chains. It also creates linkages
(relationships) between entities. The similarity
between a pair of relationships in WDC chains
is measured by an awakened similarity specialist
and the similarity between two WDC chains is
determined by the mixture of awakened specialists’
predictions. Finally, a density-based clustering
method generates clusters corresponding to real
world entities. We describe these steps in detail.

3.1 Entity and Relationship Extraction

Given a document, an information extraction
tool is first used to extract named entities and

perform within document coreference. Hence,
named entities in each document are divided into
a set of WDC chains, each chain corresponding
to one real world entity. In addition, state-of-
the-art IE tools are capable of creating relational
information between named entities. We use an
IE tool AeroText1 (Taylor, 2004) for this purpose.
Besides the attribute information about the person
named entity (first/middle/last names, gender,
mention, etc), AeroText also extracts relationship
information between named entities, such as
Family, List, Employment, Ownership, Citizen-
Resident-Religion-Ethnicity, etc, as specified in the
Automatic Content Extraction (ACE) evaluation.
The input to the CDC system is a set of WDC chains
(with relationship information stored in them) and
the CDC task is to merge these WDC chains2.

3.2 Similarity Features
We design a suite of similarity functions to
determine whether the relationships in a pair of
WDC chains match, divided into three groups:
Text similarity. To decide whether two names
in the co-occurrence or family relationship match,
we use SoftTFIDF (Cohen et al., 2003), which has
shown best performance among various similarity
schemes tested for name matching. SoftTFIDF is
a hybrid matching scheme that combines the token-
based TFIDF with the Jaro-Winkler string distance
metric. This permits inexact matching of named
entities due to name variations, spelling errors, etc.
Semantic similarity. Text or syntactic similarity is
not always sufficient for matching relationships. For
instance, although the mentions “U.S. President”
and “Commander-in-chief” have no textual overlap,
they are semantically highly related as they can be
synonyms. We use WordNet and the information
theory based JC semantic distance (Jiang and
Conrath, 1997) to measure the semantic similarity
between concepts in relationships such as mention,
employment, ownership and so on.

1AeroText is a text mining application for content
analysis, with main focus on information extraction
including entity extraction and intrasource link analysis
(see http://en.wikipedia.org/wiki/AeroText).

2We make no distinctions whether WDC chains are
extracted from the same document. Indeed, the CDC system
can correct the WDC errors due to lack of information for
merging named entities within a document.
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Other rule-based similarity. Several other
cases require special treatment. For example, the
employment relationships of Senator and D-N.Y.
should match based on domain knowledge. Also,
we design rule-based similarity functions to handle
nicknames (Bill and William), acronyms (COLING
for International Conference on Computational
Linguistics), and geographical locations3.

3.3 Learning a Similarity Matrix

After the similarity features between a pair of
WDC chains are computed, we need to compute
the pairwise distance metric for clustering. (Cohen
et al., 2003) trained a binary SVM model and
interpreted its confidence in predicting the negative
class as the distance metric. In our case of using
information extraction results for disambiguation,
however, only some of the similarity features are
present based on the availability of relationships
in two WDC chains. Therefore, we treat each
similarity function as a subordinate predicting
algorithm (called specialist) and utilize the
specialist learning framework (Freund et al., 1997)
to combine the predictions. Here, a specialist is
awake only when the same relationships are present
in two WDC chains. Also, a specialist can refrain
from making a prediction for an instance if it is
not confident enough. In addition to the similarity
scores, specialists have different weights, e.g. a
match in a family relationship is considered more
important than in a co-occurrence relationship.

The Specialist Exponentiated Gradient (SEG)
(Freund et al., 1997) algorithm is adopted to learn
to mix the specialists’ prediction. Given a set
of T training instances {xt} (xt,i denotes the
i-th specialist’s prediction), the SEG algorithm
minimizes the square loss of the outcome ỹ in an
online manner (Algorithm 1). In each learning
iteration, SEG first predict ỹt using the set of awake
experts Et with respect to instance xt. The true
outcome yt (1 for coreference and 0 otherwise) is
then revealed and square loss L is incurred. SEG
then updates the weight distribution p accordingly.

To sum up, the similarity between a pair of

3Though a rich set of similarity features has been built for
matching the relationships, they may not encompass all possible
cases in real world documents. The goal of this work, however,
is to focus on the algorithms instead of knowledge engineering.

Algorithm 1 SEG (Freund et al., 1997)
Input: Initial weight distribution p1;

learning rate η > 0; training set {xt}
1: for t=1 to T do
2: Predict using:

ỹt =
∑

i∈Et
pt

ixt,i∑
i∈Et

pt
i

(1)

3: Observe true label yt and incur square loss
L(ỹt, yt) = (ỹt − yt)2

4: Update weight distribution: for i ∈ Et

pt+1
i = pt

ie
−2ηxt,i(ỹt−yt)

∑
j∈Et

pt
j∑

j∈Et
pt

je
−2ηxt,i(ỹt−yt)

pt+1
i = pt

i, otherwise
5: end for

Output: Model p

WDC chains wi and wj can be represented in a
similarity matrix R, with ri,j computed by the SEG
prediction step using the learned weight distribution
p (Equation 1). A relational clustering algorithm
then clusters entities using R, as we introduce next.

3.4 Relational Clustering

The set of WDC chains to be clustered are
represented by a relational similarity matrix. Most
of the work in clustering, however, is only capable
of clustering numerical object data (e.g. K-means).
Relational clustering algorithms, on the other hand,
cluster objects based on the less direct measurement
of similarity between object pairs. We choose to
use a density based clustering algorithm DBSCAN
(Ester et al., 1996) mainly for two reasons.

First, most clustering algorithm require the
number of clusters K as an input parameter. The
optimal K can apparently vary greatly for names
with different frequency and thus is a sensitive
parameter. Even if a cluster validity index is used
to determine K, it usually requires running the
underlying clustering algorithm multiple times
and hence is inefficient for large scale data.
DBSCAN, as a density based clustering method,
only requires density parameters such as the
radius of the neighborhood ε that are universal for
different datasets. As we show in the experiment,

9



density parameters are relatively insensitive for
disambiguation performance.

Second, the distance metric in relational space
may be non-Euclidean, rendering many clustering
algorithms ineffective (e.g. single linkage clustering
algorithm is known to generate chain-shaped
clusters). Density-based clustering, on the other
hand, can generate clusters of arbitrary shapes since
only objects in dense areas are placed in a cluster.

DBSCAN induces a density-based cluster by
the core objects, i.e. objects having more than
a specified number of other data objects in their
neighborhood of size ε. In each clustering step, a
seed object is checked to determine whether it’s a
core object and if so, it induces other points of the
same cluster using breadth first search (otherwise
it’s considered as a noise point). In interest of
space, we refer readers to (Ester et al., 1996) for
algorithmic details of DBSCAN and now turn
our attention to evaluating the disambiguation
performance of our methods.

4 Experiments

We first formally define the evaluation metrics,
followed by the introduction to the benchmark test
sets and the system’s performance.

4.1 Evaluation Measures
We evaluate the performance of our method using
the standard purity and inverse purity clustering
metrics. Let a set of clusters C = {C1, ..., Cs}
denote the system’s output and a set of categories
D = {D1, ..., Dt} be the gold standard. Both C and
D are partitions of the WDC chains {w1, ..., wn}
(n =

∑
i |Ci| =

∑
j |Dj |). First, the precision of

a cluster Ci w.r.t. a category Dj is defined as,

Precision(Ci, Dj) =
|Ci ∩Dj |
|Ci|

Purity is defined as the weighted average of the
maximum precision achieved by the clusters on one
of the categories,

Purity(C,D) =
s∑

i=1

|Ci|
n

max
j

Precision(Ci, Dj)

Hence purity penalizes putting noise WDC chains in
a cluster. Trivially, the maximum purity (i.e. 1) can

be achieved by making one cluster per WDC chain
(referred to as the one-in-one baseline).

Reversing the role of clusters and categories,

Inverse purity(C,D)
def
= Purity(D, C). Inverse

Purity penalizes splitting WDC chains belonging
to the same category into different clusters. The
maximum inverse purity can be achieved by putting
all chain in one cluster (all-in-one baseline).

Purity and inverse purity are similar to the
precision and recall measures commonly used
in information retrieval. There is a tradeoff
relationship between the two and their harmonic
mean F0.5 is used for performance evaluation.

4.2 Datasets
We evaluate our methods using the benchmark
test collection from the ACL SemEval-2007 web
person search task (WePS hereafter) (Artiles et al.,
2007). The test collection consists of three sets of
documents for 10 different names, sampled from
the English Wikipedia (famous people), participants
of the ACL 2006 conference (computer scientists)
and common names from the US Census data,
respectively. For each ambiguous name, the top 100
documents retrieved from the Yahoo! Search API
were annotated by human annotators according to
the actual entity of the name. This yields on average
45 different real world entities per set and about 3k
documents in total.

We note that the annotation in WePS makes the
simplifying assumption that each document refers to
only one real world person among the namesakes
in question. The CDC task in the perspective of
this paper, however, is to merge the WDC chains
rather than documents. Hence in our evaluation,
we adopt the document label to annotate the WDC
chain from the document that corresponds to the
person name search query. Despite the difference,
the results of the one-in-one and all-in-one baselines
are almost identical to those reported in the WePS
evaluation (F0.5 = 0.61, 0.40 respectively). Hence
the performance reported here is comparable to the
official evaluation results (Artiles et al., 2007).

4.3 Experiment Results
We computed the similarity features from the WDC
chains extracted from the WePS training data and
subsampled the non-coreferent pairs to generate a
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Table 1: Cross document coreference performance
(macro-averaged scores, I-Pur denotes inverse purity).

Test set Method Purity I-Pur F0.5

Wikipedia AT-CDC 0.684 0.725 0.687
ACL-06 AT-CDC 0.792 0.657 0.712
US Census AT-CDC 0.772 0.700 0.722

Global
Average

AT-CDC 0.749 0.695 0.708
One-in-one 1.000 0.482 0.618
All-in-one 0.279 1.000 0.389

training set of around 32k pairwise instances. We
then used the SEG algorithm to learn the weight
distribution model. The macro-averaged cross
document coreference results on the WePS test
sets are reported in Table 1. The F0.5 score of our
CDC system (AT-CDC) is 0.708, comparable to the
test results of the first tier systems in the official
evaluation. The two baselines are also included.
Because the test set is very ambiguous (on average
only two documents per real world entity), the
one-in-one baseline has relatively high F0.5 score.

The Wikipedia, ACL06 and US Census sets
have on average 56, 31 and 50 entities per name
respectively. We notice that as the data set becomes
more ambiguous, purity decreases implying
it’s harder for the system to discard irrelevant
documents from a cluster. The other case is true
for inverse purity. In particular, we are interested in
how the coreference performance changes with the
number of entities per name (which can be viewed
as the ambiguity level of a data set). This is shown
in Figure 1. We observe that in general the harmonic
mean of the purity is fairly stable across different
number of entities per dataset (generally within
the band between 0.6 and 0.8). This is important
because the system’s performance does not vary
greatly with the underlying data characteristics.
There is a particular name (with only one underlying
referent) that appears to be an outlier in performance
in Figure 1. After examining the extraction results,
we notice that the extracted relationships refer to
the same person’s employment, coauthors and geo-
locations. The generated CDC clusters correctly
reflect the different aspects of the person but the
system is unable to link them together due to the
lack of information for merging. This motivates us
to further improve performance in future work.

Figure 2 shows how the coreference performance
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Figure 1: Coreference performance for names with
different number of real world entities.

changes with different density parameter ε. We
observe that as we increase the size of the ε
neighborhood, inverse purity increases indicating
that more correct coreference decisions are made.
On the other hand, purity decreases as more noise
WDC chains appear in clusters. Due to this tradeoff
relationship, the F score is fairly stable with a wide
range of ε values and hence the density parameter is
rather insensitive (compared to, say, the number of
clusters K).

5 Future Work

We see several opportunities to improve the
coreference performance of the proposed methods.

First, though the system’s performance compares
favorably with the WePS submissions, we observe
that purity is higher than inverse purity, indicating
that the system finds it more difficult to link
coreferent documents than to discard noise from
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Figure 2: Coreference performance with different ε.
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clusters. Thus coreferencing based solely on the
information generated by an information extraction
tool may not always be sufficient. For one, it
remains a huge challenge to develop a general
purpose information extraction tool capable of
applying to web documents with widely different
formats, styles, content, etc. Also, even if the
extraction results are perfect, relationships extracted
from different documents may be of different
types (family memberships vs. geo-locations) and
cannot be directly matched against one another. We
are exploring several methods to complement the
extracted relationships using other information:
• Context-aided CDC. The context where an named
entity is extracted can be leveraged for coreference.
The bag of words in the context tend to be less noisy
than that from the entire document. Moreover, we
can use noun phrase chunkers to extract base noun
phrases from the context. These word or phrase level
features can serve as a safenet when the IE tool fails.
• Topic-based CDC. Similar to (Li et al., 2004),
document topics can be used to ameliorate the
sparsity problem. For example, the topics Sport
and Education are important cues for differentiating
mentions of “Michael Jordan”, which may refer to a
basketball player, a computer science professor, etc.

Second, as noted in the top WePS run (Chen and
Martin, 2007), feature development is important in
achieving good coreference performance. We aim
to improve the set of similarity specialists in our
system by leveraging large knowledge bases.

Moreover, although the CDC system is developed
in the web person search context, the methods are
also applicable to other scenarios. For instance,
there is tremendous interest in building structured
databases from unstructured text such as enterprise
documents and news articles for data mining, where
CDC is a key step for “understanding” documents
from disparate sources. We plan to continue our
investigations along these lines.

6 Conclusions

We have presented and implemented an information
extraction based Cross Document Coreference
(CDC) system that employs supervised and
unsupervised learning methods. We evaluated
the proposed methods with experiments on a

large benchmark disambiguation collection, which
demonstrate that the proposed methods compare
favorably with the top runs in the SemEval
evaluation. We believe that by incorporating
information such as context and topic, besides the
extracted relationships, the performance of the CDC
can be further improved. We have outlined research
plans to address this and several other issues.
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