
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 813–821,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Joint Inference for Knowledge Extraction from Biomedical Literature

Hoifung Poon∗
Dept. of Computer Sci. & Eng.

University of Washington
Seattle, WA 98195

hoifung@cs.washington.edu

Lucy Vanderwende
Microsoft Research

Redmond, WA 98052
Lucy.Vanderwende@microsoft.com

Abstract

Knowledge extraction from online reposito-
ries such as PubMed holds the promise of
dramatically speeding up biomedical research
and drug design. After initially focusing on
recognizing proteins and binary interactions,
the community has recently shifted their at-
tention to the more ambitious task of recogniz-
ing complex, nested event structures. State-of-
the-art systems use a pipeline architecture in
which the candidate events are identified first,
and subsequently the arguments. This fails
to leverage joint inference among events and
arguments for mutual disambiguation. Some
joint approaches have been proposed, but they
still lag much behind in accuracy. In this pa-
per, we present the first joint approach for bio-
event extraction that obtains state-of-the-art
results. Our system is based on Markov logic
and adopts a novel formulation by jointly pre-
dicting events and arguments, as well as indi-
vidual dependency edges that compose the ar-
gument paths. On the BioNLP’09 Shared Task
dataset, it reduced F1 errors by more than 10%
compared to the previous best joint approach.

1 Introduction

Extracting knowledge from unstructured text has
been a long-standing goal of NLP and AI. The ad-
vent of the World Wide Web further increases its
importance and urgency by making available an as-
tronomical number of online documents containing
virtually unlimited amount of knowledge (Craven et

∗ This research was conducted during the author’s intern-
ship at Microsoft Research.

al., 1999). A salient example domain is biomedical
literature: the PubMed1 online repository contains
over 18 million abstracts on biomedical research,
with more than two thousand new abstracts added
each day; the abstracts are written in grammatical
English, which enables the use of advanced NLP
tools such as syntactic and semantic parsers.

Traditionally, research on knowledge extraction
from text is primarily pursued in the field of in-
formation extraction with a rather confined goal of
extracting instances for flat relational schemas with
no nested structures (e.g, recognizing protein names
and protein-protein interaction (PPI)). This restric-
tion mainly stems from limitations in available re-
sources and algorithms. The BioNLP’09 Shared
Task (Kim et al., 2009) is one of the first that
faced squarely information needs that are complex
and highly structured. It aims to extract nested
bio-molecular events from research abstracts, where
an event may have variable number of arguments
and may contain other events as arguments. Such
nested events are ubiquitous in biomedical literature
and can effectively represent complex biomedical
knowledge and subsequently support reasoning and
automated discovery. The task has generated much
interest, with twenty-four teams having submitted
their results. The top system by UTurku (Bjorne et
al., 2009) attained the state-of-the-art F1 of 52.0%.

The nested event structures make this task partic-
ularly attractive for applying joint inference. By al-
lowing information to propagate among events and
arguments, joint inference can facilitate mutual dis-
ambiguation and potentially lead to substantial gain

1http://www.ncbi.nlm.nih.gov/pubmed

813



in predictive accuracy. However, joint inference is
underexplored for this task. Most participants ei-
ther reduced the task to classification (e.g., by using
SVM), or used heuristics to combine manual rules
and statistics. The previous best joint approach was
Riedel et al. (2009). While competitive, it still lags
UTurku by more than 7 points in F1.

In this paper, we present the first joint approach
that achieves state-of-the-art results for bio-event ex-
traction. Like Riedel et al. (2009), our system
is based on Markov logic, but we adopted a novel
formulation that models dependency edges in ar-
gument paths and jointly predicts them along with
events and arguments. By expanding the scope of
joint inference to include individual argument edges,
our system can leverage fine-grained correlations to
make learning more effective. On the development
set, by merely adding a few joint inference formu-
las to a simple logistic regression model, our system
raised F1 from 28% to 54%, already tying UTurku.

We also presented a heuristic method to fix errors
in syntactic parsing by leveraging available semantic
information from task input, and showed that this in
turn led to substantial performance gain in the task.
Overall, our final system reduced F1 error by more
than 10% compared to Riedel et al. (2009).

We begin by describing the shared task and re-
lated work. We then introduce Markov logic and our
Markov Logic Network (MLN) for joint bio-event
extraction. Finally, we present our experimental re-
sults and conclude.

2 Bio-Event Extraction

We follow the BioNLP’09 Shared Task (Kim et
al., 2009) on problem setup for bio-event extrac-
tion. A bio-molecular event (bio-event) refers to
the change of state for bio-molecules such as DNAs
and proteins. The goal is to extract these events
from unstructured text such as biomedical abstracts.
For each event, one needs to identify the trigger
words that signifies the event and the theme argu-
ments that undergo the change. In addition, for
regulation events, the cause argument also needs to
be identified if it is present. The task considers
nine event types: Expression, Transcription,
Localization, Phosphorylation, Catabolism,
Binding, Regulation, Positive regulation,

and Negative regulation. Only Binding can
take multiple themes. Regulation events may take
events as arguments. To facilitate evaluation, the
task fixes the type of non-event arguments to pro-
tein and provides ground truth of protein mentions
as input. 2

Like any NLP task, ambiguity is a central prob-
lem. The same event can be expressed in many
variations. For example, a Negative regulation
event may be signified by “inhibition”, “down-
regulation”, “is abrogated by”, to name a few. On
the other hand, depending on the context, the same
expression may represent different events. For ex-
ample, “level” may signify any one of five event
types in the training set, or signify none.

In addition, the nested event structures present
new challenges to knowledge extraction systems. To
recognize a complex event, besides from identifying
the event type and trigger words, one also needs to
identify its arguments and recursively identify their
event structures. A mistake in any part will render a
failure in this extraction.

The interdependencies among events and argu-
ments naturally argue for joint predictions. For
example, given the snippet “the level of VCAM-
1 mRNA”, knowing that “level” might signify an
event helps to recognize the prepositional phrase
(PP) as its theme. Conversely, the presence of the
PP suggests that “level” is likely an event. More-
over, the word “mRNA” in the PP indicates that the
event type is probably Transcription.

Most existing systems adopt a pipeline architec-
ture and reduce the task to independent classifica-
tions of events and arguments. For example, the best
system UTurku (Bjorne et al., 2009) first extracts a
list of candidate triggers with types, and then deter-
mines for each pair of candidate triggers or proteins
whether one is a theme or cause of the other. The
triggers missed in the first stage can never be recov-
ered in the second one. Moreover, since the second
stage is trained with gold triggers as input, any trig-
ger identified in the first stage tends to get at least

2The Shared Task also defines two other tasks (Tasks 2 and
3), which aim either to extract additional arguments (e.g., sites),
or to determine if an event is a negation or speculation. In this
paper, we focus on the core task (Task 1) as it is what most sys-
tems participate in, but our approach can be extended straight-
forwardly to handle the other tasks.

814



one argument, even though it may not be an event at
all. As a result, the authors had to use an ad hoc pro-
cedure to trade off precision and recall for the final
prediction task while training the first-stage extrac-
tor. In addition, each trigger or argument is classified
independently using a multi-class SVM.

While joint inference can potentially improve ac-
curacy, in practice, it is often very challenging to
make it work (Poon and Domingos, 2007). The pre-
vious best joint approach for this task was proposed
by Riedel et al. (2009) (labeled UT+DBLS in Kim
et al. (2009)). Their system is also based on Markov
logic (Domingos and Lowd, 2009). While compet-
itive (ranked fourth in the evaluation), their system
still lags UTurku by more than 7 points in F1.

Most systems, Riedel et al.’s included, classify
each candidate argument path as a whole. A notable
exception is the UTokyo system (Saetre et al., 2009),
which incorporated sequential modeling by adapt-
ing a state-of-the-art PPI system based on MEMM.
But they considered adjacent words in the sentence,
which offered little help in this task, and their system
trailed UTurku by 15 points in F1.

All top systems for event extraction relied heav-
ily on syntactic features. We went one step further
by formulating joint predictions directly on depen-
dency edges. While this leverages sequential corre-
lation along argument paths, it also makes our sys-
tem more prone to the adverse effect of syntactic
errors. Joint syntactic and semantic processing has
received much attention lately (Hajic et al., 2009).
In this paper, we explore using a heuristic method
to correct syntactic errors based on semantic infor-
mation, and show that it leads to significant perfor-
mance gain for event extraction.

3 Markov Logic

In many NLP applications, there exist rich relation
structures among objects, and recent work in statisti-
cal relational learning (Getoor and Taskar, 2007) and
structured prediction (Bakir et al., 2007) has shown
that leveraging these can greatly improve accuracy.
One of the leading frameworks for joint inference
is Markov logic, a probabilistic extension of first-
order logic (Domingos and Lowd, 2009). A Markov
logic network (MLN) is a set of weighted first-order
clauses. Together with a set of constants, it defines a

Markov network with one node per ground atom and
one feature per ground clause. The weight of a fea-
ture is the weight of the first-order clause that gener-
ated it. The probability of a state x in such a network
is given by P (x) = (1/Z) exp (

∑
iwifi(x)), where

Z is a normalization constant,wi is the weight of the
ith clause, fi = 1 if the ith clause is true, and fi = 0
otherwise.

Markov logic makes it possible to compactly
specify probability distributions over complex re-
lational domains. Efficient inference can be per-
formed using MC-SAT (Poon and Domingos, 2006).
MC-SAT is a “slice sampling” Markov chain Monte
Carlo algorithm that uses an efficient satisfiability
solver to propose the next sample. It is orders of
magnitude faster than previous MCMC algorithms
like Gibbs sampling, making efficient sampling pos-
sible on a scale that was previously out of reach.

Supervised learning for Markov logic maximizes
the conditional log-likelihood of query predicates
given the evidence in the train data. This learning
objective is convex and can be optimized using gra-
dient descent, where the gradient is estimated using
MC-SAT.

In practice, it is often difficult to tune the learn-
ing rate, especially when the number of ground-
ings varies widely among clauses (known as ill-
conditioning in numerical optimization). This prob-
lem is particularly severe in relational domains. One
remedy is to apply preconditioning to the gradient.
For example, Poon & Domingos (2007) divided the
global learning rate by the number of true ground-
ings of the corresponding clause in the training data,
whereas Lowd & Domingos (2007) divided it by the
variance of the clause (also estimated using MC-
SAT). The latter can be viewed as approximating
the Hessian with its diagonal, and is guaranteed op-
timal when the weights are not correlated (e.g., in
logistic regression). Lowd & Domingos (2007) also
used a scaled conjugate gradient algorithm to incor-
porate second-order information and further adapt
the search direction.

The open-source Alchemy package (Kok et al.,
2009) provides implementations of existing algo-
rithms for Markov logic.

815



4 An MLN for Joint Bio-Event Extraction

In this section, we present our MLN for joint bio-
event extraction. As standard for this task, we as-
sume that Stanford dependency parses are available
in the input. Our MLN jointly makes the following
predictions: for each token, whether it is a trigger
word (and if so, what is the event type), and for each
dependency edge, whether it is in an argument path
leading to a theme or cause.

To the best of our knowledge, the latter part makes
this formulation a novel one. By breaking the pre-
diction of an argument path into that on individual
dependency edges, it can leverage the correlation
among adjacent edges and make learning more ef-
fective. Indeed, compared to other top systems, our
MLN uses a much simpler set of features, but is still
capable of obtaining state-of-the-art results.3 Com-
putationally, this formulation is also attractive. The
number of predictions is bounded by the number of
tokens and edges, and is linear in sentence length,
rather than quadratic.

Our MLN also handles the regulation events
differently. We notice that events of the three
regulation types often occur in similar contexts, and
sometimes share trigger words (e.g., “involve”).
Therefore, our MLN merges them into a single
event type Regulation, and additionally predicts
the regulation direction (Positive or Negative).
This allows it to pool information shared by the
three types.

Base MLN: The following are the main query pred-
icates we used, along with descriptions:

Event(i): token i signifies an event;

EvtType(i, e): i is of event type e;

RegType(i, r): i is of regulation type r;

InArgPath(i, j, a): the dependency edge from i
to j is in an argument path of type a, with a
being either Theme or Cause.

If event i has type Positive regulation,
both EvtType(i, Regulation) and
RegType(i, Positive) are true. Similarly
for Negative regulation. If the type is

3In future work, we plan to incorporate a much richer set of
features; Markov logic makes such extensions straightforward.

Table 1: Formulas in the base MLN.

Token(i,+t)⇒ EvtType(i,+e)
Token(i,+t)⇒ RegType(i,+r)

Token(j,+t) ∧ Dep(i, j, d)⇒ EvtType(i,+e)
Dep(i, j,+d)⇒ InArgPath(i, j,+a)

Dep(i, j,+d) ∧ Prot(i)⇒ InArgPath(i, j,+a)
Dep(i, j,+d) ∧ Prot(j)⇒ InArgPath(i, j,+a)

Token(i,+t) ∧ Dep(i, j,+d)⇒ InArgPath(i, j,+a)
Token(j,+t) ∧ Dep(i, j,+d)⇒ InArgPath(i, j,+a)

Regulation, only EvtType(i, Regulation) is
true.

The main evidence predicates are:

Token(i, w): token i has word w;

Dep(i, j, d): there is a dependency edge from i to
j with label d; 4

Prot(i): i is a protein.

Our base MLN is a logistic regression model, and
can be succintly captured by eight formulas in Ta-
ble 1. All free variables are implicitly universally
quantified. The “+” notation signifies that the MLN
contains an instance of the formula, with a separate
weight, for each value combination of the variables
with a plus sign. The first three formulas predict
the event type and regulation direction based on the
token word or its neighbor in the dependency tree.
The next five formulas predict whether a depen-
dency edge is in an argument path, based on some
combinations of token word, dependency label, and
whether the nodes are proteins.

By default, we also added the unit formulas:
Theme(x, y), Cause(x, y), EventType(x,+e),
RegType(x,+r), which capture default regularities.

Joint Inference: Like any classification system, the
formulas in the base MLN make independent predic-
tions at inference time. This is suboptimal, because
query atoms are interdependent due to either hard
constraints (e.g., an event must have a type) or soft
correlation (e.g., “increase” signifies an event and
the dobj edge from it leads to a theme). We thus

4For convenience, we include the reverse dependency edges
in the evidence. For example, if Dep(i, j, nn) is true, then so is
Dep(j, i,−nn).

816



augment the base MLN with two groups of joint-
inference formulas. First we incorporate the follow-
ing hard constraints.

Event(i)⇒ ∃t. EvtType(i, t)

EvtType(i, t)⇒ Event(i)

RegType(i, r)⇒ EvtType(i, Regulation)

InArgPath(i, j, Theme)⇒ Event(i)
∨ ∃ k 6= j. InArgPath(k, i, Theme)

InArgPath(i, j, Cause)
⇒ EvtType(i, Regulation)

∨ ∃ k 6= j. InArgPath(k, i, Cause)

InArgPath(i, j, Theme)⇒ Prot(j)
∨ ∃ k 6= i. InArgPath(j, k, Theme)

InArgPath(i, j, Cause)⇒ Event(j) ∨ Prot(j)
∨ ∃ k 6= i. InArgPath(j, k, Cause)

The first three formulas enforce that events must
have a type, that a token assigned an event (regula-
tion) type must be an (regulation) event. The next
four formulas enforce the consistency of argument
path assignments: an argument path must start with
an event, in particular, a cause path must start with a
regulation event; a theme path must eventually trace
to a protein, whereas a cause path may also stop at
an event (which does not have a cause itself). To
avoid looping, we forbid reverse edges in a path.5

Notice that with these constraints, adjacent edges
in the dependency tree correlate with each other
in their InArgPath assignments, much like in an
HMM for linear sequences. Moreover, these assign-
ments correlate with the event and event-type ones;
knowing that i probably signifies an event makes it
easier to detect an argument path, and vice versa.
In addition, events that share partial argument paths
can inform each other through the predictions on
edges. In the experiments section, we will see that
merely adding these hard constraints leads to 26-
point gain in F1.

We also notice that different trigger words may
use different dependencies to start an argument path
of a particular type. For example, for many verbs,
nsubj tends to start a cause path and dobj a theme

5This is violated in some cases, and can be relaxed. We
enforced it for simplicity in this paper.

path. However, for “bind” that signifies a Binding
event, both lead to themes, as in “A binds B”.
Such soft regularities can be captured by a single
joint formula: Token(i,+w) ∧ Dep(i, j,+d) ⇒
Event(i)∧ InArgPath(i, j,+a), which correlates
event and argument type with token and dependency.

Linguistically-Motivated Formulas: Natural lan-
guages often possess systematic syntactic alterna-
tions. For example, for the word “increase”, if both
subject and object are present, as in “A increases
the level of B”, the subject is the cause whereas
the object is the theme. However, if only sub-
ject is present, as in “The level of B increases”,
the subject is the theme. We thus augment the
MLN with a number of context-specific formulas
such as: Token(i, increase)∧ Dep(i, j, nsubj)∧
Dep(i, k, dobj) ∧ Event(i) ∧ Cause(i, j).6

5 Learning And Inference

When training data comprises of many independent
subsets (e.g., individual abstracts), stochastic gradi-
ent descent (SGD) is often a favorable method for
parameter learning. By adopting small and frequent
updates, it can dramatically speed up learning and
sometimes even improve accuracy. Moreover, it eas-
ily scales to large datasets since each time it only
needs to bring a few subsets into the memory.

In this paper, we used SGD to learn weights for
our MLN. During this process, we discovered some
general challenges for applying SGD to relational
domains. For example, the ill-conditioning problem
is particularly severe, and using a single learning
rate either makes learning extremely slow or leads
to divergence. Like Lowd & Domingos (2007),
we combat this by dividing the learning rate by the
variance. However, this still leads to divergence as
learning progresses. The reason is that some weights
are strongly correlated due to the joint formulas, es-
pecially the hard constraints. Therefore, the diag-
onal approximates the Hessian poorly. Inspired by
Poon & Domingos (2007), for each formula, we
count the numbers of true and false groundings in
the train data, and add the smaller of the two plus one
to the variance, before dividing the global rate by it.

6Available at http://research.microsoft.com/-
en-us/people/lucyv/naacl10.

817



We found that this is effective for making learning
stable in our experiments.

To compute the most probable state, we used MC-
SAT to estimate the marginal probability of each
query atom, and returned the ones with probability
above a threshold. This allows us to easily trade off
precision and recall by varying the threshold. To
speed up burn-in, we followed Poon et al. (2009)
and first ran MC-SAT with deterministic annealing
for initialization.

6 Correcting Syntactic Errors With
Semantic Information

Two typical types of syntactic errors are PP-
attachment and coordination. For semantic tasks
such as bio-event extraction, these errors also have
the most adverse impact to performance. For ex-
ample, for the snippet “involvement of p70 acti-
vation in IL-10 up-regulation by gp41”, the Stan-
ford parser makes two errors by attaching “up-
regulation” to “activation” instead of “involvement”,
and attaching “gp41” to “involvement” instead of
“up-regulation”. This makes it very difficult to pre-
dict that “gp41” is the cause of “up-regulation”,
and that “up-regulation” is the theme of “involve-
ment”. For conjucts such as “IL-2 and IL-4 ex-
pressions”, the parser will align “IL-2” with “ex-
pressions”, which makes it difficult to recognize the
expression event on “IL-2”. For nested events like
“gp41 regulates IL-2 and IL-4 expressions”, this re-
sults in three extraction errors: IL-2 expression and
the regulation event on it are missing, whereas an
erroneous regulation event on IL-2 is predicted.

Syntactic errors are often incurred due to lack
of semantic information during parsing (e.g., the
knowledge that IL-2 and IL-4 are both proteins). In
this paper, we used a heuristic method to fix such
errors by incorporating two sources of semantic in-
formation: argument paths in training data and in-
put protein labels. For conjuncts (signified by prefix
conj in Stanford dependencies) between a protein
and a non-protein, we check whether the non-protein
has a protein child, if so, we remove the conjunct and
reattach the first protein to the non-protein. For PP-
attachments, we notice that often the errors can be
fixed by reattaching the child to the closest node that
fits a known attachment pattern (e.g., “up-regulation

by PROTEIN”). We used the following heuristics to
gather attachment patterns. For each argument path
in the training data, if it consists of a single PP edge,
then we add the combination of governor, depen-
dency label, and dependent to the pattern. (Protein
names are replaced with a special string.) If a path
contains multiple edges, but a PP edge attaches to a
word to the left of the event trigger (e.g., “gp41” at-
tached to “involvement”), our system concludes that
the dependent should instead be attached to the trig-
ger and adds the corresponding pattern. In addition,
we added a few default patterns like “involvement
in” and “effect on”. For each PP edge, the candi-
dates for reattachment include the current governor,
and the governor’s parent and all rightmost descen-
dants (i.e., its rightmost child, the rightmost child of
that child, etc.) that are to the left of the dependent.
We reattach the dependent to the closest candidate
that fits an attachment pattern. If there is none, the
attachment remains unchanged. In total, the fraction
of reattachments is about 4%.

7 Experiments

We evaluated our system on the dataset for Task 1
in the BioNLP’09 Shared Task (Kim et al., 2009).
It consists of 800 abstracts for training, 150 for de-
velopment and 260 for test. We conducted feature
development and tuned hyperparameters using the
development set, and evaluated our final system on
test using the online tool provided by the organizers.
(The test annotations are not released to the public.)
All results reported were obtained using the main
evaluation criteria for the shared task.7

7.1 System

Our system first carries out lemmatization and
breaks up hyphenated words.8 It then uses the Stan-
ford parser (de Marneffe et al., 2006) to generate de-
pendencies. For simplicity, if an event contains mul-
tiple trigger words, only the head word is labeled.9

7Namely, “Approximate Span/Approximate Recursive
Matching”. See Kim et al. (2009) for details.

8E.g., “gp41-induced” becomes “gp41” and “induced”, with
a new dependency edge labeled hyphen from “induced” to
“gp41”. To avoid breaking up protein names with hyphens, we
only dehyphenate words with suffix in a small hand-picked list.

9Most events have only one trigger, and the chosen words
only need to lie within an approximate span in evaluation.

818



Table 2: Comparison of our full system with its variants
and with UTurku on the development set.

Rec. Prc. F1
BASE 17.4 67.2 27.7
BASE+HARD 49.4 58.5 53.6
FULL 51.5 60.0 55.5
−LING 50.5 59.6 54.7
−SYN-FIX 48.2 54.6 51.2

UTurku 51.5 55.6 53.5

We implemented our system as an extension to the
Alchemy system (Kok et al., 2009). In particular, we
developed an efficient parallelized implementation
of our stochastic gradient descent algorithm using
the message-passing interface (MPI). For learning,
we used a mini-batch of 20 abstracts and iterated
through the training files twice. For each mini-batch,
we estimated the gradient by running MC-SAT for
300 samples; the initialization was done by running
annealed MC-SAT for 200 samples, with tempera-
ture dropping from 10 to 0.1 at 0.05 decrements.
For inference, we initialized MC-SAT with 1000 an-
nealed samples, with temperature dropping from 10
to 0.1 at 0.01 decrements, we then ran MC-SAT for
5000 samples to compute the marginal probabilities.
This implementation is very efficient: learning took
about 20 minutes in a 32-core cluster with 800 train-
ing files; inference took a few minutes in average.

To obtain the final assignment, we set the query
atoms with probability no less than 0.4 to true and
the rest to false. The threshold is chosen to max-
imize F1 in the development set. To generate the
events, we first found arguments for each trigger i
by gathering all proteins and event triggers that were
accessible from i along an argument path without
first encountering another trigger. For triggers of
base event types, we dropped other triggers from
its argument list. For nested triggers, we generated
events recursively by first processing argument trig-
gers and generating their events, and then generating
events for the parent trigger by including all combi-
nations of argument events. For Binding triggers,
we group its arguments by the first dependency la-
bels in the argument paths, and generate events by a
cross-product of the group members.

Table 3: Per-type recall/precision/F1 for our full system
on the development set.

Rec. Prc. F1
Expression 75.6 79.1 77.3
Transcription 69.5 73.1 71.3
Phosphorylation 87.2 87.2 87.2
Catabolism 85.7 100 92.3
Localization 66.0 85.4 74.5
Binding 39.1 61.8 47.9
Positive regulation 41.8 51.0 46.0
Negative regulation 39.3 56.2 46.3
Regulation 41.4 33.2 36.8

7.2 Results
We first conducted experiments on the develop-
ment set to evaluate the contributions of individual
components. Table 2 compares their performances
along with that of UTurku. The base MLN (BASE)
alone performed rather poorly. Surprisingly, by just
adding the hard constraints to leverage joint infer-
ence (BASE+HARD), our system almost doubled
the F1, and tied UTurku. In addition, adding the
soft joint-inference formula results in further gain,
and our full system (FULL) attained an F1 of 55.5.
This is two points higher than UTurku and the best
reported result on this dataset. The linguistically-
motivated formulas are beneficial, as can seen by
comparing with the system without them (−LING),
although the difference is small. Fixing the syntactic
errors with semantic information, on the other hand,
leads to substantial performance gain. Without do-
ing it (−SYN-FIX), our system suffers an F1 loss of
more than four points. This verifies that the quality
of syntactic analysis is important for event extrac-
tion. The differences between FULL and other vari-
ants (except -LING) are all statistically significant at
1% level using McNemar’s test.

To understand the performance bottlenecks, we
show the per-type results in Table 3 and the re-
sults at the predicate level in Table 4.10 Both trig-
ger and argument-edge detections leave much room
for improvement. In particular, the system pro-
posed many incorrect regulation triggers, partly be-
cause regulation triggers have the most variations

10Numbers in Table 3 refer to events, whereas in Table 4 to
triggers. A trigger may signify multiple events, so numbers in
Table 4 can be smaller than that in Table 3.

819



Table 4: Predicate recall/precision/F1 for our full system
on the development set.

Rec. Prc. F1
Expression 80.1 82.0 81.0
Transcription 68.8 71.0 69.8
Phosphorylation 87.5 92.1 89.7
Catabolism 84.2 100 91.4
Localization 62.5 86.2 72.5
Binding 62.4 82.4 71.1
Positive regulation 65.8 70.7 68.2
Negative regulation 58.3 71.7 64.3
Regulation 61.7 43.4 50.9
All triggers 68.1 71.7 69.9
Argument edge 69.0 71.8 70.4

Table 5: Comparison of our full system with top systems
on the test set.

Rec. Prc. F1
UTurku 46.7 58.5 52.0
JULIELab 45.8 47.5 46.7
ConcordU 35.0 61.6 44.6
Riedel et al. 36.9 55.6 44.4
FULL MLN 43.7 58.6 50.0

among all types. Our system did well in recognizing
Binding triggers, but performed much poorer at the
event level. This indicates that the bottleneck lies in
correctly identifying all arguments for multi-theme
events. Indeed, if we evaluate on individual event-
theme pairs for Binding, the F1 jumps 15 points to
62.8%, with precision 82.7% and recall 50.6%.

Finally, Table 5 compares our system with the top
systems on the test set. Our system trailed UTurku
due to a somewhat lower recall, but substantially
outperformed all other systems. In particular, it re-
duced F1 error by more than 10% compared to the
previous best joint approach by Riedel et al. (2009).

7.3 Error Analysis
Through manual inspection, we found that many re-
maining errors were related to syntactic parses. The
problem is particularly severe when there are nested
or co-occuring PP-attachments and conjuncts (e.g.,
“increased levels of IL-2 and IL-4 mRNA and pro-
tein in the cell”). Our rule-based procedure in Sec-
tion 6 has high precision in fixing some of these er-
rors, but the coverage is limited. It also makes hard

decisions in a preprocessing step, which cannot be
reverted. A principled solution is to resolve syntactic
and semantic ambiguities in a joint model that inte-
grates reattachment decisions and extractions. This
can potentially resolve more syntactic errors, as ex-
traction makes more semantic information available,
and is more robust to reattachment uncertainty.

In some challenging cases, we found further op-
portunities for joint inference. For example, in the
sentence “These cells are deficient in FasL expres-
sion, although their cytokine IL-2 production is nor-
mal”, “normal” signifies a Positive regulation
event over “IL-2 production” because of its contrast
with “deficient”. Such events can be detected by in-
troducing additional joint inference rules that lever-
age syntactic structures such as subclauses.

We also found many cases where the annota-
tions differ for the same expressions. For ex-
ample, “cotransfection with PROTEIN” is some-
times labeled as both an Expression event and a
Positive regulation event, and sometimes not
labeled at all. This occurs more often for regulation
events, which partly explains the low precision for
them.

8 Conclusion

This paper presents the first joint approach for bio-
event extraction that achieves state-of-the-art results.
This is made possible by adopting a novel formula-
tion that jointly predicts events, arguments, as well
as individual dependency edges in argument paths.
Our system is based on Markov logic and can be
easily extended to incorporate additional knowledge
and linguistic features to further improve accuracy.

Directions for future work include: leveraging ad-
ditional joint-inference opportunities, better integra-
tion of syntactic parsing and event extraction, and
applying this approach to other extraction tasks and
domains.

9 Acknowledgements

We give warm thanks to Sebastian Riedel and three
anonymous reviewers for helpful comments and
suggestions.

820



References
G. Bakir, T. Hofmann, B. B. Schölkopf, A. Smola,

B. Taskar, S. Vishwanathan, and (eds.). 2007. Pre-
dicting Structured Data. MIT Press, Cambridge, MA.

Jari Bjorne, Juho Heimonen, Filip Ginter, Antti Airola,
Tapio Pahikkala, and Tapio Salakoski. 2009. Extract-
ing complex biological events with rich graph-based
feature sets. In Proceedings of the BioNLP Workshop
2009.

Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew
McCallum, Tom Mitchell, Kamal Nigam, and Sean
Slattery. 1999. Learning to construct knowledge bases
from the world wide web. Artificial Intelligence.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of the Fifth International Conference on
Language Resources and Evaluation, pages 449–454,
Genoa, Italy. ELRA.

Pedro Domingos and Daniel Lowd. 2009. Markov
Logic: An Interface Layer for Artificial Intelligence.
Morgan & Claypool, San Rafael, CA.

Lise Getoor and Ben Taskar, editors. 2007. Introduction
to Statistical Relational Learning. MIT Press, Cam-
bridge, MA.

Jan Hajic, Massimiliano Ciaramita, Richard Johansson,
Daisuke Kawahara, Maria Antonia Martii, Lluis Mar-
quez, Adam Meyers, Joakim Nivre, Sebastian Pado,
Jan Stepanek, Pavel Stranak, Mihai Surdeanu, Nian-
wen Xue, and Yi Zhang. 2009. The CoNLL-2009
Shared Task: syntactic and semantic dependencies
in multiple languages. In Proceedings of the Thir-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Junichi Tsujii. 2009. Overview of
BioNLP-09 Shared Task on event extraction. In Pro-
ceedings of the BioNLP Workshop 2009.

Stanley Kok, Parag Singla, Matt Richardson, Pedro
Domingos, Marc Sumner, Hoifung Poon, and Daniel
Lowd. 2009. The alchemy system for statistical re-
lational ai. Technical report, Dept. of CSE, Univ. of
Washington, http://alchemy.cs.washington.edu/.

Daniel Lowd and Pedro Domingos. 2007. Efficient
weight learning for markov logic networks. In Pro-
ceedings of the Eleventh European Conference on
Principles and Practice of Knowledge Discovery in
Databases, pages 200–211, Warsaw. Springer.

Hoifung Poon and Pedro Domingos. 2006. Sound and
efficient inference with probabilistic and determinis-
tic dependencies. In Proceedings of the Twenty First
National Conference on Artificial Intelligence, pages
458–463, Boston, MA. AAAI Press.

Hoifung Poon and Pedro Domingos. 2007. Joint infer-
ence in information extraction. In Proceedings of the
Twenty Second National Conference on Artificial In-
telligence, pages 913–918, Vancouver, Canada. AAAI
Press.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation with
log-linear models. In Proceedings of NAACL-HLT,
Boulder, Colorado. ACL.

Sebastian Riedel, Hong-Woo Chun, Toshihisa Takagi,
and Junichi Tsujii. 2009. A markov logic approach
to bio-molecular event extraction. In Proceedings of
the BioNLP Workshop 2009.

Rune Saetre, Makoto Miwa, Kazuhiro Yoshida, and Ju-
nichi Tsujii. 2009. From protein-protein interaction
to molecular event extraction. In Proceedings of the
BioNLP Workshop 2009.

821


