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General Chair Preface

Welcome everyone!

It is my pleasure to welcome you all to Atlanta, Georgia, for the 2013 NAACL Human Language
Technologies conference. This is a great opportunity to reconnect with old friends and make new
acquaintances, learn the latest in your own field and become curious about new areas, and also to
experience Atlanta’s warm southern hospitality. That hospitality starts with Priscilla Rasmussen!
Priscilla thinks about everything that we all take for granted: the registration that just took place, the
rooms in which we sit, the refreshments that keep us energized, and the social events that make this
conference so fun, and many other details that you would miss if they weren’t there. Please introduce
yourself and say hi. Priscilla is the backbone of the NAACL organization. Thank you!

This conference started a year ago, when Hal Daumé III and Katrin Kirchhoff graciously agreed to be
program co-chairs. It is no exaggeration to say how much their dedication has shaped this conference
and how grateful I am for their initiative and hard work. Thank you Hal and Katrin, especially for all
the fun discussion that made the work light and the year go by fast! This conference could not have
happened with you.

Thanks go to the entire organizing committee. As I am writing this to be included in the proceedings, I
am grateful for the fantastic detailed and proactive work by Colin Cherry and Matt Post, the publications
chairs. The tutorials chairs, Katrin Erk and Jimmy Lin, selected, and solicited, 6 tutorials to present in
depth material on some of the diverse topics represented in our community. Chris Dyer and Derrick
Higgins considered which projects shine best when shown as a demonstration. The workshops chairs
for NAACL, Sujith Ravi and Luke Zettlemoyer, worked jointly with ACL and EMNLP to select the
workshops to be held at NAACL. They also worked with ICML 2013 to co-host workshops that bridge
the two communities, in addition to the Joint NAACL/ICML symposium.

Posters from the student research workshop are part of the poster and demonstrations session on
Monday night. This is a great opportunity for the students to be recognized in the community and
to benefit from lively discussion of their presentations (attendees take note!) Annie Louis and Richard
Socher are the student research workshop chairs, and Julia Hockenmaier and Eric Ringger generously
share their wisdom as the faculty advisors. The student research workshop itself will be held on the
first day of workshops. There are so many people who contribute their time to the behind-the-scenes
organization of the conference, without which the conference cannot take place. Asking for money is
probably not a natural fit for anyone, but Chris Brew worked on local sponsorship, and Dan Bikel and
Patrick Pantel worked to obtain sponsorship across the ACL conferences this year - thank you! Jacob
Eisenstein had the more fun role of distributing money as the student volunteer coordinator, and we
thank all of the student volunteers who will be helping to run a smooth conference. Kristy Boyer kept
the communication “short and tweet” using a variety of social media (and old-fashioned media too). An
important part of the behind-the-scenes efforts that enable a conference like NAACL to come together
are the sponsors. We thank all of the sponsors for the contributions to the conference , both for the
general funding made available as well as the specific programs that are funded through sponsorship.
You can read more about these sponsors in our conference handbook.

This year there are several initiatives, and if successful, we hope they’ll be part of NAACL conferences
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in the future. One is to make the proceedings available prior to the conference; we hope you will benefit
from the extra time to read the papers beforehand. Another is for tutorials and all oral presentations to
be recorded on video and made available post-conference. We are also delighted to host presentations,
in both oral and poster formats, from the new Transactions of the ACL journal, to enhance the impact
these will already have as journal publications. Finally, Matt Post is creating a new digital form of
conference handbook to go with our digital age; thanks also go to Alex Clemmer who has prepared
the paper copy that you may be reading right now. We hope you use the #NAACL2013 tag when you
are tweeting about the conference or papers at the conference; together, we’ll be creating a new social
media corpus to explore.

Once again, we are pleased to be co-located with *SEM conference, and the SemEval workshop. We
are lucky to have ICML 2013 organized so close in time and place. Several researchers who span the
two communities have reconvened the Joint NAACL/ICML symposium on June 15, 2013. In addition,
two workshops that address areas of interest to both NAACL and ICML members have been organized
on June 16th, as part of the ICML conference.

NAACL 2013 has given me a great appreciation for the volunteering that is part of our culture. Besides
the organizing committee itself, we are guided by the NAACL executive board, who think about
questions with a multi-year perspective. I also want to recognize the members who first initiated and
now maintain the ACL Anthology, where all of our published work will be available to all in perpetuity,
a fabulous contribution and one that distinguishes our academic community.

Have a fun conference!

Lucy Vanderwende, Microsoft Research
NAACL HLT 2013 General Chair
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Program Chair Preface

Welcome to NAACL HLT 2013 in Atlanta, Georgia. We have an exciting program consisting of six
tutorials, 24 sessions of talks (both for long and short papers), an insane poster madness session that
includes posters from the newly revamped student research workshop, ten workshops and two additional
cross-pollination workshops held jointly with ICML (occurring immediately after NAACL HLT, just
one block away). There are a few innovations in the conference this year, the most noticeable of which
is the twitter channel #naacl2013 and the fact that we are the first conference to host papers published
in the Transactions of the ACL journal – there are six such papers in our program, marked as [TACL].
We are very excited about our two invited talks, one on Monday morning and one Wednesday morning.
The first is by Gina Kuperberg, who will talk about “Predicting Meaning: What the Brain tells us about
the Architecture of Language Comprehension.” The second presenter is our own Kathleen KcKeown,
who will talk about “Natural Language Applications from Fact to Fiction.”

The morning session on Tuesday includes the presentation of best paper awards to two worthy
recipients. The award for Best Short Paper goes to Marta Recasens, Marie-Catherine de Marneffe
and Christopher Potts for their paper “The Life and Death of Discourse Entities: Identifying Singleton
Mentions” The award for Best Student Paper goes to the long paper “Automatic Generation of English
Respellings” by Bradley Hauer and Greg Kondrak. We gratefully acknowledge IBM’s support for
the Student Best Paper Award. Finally, many thanks to the Best Paper Committee for selecting these
excellent papers!

The complete program includes 95 long papers (of which six represent presentations from the journal
Transactions of the ACL, a first for any ACL conference!) and 51 short papers. We are excited that the
conference is able to present such a dynamic array of papers, and would like to thank the authors for
their great work. We worked hard to keep the conference to three parallel sessions at any one time to
hopefully maximize a participant’s ability to see everything she wants! This represents an acceptance
rate of 30% for long papers and 37% for short papers. More details about the distribution across areas
and other statistics will be made available in the NAACL HLT Program Chair report on the ACL wiki:
http://aclweb.org/adminwiki/index.php?title=Reports

The review process for the conference was double-blind, and included an author response period for
clarifying reviewers’ questions. We were very pleased to have the assistance of 350 reviewers, each
of whom reviewed an average of 3.7 papers, in deciding the program. We are especially thankful
for the reviewers who spent time reading the author responses and engaging other reviewers in the
discussion board. Assigning reviewers would not have been possible without the hard work of Mark
Dredze and his miracle assignment scripts. Furthermore, constructing the program would not have been
possible without 22 excellent area chairs forming the Senior Program Committee: Eugene Agichtein,
Srinivas Bangalore, David Bean, Phil Blunsom, Jordan Boyd-Graber, Marine Carpuat, Joyce Chai,
Vera Demberg, Bill Dolan, Doug Downey, Mark Dredze, Markus Dreyer, Sanda Harabagiu, James
Henderson, Guy Lapalme, Alon Lavie, Percy Liang, Johanna Moore, Ani Nenkova, Joakim Nivre, Bo
Pang, Zak Shafran, David Traum, Peter Turney, and Theresa Wilson. Area chairs were responsible
for managing paper assignments, collating reviewer responses, handling papers for other area chairs
or program chairs who had conflicts of interest, making recommendations for paper acceptance or
rejection, and nominating best papers from their areas. We are very grateful for the time and energy
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that they have put into the program.

There are a number of other people that we interacted with who deserve a hearty thanks for the success
of the program. Rich Gerber and the START team at Softconf have been invaluable for helping us with
the mechanics of the reviewing process. Matt Post and Colin Cherry, as publications co-chairs, have
been very helpful in assembling the final program and coordinating the publications of the workshop
proceedings. There are several crucial parts of the overall program that were the responsibility of
various contributors, including Annie Louis, Richard Socher, Julia Hockenmaier and Eric Ringger
(Student Research Workshop chairs, who did an amazing job revamping the SRW); Jimmy Lin and
Katrin Erk (Tutorial Chairs); Luke Zettlemoyer and Sujith Ravi (Workshop Chairs); Chris Dyer and
Derrick Higgins (Demo Chairs); Jacob Eisenstein (Student Volunteer Coordinator); Chris Brew (Local
Sponsorship Chair); Patrick Pantel and Dan Bikel (Sponsorship Chairs); and the new-founded Publicity
chair who handled #naacl2013 tweeting among other things, Kristy Boyer.

We would also like to thank Chris Callison-Burch and the NAACL Executive Board for guidance during
the process. Michael Collins was amazingly helpful in getting the inaugural TACL papers into the
NAACL HLT conference. Priscilla Rasmussen deserves, as always, special mention and warmest thanks
as the local arrangements chair and general business manager. Priscilla is amazing and everyone who
sees her at the conference should thank her.

Finally, we would like to thank our General Chair, Lucy Vanderwende, for both her trust and guidance
during this process. She helped turn the less-than-wonderful parts of this job to roses, and her ability to
organize an incredibly complex event is awe inspiring. None of this would have happened without her.

We hope that you enjoy the conference!

Hal Daumé III, University of Maryland
Katrin Kirchhoff, University of Washington

vi



Organizing Committee

General Conference Chair

Lucy Vanderwende, Microsoft Research

Program Committee Chairs

Hal Daumé III, University of Maryland
Katrin Kirchhoff, University of Washington

Local Arrangements

Priscilla Rassmussen

Workshop Chairs

Luke Zettlemoyer, University of Washington
Sujith Ravi, Google

Tutorial Chairs

Jimmy Lin, University of Maryland
Katrin Erk, University of Texas at Austin

Student Research Workshop

Chairs:
Annie Louis, University of Pennsylvania
Richard Socher, Stanford University

Faculty Advisors:
Julia Hockenmaier, University of Illinois at Urbana-Champaign
Eric Ringger, Brigham Young University

Student Volunteer Coordinator

Jacob Eisenstein, School of Interactive Computing, Georgia Tech

Demonstrations Chairs

Chris Dyer, Carnegie Mellon University
Derrick Higgins, Educational Testing Service

Local Sponsorship Chair

Chris Brew, Educational Testing Service

vii



NAACL Sponsorship Chairs

Patrick Pantel, Microsoft Research
Dan Bikel, Google

Publications Chairs

Matt Post, Johns Hopkins University
Colin Cherry, National Research Council, Canada

Publicity Chair

Kristy Boyer, North Carolina State University

Program Committee
Program Committee Chairs

Hal Daumé III, University of Maryland
Katrin Kirchhoff, University of Washington

Area Chairs

Phonology and Morphology, Word Segmentation
Markus Dreyer (SDL Language Weaver)

Syntax, Tagging, Chunking and Parsing
Joakim Nivre (Uppsala University)
James Henderson (Université de Genève)

Semantics
Percy Liang (Stanford University)
Peter Turney (National Research Council of Canada)

Multimodal NLP
Srinivas Bangalore (AT&T)

Discourse, Dialogue, Pragmatics
David Traum (Institute for Creative Technologies)
Joyce Chai (Michigan State University)

Linguistic Aspects of CL
Vera Demberg (Saarland University)

Summarization
Guy Lapalme (Université de Montréal)

Generation
Johanna Moore (University of Edinburgh)

ML for Language Processing
Phil Blunsom (University of Oxford)
Mark Dredze (Johns Hopkins University)

viii



Machine Translation
Alon Lavie (Carnegie Mellon University)
Marine Carpuat (National Research Council of Canada)

Information Retrieval and QA
Eugene Agichtein (Emory University)

Information Extraction
Doug Downey (Northwestern University)
Sanda Harabagiu (University of Texas at Dallas)

Spoken Language Processing
Zak Shafran (Oregon Health and Science University)

Sentiment Analysis and Opinion Mining
Bo Pang (Cornell University)
Theresa Wilson (Johns Hopkins University)

NLP-enabled Technology
David Bean (TDW)

Document Categorization and Topic Clustering
Jordan Boyd-Graber (University of Maryland)

Social Media Analysis and Processing
Bill Dolan (Microsoft Research)

Language Resources and Evaluation Methods
Ani Nenkova (University of Pennsylvania)

Primary Reviewers

Ahmed Abbasi Chandra Bhagavatula Boxing Chen
Mikhail Ageev Arianna Bisazza Chen Chen
Eneko Agirre Nathan Bodenstab David Chen
Gregory Aist Danushka Bollegala Colin Cherry
Jan Alexandersson Alexandre Bouchard David Chiang
Nicholas Andrews Jordan Boyd-Graber Yejin Choi
David Andrzejewski S.R.K. Branavan Jennifer Chu-Carroll
Gabor Angeli Thorsten Brants Stephen Clark
Yoav Artzi Chris Brew James Clarke
Michael Auli Wray Buntine Martin Cmejrek
Michiel Bacchiani David Burkett Shay Cohen
Anton Bakalov Jill Burstein Trevor Cohn
Kirk Baker Aoife Cahill Kevyn Collins-Thompson
Tyler Baldwin Chris Callison-Burch John Conroy
Marco Baroni Nicoletta Calzolari Aron Culotta
Roberto Basili Nicola Cancedda James Cussens
Beata Beigman Klebanov Sandra Carberry Lyne Da Sylva
Kedar Bellare Claire Cardie Ido Dagan
Patrice Bellot Xavier Carreras Robert Daland
Emily M. Bender Daniel Cer Bhavana Dalvi
Jonathan Berant Nate Chambers William Darling
Justin Betteridge Ming-Wei Chang Dipanjan Das

ix



Pradipto Das Amit Goyal Brian Kingsbury
Eric De La Clergerie Joao Graca Alexandre Klementiev
Steve DeNeefe Brigitte Grau Philipp Koehn
John DeNero Edward Grefenstette Rob Koeling
David DeVault Justin Grimmer Moshe Koppel
Michael Denkowski Carlos Gómez-Rodríguez Alexander Kotov
Jacob Devlin Nizar Habash Jayant Krishnamurthy
Laura Dietz Barry Haddow Sandra Kuebler
Gregory Druck Eva Hajicova Marco Kuhlmann
Lan Du John Hale Jonas Kuhn
Chris Dyer David Hall Roland Kuhn
Koji Eguchi Keith Hall Seth Kulick
Vladimir Eidelman Greg Hanneman Shankar Kumar
Jacob Eisenstein Claudia Hauff Oren Kurland
Jason Eisner Xiaodong He Tom Kwiatkowski
Ahmad Emami Kenneth Heafield Yoong Keok Lee
Andrea Esuli James Henderson Maider Lehr
Anthony Fader John Henderson Alessandro Lenci
Atefeh Farzindar Ulf Hermjakob Gregor Leusch
Anna Feldman Derrick Higgins Rivka Levitan
Radu Florian Graeme Hirst Fangtao Li
George Foster Anna Hjalmarsson Mu Li
Jennifer Foster Hieu Hoang Shoushan Li
Mary Ellen Foster Julia Hockenmaier Percy Liang
Bob Frank Matthew Hoffman Jimmy Lin
Dayne Freitag Kristy Hollingshead Xiao Ling
Michel Galley Yuening Hu Diane Litman
Michael Gamon Fei Huang Ding Liu
Sudeep Gandhe Liang Huang Qun Liu
Kavita Ganesan Minlie Huang Yang Liu
Claire Gardent Zhongqiang Huang Adam Lopez
Matt Gardner Rebecca Hwa Annie Louis
Niyu Ge Diana Inkpen Xiaofei Lu
Matthew Gerber Ann Irvine Yue Lu
George Giannakopoulos Abe Ittycheriah Michael Lucas
Daniel Gildea Jagadeesh Jagarlamudi Xiaoqiang Luo
Daniel Gillick Jiarong Jiang Klaus Macherey
Kevin Gimpel Howard Johnson Wolfgang Macherey
Filip Ginter Michael Johnston Nitin Madnani
Yoav Goldberg David Jurgens Suresh Manandhar
Dan Goldwasser Alexander Kain Gideon Mann
Sharon Goldwater Pallika Kanani Lluis Marquez
Dave Golland Anna Kazantseva Erwin Marsi
Kyle Gorman Alistair Kennedy Andre Martins
Cyril Goutte Tracy Holloway King Yuval Marton

x



Sameer Maskey Hoifung Poon Keith Stevens
Yuji Matsumoto Andrei Popescu-Belis Mark Stevenson
Evgeny Matusov Matthew Purver Matthew Stone
Arne Mauser Chris Quirk Veselin Stoyanov
Diana McCarthy Reinhard Rapp Fabian Suchanek
David McClosky Roi Reichart Ang Sun
Arul Menezes Ehud Reiter Mihai Surdeanu
Florian Metze Jason Riesa Jun Suzuki
Donald Metzler Stefan Riezler Stan Szpakowicz
Haitao Mi Ellen Riloff Partha Talukdar
Rada Mihalcea Eric Ringger Christoph Tillmann
Minel Minel Alan Ritter Ivan Titov
Margaret Mitchell Brian Roark Kristina Toutanova
Yusuke Miyao Antonio Roque Reut Tsarfaty
Saif Mohammad Carolyn Rose Oren Tsur
Taesun Moon Andrew Rosenberg Benjamin Van Durme
Robert Moore Markus Saers Josef van Genabith
Roser Morante Alicia Sagae Vincent Vanhoucke
Louis-Philippe Morency Kenji Sagae Enrique Vidal
Preslav Nakov Horacio Saggion Karthik Visweswariah
Nava Nava Saurav Sahay Adam Vogel
Roberto Navigli Mark Sammons Stephan Vogel
Mark-Jan Nederhof Murat Saraclar Xiaojun Wan
Hwee Tou Ng Anoop Sarkar Haifeng Wang
Vincent Ng Giorgio Satta Taro Watanabe
Patrick Nguyen Roser Saurí Bonnie Webber
Viet-An Nguyen Asad Sayeed David Weir
Joakim Nivre David Schlangen Michael White
Brendan O’Connor Judith Schlesinger Jan Wiebe
Stephan Oepen Lane Schwartz Shuly Wintner
Miles Osborne Holger Schwenk Kristian Woodsend
Myle Ott Hendra Setiawan Bing Xiang
Karolina Owczarzak Zak Shafran Peng Xu
Martha Palmer Libin Shen Hui Yang
Sinno J. Pan Wade Shen Muyun Yang
Bo Pang Michel Simard Yi Yang
Rebecca J. Passonneau Sameer Singh Tae Yano
Siddharth Patwardhan Jason Smith Limin Yao
Michael Paul Nathaniel Smith Mahsa Yarmohammadi
Lisa Pearl Noah A. Smith Alexander Yates
Ted Pedersen Swapna Somasundaran Wen-tau Yih
Gerald Penn Lucia Specia Yisong Yue
Slav Petrov Valentin Spitkovsky Rabih Zbib
Thierry Poibeau Caroline Sporleder Richard Zens
Heather Pon-Barry Vivek Srikumar Luke Zettlemoyer

xi



Ke Zhai Shiqi Zhao Xiaodan Zhu
Congle Zhang Tiejun Zhao Chengqing Zong
Lei Zhang Bowen Zhou Geoffrey Zweig
Min Zhang Jun Zhu

Secondary Reviewers

JH Francisco Guzman Xavier Tannier
Karteek Addanki Robbie Haertel Svitlana Volkova
Neil Ashton Khairun Nisa Hassanali Haochang Wang
Daniel Blanchard Kriste Krstovski Xinglong Wang
Hailong Cao Jun Lang Mo Yu
Dave Carter Wang Ling Feifei Zhai
Glen Coppersmith Hito Matsushita Bo Zhao
Daniel Dahlmeier Hans Moen Kai Zhao
David Etter Kevin Seppi Xiaoning Zhu
Paul Felt Jun Sun

xii



Table of Contents

Model With Minimal Translation Units, But Decode With Phrases
Nadir Durrani, Alexander Fraser and Helmut Schmid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Beyond Left-to-Right: Multiple Decomposition Structures for SMT
Hui Zhang, Kristina Toutanova, Chris Quirk and Jianfeng Gao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Improved Reordering for Phrase-Based Translation using Sparse Features
Colin Cherry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Simultaneous Word-Morpheme Alignment for Statistical Machine Translation
Elif Eyigöz, Daniel Gildea and Kemal Oflazer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Multi-faceted Event Recognition with Bootstrapped Dictionaries
Ruihong Huang and Ellen Riloff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Named Entity Recognition with Bilingual Constraints
Wanxiang Che, Mengqiu Wang, Christopher D. Manning and Ting Liu. . . . . . . . . . . . . . . . . . . . . .52

Minimally Supervised Method for Multilingual Paraphrase Extraction from Definition Sentences on the
Web

Yulan Yan, Chikara Hashimoto, Kentaro Torisawa, Takao Kawai, Jun’ichi Kazama and Stijn De
Saeger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Relation Extraction with Matrix Factorization and Universal Schemas
Sebastian Riedel, Limin Yao, Andrew McCallum and Benjamin M. Marlin . . . . . . . . . . . . . . . . . . 74

Extracting the Native Language Signal for Second Language Acquisition
Ben Swanson and Eugene Charniak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

An Analysis of Frequency- and Memory-Based Processing Costs
Marten van Schijndel and William Schuler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Cross-Lingual Semantic Similarity of Words as the Similarity of Their Semantic Word Responses
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Elif Eyigöz, Daniel Gildea and Kemal Oflazer
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Wanxiang Che, Mengqiu Wang, Christopher D. Manning and Ting Liu

11:30-11:55 Minimally Supervised Method for Multilingual Paraphrase Extraction from Defini-
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Yulan Yan, Chikara Hashimoto, Kentaro Torisawa, Takao Kawai, Jun’ichi Kazama
and Stijn De Saeger

11:55-12:20 Relation Extraction with Matrix Factorization and Universal Schemas
Sebastian Riedel, Limin Yao, Andrew McCallum and Benjamin M. Marlin
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2:25-2:50 Drug Extraction from the Web: Summarizing Drug Experiences with Multi-Dimensional
Topic Models
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2:50-3:15 Towards Topic Labeling with Phrase Entailment and Aggregation
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Rathinavelu Chengalvarayan
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Seyed Abolghasem Mirroshandel, Alexis Nasr and Benoît Sagot

Large-Scale Discriminative Training for Statistical Machine Translation Using Held-Out
Line Search
Jeffrey Flanigan, Chris Dyer and Jaime Carbonell
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9:15–9:25 Best paper awards

Best Short Paper
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11:15-11:30 Translation Acquisition Using Synonym Sets
Daniel Andrade, Masaki Tsuchida, Takashi Onishi and Kai Ishikawa
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T1b: Sentiment Analysis and Topic Modeling

10:45-11:00 A Multi-Dimensional Bayesian Approach to Lexical Style
Julian Brooke and Graeme Hirst

11:00-11:15 Unsupervised Domain Tuning to Improve Word Sense Disambiguation
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2:00-2:15 Exploiting the Scope of Negations and Heterogeneous Features for Relation Extraction: A
Case Study for Drug-Drug Interaction Extraction
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Xinhao Wang, Keelan Evanini and Klaus Zechner

3:00-3:15 Disfluency Detection Using Multi-step Stacked Learning
Xian Qian and Yang Liu

3:15–3:45 Break
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4:10-4:35 Using Semantic Unification to Generate Regular Expressions from Natural Language
Nate Kushman and Regina Barzilay

4:35-5:00 Probabilistic Frame Induction
Jackie Chi Kit Cheung, Hoifung Poon and Lucy Vanderwende

5:00–5:25 A Quantum-Theoretic Approach to Distributional Semantics
William Blacoe, Elham Kashefi and Mirella Lapata
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T3b: Information Extraction

3:45-4:10 Answer Extraction as Sequence Tagging with Tree Edit Distance
Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch and Peter Clark
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Hyun-Je Song, Junho Go, Seong-Bae Park and Se-Young Park
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Marta Recasens, Matthew Can and Daniel Jurafsky

4:10-4:35 Global Inference for Bridging Anaphora Resolution
Yufang Hou, Katja Markert and Michael Strube
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Jennifer D’Souza and Vincent Ng

5:00-5:25 Improved Information Structure Analysis of Scientific Documents Through Discourse and
Lexical Constraints
Yufan Guo, Roi Reichart and Anna Korhonen

7:00–9:30 Banquet
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10:10–10:40 Break

W1a: Machine Translation

10:40-11:05 Adaptation of Reordering Models for Statistical Machine Translation
Boxing Chen, George Foster and Roland Kuhn

11:05-11:30 Multi-Metric Optimization Using Ensemble Tuning
Baskaran Sankaran, Anoop Sarkar and Kevin Duh
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Abstract

N-gram-based models co-exist with their
phrase-based counterparts as an alternative
SMT framework. Both techniques have pros
and cons. While the N-gram-based frame-
work provides a better model that captures
both source and target contexts and avoids
spurious phrasal segmentation, the ability to
memorize and produce larger translation units
gives an edge to the phrase-based systems dur-
ing decoding, in terms of better search per-
formance and superior selection of transla-
tion units. In this paper we combine N-gram-
based modeling with phrase-based decoding,
and obtain the benefits of both approaches.
Our experiments show that using this combi-
nation not only improves the search accuracy
of the N-gram model but that it also improves
the BLEU scores. Our system outperforms
state-of-the-art phrase-based systems (Moses
and Phrasal) and N-gram-based systems by
a significant margin on German, French and
Spanish to English translation tasks.

1 Introduction

Statistical Machine Translation advanced from
word-based models (Brown et al., 1993) towards
more sophisticated models that take contextual in-
formation into account. Phrase-based (Och and
Ney, 2004; Koehn et al., 2003) and N-gram-based
(Mariño et al., 2006) models are two instances of
such frameworks. While the two models have some
common properties, they are substantially different.

∗Much of the work presented here was carried out while the
first author was at the University of Stuttgart.

Phrase-based systems employ a simple and effec-
tive machinery by learning larger chunks of trans-
lation called phrases1. Memorizing larger units en-
ables the phrase-based model to learn local depen-
dencies such as short reorderings, idioms, insertions
and deletions, etc. The model however, has the fol-
lowing drawbacks: i) it makes independence as-
sumptions over phrases ignoring the contextual in-
formation outside of phrases ii) it has issues han-
dling long-distance reordering iii) it has the spurious
phrasal segmentation problem which allows multi-
ple derivations of a bilingual sentence pair having
different model scores for each segmentation.

Modeling with minimal translation units helps ad-
dress some of these issues. The N-gram-based SMT
framework is based on tuples. Tuples are mini-
mal translation units composed of source and target
cepts2. N-gram-based models are Markov models
over sequences of tuples (Mariño et al., 2006; Crego
and Mariño, 2006) or operations encapsulating tu-
ples (Durrani et al., 2011). This mechanism has sev-
eral useful properties. Firstly, no phrasal indepen-
dence assumption is made. The model has access
to both source and target context outside of phrases.
Secondly the model learns a unique derivation of a
bilingual sentence given its alignment, thus avoiding
the spurious segmentation problem.

Using minimal translation units, however, results
in a higher number of search errors because of i)

1A phrase-pair in PBSMT is a sequence of source and target
words that is translation of each other, and is not necessarily a
linguistic constituent. Phrases are built by combining minimal
translation units and ordering information.

2A cept is a group of words in one language that is translated
as a minimal unit in one specific context (Brown et al., 1993).
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poor translation selection, ii) inaccurate future-cost
estimates and iii) incorrect early pruning of hypothe-
ses that would produce better model scores if al-
lowed to continue. In order to deal with these
problems, search is carried out only on a graph
of pre-calculated orderings, and ad-hoc reordering
limits are imposed to constrain the search space
(Crego et al., 2005; Crego and Mariño, 2006), or
a higher beam size is used in decoding (Durrani
et al., 2011). The ability to memorize and pro-
duce larger translation chunks during decoding, on
the other hand, gives a distinct advantage to the
phrase-based system during search. Phrase-based
systems i) have access to uncommon translations,
ii) do not require higher beam sizes, iii) have more
accurate future-cost estimates because of the avail-
ability of phrase-internal language model context
before search is started. To illustrate this consider
the German-English phrase-pair “schoß ein Tor –
scored a goal”, composed from the tuples (cept-
pairs) “schoß – scored”, “ein – a” and “Tor – goal”.
It is likely that the N-gram system does not have
the tuple “schoß – scored” in its n-best translation
options because “scored” is an uncommon transla-
tion for “schoß” outside the sports domain. Even if
“schoß – scored” is hypothesized, it will be ranked
quite low in the stack until “ein” and “Tor” are gen-
erated in the next steps. A higher beam is required
to prevent it from getting pruned. Phrase-based sys-
tems, on the other hand, are likely to have access to
the phrasal unit “schoß ein Tor – scored a goal” and
can generate it in a single step. Moreover, a more ac-
curate future-cost estimate can be computed because
of the available context internal to the phrase.

In this work, we extend the N-gram model, based
on operation sequences (Durrani et al., 2011), to
use phrases during decoding. The main idea is to
study whether a combination of modeling with min-
imal translation units and using phrasal information
during decoding helps to solve the above-mentioned
problems.

The remainder of this paper is organized as fol-
lows. The next two sections review phrase-based
and N-gram-based SMT. Section 2 provides a com-
parison of phrase-based and N-gram-based SMT.
Section 3 summarizes the operation sequence model
(OSM), the main baseline for this work. Section
4 analyzes the search problem when decoding with

Figure 1: Different Segmentations of a Bilingual Sen-
tence Pair

minimal units. Section 5 discusses how information
available in phrases can be used to improve search
performance. Section 6 presents the results of this
work. We conducted experiments on the German-to-
English and French-to-English translation tasks and
found that using phrases in decoding improves both
search accuracy and BLEU scores. Finally we com-
pare our system with two state-of-the-art phrase-
based systems (Moses and Phrasal) and two state-
of-the-art N-gram-based systems (Ncode and OSM)
on standard translation tasks.

2 Previous Work
Phrase-based and N-gram-based SMT are alter-
native frameworks for string-to-string translation.
Phrase-based SMT segments a bilingual sentence
pair into phrases that are continuous sequences of
words (Och and Ney, 2004; Koehn et al., 2003)
or discontinuous sequences of words (Galley and
Manning, 2010). These phrases are then reordered
through a lexicalized reordering model that takes
into account the orientation of a phrase with respect
to its previous phrase (Tillmann and Zhang, 2005)
or block of phrases (Galley and Manning, 2008).

There are several drawbacks of the phrase-based
model. Firstly it makes an independence assump-
tion over phrases, according to which phrases are
translated independently of each other, thus ignor-
ing the contextual information outside of the phrasal
boundary. This problem is corrected by the monolin-
gual language model that takes context into account.
But often the language model cannot compensate for
the dispreference of the translation model for non-
local dependencies. The second problem is that the
model is unaware of the actual phrasal segmentation
of a sentence during training. It therefore learns all
possible ways of segmenting a bilingual sentence.
Different segmentations of a bilingual sentence re-
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sult in different probability scores for the translation
and reordering models, causing spurious ambiguity
in the model. See Figure 1. In the first segmentation,
the model learns the lexical and reordering proba-
bilities of the phrases “sie würden – they would”
and “gegen ihre kampagne abstimmen – vote against
your campaign”. In the second segmentation, the
model learns the lexical and reordering probabilities
of the phrases “sie – they” “würden – would”, “ab-
stimmen – vote”, “gegen ihre kampagne – against
your campaign”. Both segmentations result in dif-
ferent translation and reordering scores. This kind
of ambiguity in the model subsequently results in
the presence of many different equivalent segmen-
tations in the search space. Also note that the two
segmentations contain different information. From
the first segmentation the model learns the depen-
dency between the verb “abstimmen – vote” and the
phrase “gegen ihre kampagne – against your cam-
paign”. The second segmentation allows the model
to capture the reordering of the complex verb pred-
icate “würden – would” and “abstimmen – vote” by
learning that the verb “abstimmen – vote” is discon-
tinuous with respect to the auxiliary. This informa-
tion cannot be captured in the first segmentation be-
cause of the phrasal independence assumption and
stiff phrasal boundaries. The model loses one of the
dependencies depending upon which segmentation
it chooses during decoding.

N-gram-based SMT is an instance of a joint
model that generates source and target strings to-
gether in bilingual translation units called tuples.
Tuples are essentially phrases but they are atomic
units that cannot be decomposed any further. This
condition of atomicity results in a unique segmen-
tation of the bilingual sentence pair given its align-
ments. The model does not make any phrasal inde-
pendence assumption and generates a tuple by look-
ing at a context of n − 1 previous tuples (or opera-
tions). This allows the N-gram model to model all
the dependencies through a single derivation.

The main drawback of N-gram-based SMT is its
poor search mechanism which is inherent from us-
ing minimal translation units during search. Decod-
ing with tuples has problems with a high number
of search errors caused by lower translation cover-
age, inaccurate future-cost estimation and pruning
of correct hypotheses (see Section 4.2 for details).

Crego and Mariño (2006) proposed a way to couple
reordering and search through POS-based rewrite
rules. These rules are learned during training when
units with crossing alignments are unfolded through
source linearization to form minimal tuples. For ex-
ample, in Figure 1, the N-gram-based MT will lin-
earize the word sequence “gegen ihre kampagne ab-
stimmen” to “abstimmen gegen ihre kampagne”, so
that it is in the same order as the English words.
It also learns a POS-rule “IN PRP NN VB → VB
IN PRP NN”. The POS-based rewrite rules serve
to precompute the orderings that are hypothesized
during decoding. Coupling reordering and search
allows the N-gram model to arrange hypotheses in
2m stacks (for an m word source sentence), each
containing hypotheses that cover exactly the same
foreign words. This removes the need for future-
cost estimation3. Secondly, memorizing POS-based
rules enables phrase-based like reordering, however
without lexical selection. There are three drawbacks
of this approach. Firstly, lexical generation and re-
ordering are decoupled. Search is only performed on
a small number of reorderings, pre-calculated using
the source side and completely ignoring the target-
side. And lastly, the POS-based rules face data spar-
sity problems especially in the case of long distance
reorderings.

Durrani et al. (2011) recently addressed these
problems by proposing an operation sequence N-
gram model which strongly couples translation and
reordering, hypothesizes all possible reorderings
and does not require POS-based rules. Represent-
ing bilingual sentences as a sequence of operations
enables them to memorize phrases and lexical re-
ordering triggers like PBSMT. However, using min-
imal units during decoding and searching over all
possible reorderings means that hypotheses can no
longer be arranged in 2m stacks. The problem of
inaccurate future-cost estimates resurfaces resulting
in more search errors. A higher beam size of 500 is
therefore used to produce translation units in com-
parison to phrase-based systems. This, however,
still does not eliminate all search errors. This pa-
per shows that using phrases instead of cepts in de-

3Using m stacks with future-cost estimation is a more effi-
cient solution but is not used “due to the complexity of accu-
rately computing these estimations in the N-gram architecture”
(Crego et al., 2011).
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coding improves the search accuracy and translation
quality. It also shows that using some phrasal in-
formation in cept-based decoding captures some of
these improvements.

3 Operation Sequence Model

The N-gram model with integrated reordering mod-
els a sequence of operations obtained through the
transformation of a bilingual sentence pair. An op-
eration can either be to i) generate a sequence of
source and target words, ii) to insert a gap as a place-
holder for skipped words, iii) or to jump forward and
backward in a sentence to translate words discon-
tinuously. The translate operation Generate(X,Y)
encapsulates the translation tuple (X,Y). It gener-
ates source and target translations simultaneously4.
This is similar to N-gram-based SMT except that
the tuples in the N-gram-based model are generated
monotonically, whereas in this case lexical genera-
tion and reordering information is strongly coupled
in an operation sequence.

Consider the phrase pair:
The model memorizes it

through the sequence:
Generate(Wie, What is)→ Gap→ Generate (Sie,

your)→ Jump Back (1)→Generate (heissen, name)
Let O = o1, . . . , oj−1 be a sequence of opera-

tions as hypothesized by the translator to generate
the bilingual sentence pair 〈F,E〉 with an alignment
function A. The translation model is defined as:

p(F,E, A) = p(oJ
1 ) =

J∏
j=1

p(oj |oj−n+1, ..., oj−1)

where n indicates the amount of context used. The
translation model is implemented as an N-gram
model of operations using SRILM-Toolkit (Stol-
cke, 2002) with Kneser-Ney smoothing. A 9-gram
model is used. Several count-based features such as
gap and open gap penalties and distance-based fea-
tures such as gap-width and reordering distance are
added to the model, along with the lexical weighting
and length penalty features in a standard log-linear
framework (Durrani et al., 2011).

4The generation is carried out in the order of the target lan-
guage E.

4 Search
4.1 Overview of Decoding Framework
The decoding framework used in the operation se-
quence model is based on Pharaoh (Koehn, 2004a).
The decoder uses beam search to build up the trans-
lation from left to right. The hypotheses are ar-
ranged in m stacks such that stack i maintains hy-
potheses that have already translated i many foreign
words. The ultimate goal is to find the best scor-
ing hypothesis, that has translated all the words in
the foreign sentence. The overall process can be
roughly divided into the following steps: i) extrac-
tion of translation units ii) future-cost estimation, iii)
hypothesis extension iv) recombination and pruning.

During the hypothesis extension each extracted
phrase is translated into a sequence of operations.
The reordering operations (gaps and jumps) are gen-
erated by looking at the position of the translator,
the last foreign word generated etc. (Refer to Algo-
rithm 1 in Durrani et al. (2011)). The probability of
an operation depends on the n − 1 previous opera-
tions. The model backs-off to the smaller n-grams
of operations if the full history is unknown. We use
Kneser-Ney smoothing to handle back-off5.

4.2 Drawbacks of Cept-based Decoding
One of the main drawbacks of the operation se-
quence model is that it has a more difficult search
problem than the phrase-based model. The opera-
tion model, although based on minimal translation
units, can learn larger translation chunks by mem-
orizing a sequence of operations. However, using
cepts during decoding has the following drawbacks:
i) the cept-based decoder does not have access to
all the translation units that a phrase-based decoder
uses as part of a larger phrase. ii) it requires a higher
beam size to prevent early pruning of better hypothe-
ses that lead toward higher model scores when al-
lowed to continue and iii) it uses worse future-cost
estimates than the phrase-based decoder.

Recall the example from the last section. For
the cept-based decoder to generate the same phrasal
translation, it requires three separate tuple transla-
tions “Wie – what is”, “Sie – your” and “heißen –
name”. Here we are faced with three challenges.

5We also tried Witten-Bell and Good Turing methods of dis-
counting and found Kneser-Ney smoothing to produce the best
results.
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Translation Coverage: The first problem is that
the N-gram model does not have the same cov-
erage of translation options. The English cepts
“what is”, “your” and “name” are not good candi-
date translations for the German cepts “Wie”, “Sie”
and “heißen”, respectively. When extracting tuple
translations for these cepts from the Europarl data
for our system, the tuple “Wie – what is” is ranked
124th, “heißen – name” is ranked 56th, and “Sie –
your” is ranked 9th in the list of n-best translation
candidates. Typically only the 20 best translation
options are used, to reduce the decoding time, and
such phrasal units with less frequent cept transla-
tions are never hypothesized in the N-gram-based
systems. The phrase-based system on the other hand
can extract the phrase “Wie heißen Sie – what is
your name” even if it is observed only once dur-
ing training. A similar problem is also reported in
Costa-jussà et al. (2007). When trying to repro-
duce the sentences in the n-best translation output
of the phrase-based system, the N-gram-based sys-
tem was only able to produce 37.5% of the sen-
tences in the Spanish-to-English and 37.2% in the
English-to-Spanish translation tasks. In compar-
ison the phrase-based system was able to repro-
duce 57.5% and 48.6% of the sentences in the n-
best translation output of the Spanish-to-English and
English-to-Spanish N-gram-based systems.

Larger Beam Size: A related problem is that a
higher beam size is required in cept-based decod-
ing to prevent uncommon translations from getting
pruned. The phrase-based system can generate the
phrase-pair “Wie heißen Sie – what is your name”
in a single step placing it directly into the stack three
words to the right. The cept-based decoder generates
this phrase in three stacks with the tuple translations
“Wie – What is”, “Sie – your” and “heißen – name”.
A very large stack size is required during decoding
to prevent the pruning of “Wie – What is” which is
ranked quite low in the stack until the tuple “Sie –
your” is hypothesized in the next stack. Costa-jussà
et al. (2007) reports a significant drop in the perfor-
mance of N-gram-based SMT when a beam size of
10 is used instead of 50 in their experiments. For the
(cept-based) operation sequence model, Durrani et
al. (2011) required a stack size of 500. In compari-
son, the translation quality achieved by phrase-based

SMT remains the same when varying the beam size
between 5 and 50.

Future-Cost Estimation: A third problem is
caused by inaccurate future-cost estimation. Using
phrases helps phrase-based SMT to better estimate
the future language model cost because of the larger
context available, and allows the decoder to capture
local (phrase-internal) reorderings in the future cost.
In comparison the future cost for tuples is mostly un-
igram probabilities. The future-cost estimate for the
phrase pair “Wie heißen Sie – What is your name”
is estimated by calculating the cost of each feature.
The language model cost, for example, is estimated
in the phrase-based system as follows:

plm = p(What)× p(is|What)× p(your|What is)

× p(name|What is your)

The cost of the direct phrase translation probabil-
ity, one of the features used in the phrase translation
model, is estimated as:

ptm = p(What is your name|Wie heißen Sie)

Phrase-based SMT is aware during the prepro-
cessing step that the words “Wie heißen Sie” may
be translated as a phrase. This is helpful for estimat-
ing a more accurate future cost because the phrase-
internal context is already available. The same is not
true for the operation sequence model, to which only
minimal units are available. The operation model
does not have the information that “Wie heißen Sie”
may be translated as a phrase during decoding. The
future-cost estimate available to the operation model
for the span covering “Wie heißen Sie” will have un-
igram probabilities for both the translation and lan-
guage model:

plm = p(What)× p(is|What)× p(your)× p(name)

ptm = p(Generate(Wie, What is))× p(Generate

(heißen,name))× p(Generate(Sie, your))

Thus the future-cost estimate in the operation
model is much worse than that of the phrase-based
model. The poor future-cost estimation leads to
search errors, causing a drop in the translation qual-
ity. A more accurate future-cost estimate for the
translation model cost would be:
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ptm = p(Generate(Wie,What is))× p(Insert Gap|C)

× p(Generate(Sie,your)|C)× p(Jump Back(1)|C)

p(Generate(heißen,name)|C)

where C is the context, i.e., the n−1 previously gen-
erated operations. The future-cost estimates com-
puted in this manner are much more accurate be-
cause they not only consider context, but also take
the reordering operations into account.

5 N-gram Model with Phrase-based
Decoding

In the last section we discussed the disadvantages of
using cepts during search in a left-to-right decoding
framework. We now define a method to empirically
study the mentioned drawbacks and whether using
information available in phrase-pairs during decod-
ing can help improve search accuracy and translation
quality.

5.1 Training
We extended the training steps in Durrani et al.
(2011) to extract a phrase lexicon from the paral-
lel data. We extract all phrase pairs of length 6 and
below, that are consistent (Och et al., 1999) with
the word alignments. Only continuous phrases as
used in a traditional phrase-based system are ex-
tracted thus allowing only inside-out (Wu, 1997)
type of alignments. The future cost of each fea-
ture component used in the log-linear model is cal-
culated. The operation sequence required to hypoth-
esize each phrase is generated and its future cost is
calculated. The future costs of other features such
as language models, lexicalized probability features,
etc. are also estimated. The estimates of the count-
based reordering penalties (gap penalty and open
gap penalty) and the distance-based features (gap-
width and reordering distance) could not be esti-
mated previously with cepts but are available when
using phrases.

5.2 Decoding
We extended the decoder developed by Durrani et al.
(2011) and tried three ideas. In our primary experi-
ments we enabled the decoder to use phrases instead
of cepts. This allows the decoder to i) use phrase-
internal context when computing the future-cost es-

timates, ii) hypothesize translation options not avail-
able to the cept-based decoder iii) cover multiple
source words in a single step subsequently improv-
ing translation coverage and search. Note that us-
ing phrases instead of cepts during decoding, does
not reintroduce the spurious phrasal segmentation
problem as is present in the phrase-based system,
because the model is built on minimal units which
avoids segmentation ambiguity. Different compo-
sitions of the same phrasal unit lead to exactly the
same model score. We therefore do not create any
alternative compositions of the same phrasal unit
during decoding. This option is not available in
phrase-based decoding, because an alternative com-
position may lead towards a better model score.

In our secondary set of experiments, we used
cept-based decoding but modified the decoder to
use information available from the phrases extracted
for the test sentences. Firstly, we used future-cost
estimates from the extracted phrases (see system
cept.500.fc in Table1). This however, leads to in-
consistency in the cases where the future cost is es-
timated from some phrasal unit that cannot be gen-
erated through the available cept translations. For
example, say the best cost to cover the sequence
“Wie heißen Sie” is given by the phrase “What is
your name”. The 20-best translation options in cept-
based system, however, do not have tuples “Wie –
What” and “heißen – name”. To remove this dis-
crepancy, we add all such tuples that are used in
the extracted phrases, to the list of extracted cepts
(system cept.500.fc.t). We also studied how much
gain we obtain by only adding tuples from phrases
and using cept-based future-cost estimates (system
cept.500.t).

5.3 Evaluation Method
To evaluate our modifications we apply a simple
strategy. We hold the model constant and change
the search to use the baseline decoder, which uses
minimal translation units, or the modified decoders
that use phrasal information during decoding. The
model parameters are optimized by running MERT
(minimum error rate training) for the baseline de-
coder on the dev set. After we have the optimized
weights, we run the baseline decoder and our mod-
ifications on the test. Note that because all the de-
coding runs use the same feature vector, the model
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stays constant, only search changes. This allows us
to compare different decoding runs, obtained using
the same parameters, but different search strategies,
in terms of model scores. We compute a search ac-
curacy and translation quality for each run.

Search accuracy is computed by comparing trans-
lation hypotheses from the different decoding runs.
We form a collection of the best scoring hypotheses
by traversing through all the runs and selecting the
sentences with highest model score. For each input
sentence we select a single best scoring hypothesis.
The best scoring hypothesis can be contributed from
several runs. In this case all these runs will be given
a credit for that particular sentence when computing
the search accuracy. The search accuracy of a decod-
ing run is defined as the percentage of hypotheses
that were contributed from this run, when forming a
list of best scoring hypotheses. For example, for a
test set of 1000 sentences, the accuracy of a decod-
ing run would be 30% if it was able to produce the
best scoring hypothesis for 300 sentences in the test
set. Translation quality is measured through BLEU
(Papineni et al., 2002).

6 Experimental Setup

We initially experimented with two language pairs:
German-to-English (G-E) and French-to-English (F-
E). We trained our system and the baseline sys-
tems on most of the data6 made available for the
translation task of the Fourth Workshop on Statis-
tical Machine Translation.7 We used 1M bilin-
gual sentences, for the estimation of the transla-
tion model and 2M sentences from the monolingual
corpus (news commentary) which also contains the
English part of the bilingual corpus. Word align-
ments are obtained by running GIZA++ (Och and
Ney, 2003) with the grow-diag-final-and (Koehn et
al., 2005) symmetrization heuristic. We follow the
training steps described in Durrani et al. (2011), con-
sisting of i) post-processing the alignments to re-
move discontinuous and unaligned target cepts, ii)
conversion of bilingual alignments into operation
sequences, iii) estimation of the n-gram language
models.

6We did not use all the available data due to scalability is-
sues. The scores reported are therefore well below those ob-
tained by the systems submitted to the WMT evaluation series.

7http://www.statmt.org/wmt09/translation-task.html

6.1 Search Accuracy Results
We divided our evaluation into two halves. In
the first half we carried out experiments to mea-
sure search accuracy and translation quality of
our decoders against the baseline cept-based OSM
(cept.500) that uses minimal translation units with a
stack size of 500. We used the version of the cept-
based OSM system that does not allow discontinu-
ous8 source cepts. To increase the speed of the sys-
tem we used a hard reordering limit of 159, in the
baseline decoder and our modifications, disallowing
jumps that are beyond 15 words from the first open
gap. For each extracted cept or phrase 10-best trans-
lation options are extracted.

Using phrases in search reduces the decoding
speed. In order to make a fair comparison, both the
phrase-based and the baseline cept-based decoders
should be allowed to run for the same amount of
time. We therefore reduced the stack size in the
phrase-based decoder so that it runs in the same
amount of time as the cept-based decoder. We found
that using a stack size of 20010 for the phrase-based
decoder was comparable in speed to using a stack-
size of 500 in the cept-based decoding.

We first tuned the baseline on dev11 to obtain an
optimized weight vector. We then ran the baseline
and our decoders as discussed in Section 5.2 on the
dev-test. Then we repeated this experiment by tun-
ing the weights with our phrase-based decoder (us-
ing a stack size of 100) and ran all the decoders again
using the new weights.

Table 1 shows the average search accuracies and
BLEU scores of the two experiments. Using phrases
during decoding in the G-E experiments resulted
in a statistically significant12 0.69 BLEU points
gain comparing our best system phrase.200 with the
baseline system cept.500. We mark a result as sig-

8Discontinuous source-side units did not lead to any im-
provements in (Durrani et al., 2011) and increased the decoding
times by multiple folds. We also found these to be less useful.

9Imposing a hard reordering limit significantly reduced the
decoding time and also slightly increased the BLEU scores.

10Higher stack sizes leads to improvement in model scores
for both German-English and French-English and slight im-
provement of BLEU in the case of the former.

11We used news-dev2009a as dev and news-dev2009b as dev-
test and tuned the weights with Z-MERT (Zaidan, 2009).

12We use bootstrap resampling (Koehn, 2004b) to test our
results against the baseline result.
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System German French
Acc. BLEU Acc. BLEU

Baseline System cept.stack-size
cept.50 25.95% 19.50 42.10% 21.44
cept.100 30.04% 19.79 47.32% 21.70
cept.200 35.17% 19.98 51.47% 21.82
cept.500 41.56% 20.14 54.93% 21.87

Our Cept-based Decoders
cept.500.fc 48.44% 20.52* 54.73% 21.86
cept.500.t 52.24% 20.34 67.95% 22.00

cept.500.fc.t 61.81% 20.53* 67.76% 21.96
Our Phrase-based Decoders

phrase.50 58.88% 20.58* 80.83% 22.04
phrase.100 69.85% 20.73* 88.34% 22.13
phrase.200 79.71% 20.83* 92.93% 22.17*

Table 1: Search Accuracies (Acc.) and BLEU scores of
the Baseline and Our Decoders with different Stack Sizes
(fc = Future Cost Estimated from Phrases, t = Cept Trans-
lation Options enriched from Phrases)

nificant if the improvement shown by our decoder
over the baseline decoder (cept.500) is significant at
the p ≤ 0.05 level, in both the runs. All the out-
puts that show statistically significant improvements
over the baseline decoder (cept.500) in Table 1 are
marked with an asterisk.

The search accuracy of our best system
(phrase.200), in G-E experiments is roughly
80%, which means that 80% of the times the
phrase-based decoder (using stack size 200) was
able to produce the same model score or a better
model score than the cept-based decoders (using
a stack size of 500). Our F-E experiments also
showed improvements in BLEU and model scores.
The search accuracy of our best system phrase.200
is roughly 93% as compared with 55% in the
baseline decoder (cept.500) giving a BLEU point
gain of +0.30 over the baseline.

Our modifications to the cept-based decoder also
showed improvements. We found that extending
the cept translation table (cept.500.t) using phrases
helps both in G-E and F-E experiments by extend-
ing the list of n-best translation options by 18% and
18.30% respectively. Using future costs estimated
from phrases (cept.500.fc) improved both search ac-
curacy and BLEU scores in G-E experiments, but
does not lead to any improvements in the F-E ex-
periments, as both BLEU and model scores drop
slightly. We looked at a few examples where the

model score dropped and found that in these cases,
the best scoring hypotheses are ranked very low ear-
lier in the decoding and make their way to the top
gradually in subsequent steps. A slight difference in
the future-cost estimate prunes these hypotheses in
one or the other decoder. We found future cost to
be more critical in G-E than F-E experiments. This
can be explained by the fact that more reordering is
required in G-E and it is necessary to account for the
reordering operations and jump-based features (gap-
based penalties, reordering distance and gap-width)
in the future-cost estimation. F-E on the other hand
is largely monotonic except for a few short distance
reorderings such as flipping noun and adjective.

6.2 Comparison with other Baseline Systems
In the second half of our evaluation we compared
our best system phrase.200 with the baseline sys-
tem cept.500, and other state-of-the-art phrase-based
and N-gram-based systems on German-to-English,
French-to-English, and Spanish-to-English tasks13.
We used the official evaluation data (news-test sets)
from the Statistical Machine Translation Workshops
2009-2011 for all three language pairs (German,
Spanish and French). The feature weights for all the
systems are tuned using the dev set news-dev2009a.
We separately tune the baseline system (cept.500)
and the phrase-based system (phrase.200) and do not
hold the lambda vector constant like before.
Baseline Systems: We also compared our system
with i) Moses (Koehn et al., 2007), ii) Phrasal14 (Cer
et al., 2010), and iii) Ncode (Crego et al., 2011).

We used the default stack sizes of 100 for
Moses15, 200 for Phrasal, 25 for Ncode (with 2m

stacks). A 5-gram English language model is used.
Both phrase-based systems use 20-best phrases for
translation, Ncode uses 25-best tuple translations.
The training and test data for Ncode was tagged us-
ing TreeTagger (Schmid, 1994). All the baseline
systems used lexicalized reordering model. A hard
reordering limit16 of 6 words is used as a default in

13We did not include the results of Spanish in the previous
section due to space limitations but these are similar to those of
the French-to-English translation task.

14Phrasal provides two extensions to Moses: i) hierarchical
reordering model (Galley and Manning, 2008) and ii) discon-
tinuous phrases (Galley and Manning, 2010).

15Using stacks sizes from 200−1000 did not improve results.
16We tried to increase the distortion limit in the baseline sys-
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both the baseline phrase-based systems. Amongst
the other defaults we retained the hard source gap
penalty of 15 and a target gap penalty of 7 in Phrasal.
We provide Moses and Ncode with the same post-
edited alignments17 from which we removed target-
side discontinuities. We feed the original alignments
to Phrasal because of its ability to learn discontinu-
ous source and target phrases. All the systems use
MERT for the optimization of the weight vector.

Ms Pd Nc C500 P200

German-to-English
MT09 18.73* 19.00* 18.37* 19.06* 19.66
MT10 18.58* 18.96* 18.64* 19.12* 19.70
MT11 17.38* 17.58* 17.49* 17.87* 18.19

French-to-English
MT09 24.61* 24.73* 24.28* 24.94* 25.27
MT10 23.69* 23.09* 23.96 23.90* 24.25
MT11 25.17* 25.55* 24.92* 25.40* 25.92

Spanish-to-English
MT09 24.38* 24.63 24.72 24.48* 24.72
MT10 25.55* 25.66* 25.87 25.68* 26.10
MT11 25.72* 26.17* 26.36* 26.48 26.67

Table 2: Comparison on 3-Test Sets – Ms = Moses, Pd

= Phrasal (Discontinuous Phrases), Nc = Ncode, C500 =
Cept.500, P200 = Phrase.200

Table 2 compares the performance of our phrase-
based decoder against the baselines. Our system
shows an improvement over all the baseline systems
for the G-E pair, in 11 out of 12 cases in the F-E
pair and in 8 out of 12 cases in the S-E language
pair. We mark a baseline with “*” to indicate that
our decoder shows an improvement over this base-
line result which is significant at the p ≤ 0.05 level.

7 Conclusion and Future Work
We proposed a combination of using a model based
on minimal units and decoding with phrases. Mod-
eling with minimal units enables us to learn local
and non-local dependencies in a unified manner and
avoid spurious segmentation ambiguities. However,
using minimal units also in the search presents a
significant challenge because of the poor transla-
tion coverage, inaccurate future-cost estimates and

tems to 15 (in G-E experiments) as used in our systems but the
results dropped significantly in case of Moses and slightly for
Phrasal so we used the default limits for both decoders.

17Using post-processed alignments gave slightly better re-
sults than the original alignments for these baseline systems.
Details are omitted due to space limitation.

the pruning of the correct hypotheses. Phrase-based
SMT on the other hand overcomes these drawbacks
by using larger translation chunks during search.
However, the drawback of the phrase-based model is
the phrasal independence assumption, spurious am-
biguity in segmentation and a weak mechanism to
handle non-local reorderings. We showed that com-
bining a model based on minimal units with phrase-
based decoding can improve both search accuracy
and translation quality. We also showed that the
phrasal information can be indirectly used in cept-
based decoding with improved results. We tested
our system against the state-of-the-art phrase-based
and N-gram-based systems, for German-to-English,
French-to-English, and Spanish-to-English for three
standard test sets. Our system showed statistically
significant improvements over all the baseline sys-
tems in most of the cases. We have shown the bene-
fits of using phrase-based search with a model based
on minimal units. In future work, we would like to
study whether a phrase-based system like Moses or
Phrasal can profit from an OSM-style or N-gram-
style feature. Feng et al. (2010) previously showed
that adding a linearized source-side language model
in a phrase-based system helped. It would also
be interesting to study whether the insight of us-
ing minimal units for modeling and phrase-based
search would hold for hierarchical SMT. Vaswani et
al. (2011) recently showed that a Markov model over
the derivation history of minimal rules can obtain the
same translation quality as using grammars formed
with composed rules.
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Abstract

Standard phrase-based translation models do
not explicitly model context dependence be-
tween translation units. As a result, they rely
on large phrase pairs and target language mod-
els to recover contextual effects in translation.
In this work, we explore n-gram models over
Minimal Translation Units (MTUs) to explic-
itly capture contextual dependencies across
phrase boundaries in the channel model. As
there is no single best direction in which con-
textual information should flow, we explore
multiple decomposition structures as well as
dynamic bidirectional decomposition. The
resulting models are evaluated in an intrin-
sic task of lexical selection for MT as well
as a full MT system, through n-best rerank-
ing. These experiments demonstrate that ad-
ditional contextual modeling does indeed ben-
efit a phrase-based system and that the direc-
tion of conditioning is important. Integrating
multiple conditioning orders provides consis-
tent benefit, and the most important directions
differ by language pair.

1 Introduction

The translation procedure of a classical phrase-
based translation model (Koehn et al., 2003) first di-
vides the input sentence into a sequence of phrases,
translates each phrase, explores reorderings of these
translations, and then scores the resulting candi-
dates with a linear combination of models. Conven-
tional models include phrase-based channel models
that effectively model each phrase as a large uni-
gram, reordering models, and target language mod-
els. Of these models, only the target language model

∗This research was conducted during the author’s internship
at Microsoft Research

(and, to some weak extent, the lexicalized reordering
model) captures some lexical dependencies that span
phrase boundaries, though it is not able to model in-
formation from the source side. Larger phrases cap-
ture more contextual dependencies within a phrase,
but individual phrases are still translated almost in-
dependently.

To address this limitation, several researchers
have proposed bilingual n-gram Markov models
(Marino et al., 2006) to capture contextual depen-
dencies between phrase pairs. Much of their work
is limited by the requirement “that the source and
target side of a tuple of words are synchronized, i.e.
that they occur in the same order in their respective
languages” (Crego and Yvon, 2010).

For language pairs with significant typological di-
vergences, such as Chinese-English, it is quite dif-
ficult to extract a synchronized sequence of units;
in the limit, the smallest synchronized unit may be
the whole sentence. Other approaches explore incor-
poration into syntax-based MT systems or replacing
the phrasal translation system altogether.

We investigate the addition of MTUs to a phrasal
translation system to improve modeling of con-
text and to provide more robust estimation of long
phrases. However, in a phrase-based system there
is no single synchronized traversal order; instead,
we may consider the translation units in many pos-
sible orders: left-to-right or right-to-left according
to either the source or the target are natural choices.
Alternatively we consider translating a particularly
unambiguous unit in the middle of the sentence
and building outwards from there. We investigate
both consistent and dynamic decomposition orders
in several language pairs, looking at distinct orders
in isolation and combination.
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2 Related work

Marino et al. (2006) proposed a translation model
using a Markov model of bilingual n-grams, demon-
strating state-of-the-art performance compared to
conventional phrase-based models. Crego and
Yvon (2010) further explored factorized n-gram ap-
proaches, though both models considered rather
large n-grams; this paper focuses on small units with
asynchronous orders in source and target. Durrani
et al. (2011) developed a joint model that captures
translation of contiguous and gapped units as well as
reordering. Two prior approaches explored similar
models in syntax based systems. MTUs have been
used in dependency translation models (Quirk and
Menezes, 2006) to augment syntax directed trans-
lation systems. Likewise in target language syntax
systems, one can consider Markov models over min-
imal rules, where the translation probability of each
rule is adjusted to include context information from
parent rules (Vaswani et al., 2011).

Most prior work tends to replace the existing
probabilities rather than augmenting them. We be-
lieve that Markov rules provide an additional sig-
nal but are not a replacement. Their distributions
should be more informative than the so-called “lex-
ical weighting” models, and less sparse than rela-
tive frequency estimates, though potentially not as
effective for truly non-compositional units. There-
fore, we explore the inclusion of all such informa-
tion. Also, unlike prior work, we explore combina-
tions of multiple decomposition orders, as well as
dynamic decompositions. The most useful context
for translation differs by language pair, an important
finding when working with many language pairs.

We build upon a standard phrase-based approach
(Koehn et al., 2003). This acts as a proposal dis-
tribution for translations; the MTU Markov models
provide additional signal as to which translations are
correct.

3 MTU n-gram Markov models

We begin by defining Minimal Translation Units
(MTUs) and describing how to identify them in
word-aligned text. Next we define n-gram Markov
models over MTUs, which requires us to define
traversal orders over MTUs.

于
Yu

昨天
ZuoTian

举行
JuXing

held the meeting

会谈
HuiTan

yesterdaynull

null

M1 M2 M3 M5M4

M1: Yu => null                               

M2: ZuoTian => yesterday

M3:                                  JuXing => held

M4:                                       null => the

M5:                                 HuiTan => meeting

于
Yu

昨天
ZuoTian

举行
JuXing

? ? ?

会谈
HuiTan

??

null

Figure 1: Word alignment and minimum translation units.

3.1 Definition of an MTU

Informally, the notion of a minimal translation unit
is simple: it is a translation rule that cannot be
broken down any further without violating the con-
straints of the rules. We restrict ourselves to contigu-
ous MTUs. They are similar to small phrase pairs,
though unlike phrase pairs we allow MTUs to have
either an empty source or empty target side, thereby
allowing insertion and deletion phrases. Conven-
tional phrase pairs may be viewed as compositions
of these MTUs up to a given size limit.

Consider a word-aligned sentence pair consisting
of a sequence of source words s = s1 . . . sm, a se-
quence of target words t = t1 . . . tn, and a word align-
ment relation between the source and target words
∼ ⊆ {1..m} × {1..n}. A translation unit is a sequence
of source words si..s j and a sequence of target words
tk..tl (one of which may be empty) such that for all
aligned pairs i′ ∼ k′, we have i ≤ i′ ≤ j if and only
if k ≤ k′ ≤ l. This definition, nearly identical to
that of a phrase pair (Koehn et al., 2003), relaxes the
constraint that one aligned word must be present.

A set of translation units is a partition of the sen-
tence pair if each source and target word is covered
exactly once. Minimal translation units is the par-
tition with the smallest average unit size, or, equiv-
alently, the largest number of units. For example,
Figure 1 shows a word-aligned sentence pair and its
corresponding set of MTUs. We extract these min-
imal translation units with an algorithm similar to
that of phrase extraction.

We train n-gram Markov models only over min-
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imal rules for two reasons. First, the segmentation
of the sentence pair is not unique under composed
rules, which makes probability estimation compli-
cated. Second, some phrase pairs are very large,
which results in sparse data issues and compromises
the model quality. Therefore, training an n-gram
model over minimal translation units turns out to
be a simple and clean choice: the resulting segmen-
tation is unique, and the distribution is smooth. If
we want to capture more context, we can simply in-
crease the order of the Markov model.

Such Markov models address issues in large
phrase-based translation approaches. Where stan-
dard phrase-based models rely upon large unigrams
to capture contextual information, n-grams of mini-
mal translation units allow a robust contextual model
that is less constrained by segmentation.

3.2 MTU enumeration orders
When defining a joint probability distribution over
MTUs of an aligned sentence pair, it is necessary
to define a decomposition, or generation order for
the sentence pair. For a single sequence in lan-
guage modeling or synchronized sequences in chan-
nel modeling, the default enumeration order has
been left-to-right.

Different decomposition orders have been used
in part-of-speech tagging and named entity recog-
nition (Tsuruoka and Tsujii, 2005). Intuitively, in-
formation from the left or right could be more use-
ful for particular disambiguation choices. Our re-
search on different decomposition orders was moti-
vated by this work. When applying such ideas to
machine translation, there are additional challenges
and opportunities. The task exhibits much more am-
biguity – the number of possible MTUs is in the
millions. An opportunity arises from the reordering
phenomenon in machine translation: while in POS
tagging the natural decomposition orders to study
are only left-to-right and right-to-left, in machine
translation we can further distinguish source and tar-
get sentence orders.

We first define the source left-to-right and the tar-
get left-to-right orders of the aligned sets of MTUs.
The definition is straightforward when there are no
inserted or deleted word. To place the nulls corre-
sponding to such word we use the following defi-
nition: the source position of the null for a target

inserted word is just after the position of the last
source word aligned to the closest preceding non-
null aligned target word. The target position for a
null corresponding to a source deleted MTU is de-
fined analogously. In Figure 1 we define the posi-
tion of M4 to be right after M3 (because “the” is
after “held” in left-to-right order on the target side).

The complete MTU sequence in source left-to-
right order is M1-M2-M3-M4-M5. The sequence
in target left-to-right order is M3-M4-M5-M1-M2.
This illustrates that decomposition structure may
differ significantly depending on which language is
used to define the enumeration order.

Once a sentence pair is represented as a sequence
of MTUs, we can define the probability of the
sentence pair using a conventional n-gram Markov
model (MM) over MTUs. For example, the 3-gram
MM probability of the sentence pair in Figure 1
under the source left-to-right order is as follows:
P(M1)·P(M2|M1)·P(M3|M1,M2)·P(M4|M2,M3)·
P(M5|M3,M4).

Different decomposition orders use different con-
text for disambiguation and it is not clear apriori
which would perform best. We compare all four
decomposition orders (source order left-to-right and
right-to-left, and target order left-to-right and right-
to-left). Although the independence assumptions of
left-to-right and right-to-left are the same, the result-
ing models may be different due to smoothing.

In addition to studying these four basic decompo-
sition orders, we report performance of two cyclic
orders: cyclic in source or target sentence order.
These models are inspired by the cyclic depen-
dency network model proposed for POS tagging
(Toutanova et al., 2003) and also used as a baseline
in previous work on dynamic decomposition orders
(Tsuruoka and Tsujii, 2005). 1

The probability according to the cyclic orders is
defined by conditioning each MTU on both its left
and right neighbor MTUs. For example, the prob-
ability of the sentence pair in Figure 1 under the
source cyclic order, using a 3-gram model is defined
as: P(M1|M2) · P(M2|M1,M3) · P(M3|M2,M4) ·
P(M4|M3,M5) · P(M5|M4).

All n-gram Markov models over MTUs are esti-
1The correct application of such models requires sampling

to find the highest scoring sequence, but we apply the max prod-
uct approximation as done in previous work.
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mated using Kneser-Ney smoothing. Each MTU is
treated as an atomic unit in the vocabulary of the
n-gram model. Counts of all n-grams are obtained
from the parallel MT training data, using different
MTU enumeration orders.

Note that if we use a target-order decomposition,
the model provides a distribution over target sen-
tences and the corresponding source sides of MTUs,
albeit unordered. Likewise source order based mod-
els provide distributions over source sentences and
unordered target sides of MTUs. We attempted to
introduce reordering models to predict an order over
the resulting MTU sequences using approaches sim-
ilar to reordering models for phrases. Although
these models produced gains in some language pairs
when used without translation MTU MMs, there
were no additional gains over a model using mul-
tiple translation MTU MMs.

4 Lexical selection

We perform an empirical evaluation of different
MTU decomposition orders on a simplified machine
translation task: lexical selection. In this task we
assume that the source sentence segmentation into
minimal translation units is given and that the or-
der of the corresponding target sides of the minimal
translation units is also given. The problem is to
predict the target sides of the MTUs, called target
MTUs for brevity (see Figure 2). The lexical selec-
tion task is thus similar to sequence tagging tasks
like part-of-speech tagging, though much more dif-
ficult: the predicted variables are sequences of target
language words with millions of possible outcomes.

于
Yu

昨天
ZuoTian

举行
JuXing

held the meeting

会谈
HuiTan

yesterdaynull

null

M1 M2 M3 M5M4

M1: Yu => null                               

M2: ZuoTian => yesterday

M3:                                  JuXing => held

M4:                                       null => the

M5:                                 HuiTan => meeting

于
Yu

昨天
ZuoTian

举行
JuXing

? ? ?

会谈
HuiTan

??

null

Figure 2: Lexical selection.

We use this constrained MT setting to evaluate the
performance of models using different MTU decom-
position orders and models using combinations of
decomposition orders. The simplified setting allows

controlled experimentation while lessening the im-
pact of complicating factors in a full machine trans-
lation setting (search error, reordering limits, phrase
table pruning, interaction with other models).

To perform the tagging task, we use trigram MTU
models. The four basic decomposition orders for
MTU Markov models we use are left-to-right in tar-
get sentence order, right-to-left in target sentence or-
der, left-to-right in source sentence order, and right-
to-left in source sentence order. We also consider
cyclic orders in source and target.

Regardless of the decomposition order used, we
perform decoding using a beam search decoder, sim-
ilar to ones used in phrase-based machine transla-
tion. The decoder builds target hypotheses in left-
to-right target sentence order. At each step, it fills in
the translation of the next source MTU, in the con-
text of the already predicted MTUs to its left. The
top scoring complete hypotheses covering the first m
MTUs are maintained in a beam. When scoring with
a target left-to-right MTU Markov model (L2RT),
we can score each partial hypothesis exactly at each
step. When scoring using a R2LT model or a source
order model, we use lower-order approximations to
the trigram MTU Markov model scores as future
scores, since not all needed context is available for a
hypothesis at the time of construction. As additional
context becomes available, the exact score can be
computed. 2

4.1 Basic decomposition order combinations
We first introduce two methods of combining differ-
ent decomposition orders: product and system com-
bination.

The product method arises naturally in the ma-
chine translation setting, where probabilities from
different models are multiplied together and further
weighted to form the log-linear model for machine
translation (Och and Ney, 2002). We define a similar
scoring function using a set of MTU Markov models
MM1, ...,MMk for a hypothesis h as follows:

Score(h) = λ1logPMM1(h) + ... + λklogPMMk (h)
2We apply hypothesis recombination, which can merge hy-

potheses that are indistinguishable with respect to future contin-
uations. This is similar to recombination in a standard-phrase
based decoder with the difference that it is not always the last
two target MTUs that define the context needed by future ex-
tensions.
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The weights λ of different models are trained on a
development set using MER training to maximize
the BLEU score of the resulting model. Note that
this method of model combination was not consid-
ered in any of the previous works comparing differ-
ent decompositions.

The system combination method is motivated
by prior work in machine translation which com-
bined left-to-right and right-to-left machine trans-
lation systems (Finch and Sumita, 2009). Simi-
larly, we perform sentence-level system combina-
tion between systems using different MTU Markov
models to come up with most likely translations.
If we have k systems guessing hypotheses based
on MM1, . . . ,MMk respectively, we generate 1000-
best lists from each system, resulting in a pool of
up to 1000k possible distinct translations. Each of
the candidate hypotheses from MMi is scored with
its Markov model log-probability logPMMi(h). We
compute normalized probabilities for each system’s
n-best by exponentiating and normalizing: Pi(h) ∝
PMMi(h). If a hypothesis h is not in system i’s n-
best list, we assume its probability is zero according
to that system. The final scoring function for each
hypothesis in the combined list of candidates is:

Score(h) = λ1P1(h) + ... + λkPk(h)

The weights λ for the combination are tuned using
MERT as for the product model.

4.2 Dynamic decomposition orders
A more complex combination method chooses the
best possible decomposition order for each transla-
tion dynamically, using a set of constraints to de-
fine the possible decomposition orders, and a set of
features to score the candidate decompositions. We
term this method dynamic combination. The score
of each translation is defined as its score according
to the highest-scoring decomposition order for that
translation.

This method is very similar to the bidirectional
tagging approach of Tsuruoka and Tsujii (2005).
For this approach we only explored combinations of
target language orders (L2RT, CycT, and R2LT). If
source language orders were included, the complex-
ity of decoding would increase substantially.

Figure 3 shows two possible decompositions for
a short MTU sequence. The structures displayed are

1

� 1�

2

1

� 2| 1�

3

2

� 3| 2,	 1�

4

2

� 4| 3,	 2�

� 1� � 2| 1,	 3�

1

� 3| 4� � 4�

Figure 3: Different decompositions.

directed graphical models. They define the set of
parents (context) used to predict each target MTU.
The decomposition structures we consider are lim-
ited to acyclic graphs where each node can have one
of the following parent configurations: no parents
(C = 0 in the Figure), one left parent (C = 1L),
one right parent (C = 1R), one left and one right
parent (C = LR), two left parents (C = 2L), and
two right parents (C = 2R). If all nodes have two
left parents, we recover the left-to-right decomposi-
tion order, and if all nodes have two right parents,
the right-to-left decomposition order. A mixture of
parent configurations defines a mixed, dynamic de-
composition order. The decomposition order chosen
varies from translation to translation.

A directed graphical model defines the probability
of an assignment of MTUs to the variable nodes as a
product of local probabilities of MTUs given their
parents. Here we extend this definition to scores
of assignments by using a linear model with con-
figuration features and log-probability features. The
configuration features are indicators of which par-
ent configuration is active at a node and the settings
of these features for the decompositions in Figure
3 are shown as assignments to the C variables. The
log-probability feature values are obtained by query-
ing the appropriate n-gram model: L2RT, CycT, or
R2LT. For a node with one or two left parents, the
log-probability is computed according to the L2RT
model. For a node with one or two right parents, the
R2LT model is queried. The CycT model is used for
nodes with one left and one right parent.

To find the best translation of a sentence the
model now searches over hidden decomposition or-
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ders in addition to assignments to target MTUs. The
final score of a translation and decomposition is a
linear combination of the two types of feature values
– model log-probabilities and configuration types.
There is one feature weight for each parent con-
figuration (six configuration weights) and one fea-
ture weight for each component model (three model
weights). The final score of the second decomposi-
tion and assignment in Figure 3 is:

Score(h)

= 2 ∗ wC0 + wCLR + wC1R

+ wL2RlogPLR(m1) + wCyclogPCyc(m2|m1,m3)

+ wR2LlogPRL(m3|m4) + wL2RlogPLR(m4)

There are two main differences between our ap-
proach and that of Tsuruoka and Tsujii (2005): we
perform beam search with hypothesis recombination
instead of exact decoding (due to the larger size of
the hypothesis set), and we use parameters to be
able to globally weight the probabilities from dif-
ferent models and to develop preferences for using
certain types of decompositions. For example, the
model can learn to prefer right-to-left decomposi-
tions for one language pair, and left-to-right decom-
positions for another. An additional difference from
prior work is the definition of the possible decompo-
sition orders that are searched over.

Compared to the structures allowed in (Tsuruoka
and Tsujii, 2005) for a trigram baseline model, our
allowed structures are a subset; in (Tsuruoka and
Tsujii, 2005) there are sixteen possible parent con-
figurations (up to two left and two right parents),
whereas we allow only six. We train and use only
three n-gram Markov models to assign probabilities:
L2RT, R2LT, and CycT, whereas the prior work used
sixteen models. One could potentially see additional
gains from considering a larger space of structures
but the training time and runtime memory require-
ments might become prohibitive for the machine
translation task.

Because of the maximization over decomposition
structures, the score of a translation is not a simple
linear function of the features, but rather a maximum
over linear functions. The score of a translation for
a fixed decomposition is a linear function of the fea-
tures, but the score of a translation is a maximum of
linear functions (over decompositions). Therefore,

if we define hypotheses as just containing transla-
tions, MERT training does not work directly for op-
timizing the weights of the dynamic combination
method. 3 We used a combination of approaches;
we did MERT training followed by local simplex-
method search starting from three starting points:
the MERT solution, a weight vector that strongly
prefers left-to-right decompositions, and a weight-
vector that strongly prefers right-to-left decomposi-
tions. In the Experiments section, we report results
for the weights that achieved the best development
set performance.

5 N-best reranking

To evaluate the impact of these models in a full MT
system, we investigate n-best reranking. We use a
phrase-based MT system to output 1000-best can-
didate translations. For each candidate translation,
we have access to the phrase pairs it used as well as
the alignments inside each phrase pair. Thus, each
source sentence and its candidate translation form a
word-aligned parallel sentence pair. We can extract
MTU sequences from this sentence pair and com-
pute its probability according to MTU Markov mod-
els. These MTU MM log-probabilities are appended
to the original MT features and used to rerank the
1000-best list. The weight vectors for systems using
the original features along with one or more MTU
Markov model log-probabilities are trained on the
development set using MERT.

6 Experiments

We report experimental results on the lexical selec-
tion task and the reranking task on three language
pairs. The datasets used for the different languages
are described in detail in Section 6.2.

6.1 Lexical selection experiments

The data used for the lexical selection experiments
consists of the training portion of the datasets used
for MT. These training sets are split into three sec-
tions: lex-train, for training MTU Markov models
and extracting possible translations for each source

3If we include the decompositions in the hypotheses we
could use MERT but then the n-best lists used for training might
not contain much variety in terms of translation options. This is
an interesting direction for future research.
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Model Chs-En Deu-En En-Bgr
Dev Test Dev Test Dev Test

Baseline 06.45 06.30 11.60 10.98 15.09 14.40
Oracle 69.79 70.78 72.28 75.39 85.15 84.32
L2RT 24.02 25.09 28.69 28.70 49.86 46.45
R2LT 23.79 24.91 30.14 30.14* 49.22 46.58
CycT 18.59 20.33 25.91 26.83 41.30 38.85
L2RS 25.81 27.89* 25.52 25.10 45.69 43.98
R2LS 26.48 27.96* 26.03 26.30 47.36 43.91
CycS 21.62 23.38 22.68 23.58 39.11 36.44

Table 1: Lexical selection results for individual MTU
Markov models.

MTU, lex-dev for tuning combination weights for
systems using several MTU MMs, and lex-test, for
final evaluation results. The possible translations for
each source MTU are defined as the most frequent
100 translations seen in lex-train. The lex-dev sets
contain 200 sentence pairs each and the lex-test sets
contains 1000 sentence pairs each. These develop-
ment and test sets consist of equally spaced sen-
tences taken from the full MT training sets.

We start by reporting BLEU scores of the six in-
dividual MTU MMs on the three language pairs in
Table 1. The baseline predicts the most frequent tar-
get MTU for each source MTU (unigram MM not
using context). The oracle looks at the correct trans-
lation and always chooses the correct target MTU if
it is in the vocabulary of available MTUs.

We can see that there is a large difference between
the baseline and oracle performance, underscoring
the importance of modeling context for accurate pre-
diction. The best decomposition order varies from
language to language: right-to-left in source order is
best for Chinese-English, right-to-left in target order
is best for German-English and left-to-right or right-
to-left in target order are best in English-Bulgarian.
We computed statistical significance tests, testing
the difference between the L2RT model (the stan-
dard in prior work) and models achieving higher test
set performance. The models that are significantly
better at significance α < 0.01 are marked with a
star in the table. We used a paired bootstrap test with
10,000 trials (Koehn, 2004).

Next we evaluate the methods for combining de-
composition orders introduced in Sections 4.1 and
4.2. The results are reported in Table 2. The up-
per part of the table focuses on combining different

Model Chs-En Deu-En En-Bgr
Dev Test Dev Test Dev Test

Baseline-1 24.04 25.09 30.14 30.14 49.86 46.45
TgtProduct 25.27 25.84* 30.47 30.49 51.04 47.27*
TgtSysComb 24.49 25.27 30.20 30.15 50.46 46.31
TgtDynamic 24.07 25.10 30.60 30.41 49.99 46.52
Baseline-2 26.48 27.96 30.14 30.14 49.86 46.45
AllProduct 28.68 29.59* 31.54 31.36* 51.50 48.10*
AllSyscomb 27.02 28.30 30.20 30.17 50.90 46.53

Table 2: Lexical selection results for combinations of
MTU Markov models.

target-order decompositions. The lower part of the
table looks at combining all six decomposition or-
ders. The baseline for the target order combinations,
Baseline-1, is the best single target MTU Markov
model from Table 1. Baseline-2 in the lower part
of the table is the best individual model out of all
six. We can see that the product models TgtProduct
(a product of the three target-order MTU MMs) and
AllProduct (a product of all six MTU MMs) are con-
sistently best. The dynamic decomposition models
TgtDynamic achieve slight but not significant gains
over the baseline. The combination models that are
statistically significantly better than corresponding
baselines (α < 0.01) are marked with a star.

Our takeaway from these experiments is that mul-
tiple decomposition orders are good, and thus taking
a product (which encourages agreement among the
models) is a good choice for this task. The dynamic
decomposition method shows some promise, but it
does not outperform the simpler product approach.
Perhaps a lager space of decompositions would
achieve better results, especially given a larger pa-
rameter set to trade off decompositions and better
tuning for those parameters.

6.2 Datasets and reranking settings

For Chinese-English, the training corpus consists
of 1 million sentence pairs from the FBIS and
HongKong portions of the LDC data for the NIST
MT evaluation. We used the union of the NIST
2002 and 2003 test sets as the development set and
the NIST 2005 test set as our test set. The baseline
phrasal system uses a 5-gram language model with
modified Kneser-Ney smoothing (Kenser and Ney,
1995), trained on the Xinhua portion of the English
Gigaword corpus (238M English words).

For German-English we used the dataset from
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Language Training Dev Test
Chs-En 1 Mln NIST02+03 NIST05
Deu-En 751 K WMT06dev WMT06test
En-Bgr 4 Mln 1,497 2,498

Table 3: Data sets for different language pairs.

the WMT 2006 shared task on machine translation
(Koehn and Monz, 2006). The parallel training set
contains approximately 751K sentences. We also
used the English monolingual data of around 1 mil-
lion sentences for language model training. The de-
velopment set contains 2000 sentences. The final
test set (the in-domain test set for the shared task)
also contains 2000 sentences. Two Kneser-Ney lan-
guage models were used as separate features: a 4-
gram LM trained on the parallel portion of the data,
and a 5-gram LM trained on the monolingual corpus.

For English-Bulgarian we used a dataset con-
taining sentences from several data sources: JRC-
Acquis (Steinberger et al., 2006), TAUS4, and web-
scraped data. The development set consists of 1,497
sentences, the English side from WMT 2009 news
test data, and the Bulgarian side a human translation
thereof. The test set comes from the same mixture of
sources as the training set. For this system we used
a single four-gram target language model trained on
the target side of the parallel corpus.

All systems used phrase tables with a maximum
length of seven words on either side and lexicalized
reordering models. For the Chinese-English sys-
tem we used GIZA++ alignments, and for the other
two we used alignments by an HMM model aug-
mented with word-based distortion (He, 2007). The
alignments were symmetrized and then combined
with the heuristics ”grow-diag-final-and”. 5 We tune
parameters using MERT (Och, 2003) with random
restarts (Moore and Quirk, 2008) on the develop-
ment set. Case-insensitive BLEU-4 is our evaluation
metric (Papineni et al., 2002).

3-gram models 5-gram models
Model Dev Test Dev Test
Baseline 32.58 31.78 32.58 31.78
L2RT 33.05 32.78* 33.16 32.88*
R2LT 33.05 32.96* 33.16 32.81*
L2RS 32.90 33.00* 32.98 32.98*
R2LS 32.94 32.98* 33.09 32.96*
4 MMs 33.22 33.07* 33.37 33.00*
4 MMs phrs 32.58 31.78 32.58 31.78

Table 4: Reranking with 3-gram and 5-gram MTU trans-
lation models on Chinese-English. Starred results on the
test set indicate significantly better performance than the
baseline.

6.3 MT reranking experiments

We first report detailed experiments on Chinese-
English, and then verify our main conclusions on the
other language pairs. Table 4 looks at the impact of
individual 3-gram and 5-gram MTU Markov models
and their combination. Amongst the decomposition
orders tested (L2RT, R2LT, L2RS, and R2LS), each
of the individual MTU MMs was able to achieve
significant improvement over the baseline, around 1
BLEU point.6 The results achieved by the individ-
ual models differ, and the combination of four direc-
tions is better than the best individual direction, but
the difference is not statistically significant.

We ran an additional experiment to test whether
MTU MMs make effective use of context across
phrase boundaries, or whether they simply pro-
vide better smoothed estimates of phrasal transla-
tion probabilities. The last row of the table reports
the results achieved by a combination of MTU MMs
that do not use context across the phrasal bound-
aries. Since an MTU MM limited to look only inside
phrases can provide improved smoothing compared
to whole phrase relative frequency counts, it is con-
ceivable it could provide a large improvement. How-
ever, there is no improvement in practice for this lan-
guage pair; the additional improvements from MTU
MMs stem from modeling cross-phrase context.

4www.tausdata.org
5The combination heuristic was further refined to disallow

crossing one-to-many alignments, which would result in the ex-
traction of larger minimum translation units. We found that this
further refinement on the combination heuristic consistently im-
proved the BLEU scores by between 0.3 and 0.7.

6Here again we call a difference significant if the paired
bootstrap p-value is less than 0.01.
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Table 5 shows the test set results of individ-
ual 3-gram MTU Markov models and the com-
bination of 3-gram and 5-gram models on the
English-Bulgarian and German-English datasets.
For English-Bulgarian all individual 3-gram Markov
models achieve significant improvements of close to
one point; their combination is better than the best
individual model (but not significantly). The indi-
vidual 5-gram models and their combination bring
much larger improvement, for a total increase of
2.82 points over the baseline. We believe the 5-
gram models were more effective in this setting be-
cause the larger training set allowed for successful
training of models of larger capacity. Also the in-
creased context size helps to resolve ambiguity in
the forms of morphologically-rich Bulgarian words.
For German-English we see a similar pattern, with
the combination of models outperforming the in-
dividual ones, and the 5-gram models being better
than the 3-gram. Here the individual 3-gram models
are better than the baseline at significance level 0.02
and their combination is better than the baseline at
our earlier defined threshold of 0.01. The within-
phrase MTU MMs (results shown in the last two
rows) improve upon the baseline slightly, but here
again the improvements mostly stem from the use of
context across phrase boundaries. Our final results
on German-English are better than the best result of
27.30 from the shared task (Koehn and Monz, 2006).

Thanks to the reviewers for referring us to re-
cent work by (Clark et al., 2011) that pointed out
problems with significance tests for machine trans-
lation, where the randomness and local optima in the
MERT weight tuning method lead to a large vari-
ance in development and test set performance across
different runs of optimization (using a different ran-
dom seed or starting point). (Clark et al., 2011) pro-
posed a stratified approximate randomization statis-
tical significance test, which controls for optimizer
instability. Using this test, for the English-Bulgarian
system, we confirmed that the combination of four
3-gram MMs and the combination of 5-gram MMs
is better than the baseline (p = .0001 for both, using
five runs of parameter tuning). We have not run the
test for the other language pairs.

Model En-Bgr Deu-En
Baseline 45.75 27.92
L2RT 3-gram 47.07* 28.15
R2LT 3-gram 47.06* 28.19
L2RS 3-gram 46.44* 28.15
R2LS 3-gram 47.04* 28.18
4 3-gram 47.17* 28.37*
4 5-gram 48.57* 28.47*
4 3-gram phrs 46.08 27.92
4 5-gram phrs 46.17* 27.93

Table 5: English-Bulgarian and German-English test set
results: reranking with MTU translation models.

7 Conclusions

We introduced models of Minimal Translation Units
for phrasal systems, and showed that they make a
substantial and statistically significant improvement
on three distinct language-pairs. Additionally we
studied the importance of decomposition order when
defining the probability of MTU sequences. In a
simplified lexical selection task, we saw that there
were large differences in performance among the
different decompositions, with the best decomposi-
tions differing by language. We investigated multi-
ple methods to combine decompositions and found
that a simple product approach was most effective.
Results in the lexical selection task were consistent
with those obtained in a full MT system, although
the differences among decompositions were smaller.

In future work, perhaps we would see larger gains
by including additional decomposition orders (e.g.,
top-down in a dependency tree), and taking this idea
deeper into the machine translation model, down to
the word-alignment and language-modeling levels.

We were surprised to find n-best reranking so ef-
fective. We are incorporating the models into first
pass decoding, in hopes of even greater gains.
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Abstract

There have been many recent investigations
into methods to tune SMT systems using large
numbers of sparse features. However, there
have not been nearly so many examples of
helpful sparse features, especially for phrase-
based systems. We use sparse features to ad-
dress reordering, which is often considered a
weak point of phrase-based translation. Using
a hierarchical reordering model as our base-
line, we show that simple features coupling
phrase orientation to frequent words or word-
clusters can improve translation quality, with
boosts of up to 1.2 BLEU points in Chinese-
English and 1.8 in Arabic-English. We com-
pare this solution to a more traditional max-
imum entropy approach, where a probability
model with similar features is trained on word-
aligned bitext. We show that sparse decoder
features outperform maximum entropy hand-
ily, indicating that there are major advantages
to optimizing reordering features directly for
BLEU with the decoder in the loop.

1 Introduction

With the growing adoption of tuning algorithms that
can handle thousands of features (Chiang et al.,
2008; Hopkins and May, 2011), SMT system de-
signers now face a choice when incorporating new
ideas into their translation models. Maximum like-
lihood models can be estimated from large word-
aligned bitexts, creating a small number of highly
informative decoder features; or the same ideas can
be incorporated into the decoder’s linear model di-
rectly. There are trade-offs to each approach. Max-
imum likelihood models can be estimated from mil-
lions of sentences of bitext, but optimize a mis-
matched objective, predicting events observed in

word aligned bitext instead of optimizing translation
quality. Sparse decoder features have the opposite
problem; with the decoder in the loop, we can only
tune on small development sets,1 but a translation
error metric directly informs training.

We investigate this trade-off in the context of re-
ordering models for phrase-based decoding. Start-
ing with the intuition that most lexicalized reorder-
ing models do not smooth their orientation distri-
butions intelligently for low-frequency phrase-pairs,
we design features that track the first and last words
(or clusters) of the phrases in a pair. These features
are incorporated into a maximum entropy reorder-
ing model, as well as sparse decoder features, to see
which approach best complements the now-standard
relative-frequency lexicalized reordering model.

We also view our work as an example of strong
sparse features for phrase-based translation. Fea-
tures from hierarchical and syntax-based transla-
tion (Chiang et al., 2009) do not easily transfer
to the phrase-based paradigm, and most work that
has looked at large feature counts in the context of
phrase-based translation has focused on the learn-
ing method, and not the features themselves (Hop-
kins and May, 2011; Cherry and Foster, 2012; Gim-
pel and Smith, 2012). We show that by targeting
reordering, large gains can be made with relatively
simple features.

2 Background

Phrase-based machine translation constructs its tar-
get sentence from left-to-right, with each translation
operation selecting a source phrase and appending
its translation to the growing target sentence, until

1Some systems tune for BLEU on much larger sets (Simi-
aner et al., 2012; He and Deng, 2012), but these require excep-
tional commitments of resources and time.
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all source words have been covered exactly once.
The first phrase-based translation systems applied
only a distortion penalty to model reordering (Koehn
et al., 2003; Och and Ney, 2004). Any devia-
tion from monotone translation is penalized, with
a single linear weight determining how quickly the
penalty grows.

2.1 Lexicalized Reordering
Implemented in a number of phrase-based decoders,
the lexicalized reordering model (RM) uses word-
aligned data to determine how each phrase-pair
tends to be reordered during translation (Tillmann,
2004; Koehn et al., 2005; Koehn et al., 2007).

The core idea in this RM is to divide reordering
events into three orientations that can be easily deter-
mined both during decoding and from word-aligned
data. The orientations can be described in terms of
the previously translated source phrase (prev) and
the next source phrase to be translated (next):

• Monotone (M): next immediately follows prev.
• Swap (S): prev immediately follows next.
• Discontinuous (D): next and prev are not adja-

cent in the source.

Note that prev and next can be defined for construct-
ing a translation from left-to-right or from right-to-
left. Most decoders incorporate RMs for both direc-
tions; our discussion will generally only cover left-
to-right, with the right-to-left case being implicit and
symmetrical.

As the decoder extends its hypothesis by trans-
lating a source phrase, we can assess the implied
orientations to determine if the resulting reordering
makes sense. This is done using the probability of
an orientation given the phrase pair pp = [src, tgt ]
extending the hypothesis:2

P (o|pp) ≈ cnt(o, pp)∑
o cnt(o, pp)

(1)

where o ∈ {M,S,D}, cnt uses simple heuristics on
word-alignments to count phrase pairs and their ori-
entations, and the ≈ symbol allows for smoothing.
The log of this probability is easily folded into the
linear models that guide modern decoders. Better

2pp corresponds to the phrase pair translating next for the
left-to-right model, and prev for right-to-left.

performance is achieved by giving each orientation
its own log-linear weight (Koehn et al., 2005).

2.2 Hierarchical Reordering
Introduced by Galley and Manning (2008), the hier-
archical reordering model (HRM) also tracks statis-
tics over orientations, but attempts to increase the
consistency of orientation assignments. To do so,
they remove the emphasis on the previously trans-
lated phrase (prev ), and instead determine orienta-
tion using a compact representation of the full trans-
lation history, as represented by a shift-reduce stack.
Each source span is shifted onto the stack as it is
translated; if the new top is adjacent to the span be-
low it, then a reduction merges the two.

Orientations are determined in terms of the top
of this stack,3 rather than the previously translated
phrase prev. The resulting orientations are more
consistent across different phrasal decompositions
of the same translation, and more consistent with the
statistics extracted from word aligned data. This re-
sults in a general improvement in performance. We
assume the HRM as our baseline reordering model.

It is important to note that although our maximum
entropy and sparse reordering solutions build on the
HRM, the features in this paper can still be applied
without a shift-reduce stack, by using the previously
translated phrase where we use the top of the stack.

2.3 Maximum Entropy Reordering
One frequent observation regarding both the RM and
the HRM is that the statistics used to grade orien-
tations are very sparse. Each orientation predic-
tion P (o|pp) is conditioned on an entire phrase pair.
Koehn et al. (2005) experiment with alternatives,
such as conditioning on only the source or the tar-
get, but using the entire pair generally performs best.
The vast majority of phrase pairs found in bitext with
standard extraction heuristics are singletons (more
than 92% in our Arabic-English bitext), and the cor-
responding P (o|pp) estimates are based on a single
observation. Because of these heavy tails, there have
been several attempts to use maximum entropy to
create more flexible distributions.

One straight-forward way to do so is to continue
predicting orientations on phrases, but to use maxi-

3In the case of the right-to-left model, an approximation of
the top of the stack is used instead.
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mum entropy to consider features of the phrase pair.
This is the approach taken by Xiong et al. (2006);
their maximum entropy model chooses between M
and S orientations, which are the only two options
available in their chart-based ITG decoder. Nguyen
et al. (2009) build a similar model for a phrase-based
HRM, using syntactic heads and constituent labels
to create a rich feature set. They show gains over an
HRM baseline, albeit on a small training set.

A related approach is to build a reordering model
over words, which is evaluated at phrase bound-
aries at decoding time. Zens and Ney (2006) pro-
pose one such model, with jumps between words
binned very coarsely according to their direction
and distance, testing models that differentiate only
left jumps from right, as well as the cross-product
of {left, right} × {adjacent, discontinuous}. Their
features consider word identity and automatically-
induced clusters. Green et al. (2010) present a sim-
ilar approach, with finer-grained distance bins, us-
ing word-identity and part-of-speech for features.
Yahyaei and Monz (2010) also predict distance bins,
but use much more context, opting to look at both
sides of a reordering jump; they also experiment
with hard constraints based on their model.

Tracking word-level reordering simplifies the ex-
traction of complex models from word alignments;
however, it is not clear if it is possible to enhance
a word reordering model with the stack-based his-
tories used by HRMs. In this work, we construct a
phrase orientation maximum entropy model.

3 Methods

Our primary contribution is a comparison between
the standard HRM and two feature-based alterna-
tives. Since a major motivating concern is smooth-
ing, we begin with a detailed description of our
HRM baseline, followed by our maximum entropy
HRM and our novel sparse reordering features.

3.1 Relative Frequency Model

The standard HRM uses relative frequencies to build
smoothed maximum likelihood estimates of orien-
tation probabilities. Orientation counts for phrase
pairs are collected from bitext, using the method de-
scribed by Galley and Manning (2008). The proba-
bility model P (o|pp = [src, tgt ]) is estimated using

recursive MAP smoothing:

P (o|pp) =
cnt(o, pp) + αsPs(o|src) + αtPt(o|tgt)∑

o cnt(o, pp) + αs + αt

Ps(o|src) =

∑
tgt cnt(o, src, tgt) + αgPg(o)∑

o,tgt cnt(o, src, tgt) + αg

Pt(o|tgt) =

∑
src cnt(o, src, tgt) + αgPg(o)∑

o,src cnt(o, src, tgt) + αg

Pg(o) =

∑
pp cnt(o, pp) + αu/3∑
o,pp cnt(o, pp) + αu

(2)

where the various α parameters can be tuned em-
pirically. In practice, the model is not particularly
sensitive to these parameters.4

3.2 Maximum Entropy Model

Next, we describe our implementation of a maxi-
mum entropy HRM. Our goal with this system is
to benefit from modeling features of a phrase pair,
while keeping the system architecture as simple and
replicable as possible. To simplify training, we learn
our model from the same orientation counts that
power the relative-frequency HRM. To simplify de-
coder integration, we limit our feature space to in-
formation from a single phrase pair.

In a maximum entropy model, the probability of
an orientation o given a phrase pair pp is given by a
log-linear model:

P (o|pp) =
exp(w · f(o, pp))∑
o′ exp(w · f(o′, pp))

(3)

where f(o, pp) returns features of a phrase-pair, and
w is the learned weight vector. We build two models,
one for left-to-right translation, and one for right-
to-left. As with the relative frequency model, we
limit our discussion to the left-to-right model, with
the other direction being symmetrical.

We construct a training example for each unique
phrase-pair type (as opposed to token) found in our
bitext. We use the orientation counts observed for
a phrase pair ppi to construct its example weight:
ci =

∑
o cnt(o, ppi). The same counts are used to

construct a target distribution P̃ (o|ppi), using the

4We use a historically good setting of α∗ = 10 throughout.
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Base:
bias; src ∧ tgt ; src; tgt
src.first ; src.last ; tgt .first ; tgt .last
clust50(src.first); clust50(src.last)
clust50(tgt .first); clust50(tgt .last)

× Orientation {M,S,D}

Table 1: Features for the Maximum Entropy HRM.

unsmoothed relative frequency estimate in Equa-
tion 1. We then train our weight vector to minimize:

1

2
||w||2+C

∑
i

ci

[
log

∑
o exp (w · f(o, ppi))

−
∑

o P̃ (o|ppi) (w · f(o, ppi))

]
(4)

where C is a hyper-parameter that controls the
amount of emphasis placed on minimizing loss ver-
sus regularizing w.5 Note that this objective is a de-
parture from previous work, which tends to create an
example for each phrase-pair token, effectively as-
signing P̃ (o|pp) = 1 to a single gold-standard ori-
entation. Instead, our model attempts to reproduce
the target distribution P̃ for the entire type, where
the penalty ci for missing this target is determined
by the frequency of the phrase pair. The resulting
model will tend to match unsmoothed relative fre-
quency estimates for very frequent phrase pairs, and
will smooth intelligently using features for less fre-
quent phrase pairs.

All of the features returned by f(o|pp) are derived
from the phrase pair pp = [src, tgt ], with the goal
of describing the phrase pair at a variety of granu-
larities. Our features are described in Table 1, using
the following notation: the operators first and last
return the first and last words of phrases,6 while the
operator clust50 maps a word onto its corresponding
cluster from an automatically-induced, determinis-
tic 50-word clustering provided by mkcls (Och,
1999). Our use of words at the corners of phrases
(as opposed to the syntactic head, or the last aligned
word) follows Xiong et al. (2006), while our use of
word clusters follows Zens and Ney (2006). Each
feature has the orientation o appended onto it.

To help scale and to encourage smoothing, we
only allow features that occur in at least 5 phrase pair

5Preliminary experiments indicated that the model is robust
to the choice of C; we use C = 0.1 throughout.

6first = last for a single-word phrase

Base:
src.first ; src.last ; tgt .first ; tgt .last
top.src.first ; top.src.last ; top.tgt .last
between words

× Representation
{80-words, 50-clusters, 20-clusters}
× Orientation
{M,S,D}

Table 2: Features for the Sparse Feature HRM.

tokens. Furthermore, to deal with the huge number
of extracted phrase pairs (our Arabic system extracts
roughly 88M distinct phrase pair types), we subsam-
ple pairs that have been observed only once, keeping
only 10% of them. This reduces the number of train-
ing examples from 88M to 19M.

3.3 Sparse Reordering Features
The maximum entropy approach uses features to
model the distribution of orientations found in word
alignments. Alternatively, a number of recent tun-
ing methods, such as MIRA (Chiang et al., 2008)
or PRO (Hopkins and May, 2011), can handle thou-
sands of features. These could be used to tune simi-
lar features to maximize BLEU directly.

Given the appropriate tuning architecture, the
sparse feature approach is actually simpler in many
ways than the maximum entropy approach. There
is no need to scale to millions of training exam-
ples, and there is no question of how to integrate the
trained model into the decoder. Instead, one simply
implements the desired features in the decoder’s fea-
ture API and then tunes as normal. The challenge is
to design features so that the model can be learned
from small tuning sets.

The standard approach for sparse feature design
in SMT is to lexicalize only on extremely fre-
quent words, such as the top-80 words from each
language (Chiang et al., 2009; Hopkins and May,
2011). We take that approach here, but we also
use deterministic clusters to represent words from
both languages, as provided by mkcls. These clus-
ters mirror parts-of-speech quite effectively (Blun-
som and Cohn, 2011), without requiring linguistic
resources. They should provide useful generaliza-
tion for reordering decisions. Inspired by recent suc-
cesses in semi-supervised learning (Koo et al., 2008;
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corpus sentences words (ar) words (en)
train 1,490,514 46,403,734 47,109,486
dev 1,663 45,243 50,550
mt08 1,360 45,002 51,341
mt09 1,313 40,684 46,813

Table 3: Arabic-English Corpus. For English dev and test
sets, word counts are averaged across 4 references.

Lin and Wu, 2009), we cluster at two granularities
(20 clusters and 50 clusters), and allow the discrim-
inative tuner to determine how to best employ the
various representations.

We add the sparse features in Table 2 to our
decoder to help assess reordering decisions. As
with the maximum entropy model, orientation is ap-
pended to each feature. Furthermore, each feature
has a different version for each of our three word
representations. Like the maximum entropy model,
we describe the phrase pair being added to the hy-
pothesis in terms of the first and last words of its
phrases. Unlike the maximum entropy model, we
make no attempt to use entire phrases or phrase-
pairs as features, as they would be far too sparse for
our small tuning sets. However, due to the sparse
features’ direct decoder integration, we have access
to a fair amount of extra context. We represent the
current top of the stack (top) using its first and last
source words (accessible from the HRM stack), and
its last target word (accessible using language model
context). Furthermore, for discontinuous (D) orien-
tations, we can include an indicator for each source
word between the current top of the stack and the
phrase being added.

Because the sparse feature HRM has no access
to phrase-pair or monolingual phrase features, and
because it completely ignores our large supply of
word-aligned training data, we view it as compli-
mentary to the relative frequency HRM. We always
include both when tuning and decoding. Further-
more, we only include sparse features in the left-
to-right translation direction, as the features already
consider context (top) as well as the next phrase.

4 Experimental Design

We test our reordering models in Arabic to English
and Chinese to English translation tasks. Both sys-
tems are trained on data from the NIST 2012 MT

corpus sentences words (ch) words (en)
train 3,505,529 65,917,610 69,453,695
dev 1,894 48,384 53,584
mt06 1,664 39,694 47,143
mt08 1,357 33,701 40,893

Table 4: Chinese-English Corpus. For English dev and
test sets, word counts are averaged across 4 references.

evaluation; the Arabic system is summarized in Ta-
ble 3 and the Chinese in Table 4. The Arabic sys-
tem’s development set is the NIST mt06 test set, and
its test sets are mt08 and mt09. The Chinese sys-
tem’s development set is taken from the NIST mt05
evaluation set, augmented with some material re-
served from our NIST training corpora in order to
better cover newsgroup and weblog domains. Its test
sets are mt06 and mt08.

4.1 Baseline System

For both language pairs, word alignment is per-
formed by GIZA++ (Och and Ney, 2003), with
5 iterations of Model 1, HMM, Model 3 and
Model 4. Phrases are extracted with a length limit
of 7 from alignments symmetrized using grow-
diag-final-and (Koehn et al., 2003). Conditional
phrase probabilities in both directions are estimated
from relative frequencies, and from lexical probabil-
ities (Zens and Ney, 2004). 4-gram language mod-
els are estimated from the target side of the bitext
with Kneser-Ney smoothing. Relative frequency
and maximum entropy RMs are represented with six
features, with separate weights for M, S and D in
both directions (Koehn et al., 2007). HRM orien-
tations are determined using an unrestricted shift-
reduce parser (Cherry et al., 2012). We also em-
ploy a standard distortion penalty incorporating the
minimum completion cost described by Moore and
Quirk (2007). Our multi-stack phrase-based decoder
is quite similar to Moses (Koehn et al., 2007).

For all systems, parameters are tuned with a
batch-lattice variant of hope-fear MIRA (Chiang et
al., 2008; Cherry and Foster, 2012). Preliminary ex-
periments suggested that the sparse reordering fea-
tures have a larger impact when tuned with lattices
as opposed to n-best lists.
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4.2 Evaluation

We report lower-cased BLEU (Papineni et al., 2002),
evaluated using the same English tokenization used
in training. For our primary results, we perform ran-
dom replications of parameter tuning, as suggested
by Clark et al. (2011). Each replication uses a dif-
ferent random seed to determine the order in which
MIRA visits tuning sentences. We test for signifi-
cance using Clark et al.’s MultEval tool, which uses
a stratified approximate randomization test to ac-
count for multiple replications.

5 Results

We begin with a comparison of the reordering mod-
els described in this paper: the hierarchical reorder-
ing model (HRM), the maximum entropy HRM
(Maxent HRM) and our sparse reordering features
(Sparse HRM). Results are shown in Table 5.

Our three primary points of comparison have been
tested with 5 replications. We report BLEU scores
averaged across replications as well as standard de-
viations, which indicate optimizer stability. We also
provide unreplicated results for two systems, one us-
ing only the distortion penalty (No RM), and one
using a non-hierarchical reordering model (RM).
These demonstrate that our baseline already has
quite mature reordering capabilities.

The Maxent HRM has very little effect on trans-
lation performance. We found this surprising; we
expected large gains from improving the reorder-
ing distributions of low-frequency phrase-pairs. See
§5.1 for further exploration of this result.

The Sparse HRM, on the other hand, performs
very well. It produces significant BLEU score im-
provements on all test sets, with improvements rang-
ing between 1 and 1.8 BLEU points. Even with
millions of training sentences for our HRM, there
is a large benefit in building HRM-like features that
are tuned to optimize the decoder’s BLEU score on
small tuning sets. We examine the impact of subsets
of these features in §5.2.

The test sets’ standard deviations increase from
0.1 under the baseline to 0.3 under the Sparse HRM
for Chinese-English, indicating a decrease in opti-
mizer stability. With so many features trained on
so few sentences, this is not necessarily surprising.
Fortunately, looking at the actual replications (not

Base:
src.first ; src.last ; tgt .first ; tgt .last

× Representation
{80-words, 50-clusters}
× Orientation
{M,S,D}

Table 6: Intersection of Maxent & Sparse HRM features.

shown), we confirmed that if a replication produced
low scores in one test, it also produced low scores
in the other. This means that one should be able to
outperform the average case by using a dev-test set
to select among replications.

5.1 Maximum Entropy Analysis
The next two sections examine our two solutions
in detail, starting with the Maxent HRM. To avoid
excessive demands on our computing resources, all
experiments report tuning with a single replication
with the same seed. We select Arabic-English for
our analysis, as this pair has high optimizer stability
and fast decoding speeds.

Why does the Maxent HRM help so little? We
begin by investigating some design decisions. One
possibility is that our subsampling of frequency-1
training pairs (see §3.2) harmed performance. To
test the impact of this decision, we train a Max-
ent HRM without subsampling, taking substantially
longer. The resulting BLEU scores (not shown) are
well within the projected standard deviations for op-
timizer instability (0.1 BLEU from Table 5). This
indicates that subsampling is not the problem. To
confirm our choice of hyperparameters, we conduct
a grid search over the Maxent HRM’s regulariza-
tion parameter C (see Equation 4), covering the set
{1, 0.1, 0.01, 0.001}, where C = 0.1 is the value
used throughout this paper. Again, the resulting
BLEU scores (not shown) are all within 0.1 of the
means reported in Table 5.

Another possibility is that the Maxent HRM has
an inferior feature set. We selected features for our
Maxent and Sparse HRMs to be similar, but also to
play to the strengths of each method. To level the
playing field, we train and test both systems with the
feature set shown in Table 6, which is the intersec-
tion of the features from Tables 1 and 2. The result-
ing average BLEU scores are shown in Table 7. With
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Chinese-English Arabic-English
Method n tune std mt06 std mt08 std tune std mt08 std mt09 std
No RM 1 24.3 – 32.0 – 26.4 – 41.7 – 41.4 – 44.1 –
RM 1 25.2 – 33.3 – 27.4 – 42.4 – 42.6 – 45.2 –
HRM (baseline) 5 25.6 0.0 34.2 0.1 28.0 0.1 42.9 0.0 42.9 0.1 45.5 0.0
HRM + Maxent HRM 5 25.6 0.0 34.3 0.1 28.1 0.1 43.0 0.0 42.9 0.0 45.6 0.1
HRM + Sparse HRM 5 28.0 0.1 35.4 0.3 29.0 0.3 47.0 0.1 44.6 0.1 47.3 0.1

Table 5: Comparing reordering methods according to BLEU score. n indicates the number of tuning replications,
while standard deviations (std) indicate optimizer stability. Test scores that are significantly higher (p < 0.01) than
the HRM baseline are highlighted in bold.

Method −HRM +HRM
HRM (baseline) – 44.2

Original
Maxent HRM 44.2 44.2
Sparse HRM 45.4 46.0

Intersection
Maxent HRM 43.8 44.2
Sparse HRM 45.2 46.0

Table 7: Arabic-English BLEU scores with each system’s
original feature set versus the intersection of the two fea-
ture sets, with and without the relative frequency HRM.
BLEU is averaged across mt08 and mt09.

the baseline HRM included, performance does not
change for either system with the intersected feature
set. Sparse features continue to help, while the max-
imum entropy model does not. Without the HRM,
both systems degrade under the intersection, though
the Sparse HRM still improves over the baseline.

Finally, we examine Maxent HRM performance
as a function of the amount of word-aligned train-
ing data. To do so, we hold all aspects of our sys-
tem constant, except for the amount of bitext used to
train either the baseline HRM or the Maxent HRM.
Importantly, the phrase table always uses the com-
plete bitext. For our reordering training set, we hold
out the final two thousand sentences of bitext to cal-
culate perplexity. This measures the model’s sur-
prise at reordering events drawn from previously un-
seen alignments; lower values are better. We pro-
ceed to subsample sentence pairs from the remain-
ing bitext, in order to produce a series of training
bitexts of increasing size. We subsample with the
probability of accepting a sentence pair, Pa, set to
{0.001, 0.01, 0.1, 1}. It is important to not confuse
this subsampling of sentence pairs with the sub-
sampling of low-frequency phrase pairs (see §3.2),

which is still carried out by the Maxent HRM for
each training scenario.

Figure 1 shows how BLEU (averaged across both
test sets) and perplexity vary as training data in-
creases from 1.5K sentences to the full 1.5M. At
Pa < 0.1, corresponding to less than 150K sen-
tences, the maximum entropy model actually makes
a substantial difference in terms of BLEU. However,
these deltas narrow to nothing as we reach millions
of training sentences. This is consistent with the re-
sults of Nguyen et al. (2009), who report that maxi-
mum entropy reordering outperforms a similar base-
line, but using only 50K sentence pairs.

A related observation is that held-out perplexity
does not seem to predict BLEU in any useful way.
In particular, perplexity does not predict that the two
systems will become similar as data grows, nor does
it predict that maxent’s performance will level off.
Predicting the orientations of unseen alignments is
not the same task as predicting the orientation for a
phrase during translation. We suspect that perplexity
places too much emphasis on rare or previously un-
seen phrase pairs, due to phrase extraction’s heavy
tails. Preliminary attempts to correct for this us-
ing absolute discounting on the test counts did not
resolve these issues. Unfortunately, in maximizing
(regularized or smoothed) likelihood, both maxent
and relative frequency HRMs are chasing the per-
plexity objective, not the BLEU objective.

5.2 Sparse Feature Analysis

The results in Table 7 from §5.1 already provide
us with a number of insights regarding the Sparse
HRM. First, note that the intersected feature set uses
only information found within a single phrase. The
fact that the Sparse HRM performs so well with
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Figure 1: Learning curves for Relative Frequency and Maximum Entropy reordering models on Arabic-English.

Feature Group Count BLEU
No Sparse HRM 0 44.2
Between 312 44.4
Stack 1404 45.2
Phrase 1872 45.9
20 Clusters 506 45.4
50 Clusters 1196 45.8
80 Words 1886 45.8
Full Sparse HRM 3588 46.0

Table 8: Versions of the Sparse HRM built using or-
ganized subsets of the complete feature set for Arabic-
English. Count is the number of distinct features, while
BLEU is averaged over mt08 and mt09.

intersected features indicates that modeling context
outside a phrase is not essential for strong perfor-
mance. Furthermore, the −HRM portion of the ta-
ble indicates that the sparse HRM does not require
the baseline HRM to be present in order to outper-
form it. This is remarkable when one considers that
the Sparse HRM uses less than 4k features to model
phrase orientations, compared to the 530M proba-
bilities7 maintained by the baseline HRM’s relative
frequency model.

To determine which feature groups are most im-
portant, we tested the Sparse HRM on Arabic-
English with a number of feature subsets. We report
BLEU scores averaged over both test sets in Table 8.
First, we break our features into three groups accord-
ing to what part of the hypothesis is used to assess
orientation. For each of these location groups, all
forms of word representation (clusters or frequent
words) are employed. The groups consist of Be-

788.4M phrase pairs × 3 orientations (M, S and D) × 2
translation directions (left-to-right and right-to-left).

tween: the words between the top of the stack and
the phrase to be added; Stack: words describing
the current top of the stack; and Phrase: words de-
scribing the phrase pair being added to the hypothe-
sis. Each group was tested alone to measure its use-
fulness. This results in a clear hierarchy, with the
phrase features being the most useful (nearly as use-
ful as the complete system), and the between fea-
tures being the least. Second, we break our features
into three groups according to how words are rep-
resented. For each of these representation groups,
all location groups (Between, Stack and Phrase) are
employed. The groups are quite intuitive: 20 Clus-
ters, 50 Clusters or 80 Words. The differences be-
tween representations are much less dramatic than
the location groups. All representations perform
well on their own, with the finer-grained ones per-
forming better. Including multiple representations
provides a slight boost, but these experiments sug-
gest that a leaner model could certainly drop one or
two representations with little impact.

In its current implementation, the Sparse HRM is
roughly 4 times slower than the baseline decoder.
Our sparse feature infrastructure is designed for flex-
ibility, not speed. To affect reordering, each sparse
feature template is re-applied with each hypothesis
extension. However, the intersected feature set from
§5.1 is only 2 times slower, and could be made faster
still. That feature set uses only within-phrase fea-
tures to asses orientations; therefore, the total weight
for each orientation for each phrase-pair could be
pre-calculated, making its cost comparable to the
baseline.
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Chinese-English tune mt06 mt08
Base 27.7 39.9 33.7
+Sparse HRM 29.2 41.0 34.1

Arabic-English tune mt08 mt09
Base 49.6 49.1 51.6
+Sparse HRM 51.7 49.9 52.2

Table 9: The effect of Sparse HRMs on complex systems.

5.3 Impact on Competition-Grade SMT

Thus far, we have employed a baseline that has been
designed for both translation quality and replicabil-
ity. We now investigate the impact of our Sparse
HRM on a far more complex baseline: our internal
system used for MT competitions such as NIST.

The Arabic system uses roughly the same bilin-
gual data as our original baseline, but also includes
a 5-gram language model learned from the English
Gigaword. The Chinese system adds the UN bitext
as well as the English Gigaword. Both systems make
heavy use of linear mixtures to create refined transla-
tion and language models, mixing across sources of
corpora, genre and translation direction (Foster and
Kuhn, 2007; Goutte et al., 2009). They also mix
many different sources of word alignments, with
the system adapting across alignment sources us-
ing either binary indicators or linear mixtures. Im-
portantly, these systems already incorporate thou-
sands of sparse features as described by Hopkins and
May (2011). These provide additional information
for each phrase pair through frequency bins, phrase-
length bins, and indicators for frequent alignment
pairs. Both systems include a standard HRM.

The result of adding the Sparse HRM to these sys-
tems is shown in Table 9. Improvements range from
0.4 to 1.1 BLEU, but importantly, all four test sets
improve. The impact of these reordering features is
reduced slightly in the presence of more carefully
tuned translation and language models, but they re-
main a strong contributor to translation quality.

6 Conclusion

We have shown that sparse reordering features can
improve the quality of phrase-based translations,
even in the presence of lexicalized reordering mod-
els that track the same orientations. We have com-

pared this solution to a maximum entropy model,
which does not improve our HRM baseline. Our
analysis of the maximum entropy solution indicates
that smoothing the orientation estimates is not a ma-
jor concern in the presence of millions of sentences
of bitext. This implies that our sparse features are
achieving their improvement because they optimize
BLEU with the decoder in the loop, side-stepping
the objective mismatch that can occur when train-
ing on word-aligned data. The fact that this is possi-
ble with such small tuning corpora is both surprising
and encouraging.

In the future, we would like to investigate how
to incorporate useful future cost estimates for our
sparse reordering features. Previous work has shown
future distortion penalty estimates to be important
for both translation speed and quality (Moore and
Quirk, 2007; Green et al., 2010), but we have ig-
nored future costs in this work. We would also like
to investigate features inspired by transition-based
parsing, such as features that look further down the
reordering stack. Finally, as there is evidence that
ideas from lexicalized reordering can help hierarchi-
cal phrase-based SMT (Huck et al., 2012), it would
be interesting to explore the use of sparse RMs in
that setting.
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Abstract

Current word alignment models for statisti-
cal machine translation do not address mor-
phology beyond merely splitting words. We
present a two-level alignment model that dis-
tinguishes between words and morphemes, in
which we embed an IBM Model 1 inside an
HMM based word alignment model. The
model jointly induces word and morpheme
alignments using an EM algorithm. We eval-
uated our model on Turkish-English parallel
data. We obtained significant improvement of
BLEU scores over IBM Model 4. Our results
indicate that utilizing information from mor-
phology improves the quality of word align-
ments.

1 Introduction

All current state-of-the-art approaches to SMT rely
on an automatically word-aligned corpus. However,
current alignment models do not take into account
the morpheme, the smallest unit of syntax, beyond
merely splitting words. Since morphology has not
been addressed explicitly in word alignment models,
researchers have resorted to tweaking SMT systems
by manipulating the content and the form of what
should be the so-called “word”.

Since the word is the smallest unit of translation
from the standpoint of word alignment models, the
central focus of research on translating morphologi-
cally rich languages has been decomposition of mor-
phologically complex words into tokens of the right
granularity and representation for machine transla-
tion. Chung and Gildea (2009) and Naradowsky and
Toutanova (2011) use unsupervised methods to find

word segmentations that create a one-to-one map-
ping of words in both languages. Al-Onaizan et al.
(1999), Čmejrek et al. (2003), and Goldwater and
McClosky (2005) manipulate morphologically rich
languages by selective lemmatization. Lee (2004)
attempts to learn the probability of deleting or merg-
ing Arabic morphemes for Arabic to English trans-
lation. Niessen and Ney (2000) split German com-
pound nouns, and merge German phrases that cor-
respond to a single English word. Alternatively,
Yeniterzi and Oflazer (2010) manipulate words of
the morphologically poor side of a language pair
to mimic having a morphological structure similar
to the richer side via exploiting syntactic structure,
in order to improve the similarity of words on both
sides of the translation.

We present an alignment model that assumes in-
ternal structure for words, and we can legitimately
talk about words and their morphemes in line with
the linguistic conception of these terms. Our model
avoids the problem of collapsing words and mor-
phemes into one single category. We adopt a two-
level representation of alignment: the first level in-
volves word alignment, the second level involves
morpheme alignment in the scope of a given word
alignment. The model jointly induces word and
morpheme alignments using an EM algorithm.

We develop our model in two stages. Our initial
model is analogous to IBM Model 1: the first level
is a bag of words in a pair of sentences, and the sec-
ond level is a bag of morphemes. In this manner,
we embed one IBM Model 1 in the scope of another
IBM Model 1. At the second stage, by introducing
distortion probabilities at the word level, we develop
an HMM extension of the initial model.

We evaluated the performance of our model on the
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Turkish-English pair both on hand-aligned data and
by running end-to-end machine translation experi-
ments. To evaluate our results, we created gold word
alignments for 75 Turkish-English sentences. We
obtain significant improvement of AER and BLEU
scores over IBM Model 4. Section 2.1 introduces
the concept of morpheme alignment in terms of its
relation to word alignment. Section 2.2 presents
the derivation of the EM algorithm and Section 3
presents the results of our experiments.

2 Two-level Alignment Model (TAM)

2.1 Morpheme Alignment

Following the standard alignment models of Brown
et al. (1993), we assume one-to-many alignment for
both words and morphemes. A word alignment aw

(or only a) is a function mapping a set of word po-
sitions in a source language sentence to a set of
word positions in a target language sentence. A mor-
pheme alignment am is a function mapping a set of
morpheme positions in a source language sentence
to a set of morpheme positions in a target language
sentence. A morpheme position is a pair of integers
(j, k), which defines a word position j and a relative
morpheme position k in the word at position j. The
alignments below are depicted in Figures 1 and 2.

aw(1) = 1 am(2, 1) = (1, 1) aw(2) = 1

Figure 1 shows a word alignment between two sen-
tences. Figure 2 shows the morpheme alignment be-
tween same sentences. We assume that all unaligned
morphemes in a sentence map to a special null mor-
pheme.

A morpheme alignment am and a word alignment
aw are compatible if and only if they satisfy the fol-
lowing conditions: If the morpheme alignment am

maps a morpheme of e to a morpheme of f , then the
word alignment aw maps e to f . If the word align-
ment aw maps e to f , then the morpheme alignment
am maps at least one morpheme of e to a morpheme
of f . If the word alignment aw maps e to null, then
all of its morphemes are mapped to null. In sum, a
morpheme alignment am and a word alignment aw

are compatible if and only if:

∀ j, k,m, n ∈ N+, ∃ s, t ∈ N+

[am(j, k) = (m,n)⇒ aw(j) = m] ∧
[aw(j) = m⇒ am(j, s) = (m, t)] ∧

[aw(j) = null⇒ am(j, k) = null] (1)

Please note that, according to this definition of com-
patibility, ‘am(j, k) = null’ does not necessarily im-
ply ‘aw(j) = null’.

A word alignment induces a set of compati-
ble morpheme alignments. However, a morpheme
alignment induces a unique word alignment. There-
fore, if a morpheme alignment am and a word align-
ment aw are compatible, then the word alignment is
aw is recoverable from the morpheme alignment am.

The two-level alignment model (TAM), like
IBM Model 1, defines an alignment between words
of a sentence pair. In addition, it defines a mor-
pheme alignment between the morphemes of a sen-
tence pair.

The problem domain of IBM Model 1 is defined
over alignments between words, which is depicted
as the gray box in Figure 1. In Figure 2, the smaller
boxes embedded inside the main box depict the new
problem domain of TAM. Given the word align-
ments in Figure 1, we are presented with a new
alignment problem defined over their morphemes.
The new alignment problem is constrained by the
given word alignment. We, like IBM Model 1, adopt
a bag-of-morphemes approach to this new problem.
We thus embed one IBM Model 1 into the scope of
another IBM Model 1, and formulate a second-order
interpretation of IBM Model 1.

TAM, like IBM Model 1, assumes that words and
morphemes are translated independently of their
context. The units of translation are both words and
morphemes. Both the word alignment aw and the
morpheme alignment am are hidden variables that
need to be learned from the data using the EM algo-
rithm.

In IBM Model 1, p(e|f), the probability of trans-
lating the sentence f into e with any alignment is
computed by summing over all possible word align-
ments:

p(e|f) =
∑

a

p(a, e|f)
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Figure 1: Word alignment Figure 2: Morpheme alignment

In TAM, the probability of translating the sentence
f into e with any alignment is computed by sum-
ming over all possible word alignments and all pos-
sible morpheme alignments that are compatible with
a given word alignment aw:

p(e|f) =
∑
aw

p(aw, e|f)
∑
am

p(am, e|aw, f) (2)

where am stands for a morpheme alignment. Since
the morpheme alignment am is in the scope of a
given word alignment aw, am is constrained by aw.

In IBM Model 1, we compute the probability of
translating the sentence f into e by summing over
all possible word alignments between the words of f
and e:

p(e|f) = R(e, f)
|e|∏

j=1

|f |∑
i=0

t(ej |fi) (3)

where t(ej | fi) is the word translation probability
of ej given fi. R(e, f) substitutes P (le|lf )

(lf+1)le
for easy

readability.1

In TAM, the probability of translating the sen-
tence f into e is computed as follows:

Word

R(e, f)
|e|∏

j=1

|f |∑
i=0

(
t(ej |fi)

R(ej , fi)
|ej |∏
k=1

|fi|∑
n=0

t(ekj |fn
i )

)
Morpheme

where fn
i is the nth morpheme of the word at po-

sition i. The right part of this equation, the con-
tribution of morpheme translation probabilities, is

1le = |e| is the number of words in sentence e and lf = |f |.

in the scope of the left part. In the right part, we
compute the probability of translating the word fi

into the word ej by summing over all possible mor-
pheme alignments between the morphemes of ej and
fi. R(ej , fi) is equivalent to R(e, f) except for the
fact that its domain is not the set of sentences but
the set of words. The length of words ej and fi in
R(ej , fi) are the number of morphemes of ej and fi.

The left part, the contribution of word transla-
tion probabilities alone, equals Eqn. 3. Therefore,
canceling the contribution of morpheme translation
probabilities reduces TAM to IBM Model 1. In
our experiments, we call this reduced version of
TAM ‘word-only’ (IBM). TAM with the contribu-
tion of both word and morpheme translation proba-
bilities, as the equation above, is called ‘word-and-
morpheme’. Finally, we also cancel out the con-
tribution of word translation probabilities, which is
called ‘morpheme-only’. In the ‘morpheme-only’
version of TAM, t(ej |fi) equals 1. Bellow is the
equation of p(e|f) in the morpheme-only model.

p(e|f) =

R(e, f)
|e|∏

j=1

|f |∑
i=0

|ej |∏
k=1

|fi|∑
n=0

R(ej , fi)t(ekj |fn
i ) (4)

Please note that, although this version of the two-
level alignment model does not use word translation
probabilities, it is also a word-aware model, as mor-
pheme alignments are restricted to correspond to a
valid word alignment according to Eqn. 1. When
presented with words that exhibit no morphology,
the morpheme-only version of TAM is equivalent to
IBM Model 1, as every single-morpheme word is it-
self a morpheme.

Deficiency and Non-Deficiency of TAM We
present two versions of TAM, the word-and-
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morpheme and the morpheme-only versions. The
word-and-morpheme version of the model is defi-
cient whereas the morpheme-only model is not.

The word-and-morpheme version is deficient, be-
cause some probability is allocated to cases where
the morphemes generated by the morpheme model
do not match the words generated by the word
model. Moreover, although most languages exhibit
morphology to some extent, they can be input to the
algorithm without morpheme boundaries. This also
causes deficiency in the word-and-morpheme ver-
sion, as single morpheme words are generated twice,
as a word and as a morpheme.

Nevertheless, we observed that the deficient ver-
sion of TAM can perform as good as the non-
deficient version of TAM, and sometimes performs
better. This is not surprising, as deficient word align-
ment models such as IBM Model 3 or discriminative
word alignment models work well in practice.

Goldwater and McClosky (2005) proposed a mor-
pheme aware word alignment model for language
pairs in which the source language words corre-
spond to only one morpheme. Their word alignment
model is:

P (e|f) =
K∏

k=0

P (ek|f)

where ek is the kth morpheme of the word e. The
morpheme-only version of our model is a general-
ization of this model. However, there are major dif-
ferences in their and our implementation and exper-
imentation. Their model assumes a fixed number of
possible morphemes associated with any stem in the
language, and if the morpheme ek is not present, it
is assigned a null value.

The null word on the source side is also a null
morpheme, since every single morpheme word is it-
self a morpheme. In TAM, the null word is the null
morpheme that all unaligned morphemes align to.

2.2 Second-Order Counts
In TAM, we collect counts for both word translations
and morpheme translations. Unlike IBM Model 1,
R(e, f) = P (le|lf )

(lf+1)le
does not cancel out in the counts

of TAM. To compute the conditional probability
P (le|lf ), we assume that the length of word e (the
number of morphemes of word e) varies according

to a Poisson distribution with a mean that is linear
with length of the word f .

P (le|lf ) = FPoisson(le, r · lf )

=
exp(−r · lf )(r · lf )le

le!

FPoisson(le, r · lf ) expresses the probability that there
are le morphemes in e if the expected number of
morphemes in e is r · lf , where r = E[le]

E[lf ] is the rate
parameter. Since lf is undefined for null words, we
omit R(e, f) for null words.

We introduce T (e|f), the translation probability
of e given f with all possible morpheme alignments,
as it will occur frequently in the counts of TAM:

T (e|f) = t(e|f)R(e, f)
|e|∏

k=1

|f |∑
n=0

t(ek|fn)

The role of T (e|f) in TAM is very similar to the
role of t(e|f) in IBM Model 1. In finding the Viterbi
alignments, we do not take max over the values in
the summation in T (e|f).

2.2.1 Word Counts
Similar to IBM Model 1, we collect counts for

word translations over all possible alignments,
weighted by their probability. In Eqn. 5, the count
function collects evidence from a sentence pair
(e, f) as follows: For all words ej of the sentence e
and for all word alignments aw(j), we collect counts
for a particular input word f and an output word e
iff ej = e and faw(j) = f .

cw(e|f ; e, f , aw) =
∑

1≤j≤|e|
s.t.

e=ej

f=faw(j)

T (e|f)
|f |∑
i=0

T (e|fi)

(5)

2.2.2 Morpheme Counts
As for morpheme translations, we collect counts

over all possible word and morpheme alignments,
weighted by their probability. The morpheme count
function below collects evidence from a word pair
(e, f) in a sentence pair (e, f) as follows: For all
words ej of the sentence e and for all word align-
ments aw(j), for all morphemes ekj of the word ej
and for all morpheme alignments am(j, k), we col-
lect counts for a particular input morpheme g and an
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output morpheme h iff ej = e and faw(j) = f and
h = ekj and g = fam(j,k).

cm(h|g; e, f , aw, am) =∑
1≤j≤|e|

s.t.
e=ej

f=faw(j)

∑
1≤k≤|e|

s.t.
h=ek

j

g=fam(j,k)

T (e|f)
|f |∑
i=0

T (e|fi)

t(h|g)
|f |∑
i=1

t(h|f i)

The left part of the morpheme count function is the
same as the word-counts in Eqn. 5. Since it does not
contain h or g, it needs to be computed only once for
each word. The right part of the equation is familiar
from the IBM Model 1 counts.

2.3 HMM Extension
We implemented TAM with the HMM extension
(Vogel et al., 1996) at the word level. We redefine
p(e|f) as follows:

R(e, f)
∑
aw

|e|∏
j=1

(
p(s(j ) |C (faw (j−1 ))) t(ej |faw(j))

R(ej , faw(j))
∑
am

|ej |∏
k=1

t(ekj |fam(j,k))

)

where the distortion probability depends on the rel-
ative jump width s(j) = aw(j − 1) − aw(j),
as opposed to absolute positions. The distortion
probability is conditioned on class of the previous
aligned word C (faw(j−1)). We used the mkcls
tool in GIZA (Och and Ney, 2003) to learn the word
classes.

We formulated the HMM extension of TAM only
at the word level. Nevertheless, the morpheme-only
version of TAM also has an HMM extension, as it
is also a word-aware model. To obtain the HMM
extension of the morpheme-only version, substitute
t(ej |faw(j)) with 1 in the equation above.

For the HMM to work correctly, we must han-
dle jumping to and jumping from null positions. We
learn the probabilities of jumping to a null position
from the data. To compute the jump probability from
a null position, we keep track of the nearest previous
source word that does not align to null, and use the
position of the previous non-null word to calculate
the jump width. For this reason, we use a total of

2lf − 1 words for the HMM model, the positions
> lf stand for null positions between the words of f
(Och and Ney, 2003). We do not allow null to null
jumps. In sum, we enforce the following constraints:

P (i+ lf + 1|i′) = p(null|i′)
P (i+ lf + 1|i′ + lf + 1) = 0

P (i|i′ + lf + 1) = p(i|i′)

In the HMM extension of TAM, we perform
forward-backward training using the word counts in
Eqn. 5 as the emission probabilities. We calculate
the posterior word translation probabilities for each
ej and fi such that 1 ≤ j ≤ le and 1 ≤ i ≤ 2lf − 1
as follows:

γj(i) =
αj(i)βj(i)

2lf−1∑
m=1

αj(m)βj(m)

where α is the forward and β is the backward prob-
abilities of the HMM. The HMM word counts, in
turn, are the posterior word translation probabilities
obtained from the forward-backward training:

cw(e|f ; e, f , aw) =
∑

1≤j≤|e|
s.t.

e=ej

f=faw(j)

γj(aw(j))

Likewise, we use the posterior probabilities in HMM
morpheme counts:

cm(h|g; e, f , aw, am) =∑
1≤j≤|e|

s.t.
e=ej

f=faw(j)

∑
1≤k≤|e|

s.t.
h=ek

j

g=fam(j,k)

γj(aw(j))
t(h|g)
|f |∑
i=1

t(h|f i)

The complexity of the HMM extension of TAM is
O(n3m2), where n is the number of words, and m
is the number of morphemes per word.

2.4 Variational Bayes
Moore (2004) showed that the EM algorithm is par-
ticularly susceptible to overfitting in the case of rare
words when training IBM Model 1. In order to pre-
vent overfitting, we use the Variational Bayes ex-
tension of the EM algorithm (Beal, 2003). This
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(a) Kasım 1996’da, Türk makamları, İçişleri Bakanlığı bünyesinde bir kayıp kişileri arama birimi oluşturdu.

(b) Kasım+Noun 1996+Num–Loc ,+Punc Türk+Noun makam+Noun–A3pl–P3sg ,+Punc İçişi+Noun–A3pl–
P3sg Bakanlık+Noun–P3sg bünye+Noun–P3sg–Loc bir+Det kayıp+Adj kişi+Noun–A3pl–Acc ara+Verb–
Inf2 birim+Noun–P3sg oluş+Verb–Caus–Past .+Punc

(c) In November 1996 the Turkish authorities set up a missing persons search unit within the Ministry of the
Interior.

(d) in+IN November+NNP 1996+CD the+DT Turkish+JJ author+NN–ity+N|N.–NNS set+VB–VBD up+RP
a+DT miss+VB–VBG+JJ person+NN–NNS search+NN unit+NN within+IN the+DT minister+NN–
y+N|N. of+IN the+DT interior+NN .+.

(e) In+IN November+NNP 1996+CD the+DT Turkish+JJ authorities+NNS set+VBD up+RP a+DT missing+JJ
persons+NNS search+NN unit+NN within+IN the+DT Ministry+NNP of+IN the+DT Interior+NNP .+.

Figure 3: Turkish-English data examples

amounts to a small change to the M step of the orig-
inal EM algorithm. We introduce Dirichlet priors α
to perform an inexact normalization by applying the
function f(v) = exp(ψ(v)) to the expected counts
collected in the E step, where ψ is the digamma
function (Johnson, 2007).

θx|y =
f(E[c(x|y)] + α)

f(
∑

j E[c(xj |y)] + α)

We set α to 10−20, a very low value, to have the ef-
fect of anti-smoothing, as low values of α cause the
algorithm to favor words which co-occur frequently
and to penalize words that co-occur rarely.

3 Experimental Setup

3.1 Data
We trained our model on a Turkish-English paral-
lel corpus of approximately 50K sentences, which
have a maximum of 80 morphemes. Our parallel
data consists mainly of documents in international
relations and legal documents from sources such as
the Turkish Ministry of Foreign Affairs, EU, etc. We
followed a heavily supervised approach in morpho-
logical analysis. The Turkish data was first morpho-
logically parsed (Oflazer, 1994), then disambiguated
(Sak et al., 2007) to select the contextually salient in-
terpretation of words. In addition, we removed mor-
phological features that are not explicitly marked by
an overt morpheme — thus each feature symbol be-
yond the root part-of-speech corresponds to a mor-
pheme. Line (b) of Figure 3 shows an example of

a segmented Turkish sentence. The root is followed
by its part-of-speech tag separated by a ‘+’. The
derivational and inflectional morphemes that follow
the root are separated by ‘–’s. In all experiments,
we used the same segmented version of the Turkish
data, because Turkish is an agglutinative language.

For English, we used the CELEX database
(Baayen et al., 1995) to segment English words into
morphemes. We created two versions of the data:
a segmented version that involves both derivational
and inflectional morphology, and an unsegmented
POS tagged version. The CELEX database provides
tags for English derivational morphemes, which in-
dicate their function: the part-of-speech category the
morpheme attaches to and the part-of-speech cate-
gory it returns. For example, in ‘sparse+ity’ = ‘spar-
sity’, the morpheme -ity attaches to an adjective to
the right and returns a noun. This behavior is repre-
sented as ‘N|A.’ in CELEX, where ‘.’ indicates the
attachment position. We used these tags in addition
to the surface forms of the English morphemes, in
order to disambiguate multiple functions of a single
surface morpheme.

The English sentence in line (d) of Figure 3 ex-
hibits both derivational and inflectional morphology.
For example, ‘author+ity+s’=‘authorities’ has both
an inflectional suffix -s and a derivational suffix -ity,
whereas ‘person+s’ has only an inflectional suffix -s.

For both English and Turkish data, the dashes in
Figure 3 stand for morpheme boundaries, therefore
the strings between the dashes are treated as indi-
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Words Morphemes

Tokens Types Tokens Types

English Der+Inf 1,033,726 27,758 1,368,188 19,448

English POS 1,033,726 28,647 1,033,726 28,647

Turkish Der+Inf 812,374 57,249 1,484,673 16,713

Table 1: Data statistics

visible units. Table 1 shows the number of words,
the number of morphemes and the respective vocab-
ulary sizes. The average number of morphemes in
segmented Turkish words is 2.69, and the average
length of segmented English words is 1.57.

3.2 Experiments
We initialized our baseline word-only model with 5
iterations of IBM Model 1, and further trained the
HMM extension (Vogel et al., 1996) for 5 iterations.
We call this model ‘baseline HMM’ in the discus-
sions. Similarly, we initialized the two versions of
TAM with 5 iterations of the model explained in
Section 2.2, and then trained the HMM extension of
it as explained in Section 2.3 for 5 iterations.

To obtain BLEU scores for TAM models and
our implementation of the word-only model, i.e.
baseline-HMM, we bypassed GIZA++ in the Moses
toolkit (Och and Ney, 2003). We also ran GIZA++
(IBM Model 1–4) on the data. We translated 1000
sentence test sets.

4 Results and Discussion

We evaluated the performance of our model in two
different ways. First, we evaluated against gold
word alignments for 75 Turkish-English sentences.
Second, we used the word Viterbi alignments of our
algorithm to obtain BLEU scores.

Table 2 shows the AER (Och and Ney, 2003) of
the word alignments of the Turkish-English pair and
the translation performance of the word alignments
learned by our models. We report the grow-diag-
final (Koehn et al., 2003) of the Viterbi alignments.
In Table 2, results obtained with different versions
of the English data are represented as follows: ‘Der’
stands for derivational morphology, ‘Inf’ for inflec-
tional morphology, and ‘POS’ for part-of-speech

tags. ‘Der+Inf’ corresponds to the example sen-
tence in line (d) in Figure 3, and ‘POS’ to line (e).
‘DIR’ stands for models with Dirichlet priors, and
‘NO DIR’ stands for models without Dirichlet pri-
ors. All reported results are of the HMM extension
of respective models.

Table 2 shows that using Dirichlet priors hurts
the AER performance of the word-and-morpheme
model in all experiment settings, and benefits the
morpheme-only model in the POS tagged experi-
ment settings.

In order to reduce the effect of nondeterminism,
we run Moses three times per experiment setting,
and report the highest BLEU scores obtained. Since
the BLEU scores we obtained are close, we did a sig-
nificance test on the scores (Koehn, 2004). Table 2
visualizes the partition of the BLEU scores into sta-
tistical significance groups. If two scores within the
same column have the same background color, or the
border between their cells is removed, then the dif-
ference between their scores is not statistically sig-
nificant. For example, the best BLEU scores, which
are in bold, have white background. All scores in a
given experiment setting without white background
are significantly worse than the best score in that ex-
periment setting, unless there is no border separating
them from the best score.

In all experiment settings, the TAM Models per-
form better than the baseline-HMM. Our experi-
ments showed that the baseline-HMM benefits from
Dirichlet priors to a larger extent than the TAM mod-
els. Dirichlet priors help reduce the overfitting in
the case of rare words. The size of the word vo-
cabulary is larger than the size of the morpheme
vocabulary. Therefore the number of rare words is
larger for words than it is for morphemes. Conse-
quently, baseline-HMM, using only the word vocab-
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BLEU

EN to TR

BLEU

TR to EN
AER

Der+Inf POS Der+Inf POS Der+Inf POS

NO
 
DIR

TAM
Morph only 22.57 22.54 29.30 29.45 0.293 0.276

Word & Morph 21.95 22.37 28.81 29.01 0.286 0.282

WORD

IBM 4 21.82 21.82 27.91 27.91 0.357 0.370

Base-HMM 21.78 21.38 28.22 28.02 0.381 0.375

IBM 4 Morph 17.15 17.94 25.70 26.33 N/A N/A

DIR

TAM
Morph only 22.18 22.52 29.32 29.98 0.304 0.256

Word & Morph 22.43 21.62 29.21 29.11 0.338 0.317

WORD

IBM 4 21.82 21.82 27.91 27.91 0.357 0.370

Base-HMM 21.69 21.95 28.76 29.13 0.381 0.377

IBM 4 Morph 17.15 17.94 25.70 26.33 N/A N/A

Table 2: AER and BLEU Scores

ulary, benefits from the use of Dirichlet priors more
than the TAM models.

In four out of eight experiment settings, the
morpheme-only model performs better than the
word-and-morpheme version of TAM. However,
please note that our extensive experimentation
with TAM models revealed that the superiority
of the morpheme-only model over the word-and-
morpheme model is highly dependent on segmenta-
tion accuracy, degree of segmentation, and morpho-
logical richness of languages.

Finally, we treated morphemes as words and
trained IBM Model 4 on the morpheme segmented
versions of the data. To obtain BLEU scores, we
had to unsegment the translation output: we con-
catenated the prefixes to the morpheme to the right,
and suffixes to the morpheme to the left. Since this
process creates malformed words, the BLEU scores
obtained are much lower than the scores obtained by
IBM Model 4, the baseline and the TAM Models.

5 Conclusion

We presented two versions of a two-level alignment
model for morphologically rich languages. We ob-

served that information provided by word transla-
tions and morpheme translations interact in a way
that enables the model to be receptive to the par-
tial information in rarely occurring words through
their frequently occurring morphemes. We obtained
significant improvement of BLEU scores over IBM
Model 4. In conclusion, morphologically aware
word alignment models prove to be superior to their
word-only counterparts.
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Abstract

Identifying documents that describe a specific
type of event is challenging due to the high
complexity and variety of event descriptions.
We propose amulti-faceted event recognition
approach, which identifies documents about
an event using event phrases as well as defin-
ing characteristics of the event. Our research
focuses on civil unrest events and learns civil
unrest expressions as well as phrases cor-
responding to potential agents and reasons
for civil unrest. We present a bootstrapping
algorithm that automatically acquires event
phrases, agent terms, and purpose (reason)
phrases from unannotated texts. We use the
bootstrapped dictionaries to identify civil un-
rest documents and show that multi-faceted
event recognition can yield high accuracy.

1 Introduction

Many people are interested in following news re-
ports about events. Government agencies are keenly
interested in news about civil unrest, acts of terror-
ism, and disease outbreaks. Companies want to stay
on top of news about corporate acquisitions, high-
level management changes, and new joint ventures.
The general public is interested in articles about
crime, natural disasters, and plane crashes. We will
refer to the task of identifying documents that de-
scribe a specific type of event asevent recognition.

It is tempting to assume that event keywords
are sufficient to identify documents that discuss in-
stances of an event. But event words are rarely reli-
able on their own. For example, consider the chal-
lenge of finding documents about civil unrest. The

words “strike” , “rally” , and “riot” refer to com-
mon types of civil unrest, but they frequently refer to
other things as well. A strike can refer to a military
event or a sporting event (e.g.,“air strike” , “bowl-
ing strike”), a rally can be a race or a spirited ex-
change (e.g.,“car rally” , “tennis rally” ), and a riot
can refer to something funny (e.g.,“she’s a riot” ).
Event keywords also appear in general discussions
that do not mention a specific event (e.g.,“37 states
prohibit teacher strikes”or “The fine for inciting a
riot is $1,000”). Furthermore, many relevant docu-
ments are not easy to recognize because events can
be described with complex expressions that do not
include event keywords. For example,“took to the
streets”, “walked off their jobs” and“stormed par-
liament” often describe civil unrest.

The goal of our research is to recognize event de-
scriptions in text by identifying event expressions as
well as defining characteristics of the event. We pro-
pose thatagentsandpurposeare characteristics of
an event that are essential to distinguish one type of
event from another. The agent responsible for an ac-
tion often determines how we categorize the action.
For example, natural disasters, military operations,
and terrorist attacks can all produce human casual-
ties and physical destruction. But the agent of a nat-
ural disaster must be a natural force, the agent of
a military incident must be military personnel, and
the agent of a terrorist attack is never a natural force
and rarely military personnel. There may be other
important factors as well, but the agent is often an
essential part of an event definition.

The purpose of an event is also a crucial factor
in distinguishing between event types. For exam-
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ple, civil unrest events and sporting events both in-
volve large groups of people amassing at a specific
site. But the purpose of civil unrest gatherings is to
protest against socio-political problems, while sport-
ing events are intended as entertainment. As another
example, terrorist events and military incidents can
both cause casualties, but the purpose of terrorism is
to cause widespread fear, while the purpose of mili-
tary actions is to protect national security interests.

Our research explores the idea ofmulti-faceted
event recognition: using event expressions as well
as facets of the event (agents and purpose) to iden-
tify documents about a specific type of event. We
present a bootstrapping framework to automatically
create event phrase, agent, and purpose dictionaries.
The learning process uses unannotated texts, a few
event keywords, and seed terms for common agents
and purpose phrases associated with the event type.

Our bootstrapping algorithm exploits the obser-
vation that event expressions, agents, and purpose
phrases often appear together in sentences that in-
troduce an event. In the first step, we extract event
expressions based on dependency relations with an
agent and purpose phrase. The harvested event ex-
pressions are added to an event phrase dictionary. In
the second step, new agent terms are extracted from
sentences containing an event phrase and a purpose
phrase, and new purpose phrases are harvested from
sentences containing an event phrase and an agent.
These harvested terms are added to agent and pur-
pose dictionaries. The bootstrapping algorithm rico-
chets back and forth, alternately learning new event
phrases and learning new agent/purpose phrases, in
an iterative process.

We explore several ways of using these boot-
strapped dictionaries. We conclude that finding at
least two different types of event information pro-
duces high accuracy (88% precision) with good re-
call (71%) on documents that contain an event key-
word. We also present experiments with documents
that do not contain event keywords, and obtain 74%
accuracy when matching all three types of event in-
formation.

2 Related Work

Event recognition has been studied in several dif-
ferent contexts. There has been a lot of research

on event extraction, where the goal is to extract
facts about events from text (e.g., (ACE Evaluations,
2006; Appelt et al., 1993; Riloff, 1996; Yangar-
ber et al., 2000; Chieu and Ng, 2002; Califf and
Mooney, 2003; Sudo et al., 2003; Stevenson and
Greenwood, 2005; Sekine, 2006)). Although our re-
search does not involve extracting facts, event ex-
traction systems can also be used to identify sto-
ries about a specific type of event. For example, the
MUC-4 evaluation (MUC-4 Proceedings, 1992) in-
cluded “text filtering” results that measured the per-
formance of event extraction systems at identifying
event-relevant documents. The best text filtering re-
sults were high (about 90% F score), but relied on
hand-built event extraction systems. More recently,
some research has incorporated event region detec-
tors into event extraction systems to improve extrac-
tion performance (Gu and Cercone, 2006; Patward-
han and Riloff, 2007; Huang and Riloff, 2011).

There has been recent work on event detection
from social media sources (Becker et al., 2011;
Popescu et al., 2011). Some research identifies spe-
cific types of events in tweets, such as earthquakes
(Sakaki et al., 2010) and entertainment events (Ben-
son et al., 2011). There has also been work on event
trend detection (Lampos et al., 2010; Mathioudakis
and Koudas, 2010) and event prediction through so-
cial media, such as predicting elections (Tumasjan
et al., 2010; Conover et al., 2011) or stock mar-
ket indicators (Zhang et al., 2010). (Ritter et al.,
2012) generated a calendar of events mentioned on
twitter. (Metzler et al., 2012) proposed structured
retrieval of historical event information over mi-
croblog archives by distilling high quality event rep-
resentations using a novel temporal query expansion
technique.

Some text classification research has focused on
event categories. (Riloff and Lehnert, 1994) used
an information extraction system to generaterele-
vancy signaturesthat were indicative of different
event types. This work originally relied on man-
ually labeled patterns and a hand-crafted semantic
dictionary. Later work (Riloff and Lorenzen, 1999)
eliminated the need for the dictionary and labeled
patterns, but still assumed the availability of rele-
vant/irrelevant training texts.

Event recognition is also related to Topic Detec-
tion and Tracking (TDT) (Allan et al., 1998; Allan,
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Figure 1: Bootstrapped Learning of Event Dictionaries

2002) which addresses event-based organization of a
stream of news stories. Event recognition is similar
to New Event Detection, also called First Story De-
tection, which is considered the most difficult TDT
task (Allan et al., 2000a). Typical approaches re-
duce documents to a set of features, either as a word
vector (Allan et al., 2000b) or a probability distri-
bution (Jin et al., 1999), and compare the incoming
stories to stories that appeared in the past by com-
puting similarities between their feature representa-
tions. Recently, event paraphrases (Petrovic et al.,
2012) have been explored to deal with the diversity
of event descriptions. However, the New Event De-
tection task differs from our event recognition task
because we want to find all stories describing a cer-
tain type of event, not just new events.

3 Bootstrapped Learning of Event
Dictionaries

Our bootstrapping approach consists of two stages
of learning as shown in Figure 1. The process be-
gins with a few agent seeds, purpose phrase patterns,
and unannotated articles selected from a broad-
coverage corpus using event keywords. In the first
stage, event expressions are harvested from the sen-
tences that have both an agent and a purpose phrase
in specific syntactic positions. In the second stage,
new purpose phrases are harvested from sentences
that contain both an event phrase and an agent, while
new agent terms are harvested from sentences that
contain both an event phrase and a purpose phrase.
The new terms are added to growing event dictionar-
ies, and the bootstrapping process repeats. Our work

focuses on civil unrest events.

3.1 Stage 1: Event Phrase Learning

We first extract potential civil unrest stories from the
English Gigaword corpus (Parker et al., 2011) using
six civil unrest keywords. As explained in Section 1,
event keywords are not sufficient to obtain relevant
documents with high precision, so the extracted sto-
ries are a mix of relevant and irrelevant articles. Our
algorithm first selects sentences to use for learning,
and then harvests event expressions from them.

3.1.1 Event Sentence Identification

The input in stage 1 consists of a few agent terms
and purpose patterns for seeding. The agent seeds
are single nouns, while the purpose patterns are
verbs in infinitive or present participle forms. Table
1 shows the agent terms and purpose phrases used in
our experiments. The agent terms were manually se-
lected by inspecting the most frequent nouns in the
documents with civil unrest keywords. The purpose
patterns are the most common verbs that describe the
reason for a civil unrest event. We identifyprobable
event sentencesby extracting all sentences that con-
tain at least one agent term and one purpose phrase.

Agents protesters, activists, demonstrators,
students, groups, crowd, workers,
palestinians, supporters, women

Purpose demanding, to demand,
Phrases protesting, to protest

Table 1: Agent and Purpose Phrases Used for Seeding
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3.1.2 Harvesting Event Expressions

To constrain the learning process, we require
event expressions and purpose phrases to match cer-
tain syntactic structures. We apply the Stanford de-
pendency parser (Marneffe et al., 2006) to the prob-
able event sentences to identify verb phrase candi-
dates and to enforce syntactic constraints between
the different types of event information.

Figure 2: Phrasal Structure of Event & Purpose Phrases

Figure 2 shows the two types of verb phrases
that we learn. One type consists of a verb paired
with the head noun of its direct object. For exam-
ple, event phrases can be“stopped work” or “oc-
cupied offices”, and purpose phrases can be“show
support” or “condemn war”. The second type con-
sists of a verb and an attached prepositional phrase,
retaining only the head noun of the embedded noun
phrase. For example,“took to street” and“scuffled
with police” can be event phrases, while“call for
resignation” and“press for wages”can be purpose
phrases. In both types of verb phrases, a particle can
optionally follow the verb.

Event expressions, agents, and purpose phrases
must appear in specific dependency relations, as il-
lustrated in Figure 3. An agent must be the syn-
tactic subject of the event phrase. A purpose phrase
must be a complement of the event phrase, specif-
ically, we require a particular dependency relation,
“xcomp”1, between the two verb phrases. For ex-
ample, in the sentence“Leftist activists took to
the streets in the Nepali capital Wednesday protest-
ing higher fuel prices.”, the dependency relation

1In the dependency parser, “xcomp” denotes a general rela-
tion between a VP or an ADJP and its open clausal complement.
For example, in the sentence“He says that you like to swim.”,
the “xcomp” relation will link “like” (head) and “swim” (de-
pendent). With our constraints on the verb phrase forms, the
dependent verb phrase in this construction tends to describe the
purpose of the verb phrase.

“xcomp” links “took to the streets”with “protest-
ing higher fuel prices”.

Figure 3: Syntactic Dependencies between Agents, Event
Phrases, and Purpose Phrases

Given the syntactic construction shown in Figure
3, with a known agent and purpose phrase, we ex-
tract the head verb phrase of the “xcomp” depen-
dency relation as an event phrase candidate. The
event phrases that co-occur with at least two unique
agent terms and two unique purposes phrases are
saved in our event phrase dictionary.

3.2 Stage 2: Learning Agent and Purpose
Phrases

In the second stage of bootstrapping, we learn new
agent terms and purpose phrases. Our rationale is
that if a sentence contains an event phrase and one
other important facet of the event (agent or pur-
pose), then the sentence probably describes a rele-
vant event. We can then look for additional facets
of the event in the same sentence. We learn both
agent and purpose phrases simultaneously in paral-
lel learning processes. As before, we first identify
probable event sentences and then harvest agent and
purpose phrases from these sentences.

3.2.1 Event Sentence Identification

We identify probable event sentences by extract-
ing sentences that contain at least one event phrase
(based on the dictionary produced in the first stage
of bootstrapping) and an agent term or a purpose
phrase. As before, the event information must oc-
cur in the sentential dependency structures shown in
Figure 3.

3.2.2 Harvesting Agent and Purpose Phrases

The sentences that contain an event phrase and
an agent are used to harvest more purpose phrases,
while the sentences that contain an event phrase
and a purpose phrase are used to harvest more
agent terms. Purpose phrases are extracted from the
phrasal structures shown in Figure 2. In the learn-
ing process for agents, if a sentence has an event

44



phrase as the head of the “xcomp” dependency re-
lation and a purpose phrase as the dependent clause
of the “xcomp” dependency relation, then the head
noun of the syntactic subject of the event phrase is
harvested as a candidate agent term. We also record
the modifiers appearing in all of the noun phrases
headed by an agent term. Agent candidates that co-
occur with at least two unique event phrases and at
least two different modifiers of known agent terms
are selected as new agent terms.

The learning process for purpose phrases is anal-
ogous. If the syntactic subject of an event phrase
is an agent and the event phrase is the head of
the “xcomp” dependency relation, then the depen-
dent clause of the “xcomp” dependency relation is
harvested as a candidate purpose phrase. Purpose
phrase candidates that co-occur with at least two dif-
ferent event phrases are selected as purpose phrases.

The bootstrapping process then repeats, ricochet-
ing back and forth between learning event phrases
and learning agent and purpose phrases.

3.3 Domain Relevance Criteria

To avoid domain drift during bootstrapping, we use
two additional criteria to discard phrases that are not
necessarily associated with the domain.

For each event phrase and purpose phrase, we es-
timate itsdomain-specificityas the ratio of its preva-
lence in domain-specific texts compared to broad-
coverage texts. The goal is to discard phrases that
are common across many types of documents, and
therefore not specific to the domain. We define the
domain-specificity of phrasep as:

domain-specificity(p)= frequency of p in domain-specific corpus
frequency of p in broad-coverage corpus

We randomly sampled 10% of the Gigaword texts
that contain a civil unrest event keyword to create
the “domain-specific” corpus, and randomly sam-
pled 10% of the remaining Gigaword texts to cre-
ate the “broad-coverage” corpus.2 Keyword-based
sampling is an approximation to domain-relevance,
but gives us a general idea about the prevalance of a
phrase in different types of texts.

For agent terms, our goal is to identify people who
participate as agents of civil unrest events. Other
types of people may be commonly mentioned in
civil unrest stories too, as peripheral characters. For

2The random sampling was simply for efficiency reasons.

example, police may provide security and reporters
may provide media coverage of an event, but they
are not the agents of the event. We estimate the
event-specificityof each agent term as the ratio of
the phrase’s prevalence in event sentences compared
to all the sentences in the domain-specific corpus.
We define an event sentence as one that contains
both a learned event phrase and a purpose phrase,
based on the dictionaries at that point in time. There-
fore, the number of event sentences increases as the
bootstrapped dictionaries grow. We define the event-
specificity of phrasep as:

event-specificity(p)= frequency of p in event sentences
frequency of p in all sentences

In our experiments we required event and purpose
phrases to havedomain-specificity≥ .33 and agent
terms to haveevent-specificity≥ .01.3

4 Evaluation

4.1 Data

We conducted experiments to evaluate the perfor-
mance of our bootstrapped event dictionaries for rec-
ognizing civil unrest events. Civil unrest is a broad
term typically used by the media or law enforce-
ment to describe a form of public disturbance that
involves a group of people, usually to protest or pro-
mote a cause. Civil unrest events include strikes,
protests, occupations, rallies, and similar forms of
obstructions or riots. We chose sixevent keywordsto
identify potential civil unrest documents: “protest”,
“strike”, “march”, “rally”, “riot” and “occupy”. We
extracted documents from the English Gigaword
corpus (Parker et al., 2011) that contain at least one
of these event keywords, or a morphological variant
of a keyword.4 This process extracted nearly one
million documents, which we will refer to as our
event-keyword corpus.

We randomly sampled 400 documents5 from the
event-keyword corpus and asked two annotators to
determine whether each document mentioned a civil

3This value is so small because we simply want to filter
phrases that virtually never occur in the event sentences, and
we can recognize very few event sentences in the early stages
of bootstrapping.

4We used “marched” and “marching” as keywords but did
not use “march” because it often refers to a month.

5These 400 documents were excluded from the unannotated
data used for dictionary learning.
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unrest event. We defined annotation guidelines and
conducted an inter-annotator agreement study on
100 of these documents. The annotators achieved a
κ score of .82. We used these 100 documents as our
tuning set. Then each annotator annotated 150 more
documents to create ourtest setof 300 documents.

4.2 Baselines

The first row of Table 2 shows event recognition ac-
curacy when only the event keywords are used. All
of our documents were obtained by searching for a
keyword, but only 101 of the 300 documents in our
test set were labeled as relevant by the annotators
(i.e., 101 describe a civil unrest event). This means
that using only the event keywords to identify civil
unrest documents yields about 34% precision. In a
second experiment,KeywordTitle , we required the
event keyword to be in the title (headline) of the doc-
ument. The KeywordTitle approach produced better
precision (66%), but only 33% of the relevant docu-
ments had a keyword in the title.

Method Recall Precision F
Keyword Accuracy

Keyword - 34 -
KeywordTitle 33 66 44

Supervised Learning
Unigrams 62 66 64
Unigrams+Bigrams 55 71 62

Bootstrapped Dictionary Lookup
Event Phrases (EV) 60 79 69
Agent Phrases (AG) 98 42 59
Purpose Phrases (PU) 59 67 63
All Pairs 71 88 79

Table 2: Experimental Results

The second section of Table 2 shows the re-
sults of two supervised classifiers based on 10-fold
cross validation with our test set. Both classifiers
were trained using support vector machines (SVMs)
(Joachims, 1999) with a linear kernel (Keerthi and
DeCoste, 2005). The first classifier used unigrams
as features, while the second classifier used both un-
igrams and bigrams. All the features are binary. The
evaluation results show that the unigram classifier
has an F-score of .64. Using both unigram and bi-
gram features increased precision to 71% but recall
fell by 7%, yielding a slightly lower F-score of .62.

4.3 Event Recognition with Bootstrapped
Dictionaries

Next, we used our bootstrapped dictionaries for
event recognition. The bootstrapping process ran
for 8 iterations and then stopped because no more
phrases could be learned. The quality of boot-
strapped data often degrades as bootstrapping pro-
gresses, so we used the tuning set to evaluate the
dictionaries after each iteration. The best perfor-
mance6 on the tuning set resulted from the dictionar-
ies produced after four iterations, so we used these
dictionaries for our experiments. Table 3 shows the

Event Agent Purpose
Phrases Terms Phrases

Iter #1 145 67 124
Iter #2 410 106 356
Iter #3 504 130 402
Iter #4 623 139 569

Table 3: Dictionary Sizes after Several Iterations

number of event phrases, agents and purpose phrases
learned after each iteration. All three lexicons were
significantly enriched after each iteration. The final
bootstrapped dictionaries contain623event phrases,
569 purpose phrases and139agent terms. Table 4
shows samples from each event dictionary.

Event Phrases:went on strike, took to street,
chanted slogans, gathered in capital, formed chain,
clashed with police, staged rally, held protest,
walked off job, burned flags, set fire, hit streets,
marched in city, blocked roads, carried placards
Agent Terms: employees, miners, muslims, unions,
protestors, journalists, refugees, prisoners, immigrants,
inmates, pilots, farmers, followers, teachers, drivers
Purpose Phrases:accusing government, voice anger,
press for wages, oppose plans, urging end, defying ban,
show solidarity, mark anniversary, calling for right,
condemning act, pressure government, mark death,
push for hike, call attention, celebrating withdrawal

Table 4: Examples of Dictionary Entries

The third section of Table 2 shows the results
when using the bootstrapped dictionaries for event
recognition. We used a simple dictionary look-up
approach that searched for dictionary entries in each
document. Our phrases were generated based on

6Based on the performance for theAll Pairs approach.
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syntactic analysis and only head words were re-
tained for generality. But we wanted to match dic-
tionary entries without requiring syntactic analysis
of new documents. So we used an approximate
matching scheme that required each word to appear
within 5 words of the previous word. For example,
“held protest” would match “held a large protest”
and “held a very large political protest”. In this way,
we avoid the need for syntactic analysis when using
the dictionaries for event recognition.

First, we labeled a document as relevant if it con-
tained any Event Phrase (EV) in our dictionary. The
event phrases achieved better performance than all
of the baselines, yielding an F-score of 69%. The
best baseline was the unigram classifier, which was
trained with supervised learning. The bootstrapped
event phrase dictionary produced much higher pre-
cision (79% vs. 66%) with only slightly lower recall
(60% vs. 62%), and did not require annotated texts
for training. Statistical significance testing shows
that the Event Phrase lookup approach works signif-
icantly better than the unigram classifier (p < 0.05,
paired bootstrap (Berg-Kirkpatrick et al., 2012)).

For the sake of completeness, we also evaluated
the performance of dictionary look-up using our
bootstrapped Agent (AG) and Purpose (PU) dictio-
naries, individually. The agents terms produced 42%
precision with 98% recall, demonstrating that the
learned agent list has extremely high coverage but
(unsurprisingly) does not achieve high precision on
its own. The purpose phrases achieved a better bal-
ance of recall and precision, producing an F-score
of 63%, which is nearly the same as the supervised
unigram classifier.

Our original hypothesis was that a single type of
event information is not sufficient to accurately iden-
tify event descriptions. Our goal was high-accuracy
event recognition by requiring that a document con-
tain multiple clues pertaining to different facets of an
event (multi-faceted event recognition). The last row
of Table 2 (All Pairs ) shows the results when requir-
ing matches from at least two different bootstrapped
dictionaries. Specifically, we labeled a document
as relevant if it contained at least one phrase from
each of two different dictionaries and these phrases
occurred in the same sentence. Table 2 shows that
multi-faceted event recognition achieves 88% preci-
sion with reasonably good recall of 71%, yielding an

F-score of 79%. This multi-faceted approach with
simple dictionary look-up outperformed all of the
baselines, and each dictionary used by itself. Sta-
tistical significance testing shows that the All Pairs
approach works significantly better than the unigram
classifier (p < 0.001, paired bootstrap). The All
Pairs approach is significantly better than the Event
Phrase (EV) lookup approach at thep < 0.1 level.

Method Recall Precision F-score
EV + PU 14 100 24
EV + AG 47 94 62
AG + PU 50 85 63
All Pairs 71 88 79

Table 5: Analysis of Dictionary Combinations

Table 5 takes a closer look at how each pair of
dictionaries performed. The first row shows that re-
quiring a document to have an event phrase and a
purpose phrase produces the best precision (100%)
but with low recall (14%). The second row reveals
that requiring a document to have an event phrase
and an agent term yields better recall (47%) and high
precision (94%). The third row shows that requiring
a document to have a purpose phrase and an agent
term produces the best recall (50%) but with slightly
lower precision (85%). Finally, the last row of Ta-
ble 5 shows that taking the union of these results
(i.e., any combination of dictionary pairs is suffi-
cient) yields the best recall (71%) with high preci-
sion (88%), demonstrating that we get the best cov-
erage by recognizing multiple combinations of event
information.

Lexicon Recall Precision F-score
Seeds 13 87 22
Iter #1 50 88 63
Iter #2 63 89 74
Iter #3 68 88 77
Iter #4 71 88 79

Table 6:All Pairs Lookup Results using only Seeds and
the Lexicons Learned after each Iteration, on the Test Set

Table 6 shows the performance of the lexicon
lookup approach using theAll Pairs criteria dur-
ing the bootstrapping process. The first row shows
the results using only 10 agent seeds and 4 purpose
seeds as shown in Table 1. The following four rows
in the table show the performance ofAll Pairs using
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the lexicons learned after each bootstrapping itera-
tion. We can see that the recall increases steadily and
that precision is maintained at a high level through-
out the bootstrapping process.

Event recognition can be formulated as an infor-
mation retrieval (IR) problem. As another point of
comparison, we ran an existing IR system, Terrier
(Ounis et al., 2007), on our test set. We used Ter-
rier to rank these 300 documents given our set of
event keywords as the query7, and then generated a
recall/precision curve (Figure 4) by computing the
precisions at different levels of recall, ranging from
0 to 1 in increments of.10. Terrier was run with the
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Figure 4: Comparison with the Terrier IR system

parameter PL2 which refers to an advanced Diver-
gence From Randomness weighting model (Amati
and Van Rijsbergen, 2002). In addition, Terrier used
automatic query expansion. We can see that Terrier
identified the first 60 documents (20% recall) with
100% precision. But precision dropped sharply after
that. The circle in Figure 4 shows the performance
of our bootstrapped dictionaries using theAll Pairs
approach. At comparable level of precision (88%),
Terrier achieved about 45% recall versus 71% recall
produced with the bootstrapped dictionaries.

4.4 Supervised Classifiers with Bootstrapped
Dictionaries

We also explored the idea of using the bootstrapped
dictionaries as features for a classifier to see if a su-
pervised learner could make better use of the dic-

7We gave Terrier one query with all of the event keywords.

tionaries. We created five SVM classifiers and per-
formed 10-fold cross validation on the test set.

Method Recall Precision F-score

TermLex 66 85 74
PairLex 10 91 18
TermSets 59 83 69
PairSets 68 84 75
AllSets 70 84 76

Table 7: Supervised classifiers using the dictionaries

Table 7 shows the results for the five classifiers.
TermLex encodes a binary feature for every phrase
in any of our dictionaries.PairLex encodes a binary
feature for each pair of phrases from two different
dictionaries and requires them to occur in the same
sentence. The TermLex classifier achieves good per-
formance (74% F-score), but is not as effective as
our All Pairs dictionary look-up approach (79% F-
score). The PairLex classifier yield higher precision
but very low recall, undoubtedly due to sparsity is-
sues in matching specific pairs of phrases.

One of the strengths of our bootstrapping method
is that it creates dictionaries from large volumes of
unannotated documents. A limitation of supervised
learning with lexical features is that the classifier can
not benefit from terms in the bootstrapped dictionar-
ies that do not appear in its training documents. To
address this issue, we also tried encoding the dic-
tionaries as set-based features. TheTermSetsclas-
sifier encodes three binary features, one for each
dictionary. A feature gets a value of 1 if a docu-
ment contains any word in the corresponding dictio-
nary. ThePairSetsclassifier also encodes three bi-
nary features, but each feature represents a different
pair of dictionaries (EV+AG, EV+PU, or AG+PU).
A feature gets a value of 1 if a document contains at
least one term from each of the two dictionaries in
the same sentence. TheAllSets classifier encodes 7
set-based features: the previous six features and one
additional feature that requires a sentence to contain
at least one entry from all three dictionaries.

TheAll Setsclassifier yields the best performance
with an F-score of 76%. However, our straightfor-
ward dictionary look-up approach still performs bet-
ter (79% F-score), and does not require annotated
documents for training.
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4.5 Finding Articles with no Event Keyword

The learned event dictionaries have the potential to
recognize event-relevant documents that do not con-
tain any human-selected event keywords. This can
happen in two ways. First,378 of the 623 learned
event phrases do not contain any of the original event
keywords. Second, we expect that some event de-
scriptions will contain a known agent and purpose
phrase, even if the event phrase is unfamiliar.

We performed an additional set of experiments
with documents in the Gigaword corpus that contain
no human-selected civil unrest keyword. Following
our multi-faceted approach to event recognition, we
collected all documents that contain a sentence that
matches phrases in at least two of our bootstrapped
event dictionaries. This process retrieved 178,197
documents. The first column of Table 8 shows the
number of documents that had phrases found in two
different dictionaries (EV+AG, EV+PU, AG+PU) or
in all three dictionaries (EV+AG+PU).

Total Samples Accuracy
EV+AG 67,796 50 44%
EV+PU 2,375 50 54%
AG+PU 101,173 50 18%
EV+AG+PU 6,853 50 74%

Table 8: Evaluation of articles with no event keyword

We randomly sampled 50 documents from each
category and had them annotated. The accura-
cies are shown in the third column. Finding all
three types of phrases produced the best accuracy,
74%. Furthermore, we found over 6,800 documents
that had all three types of event information us-
ing our learned dictionaries. This result demon-
strates that the bootstrapped dictionaries can recog-
nize many event descriptions that would have been
missed by searching only with manually selected
keywords. This experiment also confirms that multi-
facted event recognition using all three learned dic-
tionaries achieves good accuracy even for docu-
ments that do not contain the civil unrest keywords.

5 Conclusions

We proposed amulti-faceted approach to event
recognition and presented a bootstrapping technique
to learn event phrases as well as agent terms and

purpose phrases associated with civil unrest events.
Our results showed thatmulti-faceted event recog-
nition using the learned dictionaries achieved high
accuracy and performed better than several other
methods. The bootstrapping approach can be eas-
ily trained for new domains since it requires only
a large collection of unannotated texts and a few
event keywords, agent terms, and purpose phrases
for the events of interest. Furthermore, although the
training phase requires syntactic parsing to learn the
event dictionaries, the dictionaries can then be used
for event recognition without needing to parse the
documents.

An open question for future work is to investigate
whether the same multi-faceted approach to event
recognition will work well for other types of events.
Our belief is that many different types of events have
characteristic agent terms, but additional types of
facets will need to be defined to cover a broad array
of event types. The syntactic constructions used to
harvest dictionary items may also vary depending on
the types of event information that must be learned.
In future research, we plan to explore these issues in
more depth to design a more general multi-faceted
event recognition system, and we plan to investigate
new ways to use these event dictionaries for event
extraction as well.
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Abstract

Different languages contain complementary
cues about entities, which can be used to im-
prove Named Entity Recognition (NER) sys-
tems. We propose a method that formu-
lates the problem of exploring such signals on
unannotated bilingual text as a simple Inte-
ger Linear Program, which encourages entity
tags to agree via bilingual constraints. Bilin-
gual NER experiments on the large OntoNotes
4.0 Chinese-English corpus show that the pro-
posed method can improve strong baselines
for both Chinese and English. In particular,
Chinese performance improves by over 5%
absolute F1 score. We can then annotate a
large amount of bilingual text (80k sentence
pairs) using our method, and add it as up-
training data to the original monolingual NER
training corpus. The Chinese model retrained
on this new combined dataset outperforms the
strong baseline by over 3% F1 score.

1 Introduction

Named Entity Recognition (NER) is an important
task for many applications, such as information ex-
traction and machine translation. State-of-the-art su-
pervised NER methods require large amounts of an-
notated data, which are difficult and expensive to
produce manually, especially for resource-poor lan-
guages.

A promising approach for improving NER per-
formance without annotating more data is to exploit
unannotated bilingual text (bitext), which are rela-
tively easy to obtain for many language pairs, bor-
rowing from the resources made available by statis-

tical machine translation research.1 Different lan-
guages contain complementary cues about entities.
For example, in Figure 1, the word “本 (Ben)” is
common in Chinese but rarely appears as a trans-
lated foreign name. However, its aligned word on
the English side (“Ben”) provides a strong clue that
this is a person name. Judicious use of this type of
bilingual cues can help to recognize errors a mono-
lingual tagger would make, allowing us to produce
more accurately tagged bitext. Each side of the
tagged bitext can then be used to expand the orig-
inal monolingual training dataset, which may lead
to higher accuracy in the monolingual taggers.

Previous work such as Li et al. (2012) and Kim
et al. (2012) demonstrated that bilingual corpus an-
notated with NER labels can be used to improve
monolingual tagger performance. But a major draw-
back of their approaches are the need for manual
annotation efforts to create such corpora. To avoid
this requirement, Burkett et al. (2010) suggested a
“multi-view” learning scheme based on re-ranking.
Noisy output of a “strong” tagger is used as training
data to learn parameters of a log-linear re-ranking
model with additional bilingual features, simulated
by a “weak” tagger. The learned parameters are then
reused with the “strong” tagger to re-rank its own
outputs for unseen inputs. Designing good “weak”
taggers so that they complement the “view” of bilin-
gual features in the log-linear re-ranker is crucial to
the success of this algorithm. Unfortunately there is
no principled way of designing such “weak” taggers.

In this paper, we would like to explore a conceptu-
ally much simpler idea that can also take advantage

1opus.lingfil.uu.se
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TheO chairmanO ofO theB−ORG FederalI−ORG ReserveI−ORG isO BenB−PER BernankeI−PER

美联储B−ORG 主席O 是O 本B−PER 伯南克I−PER

Figure 1: Example of NER labels between two word-aligned bilingual parallel sentences.

of the large amount of unannotated bitext, without
complicated machinery. More specifically, we in-
troduce a joint inference method that formulates the
bilingual NER tagging problem as an Integer Linear
Program (ILP) and solves it during decoding. We
propose a set of intuitive and effective bilingual con-
straints that encourage NER results to agree across
the two languages.

Experimental results on the OntoNotes 4.0 named
entity annotated Chinese-English parallel corpus
show that the proposed method can improve the
strong Chinese NER baseline by over 5% F1 score
and also give small improvements over the English
baseline. Moreover, by adding the automatically
tagged data to the original NER training corpus
and retraining the monolingual model using an up-
training regimen (Petrov et al., 2010), we can im-
prove the monolingual Chinese NER performance
by over 3% F1 score.

2 Constraint-based Monolingual NER

NER is a sequence labeling task where we assign
a named entity tag to each word in an input sen-
tence. One commonly used tagging scheme is the
BIO scheme. The tag B-X (Begin) represents the
first word of a named entity of type X, for example,
PER (Person) or LOC (Location). The tag I-X (In-
side) indicates that a word is part of an entity but not
first word. The tag O (Outside) is used for all non-
entity words.2 See Figure 1 for an example tagged
sentence.

Conditional Random Fields (CRF) (Lafferty et al.,
2001) is a state-of-the-art sequence labeling model
widely used in NER. A first-order linear-chain CRF

2While the performance of NER is measured at the entity
level (not the tag level).

defines the following conditional probability:

PCRF (y|x) =
1

Z(x)

∏
i

Mi(yi, yi−1|x) (1)

where x and y are the input and output sequences,
respectively, Z(x) is the partition function, and Mi

is the clique potential for edge clique i. Decoding
in CRF involves finding the most likely output se-
quence that maximizes this objective, and is com-
monly done by the Viterbi algorithm.

Roth and Yih (2005) proposed an ILP inference
algorithm, which can capture more task-specific and
global constraints than the vanilla Viterbi algorithm.
Our work is inspired by Roth and Yih (2005). But
instead of directly solving the shortest-path problem
in the ILP formulation, we re-define the conditional
probability as:

PMAR(y|x) =
∏

i

P (yi|x) (2)

where P (yi|x) is the marginal probability given by
an underlying CRF model computed using forward-
backward inference. Since the early HMM litera-
ture, it has been well known that using the marginal
distributions at each position works well, as opposed
to Viterbi MAP sequence labeling (Mérialdo, 1994).
Our experimental results also supports this claim, as
we will show in Section 6. Our objective is to find
an optimal NER tag sequence:

ŷ = arg max
y

PMAR(y|x)

= arg max
y

∑
i

logP (yi|x) (3)

Then an ILP can be used to solve the inference
problem as classification problem with constraints.
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The objective function is:

max

|x|∑
i=1

∑
y∈Y

zy
i logP y

i (4)

where Y is the set of all possible named entity tags.
P y

i = P (yi = y|x) is the CRF marginal probabil-
ity that the ith word is tagged with y, and zy

i is an
indicator that equals 1 iff the ith word is tagged y;
otherwise, zy

i is 0.
If no constraints are identified, then Eq. (4)

achieves maximum when all zy
i are assigned to 1,

which violates the condition that each word should
only be assigned a single entity tag. We can express
this with constraints:

∀i :
∑
y∈Y

zy
i = 1 (5)

After adding the constraints, the probability of the
sequence is maximized when each word is assigned
the tag with highest probability. However, some in-
valid results may still exist. For example a tag O
may be wrongly followed by a tag I-X, although a
named entity cannot start with I-X. Therefore, we
can add the following constraints:

∀i,∀X : zB-X
i−1 + zI-X

i−1 − zI-X
i ≥ 0 (6)

which specifies that when the ith word is tagged with
I-X (zI-X

i = 1), then the previous word can only be
tagged with B-X or I-X (zB-X

i−1 + zI-X
i−1 ≥ 1).

3 NER with Bilingual Constraints

This section demonstrates how to jointly perform
NER for two languages with bilingual constraints.
We assume sentences have been aligned into pairs,
and the word alignment between each pair of sen-
tences is also given.

3.1 Hard Bilingual Constraints
We first introduce the simplest hard constraints, i.e.,
each word alignment pair should have the same
named entity tag. For example, in Figure 1, the
Chinese word “美联储” was aligned with the En-
glish words “the”, “Federal” and “Reserve”. There-
fore, they have the same named entity tags ORG.3

3The prefix B- and I- are ignored.

Similarly, “本” and “Ben” as well as “伯南克” and
“Bernanke” were all tagged with the tag PER.

The objective function for bilingual NER can be
expressed as follows:

max

|xc|∑
i=1

∑
y∈Y

zy
i logP y

i +

|xe|∑
j=1

∑
y∈Y

zy
j logP y

j (7)

where P y
i and P y

j are the probabilities of the ith Chi-
nese word and jth English word to be tagged with y,
respectively. xc and xe are respectively the Chinese
and English sentences.

Similar to monolingual constrained NER (Sec-
tion 2), monolingual constraints are added for each
language as shown in Eqs. (8) and (9):

∀i :
∑
y∈Y

zy
i = 1;∀j :

∑
y∈Y

zy
j = 1 (8)

∀i,∀X : zB-X
i + zI-X

i − zB-X
i+1 ≥ 0 (9)

∀j,∀X : zB-X
j + zI-X

j − zB-X
j+1 ≥ 0

Bilingual constraints are added in Eq. (10):

∀(i, j) ∈ A,∀X : zB-X
i + zI-X

i = zB-X
j + zI-X

j (10)

where A = {(i, j)} is the word alignment pair set,
i.e., the ith Chinese word and the jth English word
were aligned together. Chinese word i is tagged with
a named entity type X (zB-X

i + zI-X
i = 1), iff English

word j is tagged with X (zB-X
j +zI-X

j = 1). Therefore,
these hard bilingual constraints guarantee that when
two words are aligned, they are tagged with the same
named entity tag.

However, in practice, aligned word pairs do not
always have the same tag because of the difference
in annotation standards across different languages.
For example, in Figure 2(a), the Chinese word “开发
区” is a location. However, it is aligned to the words,
“development” and “zone”, which are not named en-
tities in English. Word alignment error is another se-
rious problem that can cause violation of hard con-
straints. In Figure 2(b), the English word “Agency”
is wrongly aligned with the Chinese word “电 (re-
port)”. Thus, these two words cannot be assigned
with the same tag.

To address these two problems, we present a prob-
abilistic model for bilingual NER which can lead to
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ThisO developmentO zoneO isO locatedO inO . . .

这个O 开发区B−LOC 位O 于O . . .

(a) Inconsistent named entity standards

XinhuaB−ORG NewsI−ORG AgencyI−ORG FebruaryO 16thO

新华社B−ORG 二月B−LOC 十六日O 电O

(b) Word alignment error

Figure 2: Errors of hard bilingual constraints method.

an optimization problem with two soft bilingual con-
straints:

1) allow word-aligned pairs to have different
named entity tags; 2) consider word alignment prob-
abilities to reduce the influence of wrong word align-
ments.

3.2 Soft Constraints with Tag Uncertainty

The new probabilistic model for bilingual NER is:

P (yc,ye|xc,xe, A) =
P (yc,ye,xc,xe, A)

P (xc,xe, A)

=
P (yc,xc,xe, A)

P (xc,xe, A)
· P (ye,xc,xe, A)

P (xc,xe, A)

· P (yc,ye,xc,xe, A)P (xc,xe, A)

P (yc,xc,xe, A)P (ye,xc,xe, A)
(11)

≈ P (yc|xc)P (ye|xe)
P (yc,ye|A)

P (yc|A)P (ye|A)
(12)

where yc and ye respectively denotes Chinese and
English named entity output sequences. A is the set
of word alignment pairs.

If we assume that named entity tag assignments in
Chinese is only dependent on the observed Chinese
sentence, then we can drop the A and xe term in the
first factor of Eq. (11), and arrive at the first factor of
Eq. (12); similarly we can use the same assumption
to derive the second factor in Eq. (12) for English;
alternatively, if we assume the named entity tag as-
signments are only dependent on the cross-lingual
word associations via word alignment, then we can
drop xc and xe terms in the third factor of Eq. (11)

and arrive at the third factor of Eq. (12). These fac-
tors represent the two major sources of information
in the model: monolingual surface observation, and
cross-lingual word associations.

The first two factors of Eq. (12) can be further
decomposed into the product of probabilities of all
words in each language sentence like Eq. (2).

Assuming that the tags are independent between
different word alignment pairs, then the last factor
of Eq. (12) can be decomposed into:

P (yc,ye|A)

P (yc|A)P (ye|A)
=

∏
a∈A

P (ycayea)

P (yca)P (yea)

=
∏
a∈A

λycye
a (13)

where yca and yea respectively denotes Chinese and
English named entity tags in a word alignment pair
a. λycye = P (ycye)

P (yc)P (ye)
is the pointwise mutual infor-

mation (PMI) score between a Chinese named en-
tity tag yc and an English named entity tag ye. If
yc = ye, then the score will be high; otherwise the
score will be low. A number of methods for calculat-
ing the scores are provided at the end of this section.

We use ILP to maximize Eq. (12). The new ob-
jective function is expressed as follow:

max

|xc|∑
i=1

∑
y∈Y

zy
i logP y

i +

|xe|∑
j=1

∑
y∈Y

zy
j logP y

j

+
∑
a∈A

∑
yc∈Y

∑
ye∈Y

zycye
a log λycye

a (14)

where zycye
a is an indicator that equals 1 iff the Chi-

nese and English named entity tags are yc and ye

respectively, given a word alignment pair a; other-
wise, zycye

a is 0.
Monolingual constraints such as Eqs. (8) and (9)

need to be added. In addition, one and only one pos-
sible named entity tag pair exists for a word align-
ment pair. This condition can be expressed as the
following constraints:

∀a ∈ A :
∑
yc∈Y

∑
ye∈Y

zycye
a = 1 (15)

When the tag pair of a word alignment pair is de-
termined, the corresponding monolingual named en-
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tity tags can also be identified. This rule can be ex-
pressed by the following constraints:

∀a = (i, j) ∈ A : zycye
a ≤ zyc

i , z
ycye
a ≤ zye

j (16)

Thus, if zycye
a = 1, then zyc

i and zye

j must be both
equal to 1. Here, the ith Chinese word and the jth

English word are aligned together.
In contrast to hard bilingual constraints, inconsis-

tent named entity tags for an aligned word pair are
allowed in soft bilingual constraints, but are given
lower λycye scores.

To calculate the λycye score, an annotated bilin-
gual NER corpus is consulted. We count from all
word alignment pairs the number of times yc and ye

occur together (C(ycye)) and separately (C(yc) and
C(ye)). Afterwards, λycye is calculated with maxi-
mum likelihood estimation as follows:

λycye =
P (ycye)

P (yc)P (ye)
=
N × C(ycye)

C(yc)C(ye)
(17)

where N is the total number of word alignment
pairs.

However, in this paper, we assume that no named
entity annotated bilingual corpus is available. Thus,
the above method is only used as Oracle. A real-
istic method for calculating the λycye score requires
the use of two initial monolingual NER models, such
as baseline CRF, to predict named entity tags for
each language on an unannotated bitext. We count
from this automatically tagged corpus the statistics
mentioned above. This method is henceforth re-
ferred to as Auto.

A simpler approach is to manually set the value
of λycye : if yc = ye then we assign a larger value
to λycye ; else we assign an ad-hoc smaller value. In
fact, if we set λycye = 1 iff yc = ye; otherwise,
λycye = 0, then the soft constraints backs off to hard
constraints. We refer to this set of soft constraints as
Soft-tag.

3.3 Constraints with Alignment Uncertainty
So far, we assumed that a word alignment set A is
known. In practice, only the word alignment proba-
bility Pa for each word pair a is provided. We can
set a threshold θ for Pa to tune the set A: a ∈ A
iff Pa ≥ θ. This condition can be regarded as a
kind of hard word alignment. However, the follow-
ing problem exists: the smaller the θ, the noisier the

word alignments are; the larger the θ, the more pos-
sible word alignments are lost. To ameliorate this
problem, we introduce another set of soft bilingual
constraints.

We can re-express Eq. (13) as follows:∏
a∈A

λycye
a =

∏
a∈A

(λycye
a )Ia (18)

where A is the set of all word pairs between two
languages. Ia = 1 iff Pa ≥ θ; otherwise, Ia = 0.

We can then replace the hard indicator Ia with
the word alignment probability Pa, Eq. (14) is then
transformed into the following equation:

max

|Wc|∑
i

∑
y∈Y

zy
i logP y

i +

|We|∑
j

∑
y∈Y

zy
j logP y

j

+
∑
a∈A

∑
yc∈Y

∑
ye∈Y

zycye
a Pa log λycye

a (19)

We name the set of constraints above
Soft-align, which has the same constraints
as Soft-tag, i.e., Eqs. (8), (9), (15) and (16).

4 Experimental Setup

We conduct experiments on the latest OntoNotes
4.0 corpus (LDC2011T03). OntoNotes is a large,
manually annotated corpus that contains various text
genres and annotations, such as part-of-speech tags,
named entity labels, syntactic parse trees, predicate-
argument structures and co-references (Hovy et al.,
2006). Aside from English, this corpus also con-
tains several Chinese and Arabic corpora. Some of
these corpora contain bilingual parallel documents.
We used the Chinese-English parallel corpus with
named entity labels as our development and test
data. This corpus includes about 400 document pairs
(chtb 0001-0325, ectb 1001-1078). We used odd-
numbered documents as development data and even-
numbered documents as test data. We used all other
portions of the named entity annotated corpus as
training data for the monolingual systems. There
were a total of∼660 Chinese documents (∼16k sen-
tences) and ∼1,400 English documents (∼39k sen-
tences). OntoNotes annotates 18 named entity types,
such as person, location, date and money. In this
paper, we selected the four most common named
entity types, i.e., PER (Person), LOC (Location),
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Chinese NER Templates
00: 1 (class bias param)
01: wi+k,−1 ≤ k ≤ 1
02: wi+k−1 ◦ wi+k, 0 ≤ k ≤ 1
03: shape(wi+k),−4 ≤ k ≤ 4
04: prefix(wi, k), 1 ≤ k ≤ 4
05: prefix(wi−1, k), 1 ≤ k ≤ 4
06: suffix(wi, k), 1 ≤ k ≤ 4
07: suffix(wi−1, k), 1 ≤ k ≤ 4
08: radical(wi, k), 1 ≤ k ≤ len(wi)
Unigram Features
yi◦ 00 – 08
Bigram Features
yi−1 ◦ yi◦ 00 – 08

Table 1: Basic features of Chinese NER.

ORG (Organization) and GPE (Geo-Political Enti-
ties), and discarded the others.

Since the bilingual corpus is only aligned at the
document level, we performed sentence alignment
using the Champollion Tool Kit (CTK).4 After re-
moving sentences with no aligned sentence, a total
of 8,249 sentence pairs were retained.

We used the BerkeleyAligner,5 to produce
word alignments over the sentence-aligned datasets.
BerkeleyAligner also gives posterior probabilities
Pa for each aligned word pair.

We used the CRF-based Stanford NER tagger (us-
ing Viterbi decoding) as our baseline monolingual
NER tool.6 English features were taken from Finkel
et al. (2005). Table 1 lists the basic features of
Chinese NER, where ◦ means string concatenation
and yi is the named entity tag of the ith word wi.
Moreover, shape(wi) is the shape of wi, such as
date and number. prefix/suffix(wi, k) denotes the
k-characters prefix/suffix of wi. radical(wi, k) de-
notes the radical of the kth Chinese character of wi.7

len(wi) is the number of Chinese characters in wi.
To make the baseline CRF taggers stronger, we

added word clustering features to improve gener-
alization over unseen data for both Chinese and
English. Word clustering features have been suc-
cessfully used in several English tasks, including

4champollion.sourceforge.net
5code.google.com/p/berkeleyaligner
6nlp.stanford.edu/software/CRF-NER.shtml,

which has included our English and Chinese NER implementations.
7The radical of a Chinese character can be found at: www.

unicode.org/charts/unihan.html

NER (Miller et al., 2004) and dependency pars-
ing (Koo et al., 2008). To our knowledge, this work
is the first use of word clustering features for Chi-
nese NER. A C++ implementation of the Brown
word clustering algorithms (Brown et al., 1992) was
used to obtain the word clusters (Liang, 2005).8

Raw text was obtained from the fifth edition of Chi-
nese Gigaword (LDC2011T13). One million para-
graphs from Xinhua news section were randomly
selected, and the Stanford Word Segmenter with
LDC standard was applied to segment Chinese text
into words.9 About 46 million words were obtained
which were clustered into 1,000 word classes.

5 Threshold Tuning

During development, we tuned the word alignment
probability thresholds to find the best value. Figure 3
shows the performance curves.

When the word alignment probability threshold θ
is set to 0.9, the hard bilingual constraints perform
well for both Chinese and English. But as the thresh-
olds value gets smaller, and more noisy word align-
ments are introduced, we see the hard bilingual con-
straints method starts to perform badly.

In Soft-tag setting, where inconsistent tag as-
signments within aligned word pairs are allowed but
penalized, different languages have different optimal
threshold values. For example, Chinese has an opti-
mal threshold of 0.7, whereas English has 0.2. Thus,
the optimal thresholds for different languages need
to be selected with care when Soft-tag is applied
in practice.
Soft-align eliminates the need for careful

tuning of word alignment thresholds, and therefore
can be more easily used in practice. Experimen-
tal results of Soft-align confirms our hypothe-
sis – the performance of both Chinese and English
NER systems improves with decreasing threshold.
However, we can still improve efficiency by set-
ting a low threshold to prune away very unlikely
word alignments. We set the threshold to 0.1 for
Soft-align to increase speed, and we observed
very minimal performance lost when doing so.

We also found that automatically estimated bilin-
gual tag PMI scores (Auto) gave comparable results

8github.com/percyliang/brown-cluster
9nlp.stanford.edu/software/segmenter.shtml
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Figure 3: Performance curves of different bilingual constraints methods on development set.

to Oracle. Therefore this technique is effective
for computing the PMI scores, avoiding the need of
manually annotating named entity bilingual corpus.

6 Bilingual NER Results

The main results on Chinese and English test sets
with the optimal word alignment threshold for each
method are shown in Table 2.

The CRF-based Chinese NER with and without
word clustering features are compared here. The
word clustering features significantly (p < 0.01) im-
proved the performance of Chinese NER, 10 giving
us a strong Chinese NER baseline.11 The effective-
ness of word clustering for English NER has been
proved in previous work.

The performance of ILP with only monolingual
constraints is quite comparable with the CRF re-
sults, especially on English. The greater ILP perfor-
mance on English is probably due to more accurate
marginal probabilities estimated by the English CRF
model.

The ILP model with hard bilingual constraints
gives a slight performance improvement on Chi-
nese, but affects performance negatively on English.
Once we introduced tagging uncertainties into the
Soft-tag bilingual constraints, we see a very sig-

10We use paired bootstrap resampling significance test (Efron
and Tibshirani, 1993).

11To the best of our knowledge, there was no performance
report of state-of-the-art NER results on the latest OntoNotes
dataset.

nificant (p < 0.01) performance boost on Chinese.
This method also improves the recall on English,
with a smaller decrease in precision. Overall, it im-
proves English F1 score by about 0.4%, which is un-
fortunately not statistically significant.

Compared with Soft-tag, the final
Soft-align method can further improve
performance on both Chinese and English. This is
likely to be because: 1) Soft-align includes
more word alignment pairs, thereby improving
recall; and 2) uses probabilities to cut wrong
word alignments, thereby improving precision. In
particular, compared with the strong CRF baseline,
the gain on Chinese side is almost 5.5% in absolute
F1 score.

Decoding/inferenc efficiency of different methods
are shown in the last column of Table 2.12 Com-
pared with Viterbi decoding in CRF, monolingual
ILP decoding is about 2.3 times slower. Bilingual
ILP decoding, with either hard or soft constraints, is
significantly slower than the monolingual methods.
The reason is that the number of monolingual ILP
constraints doubles, and there are additionally many
more bilingual constraints. The difference in speed
between the Soft-tag and Soft-align meth-
ods is attributed to the difference in number of word
alignment pairs.

Since each sentence pair can be decoded indepen-
12CPU: Intel Xeon E5-2660 2.20GHz. And the speed cal-

culation of ILP inference methods exclude the time needed to
obtain marginal probabilities from the CRF models.
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Chinese English Speed
P R F1 P R F1 #sent/s

CRF (No Cluster) 74.74 56.17 64.13 – – – –
CRF (Word Cluster) 76.90 63.32 69.45 82.95 76.67 79.68 317.3
Monolingual ILP 76.20 63.06 69.01 82.88 76.68 79.66 138.0
Hard 74.38 65.78 69.82 82.66 75.36 78.84 21.1
Soft-tag (Auto) 77.37 71.14 74.13 81.36 78.74 80.03 5.9
Soft-align (Auto) 77.71 72.51 75.02 81.94 78.35 80.10 1.5

Table 2: Results on bilingual parallel test set.

dently, parallelization the decoding process can re-
sult in significant speedup.

7 Semi-supervised NER Results

The above results show the usefulness of our method
in a bilingual setting, where we are presented with
sentence aligned data, and are tagging both lan-
guages at the same time. To have a greater impact
on general monolingual NER systems, we employ
a semi-supervised learning setting. First, we tag a
large amount of unannotated bitext with our bilin-
gual constraint-based NER tagger. Then we mix the
automatically tagged results with the original mono-
lingual Chinese training data to train a new model.

Our bitext is derived from the Chinese-English
part of the Foreign Broadcast Information Service
corpus (FBIS, LDC2003E14). The best perform-
ing bilingual model Soft-align with threshold
θ = 0.1 was used under the same experimental set-
ting as described in Section 4

Method #sent P R F1

CRF ∼16k 76.90 63.32 69.45

Semi

10k 77.60 66.51 71.62
20k 77.28 67.26 71.92
40k 77.40 67.81 72.29
80k 77.44 68.64 72.77

Table 3: Semi-supervised results on Chinese test set.

Table 3 shows that the performance of the semi-
supervised method improves with more additional
data. We simply appended these data to the orig-
inal training data. We also have done the experi-
ments to down weight the additional training data
by duplicating the original training data. There
was some slight improvements, but not very signif-
icant. Finally, when we add 80k sentences, the F1

score is improved by 3.32%, which is significantly
(p < 0.01) better than the baseline, and most of the
contribution comes from recall improvement.

Before the end of experimental section, let us
summarize the usage of different kinds of data re-
sources used in our experiments, as shown in Ta-
ble 4, where � and × denote whether the corre-
sponding resources are required. In the bilingual
case, during training, only the monolingual named
entity annotated data (NE-mono) is necessary to
train a monolingual NER tagger. During the test,
unannotated bitext (Bitext) is required by the word
aligner and our bilingual NER tagger. Named entity
annotated bitext (NE-bitext) is used to evaluate our
bilingual model. In the semi-supervised case, be-
sides the original NE-mono data, the Bitext is used
as input to our bilingual NER tagger to product ad-
ditional training data. To evaluate the final NER
model, only NE-mono is needed.

NE-mono Bitext NE-bitext

Bilingual train � × ×
test × � �

Semi train � � ×
test � × ×

Table 4: Summarization of the data resource usage

8 Related Work

Previous work explored the use of bilingual corpora
to improve existing monolingual analyzers. Huang
et al. (2009) proposed methods to improve parsing
performance using bilingual parallel corpus. Li et
al. (2012) jointly labeled bilingual named entities
with a cyclic CRF model, where approximate in-
ference was done using loopy belief propagation.
These methods require manually annotated bilingual
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corpora, which are expensive to construct, and hard
to obtain. Kim et al. (2012) proposed a method of
labeling bilingual corpora with named entity labels
automatically based on Wikipedia. However, this
method is restricted to topics covered by Wikipedia.

Similar to our work, Burkett et al. (2010) also as-
sumed that annotated bilingual corpora are scarce.
Beyond the difference discussed in Section 1, their
re-ranking strategy may lose the correct named en-
tity results if they are not included in the top-N out-
puts. Furthermore, we consider the word alignment
probabilities in our method which can reduce the in-
fluence of word alignment errors. Finally, we test
our method on a large standard publicly available
corpus (8,249 sentences), while they used a much
smaller (200 sentences) manually annotated bilin-
gual NER corpus for results validation.

In addition to bilingual corpora, bilingual dictio-
naries are also useful resources. Huang and Vo-
gel (2002) and Chen et al. (2010) proposed ap-
proaches for extracting bilingual named entity pairs
from unannotated bitext, in which verification is
based on bilingual named entity dictionaries. How-
ever, large-scale bilingual named entity dictionaries
are difficult to obtain for most language pairs.

Yarowsky and Ngai (2001) proposed a projection
method that transforms high-quality analysis results
of one language, such as English, into other lan-
guages on the basis of word alignment. Das and
Petrov (2011) applied the above idea to part-of-
speech tagging with a more complex model. Fu et al.
(2011) projected English named entities onto Chi-
nese by carefully designed heuristic rules. Although
this type of method does not require manually an-
notated bilingual corpora or dictionaries, errors in
source language results, wrong word alignments and
inconsistencies between the languages limit applica-
tion of this method.

Constraint-based monolingual methods by using
ILP have been successfully applied to many natural
language processing tasks, such as Semantic Role
Labeling (Punyakanok et al., 2004), Dependency
Parsing (Martins et al., 2009) and Textual Entail-
ment (Berant et al., 2011). Zhuang and Zong (2010)
proposed a joint inference method for bilingual se-
mantic role labeling with ILP. However, their ap-
proach requires training an alignment model with a
manually annotated corpus.

9 Conclusions

We proposed a novel ILP based inference algorithm
with bilingual constraints for NER. This method
can jointly infer bilingual named entities without
using any annotated bilingual corpus. We in-
vestigate various bilingual constraints: hard and
soft constraints. Out empirical study on large-
scale OntoNotes Chinese-English parallel NER data
showed that Soft-align method, which allows
inconsistent named entity tags between two aligned
words and considers word alignment probabilities,
can significantly improve over the performance of
a strong Chinese NER baseline. Our work is the
first to evaluate performance on a large-scale stan-
dard dataset. Finally, we can also improve mono-
lingual Chinese NER performance significantly, by
combining the original monolingual training data
with new data obtained from bitext tagged by our
method. The final ILP-based bilingual NER tag-
ger with soft constraints is publicly available at:
github.com/carfly/bi_ilp

Future work could apply the bilingual constraint-
based method to other tasks, such as part-of-speech
tagging and relation extraction.
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Abstract

We propose a minimally supervised method
for multilingual paraphrase extraction from
definition sentences on the Web. Hashimoto
et al. (2011) extracted paraphrases from
Japanese definition sentences on the Web, as-
suming that definition sentences defining the
same concept tend to contain paraphrases.
However, their method requires manually an-
notated data and is language dependent. We
extend their framework and develop a mini-
mally supervised method applicable to multi-
ple languages. Our experiments show that our
method is comparable to Hashimoto et al.’s
for Japanese and outperforms previous unsu-
pervised methods for English, Japanese, and
Chinese, and that our method extracts 10,000
paraphrases with 92% precision for English,
82.5% precision for Japanese, and 82% preci-
sion for Chinese.

1 Introduction

Automatic paraphrasing has been recognized as an
important component for NLP systems, and many
methods have been proposed to acquire paraphrase
knowledge (Lin and Pantel, 2001; Barzilay and
McKeown, 2001; Shinyama et al., 2002; Barzilay
and Lee, 2003; Dolan et al., 2004; Callison-Burch,
2008; Hashimoto et al., 2011; Fujita et al., 2012).

We propose a minimally supervised method for
multilingual paraphrase extraction. Hashimoto et al.
(2011) developed a method to extract paraphrases
from definition sentences on the Web, based on
their observation that definition sentences defining
the same concept tend to contain many paraphrases.
Their method consists of two steps; they extract def-
inition sentences from the Web, and extract phrasal

(1) a. Paraphrasing is the use of your own words to express the au-
thor’s ideas without changing the meaning.

b. Paraphrasing is defined as a process of transforming an expres-
sion into another while keeping its meaning intact.

(2) a. 言い換えとは、ある表現をその意味内容を変えずに別の
表現に置き換えることを言います。 (Paraphrasing refers to
the replacement of an expression into another without changing
the semantic content.)

b. 言 い 換 え と は 、 あ る 言 語 表 現 を で き る だ
け意味や内容を保ったまま同一言語の別の表現に変
換する処理である。 (Paraphrasing is a process of trans-
forming an expression into another of the same language while
preserving the meaning and content as much as possible.)

(3) a. 意译是指译者在不改变原文意思的前提下，完全改变原
文的句子结构。 (Paraphrasing refers to the transformation
of sentence structure by the translator without changing the
meaning of original text.)

b. 意译是指只保持原文内容，不保持原文形式的翻译方法。
(Paraphrasing is a translation method of keeping the content of
original text but not keeping the expression.)

Figure 1: Multilingual definition pairs on “paraphrasing.”

paraphrases from the definition sentences. Both
steps require supervised classifiers trained by manu-
ally annotated data, and heavily depend on their tar-
get language. However, the basic idea is actually
language-independent. Figure 1 gives examples of
definition sentences on the Web that define the same
concept in English, Japanese, and Chinese (with En-
glish translation). As indicated by underlines, each
definition pair has a phrasal paraphrase.

We aim at extending Hashimoto et al.’s method
to a minimally supervised method, thereby enabling
acquisition of phrasal paraphrases within one lan-
guage, but in different languages without manually
annotated data. The first contribution of our work
is to develop a minimally supervised method for
multilingual definition extraction that uses a clas-
sifier distinguishing definition from non-definition.
The classifier is learnt from the first sentences in
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Figure 2: Overall picture of our method.

Wikipedia articles, which can be regarded as the def-
inition of the title of Wikipedia article (Kazama and
Torisawa, 2007) and hence can be used as positive
examples. Our method relies on a POS tagger, a de-
pendency parser, a NER tool, noun phrase chunking
rules, and frequency thresholds for each language,
in addition to Wikipedia articles, which can be seen
as a manually annotated knowledge base. How-
ever, our method needs no additional manual anno-
tation particularly for this task and thus we catego-
rize our method as a minimally supervised method.
On the other hand, Hashimoto et al.’s method heav-
ily depends on the properties of Japanese like the
assumption that characteristic expressions of defini-
tion sentences tend to appear at the end of sentence
in Japanese. We show that our method is applica-
ble to English, Japanese, and Chinese, and that its
performance is comparable to state-of-the-art super-
vised methods (Navigli and Velardi, 2010). Since
the three languages are very different we believe that
our definition extraction method is applicable to any
language as long as Wikipedia articles of the lan-
guage exist.

The second contribution of our work is to de-
velop a minimally supervised method for multi-
lingual paraphrase extraction from definition sen-
tences. Again, Hashimoto et al.’s method utilizes
a supervised classifier trained with annotated data
particularly prepared for this task. We eliminate the
need for annotation and instead introduce a method
that uses a novel similarity measure considering
the occurrence of phrase fragments in global con-
texts. Our paraphrase extraction method is mostly
language-independent and, through experiments for
the three languages, we show that it outperforms
unsupervised methods (Paşca and Dienes, 2005;
Koehn et al., 2007) and is comparable to Hashimoto
et al.’s supervised method for Japanese.

Previous methods for paraphrase (and entailment)

extraction can be classified into a distributional sim-
ilarity based approach (Lin and Pantel, 2001; Gef-
fet and Dagan, 2005; Bhagat et al., 2007; Szpek-
tor and Dagan, 2008; Hashimoto et al., 2009) and a
parallel corpus based approach (Barzilay and McK-
eown, 2001; Shinyama et al., 2002; Barzilay and
Lee, 2003; Dolan et al., 2004; Callison-Burch,
2008). The former can exploit large scale monolin-
gual corpora, but is known to be unable to distin-
guish paraphrase pairs from antonymous pairs (Lin
et al., 2003). The latter rarely mistakes antonymous
pairs for paraphrases, but preparing parallel corpora
is expensive. As with Hashimoto et al. (2011), our
method is a kind of parallel corpus approach in that it
uses definition pairs as a parallel corpus. However,
our method does not suffer from a high labor cost
of preparing parallel corpora, since it can automati-
cally collect definition pairs from the Web on a large
scale. The difference between ours and Hashimoto
et al.’s is that our method requires no manual label-
ing of data and is mostly language-independent.

2 Proposed Method

Our method first extracts definition sentences from
the Web, and then extracts paraphrases from the def-
inition sentences, as illustrated in Figure 2.

2.1 Definition Extraction

2.1.1 Automatic Construction of Training Data
Our method learns a classifier that classifies sen-

tences into definition and non-definition using auto-
matically constructed training data, TrDat. TrDat’s
positive examples, Pos, are the first sentences of
Wikipedia articles and the negative examples, Neg,
are randomly sampled Web sentences. The former
can be seen as definition, while the chance that the
sentences in the latter are definition is quite small.

Our definition extraction not only distinguishes
definition from non-definition but also identities the
defined term of a definition sentence, and in the
paraphrase extraction step our method couples two
definition sentences if their defined terms are identi-
cal. For example, the defined terms of (1a) and (1b)
in Figure 1 are both “Paraphrasing” and thus the two
definition sentences are coupled. For Pos, we mark
up the title of Wikipedia article as the defined term.
For Neg, we randomly select a noun phrase in a sen-
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(A)
N-gram definition pattern N-gram non-definition pattern
ˆ[term] is the [term] may be
[term] is a type of [term] is not

(B)
Subsequence definition pattern Subsequence non-definition pattern
[term] is * which is located you may * [term]
[term] is a * in the was [term] * , who is

(C)

Subtree definition pattern Subtree non-definition pattern

[term] is defined as the NP [term] will not be

Table 1: Examples of English patterns.

tence and mark it up as a (false) defined term. Any
marked term is uniformly replaced with [term].

2.1.2 Feature Extraction and Learning
As features, we use patterns that are characteristic

of definition (definition patterns) and those that are
unlikely to be a part of definition (non-definition pat-
terns). Patterns are either N-grams, subsequences, or
dependency subtrees, and are mined automatically
from TrDat. Table 1 shows examples of patterns
mined by our method. In (A) of Table 1, “ˆ” is
a symbol representing the beginning of a sentence.
In (B), “*” represents a wildcard that matches any
number of arbitrary words. Patterns are represented
by either their words’ surface form, base form, or
POS. (Chinese words do not inflect and thus we do
not use the base form for Chinese.)

We assume that definition patterns are fre-
quent in Pos but are infrequent in Neg, and
non-definition patterns are frequent in Neg but
are infrequent in Pos. To see if a given pat-
tern φ is likely to be a definition pattern, we
measure φ’s probability rate Rate(φ). If the
probability rate of φ is large, φ tends to be a
definition pattern. The probability rate of φ is:

Rate(φ) =
freq(φ,Pos)/|Pos|
freq(φ,Neg)/|Neg|

, iffreq(φ,Neg) 6= 0.

Here, freq(φ,Pos) = |{s ∈ Pos : φ ⊆ s}| and
freq(φ,Neg) = |{s ∈ Neg : φ ⊆ s}|. We write φ ⊆ s
if sentence s contains φ. If freq(φ,Neg) = 0,
Rate(φ) is set to the largest value of all the patterns’
Rate values. Only patterns whose Rate is more
than or equal to a Rate threshold ρpos and whose
freq(φ,Pos) is more than or equal to a frequency
threshold are regarded as definition patterns. Simi-
larly, we check if φ is likely to be a non-definition
pattern. Only patterns whose Rate is less or equal

English Japanese Chinese
Type Representation Pos Neg Pos Neg Pos Neg

N-gram
Surface 120 400 30 100 20 100
Base 120 400 30 100 — —
POS 2,000 4,000 500 500 100 400

Subsequence
Surface 120 400 30 100 20 40
Base 120 400 30 100 — —
POS 2,000 2,000 500 500 200 400

Subtree
Surface 5 10 5 10 5 5
Base 5 10 5 10 — —
POS 25 50 25 50 25 50

Table 2: Values of frequency threshold.

to a Rate threshold ρneg and whose freq(φ,Neg)
is more than or equal to a frequency threshold are
regarded as non-definition patterns. The probability
rate is based on the growth rate (Dong and Li,
1999).
ρpos and ρneg are set to 2 and 0.5, while the fre-

quency threshold is set differently according to lan-
guages, pattern types (N-gram, subsequence, and
subtree), representation (surface, base, and POS),
and data (Pos and Neg), as in Table 2. The thresholds
in Table 2 were determined manually, but not really
arbitrarily. Basically they were determined accord-
ing to the frequency of each pattern in our data (e.g.
how frequently the surface N-gram of English ap-
pears in English positive training samples (Pos)).

Below, we detail how patterns are acquired. First,
we acquire N-gram patterns. Then, subsequence
patterns are acquired using the N-gram patterns as
input. Finally, subtree patterns are acquired using
the subsequence patterns as input.

N-gram patterns We collect N-gram patterns
from TrDat with N ranging from 2 to 6. We filter
out N-grams using thresholds on the Rate and fre-
quency, and regard those that are kept as definition
or non-definition N-grams.

Subsequence patterns We generate subsequence
patterns as ordered combinations of N-grams with
the wild card “*” inserted between them (we use
two or three N-grams for a subsequence). Then, we
check each of the generated subsequences and keep
it if there exists a sentence in TrDat that contains the
subsequence and whose root node is contained in the
subsequence. For example, subsequence “[term]
is a * in the” is kept if a term-marked sentence like
“[term] is a baseball player in the Dominican Re-
public.” exists in TrDat. Then, patterns are filtered
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out using thresholds on the Rate and frequency as
we did for N-grams.

Subtree patterns For each definition and non-
definition subsequence, we retrieve all the term-
marked sentences that contain the subsequence from
TrDat, and extract a minimal dependency subtree
that covers all the words of the subsequence from
each retrieved sentence. For example, assume that
we retrieve a term-marked sentence “[term] is
usually defined as the way of life of a group of peo-
ple.” for subsequence “[term] is * defined as the”.
Then we extract from the sentence the minimal de-
pendency subtree in the left side of (C) of Table 1.
Note that all the words of the subsequence are con-
tained in the subtree, and that in the subtree a node
(“way”) that is not a part of the subsequence is re-
placed with its dependency label (“NP”) assigned by
the dependency parser. The patterns are filtered out
using thresholds on the Rate and frequency.

We train a SVM classifier1 with a linear kernel,
using binary features that indicate the occurrence of
the patterns described above in a target sentence.

In theory, we could feed all the features to the
SVM classifier and let the classifier pick informa-
tive features. But we restricted the feature set for
practical reasons: the number of features would be-
come tremendously large. There are two reasons for
this. First, the number of sentences in our automati-
cally acquired training data is huge (2,439,257 posi-
tive sentences plus 5,000,000 negative sentences for
English, 703,208 positive sentences plus 1,400,000
negative sentences for Japanese and 310,072 posi-
tive sentences plus 600,000 negative sentences for
Chinese). Second, since each subsequence pattern
is generated as a combination of two or three N-
gram patterns and one subsequence pattern can gen-
erate one or more subtree patterns, using all possi-
ble features leads to a combinatorial explosion of
features. Moreover, since the feature vector will be
highly sparse with a huge number of infrequent fea-
tures, SVM learning becomes very time consuming.
In preliminary experiments we observed that when
using all possible features the learning process took
more than one week for each language. We there-
fore introduced the current feature selection method,
in which the learning process finished in one day but

1http://svmlight.joachims.org.

Original Web sentence: Albert Pujols is a baseball player.
Term-marked sentence 1: [term] is a baseball player.
Term-marked sentence 2: Albert Pujols is a [term].

Figure 3: Term-marked sentences from a Web sentence.

still obtains good results.

2.1.3 Definition Extraction from the Web
We extract a large amount of definition sen-

tences by applying this classifier to sentences in our
Web archive. Because our classifier requires term-
marked sentences (sentences in which the term be-
ing defined is marked) as input, we first have to iden-
tify all such defined term candidates for each sen-
tence. For example, Figure 3 shows a case where a
Web sentence has two NPs (two candidates of de-
fined term). Basically we pick up NPs in a sen-
tence by simple heuristic rules. For English, NPs are
identified using TreeTagger (Schmid, 1995) and two
NPs are merged into one when they are connected by
“for” or “of”. After applying this procedure recur-
sively, the longest NPs are regarded as candidates of
defined terms and term-marked sentences are gener-
ated. For Japanese, we first identify nouns that are
optionally modified by adjectives as NPs, and allow
two NPs connected by “の” (of ), if any, to form
a larger NP. For Chinese, nouns that are optionally
modified by adjectives are considered as NPs.

Then, each term-marked sentence is given a fea-
ture vector and classified by the classifier. The term-
marked sentence whose SVM score (the distance
from the hyperplane) is the largest among those from
the same original Web sentence is chosen as the final
classification result for the original Web sentence.

2.2 Paraphrase Extraction

We use all the Web sentences classified as defini-
tion and all the sentences in Pos for paraphrase ex-
traction. First, we couple two definition sentences
whose defined term is the same. We filter out defini-
tion sentence pairs whose cosine similarity of con-
tent word vectors is less than or equal to threshold
C, which is set to 0.1. Then, we extract phrases
from each definition sentence, and generate all pos-
sible phrase pairs from the coupled sentences. In
this study, phrases are restricted to predicate phrases
that consist of at least one dependency relation and
in which all the constituents are consecutive in a

66



f1

The ratio of the number of words shared between two can-
didate phrases to the number of all of the words in the two
phrases. Words are represented by either their surface form
(f1,1), base form (f1,2) or POS (f1,3).

f2
The identity of the leftmost word (surface form (f2,1), base
form (f2,2) or POS (f2,3)) between two candidate phrases.

f3
The same as f2 except that we use the rightmost word.
There are three corresponding subfunctions (f3,1 to f3,3).

f4

The ratio of the number of words that appear in a candidate
phrase segment of a definition sentence s1 and in a segment
that is NOT a part of the candidate phrase of another def-
inition sentence s2 to the number of all the words of s1’s
candidate phrase. Words are in their base form (f4,1).

f5 The reversed (s1 ↔ s2) version of f4,1 (f5,1).

f6
The ratio of the number of words (the surface form) of a
shorter candidate phrase to that of a longer one (f6,1).

f7

Cosine similarity between two definition sentences from
which two candidate phrases are extracted. Only content
words in the base form are used (f7,1).

f8

The ratio of the number of parent dependency subtrees that
are shared by two candidate phrases to the number of all the
parent dependency subtrees. The parent dependency sub-
trees are adjacent to the candidate phrases and represented
by their surface form (f8,1), base form (f8,2), or POS (f8,3).

f9
The same as f8 except that we use child dependency sub-
trees. There are 3 subfunctions (f9,1 to f9,3) of f9 type.

f10

The ratio of the number of context N-grams that are shared
by two candidate phrases to the number of all the context N-
grams of both candidate phrases. The context N-grams are
adjacent to the candidate phrases and represented by either
the surface form, the base form, or POS. The N ranges from
1 to 3, and the context is either left-side or right-side. Thus,
there are 18 subfunctions (3× 3× 2).

Table 3: Local similarity subfunctions, f1,1 to f10,18.

sentence. Accordingly, if two definition sentences
that are coupled have three such predicate phrases
respectively, we get nine phrase pairs, for instance.
A phrase pair extracted from a definition pair is a
paraphrase candidate and is given a score that indi-
cates the likelihood of being a paraphrase, Score. It
consists of two similarity measures, local similarity
and global similarity, which are detailed below.

Local similarity Following Hashimoto et al., we
assume that two candidate phrases (p1, p2) tend to
be a paraphrase if they are similar enough and/or
their surrounding contexts are sufficiently similar.
Then, we calculate the local similarity (localSim) of
(p1, p2) as the weighted sum of 37 similarity sub-
functions that are grouped into 10 types (Table 3.)
For example, the f1 type consists of three subfunc-
tions, f1,1, f1,2, and f1,3. The 37 subfunctions are
inspired by Hashimoto et al.’s features. Then, local-
Sim is defined as:

localSim(p1, p2) = max
(dl,dm)∈DP (p1,p2)

ls(p1, p2, dl, dm).

Here, ls(p1, p2, dl, dm) =
∑10

i=1

∑ki
j=1

wi,j×fi,j(p1,p2,dl,dm)
ki

.

DP (p1, p2) is the set of all definition sentence pairs
that contain (p1, p2). (dl, dm) is a definition sen-
tence pair containing (p1, p2). ki is the number
of subfunctions of fi type. wi,j is the weight for
fi,j . wi,j is uniformly set to 1 except for f4,1

and f5,1, whose weight is set to −1 since they
indicate the unlikelihood of (p1, p2)’s being a
paraphrase. As the formula indicates, if there is
more than one definition sentence pair that contains
(p1, p2), localSim is calculated from the definition
sentence pair that gives the maximum value of
ls(p1, p2, dl, dm). localSim is local in the sense that
it is calculated based on only one definition pair
from which (p1, p2) are extracted.

Global similarity The global similarity (global-
Sim) is our novel similarity function. We decompose
a candidate phrase pair (p1, p2) into Comm, the com-
mon part between p1 and p2, and Diff , the difference
between the two. For example, Comm and Diff of
(“keep the meaning intact”, “preserve the meaning”)
is (“the meaning”) and (“keep, intact”, “preserve”).
globalSim measures the semantic similarity of
the Diff of a phrase pair. It is proposed based on
the following intuition: phrase pair (p1, p2) tend
to be a paraphrase if their surface difference (i.e.
Diff ) have the same meaning. For example, if
“keep, intact” and “preserve” mean the same, then
(“keep the meaning intact”, “preserve the meaning”)
is a paraphrase.

globalSim considers the occurrence of Diff in
global contexts (i.e., all the paraphrase candidates
from all the definition pairs). The globalSim of a
given phrase pair (p1, p2) is measured by basically
counting how many times the Diff of (p1, p2) ap-
pears in all the candidate phrase pairs from all the
definition pairs. The assumption is that Diff tends to
share the same meaning if it appears repeatedly in
paraphrase candidates from all definition sentence
pairs, i.e., our parallel corpus. Each occurrence of
Diff is weighted by the localSim of the phrase pair
in which Diff occurs. Precisely, globalSim is defined
as:
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Threshold The frequency threshold of Table 2 (Section 2.1.2).
NP rule Rules for identifying NPs in sentences (Section 2.1.3).
POS list The list of content words’ POS (Section 2.2).

Tagger/parser POS taggers, dependency parsers and NER tools.

Table 4: Language-dependent components.

globalSim(p1, p2) =
∑

(pi,pj)∈PP (p1,p2)

localSim(pi, pj)

M
.

PP (p1, p2) is the set of candidate phrase pairs
whose Diff is the same as (p1, p2).2 M is the num-
ber of similarity subfunction types whose weight is
1, i.e. M = 8 (all the subfunction types except f4

and f5). It is used to normalize the value of each
occurrence of Diff to [0, 1].3 globalSim is global
in the sense that it considers all the definition pairs
that have a phrase pair with the same Diff as a target
candidate phrase pair (p1, p2).

The final score for a candidate phrase pair is:

Score(p1, p2) = localSim(p1, p2) + ln globalSim(p1, p2).

The way of combining the two similarity functions
has been determined empirically after testing several
other ways of combining them. This ranks all the
candidate phrase pairs.

Finally, we summarize language-dependent com-
ponents that we fix manually in Table 4.

3 Experiments

3.1 Experiments of Definition Extraction

We show that our unsupervised definition extrac-
tion method is competitive with state-of-the-art su-
pervised methods for English (Navigli and Velardi,
2010), and that it extracts a large number of defini-
tions reasonably accurately for English (3,216,121
definitions with 70% precision), Japanese (651,293
definitions with 62.5% precision), and Chinese
(682,661 definitions with 67% precision).

2If there are more than one (pi, pj) in a definition pair, we
use only one of them that has the largest localSim value.

3Although we claim that our idea of using globalSim is ef-
fective, we do not claim that the above formula for calculating
is the optimal way to implement the idea. Currently we are in-
vestigating a more mathematically well-motivated model.

3.1.1 Preparing Corpora
First we describe Pos, Neg, and the Web corpus

from which definition sentences are extracted. As
the source of Pos, we used the English Wikipedia
of April 2011 (3,620,149 articles), the Japanese
Wikipedia of October 2011 (830,417 articles), and
the Chinese Wikipedia of August 2011 (365,545 ar-
ticles). We removed category articles, template ar-
ticles, list articles and so on from them. Then the
number of sentences of Pos was 2,439,257 for En-
glish, 703,208 for Japanese, and 310,072 for Chi-
nese. We verified our assumption that Wikipedia
first sentences can mostly be seen as definition by
manually checking 200 random samples from Pos.
96.5% of English Pos, 100% of Japanese Pos, and
99.5% of Chinese Pos were definitions.

As the source of Neg, we used 600 million
Japanese Web pages (Akamine et al., 2010) and
the ClueWeb09 corpus for English (about 504 mil-
lion pages) and Chinese (about 177 million pages).4

From each Web corpus, we collected the sentences
satisfying following conditions: 1) they contain 5
to 50 words and at least one verb, 2) less than half
of their words are numbers, and 3) they end with a
period. Then we randomly sampled sentences from
the collected sentences as Neg so that |Neg| was
about twice as large as |Pos|: 5,000,000 for English,
1,400,000 for Japanese, and 600,000 for Chinese.

In Section 3.1.3, we use 10% of the Web corpus as
the input to the definition classifier. The number of
sentences are 294,844,141 for English, 245,537,860
for Japanese, and 68,653,130 for Chinese.

All the sentences were POS-tagged and parsed.
We used TreeTagger and MSTParser (McDonald
et al., 2006) for English, JUMAN (Kurohashi and
Kawahara, 2009a) and KNP (Kurohashi and Kawa-
hara, 2009b) for Japanese, MMA (Kruengkrai et al.,
2009) and CNP (Chen et al., 2009) for Chinese.

3.1.2 Comparison with Previous Methods
We compared our method with the state-of-the-

art supervised methods proposed by Navigli and Ve-
lardi (2010), using their WCL datasets v1.0 (http:
//lcl.uniroma1.it/wcl/), definition and non-
definition datasets for English (Navigli et al., 2010).
Specifically, we used its training data (TrDatwcl,
hereafter), which consisted of 1,908 definition and

4http://lemurproject.org/clueweb09.php/

68



Method Precision Recall F1 Accuracy
Proposeddef 86.79 86.97 86.88 89.18
WCL-1 99.88 42.09 59.22 76.06
WCL-3 98.81 60.74 75.23 83.48

Table 5: Definition classification results on TrDatwcl.

2,711 non-definition sentences, and compared the
following three methods. WCL-1 and WCL-3 are
methods proposed by Navigli and Velardi (2010).
They were trained and tested with 10 fold cross vali-
dation using TrDatwcl. Proposeddef is our method,
which used TrDat for acquiring patterns (Section
2.1.2) and training. We tested Proposeddef on each
of TrDatwcl’s 10 folds and averaged the results.
Note that, for Proposeddef , we removed sentences
in TrDatwcl from TrDat in advance for fairness.
Table 5 shows the results. The numbers for WCL-
1 and WCL-3 are taken from Navigli and Velardi
(2010). Proposeddef outperformed both methods in
terms of recall, F1, and accuracy. Thus, we conclude
that Proposeddef is comparable to WCL-1/WCL-3.

We conducted ablation tests of our method to in-
vestigate the effectiveness of each type of pattern.
When using only N-grams, F1 was 85.41. When
using N-grams and subsequences, F1 was 86.61.
When using N-grams and subtrees, F1 was 86.85.
When using all the features, F1 was 86.88. The re-
sults show that each type of patterns contribute to the
performance, but the contributions of subsequence
patterns and subtree patterns do not seem very sig-
nificant.

3.1.3 Experiments of Definition Extraction
We extracted definitions from 10% of the Web

corpus. We applied Proposeddef to the cor-
pus of each language, and the state-of-the-art su-
pervised method for Japanese (Hashimoto et al.,
2011) (Hashidef , hereafter) to the Japanese corpus.
Hashidef was trained on their training data that con-
sisted of 2,911 sentences, 61.1% of which were def-
initions. Note that we removed sentences in TrDat
from 10% of the Web corpus in advance, while we
did not remove Hashimoto et al.’s training data from
the corpus. This means that, for Hashidef , the train-
ing data is included in the test data.

For each method, we filtered out its positive out-
puts whose defined term appeared more than 1,000
times in 10% of the Web corpus, since those terms

tend to be too vague to be a defined term or re-
fer to an entity outside the definition sentence. For
example, if “the college” appears more than 1,000
times in 10% of the corpus, we filter out sen-
tences like “The college is one of three colleges
in the Coast Community College District and was
founded in 1947.” For Proposeddef , the number of
remaining positive outputs is 3,216,121 for English,
651,293 for Japanese, and 682,661 for Chinese. For
Hashidef , the number of positive outputs is 523,882.

For Proposeddef of each language, we randomly
sampled 200 sentences from the remaining positive
outputs. For Hashidef , we first sorted its output by
the SVM score in descending order and then ran-
domly sampled 200 from the top 651,293, i.e., the
same number as the remaining positive outputs of
Proposeddef of Japanese, out of all the remaining
sentences of Hashidef .

For each language, after shuffling all the samples,
two human annotators evaluated each sample. The
annotators for English and Japanese were not the au-
thors, while one of the Chinese annotators was one
of the authors. We regarded a sample as a defini-
tion if it was regarded as a definition by both an-
notators. Cohen’s kappa (Cohen, 1960) was 0.55
for English (moderate agreement (Landis and Koch,
1977)), 0.73 for Japanese (substantial agreement),
and 0.69 for Chinese (substantial agreement).

For English, Proposeddef achieved 70% precision
for the 200 samples. For Japanese, Proposeddef

achieved 62.5% precision for the 200 samples, while
Hashidef achieved 70% precision for the 200 sam-
ples. For Chinese, Proposeddef achieved 67% pre-
cision for the 200 samples. From these results, we
conclude that Proposeddef can extract a large num-
ber of definition sentences from the Web moderately
well for the three languages.

Although the precision is not very high, our ex-
periments in the next section show that we can still
extract a large number of paraphrases with high pre-
cision from these definition sentences, due mainly to
our similarity measures, localSim and globalSim.

3.2 Experiments of Paraphrase Extraction

We show (1) that our paraphrase extraction method
outperforms unsupervised methods for the three lan-
guages, (2) that globalSim is effective, and (3) that
our method is comparable to the state-of-the-art su-
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ProposedScore: Our method. Outputs are ranked by Score.
Proposedlocal: This is the same as ProposedScore except that it ranks

outputs by localSim. The performance drop from ProposedScore

shows globalSim’s effectiveness.
Hashisup: Hashimoto et al.’s supervised method. Training data is the

same as Hashimoto et al. Outputs are ranked by the SVM score
(the distance from the hyperplane). This is for Japanese only.

Hashiuns: The unsupervised version of Hashisup. Outputs are
ranked by the sum of feature values. Japanese only.

SMT: The phrase table construction method of Moses (Koehn et al.,
2007). We assume that Moses should extract a set of two phrases
that are paraphrases of each other, if we input monolingual par-
allel sentence pairs like our definition pairs. We used default
values for all the parameters. Outputs are ranked by the product
of two phrase translation probabilities of both directions.

P&D: The distributional similarity based method by Paşca and Di-
enes (2005) (their “N-gram-Only” method). Outputs are ranked
by the number of contexts two phrases share. Following Paşca
and Dienes (2005), we used the parameters LC = 3 and
MaxP = 4, while MinP , which was 1 in Paşca and Dienes
(2005), was set to 2 since our target was phrasal paraphrases.

Table 6: Evaluated paraphrase extraction methods.

pervised method for Japanese.

3.2.1 Experimental Setting
We extracted paraphrases from definition sen-

tences in Pos and those extracted by Proposeddef in
Section 3.1.3. First we coupled two definition sen-
tences whose defined term was the same. The num-
ber of definition pairs was 3,208,086 for English,
742,306 for Japanese, and 457,233 for Chinese.

Then we evaluated six methods in Table 6.5 All
the methods except P&D took the same definition
pairs as input, while P&D’s input was 10% of the
Web corpus. The input can be seen as the same for
all the methods, since the definition pairs were de-
rived from that 10% of the Web corpus. In our ex-
periments Exp1 and Exp2 below, all evaluation sam-
ples were shuffled so that human annotators could
not know which sample was from which method.
Annotators were the same as those who conducted
the evaluation in Section 3.1.3. Cohen’s kappa (Co-
hen, 1960) was 0.83 for English, 0.88 for Japanese,

5We filtered out phrase pairs in which one phrase contained a
named entity but the other did not contain the named entity from
the output of ProposedScore, Proposedlocal, SMT , and P&D,
since most of them were not paraphrases. We used Stanford
NER (Finkel et al., 2005) for English named entity recognition
(NER), KNP for Japanese NER, and BaseNER (Zhao and Kit,
2008) for Chinese NER. Hashisup and Hashiuns did the named
entity filtering of the same kind (footnote 3 of Hashimoto et al.
(2011)), and thus we did not apply the filter to them any further.

and 0.85 for Chinese, all of which indicated reason-
ably good (Landis and Koch, 1977). We regarded a
candidate phrase pair as a paraphrase if both annota-
tors regarded it as a paraphrase.

Exp1 We compared the methods that take def-
inition pairs as input, i.e. ProposedScore, Pro-
posedlocal, Hashisup, Hashiuns, and SMT . We ran-
domly sampled 200 phrase pairs from the top 10,000
for each method for evaluation. The evaluation of
each candidate phrase pair (p1, p2) was based on
bidirectional checking of entailment relation, p1 →
p2 and p2 → p1, with p1 and p2 embedded in con-
texts, as Hashimoto et al. (2011) did. Entailment
relation of both directions hold if (p1, p2) is a para-
phrase. We used definition pairs from which candi-
date phrase pairs were extracted as contexts.

Exp2 We compared ProposedScore and P&D.
Since P&D restricted its output to phrase pairs in
which each phrase consists of two to four words,
we restricted the output of ProposedScore to 2-to-4-
words phrase pairs, too. We randomly sampled 200
from the top 3,000 phrase pairs from each method
for evaluation, and the annotators checked entail-
ment relation of both directions between two phrases
using Web sentence pairs that contained the two
phrases as contexts.

3.2.2 Results
From Exp1, we obtained precision curves in the

upper half of Figure 4. The curves were drawn from
the 200 samples that were sorted in descending order
by their score, and we plotted a dot for every 5 sam-
ples. ProposedScore outperformed Proposedlocal for
the three languages, and thus globalSim was effec-
tive. ProposedScore outperformed Hashisup. How-
ever, we observed that ProposedScore acquired many
candidate phrase pairs (p1, p2) for which p1 and p2

consisted of the same content words like “send a
postcard to the author” and “send the author a post-
card,” while the other methods tended to acquire
more content word variations like “have a chance”
and “have an opportunity.” Then we evaluated all
the methods in terms of how many paraphrases with
content word variations were extracted. We ex-
tracted from the evaluation samples only candidate
phrase pairs whose Diff contained a content word
(content word variation pairs), to see how many
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Figure 4: Precision curves of Exp1: English (A)(a), Chinese (B)(b), and Japanese (C)(c).
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Figure 5: Precision curves of Exp2: English (A), Chinese (B), and Japanese (C).

of them were paraphrases. The lower half of Fig-
ure 4 shows the results (curves labeled with cwv).
The number of samples for ProposedScore reduced
drastically compared to the others for English and
Japanese, though precision was kept at a high level.
It is due mainly to the globalSim; the Diff of the
non-content word variation pairs appears frequently
in paraphrase candidates, and thus their globalSim
scores are high.

From Exp2, precision curves in Figure 5 were
obtained. P&D acquired more content word varia-
tion pairs as the curves labeled by cwv indicates.
However, ProposedScore’s precision outperformed
P&D’s by a large margin for the three languages.

From all of these results, we conclude (1) that our
paraphrase extraction method outperforms unsuper-
vised methods for the three languages, (2) that glob-
alSim is effective, and (3) that our method is com-
parable to the state-of-the-art supervised method for
Japanese, though our method tends to extract fewer
content word variation pairs than the others.

Table 7 shows examples of English paraphrases
extracted by ProposedScore.

is based in Halifax = is headquartered in Halifax
used for treating HIV = used to treat HIV
is a rare form = is an uncommon type
is a set = is an unordered collection
has an important role = plays a key role

Table 7: Examples of extracted English paraphrases.

4 Conclusion

We proposed a minimally supervised method for
multilingual paraphrase extraction. Our experiments
showed that our paraphrase extraction method out-
performs unsupervised methods (Paşca and Dienes,
2005; Koehn et al., 2007; Hashimoto et al., 2011)
for English, Japanese, and Chinese, and is compara-
ble to the state-of-the-art language dependent super-
vised method for Japanese (Hashimoto et al., 2011).
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Abstract

Traditional relation extraction predicts rela-
tions within some fixed and finite target
schema. Machine learning approaches to this
task require either manual annotation or, in
the case of distant supervision, existing struc-
tured sources of the same schema. The need
for existing datasets can be avoided by us-
ing a universal schema: the union of all in-
volved schemas (surface form predicates as in
OpenIE, and relations in the schemas of pre-
existing databases). This schema has an al-
most unlimited set of relations (due to surface
forms), and supports integration with existing
structured data (through the relation types of
existing databases). To populate a database of
such schema we present matrix factorization
models that learn latent feature vectors for en-
tity tuples and relations. We show that such
latent models achieve substantially higher ac-
curacy than a traditional classification ap-
proach. More importantly, by operating simul-
taneously on relations observed in text and in
pre-existing structured DBs such as Freebase,
we are able to reason about unstructured and
structured data in mutually-supporting ways.
By doing so our approach outperforms state-
of-the-art distant supervision.

1 Introduction

Most previous work in relation extraction uses a pre-
defined, finite and fixed schema of relation types
(such as born-in or employed-by). Usually some tex-
tual data is labeled according to this schema, and
this labeling is then used in supervised training of
an automated relation extractor, e.g. Culotta and
Sorensen (2004). However, labeling textual rela-

tions is time-consuming and difficult, leading to sig-
nificant recent interest in distantly-supervised learn-
ing. Here one aligns existing database records with
the sentences in which these records have been “ren-
dered”––effectively labeling the text—and from this
labeling we can train a machine learning system as
before (Craven and Kumlien, 1999; Mintz et al.,
2009; Bunescu and Mooney, 2007; Riedel et al.,
2010). However, this method relies on the availabil-
ity of a large database that has the desired schema.

The need for pre-existing datasets can be avoided
by using language itself as the source of the schema.
This is the approach taken by OpenIE (Etzioni et al.,
2008). Here surface patterns between mentions of
concepts serve as relations. This approach requires
no supervision and has tremendous flexibility, but
lacks the ability to generalize. For example, Ope-
nIE may find FERGUSON–historian-at–HARVARD

but does not know FERGUSON–is-a-professor-at–
HARVARD. OpenIE has traditionally relied on a
large diversity of textual expressions to provide good
coverage. But this diversity is not always available,
and, in any case, the lack of generalization greatly
inhibits the ability to support reasoning.

One way to gain generalization is to cluster tex-
tual surface forms that have similar meaning (Lin
and Pantel, 2001; Pantel et al., 2007; Yates and
Etzioni, 2009; Yao et al., 2011). While the clus-
ters discovered by all these methods usually contain
semantically related items, closer inspection invari-
ably shows that they do not provide reliable impli-
cature. For example, a typical representative clus-
ter may include historian-at, professor-at, scientist-
at, worked-at. Although these relation types are in-
deed semantically related, note that scientist-at does
not necessarily imply professor-at, and worked-at
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certainly does not imply scientist-at. In fact, we
contend that any relational schema would inherently
be brittle and ill-defined––having ambiguities, prob-
lematic boundary cases, and incompleteness.1 For
example, Freebase, in spite of its extensive effort to-
wards high coverage, has no critized nor scientist-at
relation.

In response to this problem, we present a new ap-
proach: implicature with universal schemas. Here
we embrace the diversity and ambiguity of original
inputs; we avoid forcing textual meaning into pre-
defined boxes. This is accomplished by defining
our schema to be the union of all source schemas:
original input forms, e.g. variants of surface pat-
terns similarly to OpenIE, as well as relations in
the schemas of many available pre-existing struc-
tured databases. But then, unlike OpenIE, our fo-
cus lies on learning asymmetric implicature among
relations. This allows us to probabilistically “fill
in” inferred unobserved entity-entity relations in
this union. For example, after observing FERGU-
SON–historian-at–HARVARD our system infers that
FERGUSON–professor-at–HARVARD, but not vice
versa.

At the heart of our approach is the hypothesis that
we should concentrate on predicting source data––a
relatively well defined task that can be evaluated and
optimized––as opposed to modeling semantic equiv-
alence, which we believe will always be illusive.

Note that by operating simultaneously on rela-
tions observed in text and in pre-existing structured
databases such as Freebase, we are able to reason
about unstructured and structured data in mutually-
supporting ways. For example, we can predict sur-
face pattern relations that effectively serve as addi-
tional features when predicting Freebase relations,
hence improving generalization. Also notice that
users of our system will not have to study and un-
derstand the complexities of a particular schema in
order to issue queries; they can ask in whatever form
naturally occurs to them, and our system will likely
already have that relation in our universal schema.

Our technical approach is based on extensions
to probabilistic models of matrix factorization and

1At NAACL 2012 Lucy Vanderwende asked “Where do the
relation types come from?” There was no satisfying answer. At
the same meeting, and in line with Brachman (1983), Ed Hovy
stated “We don’t even know what is-a means.”

collaborative filtering (Collins et al., 2001; Koren,
2008; Rendle et al., 2009). We represent the prob-
abilistic knowledge base as a matrix with entity-
entity pairs in the rows and relations in the columns
(see figure 1). The rows come from running cross-
document entity resolution across pre-existing struc-
tured databases and textual corpora. The columns
come from the union of surface forms and DB rela-
tions. We present a series of models that learn lower
dimensional manifolds for tuples, relations and enti-
ties, and a set of weights that capture direct correla-
tions between relations. Weights and lower dimen-
sional representations act, through dot products, as
the natural parameters of a single log-linear model
to derive per-cell probabilities.

In experiments we show that our models can ac-
curately predict surface patterns relationships which
do not appear explicitly in text, and that learning la-
tent representations of entities, tuples and relations
substantially improves results over a traditional clas-
sifier approach. Moreover, we can improve accu-
racy by simultaneously operating on relations ob-
served in the New York Times corpus and in Free-
base. In particular, our model outperforms the cur-
rent state-of-the-art distant supervision method (Sur-
deanu et al., 2012) by 10% points Mean Average
Precision through joint implicature among surface
patterns and Freebase relations.

2 Model

Before we present our approach in more detail, we
briefly introduce some notation. We use R to de-
note the set of relations we seek to predict (such as
works-written in Freebase, or the X–historian-at–Y
pattern), and T to denote the set of input tuples. For
simplicity we assume each relation to be binary, al-
though our approach can be easily generalized to the
n-ary case. Given a relation r ∈ R and a tuple t ∈ T
the pair 〈r, t〉 is a fact, or relation instance. The in-
put to our model is a set of observed facts O, and
the observed facts for a given tuple is denoted by
Ot := {〈r, t〉 ∈ O}.

Our goal is a model that can estimate, for a
given relation r (such as X–historian-at–Y) and a
given tuple t (such as <FERGUSON,HARVARD>),
the probability p (yr,t = 1) where yr,t is a binary
random variable that is true iff t is in relation r. We
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Figure 1: Filling up a database of universal schema.
Dark circles are observed facts, shaded circles are in-
ferred facts. Relation Extraction (RE) maps surface pat-
tern relations (and other features) to structured relations.
Surface form clustering models correlations between pat-
terns, and can be fed into RE (Yao et al., 2011). Database
alignment and integration models correlations between
structured relations (not done in this work). Reasoning
with the universal schema incorporates these tasks in a
joint fashion.

introduce a series of exponential family models that
estimate this probability using a natural parameter
θr,t and the logistic function:

p (yr,t = 1|θr,t) := σ (θr,t) =
1

1 + exp (−θr,t)
.

We will first describe our models through differ-
ent definitions of the natural parameter θr,t. In each
case θr,t will be a function of r, t and a set of weights
and/or latent feature vectors. In section 2.5 we will
then show how these weights and vectors can be es-
timated based on the observed facts O.

Notice that we can interpret p (yr,t = 1) as the
probability that a customer t likes product r. This
analogy allows us to draw from a large body of work
in collaborative filtering, such as work in probabilis-
tic matrix factorization and implicit feedback.

2.1 Latent Feature Model
One way to define θr,t is through a latent feature
model F. Here we measure compatibility between
relation r and tuple t as dot product of two latent
feature representations of size KF: ar for relation r,
and vt for tuple t. This gives:

θF
r,t :=

KF∑
k

ar,kvt,k.

This corresponds to generalized PCA (Collins et al.,
2001), a model were the matrix Θ = (θr,t) of natural
parameters is defined as the low rank factorization
AV.

Notice that we intentionally omit any per-relation
bias-terms. In section 4 we evaluate ranked answers
to queries on a per-relation basis, and a per-relation
bias term will have no effect on ranking facts of the
same relation. Also consider that such latent feature
models can capture asymmetry by assigning more
peaked vectors to specific relations, and more uni-
form vectors to general relations.

2.2 Neighborhood Model
We can interpolate the confidence for a given tuple
and relation based on the trueness of other similar
relations for the same tuple. In collaborative filter-
ing this is referred to as a neighborhood-based ap-
proach (Koren, 2008). In terms of our natural pa-
rameter, we implement a neighborhood model N via
a set of weights wr,r′ , where each corresponds to a
directed association strength between relations r and
r′. For a given tuple t and relation r we then sum
up the weights corresponding to all relations r′ that
have been observed for tuple t:

θN
r,t :=

∑
(r′,t)∈O\{(r,t)}

wr,r′ .

Notice that the neighborhood model amounts to
a collection of local log-linear classifiers, one for
each relation r with feature functions fr,r′ (t) =
I [r′ 6= r ∧ (r′, t) ∈ O] and weights wr. This means
that in contrast to model F, this model cannot har-
ness any synergies between textual and pre-existing
DB relations.
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2.3 Entity Model
Relations have selectional preferences: they allow
only certain types in their argument slots. While
knowledge bases such as Freebase or DBPedia have
extensive ontologies of types of entities, these are of-
ten not sufficiently fine to allow relations to discrim-
inate (Yao et al., 2012b). Hence, instead of using a
predetermined set of entity types, in our entity model
E we learn a latent entity representation from data.
More concretely, for each entity e we introduce a la-
tent feature vector te of dimension KE. In addition,
for each relation r and argument slot i we introduce
a feature vector di of the same dimension. For ex-
ample, binary relations have feature representations
d1 for argument 1, and d2 for argument 2. Mea-
suring compatibility of an entity tuple and relation
amounts to measuring, and summing up, compati-
bility between each argument slot representation and
the corresponding entity representation. This leads
to:

θE
r,t :=

arity(r)∑
i=1

KE∑
k

di,ktti,k.

Note that due to entity resolution, tuples may
share entities, and hence parameters are shared
across rows.

2.4 Combined Model
In practice all the above models can capture impor-
tant aspects of the data. Hence we also use various
combinations, such as:

θNFE
r,t := θN

r,t + θF
r,t + θE

r,t.

2.5 Parameter Estimation
Our models are parametrized through weights and
latent component vectors. We could estimate these
parameters by maximizing the loglikelihood of the
observed data akin to Collins et al. (2001). How-
ever, as we do not have access to negative facts, the
model would simply learn to predict all facts to be
true. In our initial attempt to overcome this issue
we sampled a set of unobserved facts as designated
negative facts, as is done in related distant supervi-
sion approaches. However, we found that (a) our
results were sensitive to the choice of negative data
and (b) runtime was increased substantially because
of a large number of required negative facts.

In collaborative filtering positive-only data is also
known as implicit feedback. This type of feedback
arises, for example, when users buy but not rate
items. One successful approach to learning with im-
plicit feedback is based on the observation that the
actual task is not necessarily one of prediction (here:
to predict a number between 0 and 1) but one of
(generally simpler) ranking: to give true “user-item”
cells higher scores than false ones. Bayesian Person-
alized Ranking (BPR) uses a variant of this ranking:
giving observed true facts higher scores than unob-
served (true or false) facts (Rendle et al., 2009). This
relaxed constraint is to be contrasted with the log-
likelihood setting that essentially requires (randomly
sampled) negative facts to score below a globally de-
fined threshold.

2.5.1 Objective
We first create a dataset of ranked pairs: for each

relation r and each observed fact f+ := 〈r, t+〉 ∈ O
we choose all tuples t− such that f− := 〈r, t−〉 /∈
O—that is, tuples we have not observed to be in
relation r. For each pair of facts f+ and f− we
want p (f+) > p (f−) and hence θf+ > θf− . In
BPR this is achieved by maximizing a sum terms of
the form Objf+,f− := log

(
σ
(
θf+ − θf−

))
, one for

each ranked pair:

Obj :=
∑

〈r,t+〉∈O

∑
〈r,t−〉/∈O

Obj〈r,t+〉,〈r,t−〉. (1)

Notice that this objective differs slightly from the
one used by Rendle et al. (2009). Consider tuples
as users and items as relations. We rank different
users with respect to the same item, while BPR ranks
items with respect to the same user. Also notice that
the BPR objective is an approximation to the per-
relation AUC (area under the ROC curve), and hence
directly correlated to what we want to achieve: well-
ranked tuples per relation.

Note that all parameters are regularized with
quadratic penalty which we omit here for brevity.

2.5.2 Optimization
To maximize the objective2 in equation 1 we fol-

low Rendle et al. (2009) and employ Stochastic Gra-
dient Descent (SGD). In particular, in each epoch

2This objective is non-convex for all models excluding the
N model.
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we sample |O| facts with replacement from O. For
each sampled fact 〈r, t+〉 we then sample a tuple
t− ∈ T such that 〈r, t−〉 /∈ O is not an observed
fact. This gives us |O| fact pairs 〈f+, f−〉, and for
each pair we do an SGD update using the corre-
sponding gradients of Objf+,f− . For the F model
the gradients correspond to those presented by Ren-
dle et al. (2009). The remaining gradients are easy
to derive; we omit details for brevity.

3 Related Work

This work extends a previous workshop paper (Yao
et al., 2012a) by introducing the neighborhood and
entity model, by working with the BPR objective,
and by more extensive experiments.

Relational Clustering There is a large body of
work aiming to discover latent relations by clus-
tering surface patterns (Hasegawa et al., 2004;
Shinyama and Sekine, 2006; Kok and Domingos,
2008; Yao et al., 2011; Takamatsu et al., 2011), or
by inducing synonymy relationships between pat-
terns independently of the entities (Yates and Et-
zioni, 2009; Pantel et al., 2007; Lin and Pantel,
2001). Our approach has a fundamentally different
objective: we are not (primarily) interested in clus-
ters of patterns or their semantic representation, but
in predicting patterns where they are not observed.
Moreover, these related methods rely on a symmetric
notion of synonymy in which clustered patterns are
assumed to have the same meaning. Our approach
rejects this assumption in favor of a model which
learns that certain patterns, or combinations thereof,
entail others in one direction, but not necessarily the
other. This is similar in spirit to work on learning
entailment rules (Szpektor et al., 2004; Zanzotto et
al., 2006; Szpektor and Dagan, 2008). However, for
us even entailment rules are just a by-product of our
goal to improve prediction, and it is this goal we di-
rectly optimize for and evaluate.

Matrix Factorization Our approach is also re-
lated to work on factorizing YAGO to predict new
links (Nickel et al., 2012). The primary differences
are that we include surface patterns in our schema,
use a ranking objective, and learn latent vectors for
entities and tuples. Likewise, matrix factorization in
various flavors has received significant attention in

the lexical semantics community, from LSA to re-
cent work on non-negative sparse embeddings (Mur-
phy et al., 2012). In our problem columns corre-
spond to relations, and rows correspond to entity tu-
ples. By contrast, there columns are words, and rows
are contextual features such as “words in a local win-
dow.” Consequently, our objective is to complete
the matrix, whereas their objective is to learn better
latent embeddings of words (which by themselves
again cannot capture any sense of asymmetry).

OpenIE Open IE (Etzioni et al., 2008) extracts
facts mentioned in text, but does not predict poten-
tial facts not mentioned in text. Finding answers
requires explicit mentions, and hence suffers from
lower recall for not-so-frequently mentioned facts.
Methods that learn rules between textual patterns in
OpenIE aim at a similar goal as our proposed ap-
proach (Schoenmackers et al., 2008; Schoenmack-
ers et al., 2010). However, their approach is sub-
stantially more complex, requires a categorization
of entities into fine grained entity types, and needs
inference in high tree-width Markov Networks. By
contrast, our approach is based on a single unified
model, requires no entity types, and for us inferring
a fact amounts to not more than a few dot products.
In addition, in our Universal Schema approach Ope-
nIE surface patterns are just one kind of relations,
and our aim is populate relations of all kinds. In the
future we may even include relations between enti-
ties and continuous attributes (say, gene expression
measurements).

Distant Supervision In Distant Supervision (DS)
a set of facts from pre-existing structured sources
is aligned with surface patterns mentioned in
text (Bunescu and Mooney, 2007; Mintz et al., 2009;
Riedel et al., 2010; Hoffmann et al., 2011; Surdeanu
et al., 2012), and this alignment is then used to train
a relation extractor. A core difference to our ap-
proach is the number of target relations: In DS it
is the relatively small schema size of the knowledge
base, while we also include surface patterns. This
allows us to answer more expressive queries. More-
over, by learning from surface-pattern correlations,
our latent models induce feature representations for
patterns that do not appear in the DS training set. As
we will see in section 4, this allows us to outperform
state-of-the-art DS models.
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Never-Ending Learning and Bootstrapping Our
latent feature models are capable of never-ending
learning (Carlson et al., 2010). That is, we can con-
tinue to train these models with incoming data, even
if no structured annotation is available. In bootstrap-
ping approaches the current model is used to predict
new relations, and these hypothesized relations are
used as new supervision targets (i.e. self-training).
By contrast, our model only strengthens the correla-
tions between incoming co-occurring observations.
This has the advantage that wrong predictions are
less likely be reinforced, hence reducing the risk of
semantic drift.

4 Experiments

How accurately can we fill a database of Universal
Schema, and does reasoning jointly across a uni-
versal schema help to improve over more isolated
approaches? In the following we seek to answer
this question empirically. To this end we train our
models on observed facts in a newswire corpus and
Freebase, and then manually evaluate ranked predic-
tions: first for structured relations and then for sur-
face form relations.

4.1 Data

Following previous work (Riedel et al., 2010),
our documents are taken from the NYTimes cor-
pus (Sandhaus, 2008). Articles after 2000 are used
as training corpus, articles from 1990 to 1999 as
test corpus. We also split Freebase facts 50/50 into
train and test facts, and their corresponding tuples
into train and test tuples. Then we align training tu-
ples with the training corpus, and test tuples with the
test corpus. This alignment relies on a preprocessing
step that links NER mentions in text with entities in
Freebase. In our case we use a simple string-match
heuristic to find this linking. Now we align an entity
tuple 〈t1, t2〉 with a pair of mentions 〈m1,m2〉 in
the same sentence if m1 is linked to t1 and m2 to t2.
Based on this alignment we filter out all relations for
which we find fewer than 10 tuples with mentions in
text.

The above alignment and filtering process reduces
the total number of tuples related according to Free-
base to 16k: approximately 8k tuples with facts
mentioned in the training set, and approximately 8k

such tuples for the test set. In addition we have a
set of approximately 200k training tuples for which
both arguments appear in the same sentence and
both can be linked to Freebase entities, but for which
no Freebase fact is recorded. This can either be be-
cause they are not related, or simply because Free-
base does not contain the relationship yet. We also
have about 200k such tuples in the test set. To sim-
plify evaluation, we create a subsampled test set by
randomly choosing 10k of the original test set tuples.

The above alignment allows us to determine, for
each tuple t, the observed facts Ot as follows. To
find the surface pattern facts OPAT

t for the tuple t =
〈t1, t2〉 we extract, for each mention m = 〈m1,m2〉
of t, the lexicalized dependency path p between m1

and m2. Then we add 〈p, t〉 to OPAT
t . For example,

we get “<-subj<-head->obj->” for “M1 heads M2.”
Filtering out patterns with fewer than 10 mentions
in text yields approximately 4k patterns. For train-
ing tuples we add as Freebase facts OFB

t all facts
〈r, t〉 that appear in Freebase, and for which r has
not been filtered out beforehand. For the test setOFB

t

remains empty. The total set of observed facts Ot is
OFB

t ∪OPAT
t , and their union over all tuples forms the

set of observed facts O.

4.2 Evaluation

For evaluation we use collections of relations: sur-
face patterns in one experiment and Freebase re-
lations in the other. In either case we compare
the competing systems with respect to their ranked
results for each relation in the collection. Given
this ranking task, our evaluation is inspired by the
TREC competitions and work in information re-
trieval (Manning et al., 2008). That is, we treat
each relation as query and receive the top 1000 (run
depth) entity pairs from each system. Then we pool
the top 100 (pool depth) answers from each system
and manually judge their relevance or “truth.” This
gives a set of relevant results that we can use to cal-
culate recall and precision measures. In particular,
we can use these annotations to measure an average
precision across the precision-recall curve, and an
aggregate mean average precision (MAP) across all
relations. This metric has shown to be very robust
and stable (Manning et al., 2008). In addition we
also present a weighted version of MAP (weighted
MAP) in which the average precision for each re-
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Relation # MI09 YA11 SU12 N F NF NFE
person/company 103 0.67 0.64 0.70 0.73 0.75 0.76 0.79
location/containedby 74 0.48 0.51 0.54 0.43 0.68 0.67 0.69
author/works_written 29 0.50 0.51 0.52 0.45 0.61 0.63 0.69
person/nationality 28 0.14 0.40 0.13 0.13 0.19 0.18 0.21
parent/child 19 0.14 0.25 0.62 0.46 0.76 0.78 0.76
person/place_of_death 19 0.79 0.79 0.86 0.89 0.83 0.85 0.86
person/place_of_birth 18 0.78 0.75 0.82 0.50 0.83 0.81 0.89
neighborhood/neighborhood_of 12 0.00 0.00 0.08 0.43 0.65 0.66 0.72
person/parents 7 0.24 0.27 0.58 0.56 0.53 0.58 0.39
company/founders 4 0.25 0.25 0.53 0.24 0.77 0.80 0.68
film/directed_by 4 0.06 0.15 0.25 0.09 0.26 0.26 0.30
sports_team/league 4 0.00 0.43 0.18 0.21 0.59 0.70 0.63
team/arena_stadium 3 0.00 0.06 0.06 0.03 0.08 0.09 0.08
team_owner/teams_owned 2 0.00 0.50 0.70 0.55 0.38 0.61 0.75
roadcast/area_served 2 1.00 0.50 1.00 0.58 0.58 0.83 1.00
structure/architect 2 0.00 0.00 1.00 0.27 1.00 1.00 1.00
composer/compositions 2 0.00 0.00 0.00 0.50 0.67 0.83 0.12
person/religion 1 0.00 1.00 1.00 0.50 1.00 1.00 1.00
film/produced_by 1 1.00 1.00 1.00 1.00 0.50 0.50 0.33
MAP 0.32 0.42 0.56 0.45 0.61 0.66 0.63
Weighted MAP 0.48 0.52 0.57 0.52 0.66 0.67 0.69

Table 1: Average and (weighted) Mean Average Precisions for Freebase relations based on pooled results. The #
column shows the number of true facts in the pool. NFE is statistically different to all but NF and F according to the
sign test. Bold faced are winners per relation, italics indicate ties.

lation is weighted by the relation’s number of true
facts.

Notice that we deviate from previous work in dis-
tant supervision that (a) combines the results from
several relations in a single precision recall curve,
and (b) uses held-out evaluation to measure how
well the predictions match existing Freebase facts.
This has several benefits. First, when aggregating
across relations results are often dominated by a few
very frequent relations, such as containedby, provid-
ing little information about how the models perform
across the board. Second, evaluating with Freebase
held-out data is biased. For example, we find that
frequently mentioned entity pairs are more likely to
have relations in Freebase. Systems that rank such
tuples higher receives higher precision than those
that do not have such bias, regardless of how cor-
rect their predictions are. Third, we can aggregate
per-relation comparisons to establish statistical sig-
nificance, for example via the sign test.

Also note that while we run our models on the
complete training and test set, evaluation is re-
stricted to the subsampled test set.

4.3 Predicting Freebase Relations
Table 1 shows our results for Freebase relations,
omitting those for which none of the systems can
find any relevant facts. Our first baseline is MI09,
a distantly supervised classifier based on the work
of Mintz et al. (2009). This classifier only learns
from observed pattern-relation pairs in the training
set (of which we only have about 8k). By contrast,
our latent feature models can learn pattern-pattern
correlations both on the unlabeled training and test
set (comparable to bootstrapping). We hence also
compare against YA11, a version of MI09 that uses
preprocessed cluster features according to Yao et al.
(2011). The third baseline is SU12, the state-of-the-
art Multi-Instance Multi-Label system by Surdeanu
et al. (2012).

The remaining systems are our neighborhood
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Figure 2: Averaged 11-point precision recall curve for
Freebase relations in table 1.

model (N), the factorized model (F), their combi-
nation (NF) and the combined model with a latent
entity representation (NFE). For all our models we
use the same number of components when applica-
ble (KF = KE = 100), 1000 epochs, and 0.01 as
regularizer for component weights and 0.1 for neigh-
borhood weights.

Table 1 shows that adding pattern cluster features
(and hence incorporating more data) helps YA11
to improve over MI09. Likewise, we see that the
factorized model F improves over N, again learn-
ing from unlabeled data. This improvement is big-
ger than the corresponding change between MI09
and YA11, possibly indicating that our latent rep-
resentations are optimized directly towards improv-
ing prediction performance. The combination of N,
F and E outperforms all other models in terms of
weighted MAP, indicating the power of selectional
preferences learned from data. Note that NFE is
significantly different (p � 0.05 in sign test) to all
but the NF and F models. In terms of MAP the NF
model outperforms NFE, indicating that it does not
do as well for frequent relations, but better for infre-
quent ones.

Figure 2 shows an averaged 11-point precision re-
call graph (Manning et al., 2008) for Freebase re-
lations. We notice that our latent models outper-
form all remaining models across all recall levels,
and that combining neighborhood and latent models
is helpful. This finding is consistent with our MAP
results. Figure 3 shows the recall-precision curve for
the works_written relation with respect to our three
baselines and the NFE model. Observe how preci-
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Figure 3: Precision and recall for works_written(X,Y).

Relation # N F NF NFE
visit 80 0.19 0.68 0.49 0.42
attend 69 0.23 0.10 0.07 0.10
base 61 0.46 0.87 0.81 0.68
head 38 0.47 0.67 0.70 0.68
scientist 36 0.25 0.84 0.79 0.73
support 18 0.16 0.29 0.32 0.38
adviser 11 0.19 0.15 0.19 0.28
criticize 9 0.09 0.60 0.67 0.64
praise 4 0.01 0.03 0.05 0.10
vote 3 0.18 0.18 0.34 0.34
MAP 0.22 0.44 0.44 0.43
Weighted MAP 0.28 0.56 0.50 0.46

Table 2: Average and (weighted) Mean Average Preci-
sions for surface patterns.2

sion drops for both MI09 and SU12 at about 50%
recall. At this point the remaining unretrieved facts
have patterns that have not been seen together with
works_written in the training set. By using cluster
features, YA11 can overcome this problem partly,
but not as dramatically as NFE—a pattern we ob-
serve for many relations.

All our models are fast to train. The slowest
model trains in just 45 minutes. By contrast, training
the topic model in YA11 alone takes 4 hours. Train-
ing SU12 takes two hours (on less data). Also notice
that our models not only learn to predict Freebase
relations, but also approximately 4k surface pattern
relations.

4.4 Predicting Surface Patterns

Table 2 presents a comparison of our models with re-
spect to 10 surface pattern relations. These relations
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Figure 4: Averaged 11-point precision recall curve for
surface pattern relations in table 2.

were chosen according to what we believe are inter-
esting questions not currently captured in Freebase.
We again see that learning a latent representation (F,
NF and NFE) from additional data helps quite sub-
stantially over the N model. For in the weighted
MAP metric we note that incorporating entity rep-
resentations (in the NFE model) in fact hurts total
performance.3 One reason may be the fact that Free-
base relations are typed—they require very specific
types of entities as arguments. By contrast, for a
surface pattern like “X visits Y” X could be a person
or organization, and Y could be a location, organi-
zation or person. However, in terms of MAP score
this time there is no obvious winner among the la-
tent models. This is also confirmed by the averaged
11-point precision recall curve in figure 4.

Notice that we can accurately predict the X–
scientist-at–Y surface pattern relation in table 2,
as well as the more general person/company (em-
ployedBy) relation in table 1. This indicates that
our models can capture asymmetry—a symmetric
model would either over-predict X–scientist-at–Y
or under-predict person/company.

5 Conclusion

We present relation extraction into universal
schemas. Such schemas contain surface patterns
as relations, as well as relations from structured
sources. By predicting missing tuples for surface
pattern relations we can populate a database with-
out any labelled data, and answer questions not sup-

3Due to the small set of relations only N is significantly dif-
ferent to F, NF and NFE (p� 0.05 in sign test).

ported by the structured schema alone. By predict-
ing missing tuples in the structured schema we can
expand a knowledge base of fixed schema, and only
require a set of existing facts from this schema. Cru-
cially, by predicting and modeling both surface pat-
terns and structured relations simultaneously we can
improve performance. We show this experimentally
by contrasting a series of the popular weakly super-
vised models to our collaborative filtering models
that learn latent feature representations across sur-
face patterns and structured relations. Moreover, our
models are computationally efficient, requiring less
time than comparable methods, while learning more
relations.

Reasoning with universal schemas is not merely a
tool for information extraction. It can also serve as
a framework for various data integration tasks. For
example, we could integrate facts from one schema
(say, Freebase) into another (say, the TAC KBP
schema) by adding both sets of relations to the set
of surface patterns. Reasoning with this schema
will mean populating each database with facts from
the other, and would leverage information in surface
patterns to improve integration. In future work we
also plan to integrate universal entity types and at-
tributes into the model.

The source code of our system, its output, and
all data annotations are available at http://www.
riedelcastro.org/uschema.
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Abstract

We develop a method for effective extraction
of linguistic patterns that are differentially ex-
pressed based on the native language of the
author. This method uses multiple corpora
to allow for the removal of data set specific
patterns, and addresses both feature relevancy
and redundancy. We evaluate different rel-
evancy ranking metrics and show that com-
mon measures of relevancy can be inappro-
priate for data with many rare features. Our
feature set is a broad class of syntactic pat-
terns, and to better capture the signal we ex-
tend the Bayesian Tree Substitution Grammar
induction algorithm to a supervised mixture of
latent grammars. We show that this extension
can be used to extract a larger set of relevant
features.

1 Introduction

Native Language Identification (NLI) is a classifi-
cation task in which a statistical signal is exploited
to determine an author’s native language (L1) from
their writing in a second language (L2). This aca-
demic exercise is often motivated not only by fraud
detection or authorship attribution for which L1 can
be an informative feature, but also by its potential to
assist in Second Language Acquisition (SLA).

Our work focuses on the latter application and on
the observation that the actual ability to automati-
cally determine L1 from text is of limited utility in
the SLA domain, where the native language of a stu-
dent is either known or easily solicited. Instead, the
likely role of NLP in the context of SLA is to pro-
vide a set of linguistic patterns that students with

certain L1 backgrounds use with a markedly unusual
frequency. Experiments have shown that such L1
specific information can be incorporated into lesson
plans that improve student performance (Laufer and
Girsai, 2008; Horst et al, 2008).

This is essentially a feature selection task with the
additional caveat that features should be individually
discriminative between native languages in order to
facilitate the construction of focused educational ex-
cersizes. With this goal, we consider metrics for
data set dependence, relevancy, and redundancy. We
show that measures of relevancy based on mutual in-
formation can be inappropriate in problems such as
ours where rare features are important.

While the majority of the methods that we con-
sider generalize to any of the various feature sets
employed in NLI, we focus on the use of Tree Sub-
stitution Grammar rules as features. Obtaining a
compact feature set is possible with the well known
Bayesian grammar induction algorithm (Cohn and
Blunsom, 2010), but its rich get richer dynamics can
make it difficult to find rare features. We extend the
induction model to a supervised mixture of latent
grammars and show how it can be used to incorpo-
rate linguistic knowledge and extract discriminative
features more effectively.

The end result of this technique is a filtered list of
patterns along with their usage statistics. This pro-
vides an enhanced resource for SLA research such
as Jarvis and Crossley (2012) which tackles the man-
ual connection of highly discriminative features with
plausible linguistic transfer explanations. We output
a compact list of language patterns that are empiri-
cally associated with native language labels, avoid-
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ing redundancy and artifacts from the corpus cre-
ation process. We release this list for use by the
linguistics and SLA research communities, and plan
to expand it with upcoming releases of L1 labeled
corpora1.

2 Related Work

Our work is closely related to the recent surge of re-
search in NLI. Beginning with Koppel et al (2005),
several papers have proposed different feature sets
to be used as predictors of L1 (Tsur and Rappa-
port, 2007; Wong and Dras, 2011a; Swanson and
Charniak, 2012). However, due to the ubiquitous
use of random subsamples, different data prepara-
tion methods, and severe topic and annotation biases
of the data set employed, there is little consensus on
which feature sets are ideal or sufficient, or if any
reported accuracies reflect some generalizable truth
of the problem’s difficulty. To combat the bias of
a single data set, a new strain of work has emerged
in which train and test documents come from dif-
ferent corpora (Brooke and Hirst, 2012; Tetreault et
al, 2012; Bykh and Meurers, 2012). We follow this
cross corpus approach, as it is crucial to any claims
of feature relevance.

Feature selection itself is a well studied problem,
and the most thorough systems address both rele-
vancy and redundancy. While some work tackles
these problems by optimizing a metric over both si-
multaneously (Peng et al, 2005), we decouple the
notions of relevancy and redundancy to allow ad-hoc
metrics for either, similar to the method of Yu and
Liu (2004). The measurement of feature relevancy
in NLI has to this point been handled primarily with
Information Gain, and elimination of feature redun-
dancy has not been considered.

Tree Substitution Grammars have recently been
successfully applied in several domains using the
induction algorithm presented by Cohn and Blun-
som (2010). Our hierarchical treatment builds on
this work by incorporating supervised mixtures over
latent grammars into this induction process. Latent
mixture techniques for NLI have been explored with
other feature types (Wong and Dras, 2011b; Wong
and Dras, 2012), but have not previously led to mea-
surable empirical gains.

1bllip.cs.brown.edu/download/nli corpus.pdf

3 Corpus Description

We first make explicit our experimental setup in or-
der to provide context for the discussion to follow.
We perform analysis of English text from Chinese,
German, Spanish, and Japanese L1 backgrounds
drawn from four corpora. The first three consist of
responses to essay prompts in educational settings,
while the fourth is submitted by users in an internet
forum.

The first corpus is the International Corpus of
Learner English (ICLE) (Granger et al, 2002), a
mainstay in NLI that has been shown to exhibit a
large topic bias due to correlations between L1 and
the essay prompts used (Brooke and Hirst, 2011).
The second is the International Corpus of Crosslin-
guistic Interlanguage (ICCI) (Tono et al, 2012),
which is annotated with sentence boundaries and has
yet to be used in NLI. The third is the public sample
of the Cambridge International Corpus (FCE), and
consists of short prompted responses. One quirk of
the FCE data is that several responses are written in
the form of letters, leading to skewed distributions
of the specialized syntax involved with use of the
second person. The fourth is the Lang8 data set in-
troduced by Brooke and Hirst (2011). This data set
is free of format, with no prompts or constraints on
writing aids. The samples are often very short and
are qualitatively the most noisy of the four data sets.

One distinctive experimental decision is to treat
each sentence as an individual datum. As document
length can vary dramatically, especially across cor-
pora, this gives increased regularity to the number
of features per data item. More importantly, this
creates a rough correspondence between feature co-
occurrence and the expression of the same under-
lying linguistic phenomenon, which is desirable for
automatic redundancy metrics.

We automatically detect sentence boundaries
when they are not provided, and parse all corpora
with the 6-split Berkeley Parser. As in previous NLI
work, we then replace all word tokens that do not oc-
cur in a list of 614 common words with an unknown
word symbol, UNK.

While these are standard data preprocessing steps,
from our experience with this problem we propose
additional practical considerations. First, we filter
the parsed corpora, retaining only sentences that are
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parsed to a Clause Level2 tag. This is primarily due
to the fact that automatic sentence boundary detec-
tors must be used on the ICLE, Lang8, and FCE data
sets, and false positives lead to sentence fragments
that are parsed as NP, VP, FRAG, etc. The wild inter-
net text found in the Lang8 data set also yields many
non-Clause Level parses from non-English text or
emotive punctuation. Sentence detection false neg-
atives, on the other hand, lead to run-on sentences,
and so we additionally remove sentences with more
than 40 words.

We also impose a simple preprocessing step for
better treatment of proper nouns. Due to the geo-
graphic distribution of languages, the proper nouns
used in a writer’s text naturally present a strong L1
signal. The obvious remedy is to replace all proper
nouns with UNK, but this is unfortunately insuffi-
cient as the structure of the proper noun itself can
be a covert signal of these geographical trends. To
fix this, we also remove all proper noun left sisters
of proper nouns. We choose to retain the rightmost
sister node in order to preserve the plurality of the
noun phrase, as the rightmost noun is most likely
the lexical head.

From these parsed, UNKed, and filtered corpora
we draw 2500 sentences from each L1 background
at random, for a total of 10000 sentences per corpus.
The exception is the FCE corpus, from which we
draw 1500 sentences per L1 due to its small size.

4 Tree Substitution Grammars

A Tree Substitution Grammar (TSG) is a model
of parse tree derivations that begins with a sin-
gle ROOT nonterminal node and iteratively rewrites
nonterminal leaves until none remain. A TSG
rewrite rule is a tree of any depth, as illustrated in
Figure 1, and can be used as a binary feature of a
parsed sentence that is triggered if the rule appears
in any derivation of that sentence.

Related NLI work compares a plethora of sug-
gested feature sets, ranging from character n-grams
to latent topic activations to labeled dependency
arcs, but TSG rules are best able to represent com-
plex lexical and syntactic behavior in a homoge-
neous feature type. This property is summed up
nicely by the desire for features that capture rather

2S, SINV, SQ, SBAR, or SBARQ

ROOT

S

NP VP

VBZ

loves

NP

NP

DT

the

NN

NN

man

NN

woman

Figure 1: A Tree Substitution Grammar capable of de-
scribing the feelings of people of all sexual orientations.

than cover linguistic phenomena (Johnson, 2012);
while features such as character n-grams, POS tag
sequences, and CFG rules may provide a usable L1
signal, each feature is likely covering some compo-
nent of a pattern instead of capturing it in full. TSG
rules, on the other hand, offer remarkable flexibil-
ity in the patterns that they can represent, potentially
capturing any contiguous parse tree structure.

As it is intractable to rank and filter the entire set
of possible TSG rules given a corpus, we start with
the large subset produced by Bayesian grammar in-
duction. The most widely used algorithm for TSG
induction uses a Dirichlet Process to choose a subset
of frequently reoccurring rules by repeatedly sam-
pling derivations for a corpus of parse trees (Cohn
and Blunsom, 2010). The rich get richer dynamic of
the DP leads to the use of a compact set of rules
that is an effective feature set for NLI (Swanson
and Charniak, 2012). However, this same property
makes rare rules harder to find.

To address this weakness, we define a general
model for TSG induction in labeled documents that
combines a Hierarchical Dirichlet Process (Teh et al,
2005), with supervised labels in a manner similar to
upstream supervised LDA (Mimno and McCallum,
2008). In the context of our work the document label
η indicates both its authors native language L and
data set D. Each η is associated with an observed
Dirichlet prior νη, and a hidden multinomial θη over
grammars is drawn from this prior. The traditional
grammatical model of nonterminal expansion is aug-
mented such that to rewrite a symbol we first choose
a grammar from the document’s θη and then choose
a rule from that grammar.

For those unfamiliar with these models, the basic
idea is to jointly estimate a mixture distribution over
grammars for each η, as well as the parameters of
these grammars. The HDP is necessary as the size
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of each of these grammars is essentially infinite. We
can express the generative model formally by defin-
ing the probability of a rule r expanding a symbol s
in a sentence labeled η as

θη ∼ Dir(νη)
ziη ∼Mult(θη)

Hs ∼ DP (γ, P0(•|s))
Gks ∼ DP (αs, Hs)

riηs ∼ Gziηs

This is closely related to the application of the
Hierarchical Pitman Yor Process used in (Blunsom
and Cohn, 2010) and (Shindo et al, 2012), which
interpolates between multiple coarse and fine map-
pings of the data items being clustered to deal with
sparse data. While the underlying Chinese Restau-
rant Process sampling algorithm is quite similar, our
approach differs in that it models several different
distributions with the same support that share a com-
mon prior.

By careful choice of the number of grammars K,
the Dirichlet priors ν, and the backoff concentration
parameter γ, a variety of interesting models can eas-
ily be defined, as demonstrated in our experiments.

5 Feature Selection

5.1 Dataset Independence
The first step in our L1 signal extraction pipeline
controls for patterns that occur too frequently in cer-
tain combinations of native language and data set.
Such patterns arise primarily from the reuse of es-
say prompts in the creation of certain corpora, and
we construct a hard filter to exclude features of this
type.

A simple first choice would be to rank the rules
in order of dependence on the corpus, as we expect
an irregularly represented topic to be confined to a
single data set. However, this misses the subtle but
important point that corpora have different qualities
such as register and author proficiency. Instead we
treat the set of sentences containing an arbitrary fea-
ture X as a set of observations of a pair of categor-
ical random variables L and D, representing native
language and data set respectively.

To see why this treatment is superior, consider the
outcomes for the two hypothetical features shown

L1 L2

D1 1000 500
D2 100 50

L1 L2

D1 1000 500
D2 750 750

Figure 2: Two hypothetical feature profiles that illustrate
the problems with filtering only on data set independence,
which prefers the right profile over the left. Our method
has the opposite preference.

in Figure 2. The left table has a high data set de-
pendence but exhibits a clean twofold preference for
L1 in both data sets, making it a desirable feature to
retain. Conversely, the right table shows a feature
where the distribution is uniform over data sets, but
has language preference in only one. This is a sign
of either a large variance in usage or some data set
specific tendency, and in either case we can not make
confident claims as to this feature’s association with
any native language.

The L-D dependence can be measured with Pear-
son’s χ2 test, although the specifics of its use as
a filter deserve some discussion. As we eliminate
the features for which the null hypothesis of inde-
pendence is rejected, our noisy data will cause us
to overzealously reject. In order to prevent the un-
neccesary removal of interesting patterns, we use a
very small p value as a cutoff point for rejection. In
all of our experiments the χ2 value corresponding to
p < .001 is in the twenties; we use χ2 > 100 as our
criteria for rejection.

Another possible source of error is the sparsity of
some features in our data. To avoid making pre-
dictions of rules for which we have not observed
a sufficient number of examples, we automatically
exclude any rule with a count less than five for any
L-D combination η. This also satisfies the common
requirements for validity of the χ2 test that require
a minimum number of 5 expected counts for every
outcome.

5.2 Relevancy

We next rank the features in terms of their ability to
discriminate between L1 labels. We consider three
relevancy ranking metrics: Information Gain (IG),
Symmetric Uncertainty (SU), and χ2 statistic.
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IG SU χ2

r .84 .72 .15

Figure 3: Sample Pearson correlation coefficients be-
tween different ranking functions and feature frequency
over a large set of TSG features.

IG(L,Xi) = H(L)−H(L|Xi)

SU(L,Xi) = 2
IG(L,Xi)

H(L) +H(Xi)

χ2(Xi) =
∑
m

(nim − Ni
M )2

Ni
M

We define L as the Multinomial distributed L1 la-
bel taking values in {1, ...,M} andXi as a Bernoulli
distributed indicator of the presence or absence of
the ith feature, which we represent with the events
X+
i and X−i respectively. We use the Maximum

Likelihood estimates of these distributions from the
training data to compute the necessary entropies for
IG and SU. For the χ2 metric we use nim, the count
of sentences with L1 labelm that contain featureXi,
and their sum over classes Ni.

While SU is often preferred over IG in feature se-
lection for several reasons, their main difference in
the context of selection of binary features is the addi-
tion of H(Xi) in the denominator, leading to higher
values for rare features under SU. This helps to
counteract a subtle preference for common features
that these metrics can exhibit in data such as ours, as
shown in Figure 3. The source of this preference is
the overwhelming contribution of p(X−i )H(L|X−i )
in IG(L,Xi) for rare features, which will be essen-
tially the maximum value of log(M). In most clas-
sification problems a frequent feature bias is a desir-
able trait, as a rare feature is naturally less likely to
appear and contribute to decision making.

We note that binary features in sentences are
sparsely observed, as the opportunity for use of the
majority of patterns will not exist in any given sen-
tence. This leads to a large number of rare features
that are nevertheless indicative of their author’s L1.
The χ2 statistic we employ is better suited to retain

such features as it only deals with counts of sen-
tences containing Xi.

The ranking behavior of these metrics is high-
lighted in Figure 4. We expect that features with
profiles like Xa and Xb will be more useful than
those like Xd, and only χ2 ranks these features ac-
cordingly. Another view of the difference between
the metrics is taken in Figure 5. As shown in the
left plot, IG and SU are nearly identical for the
most highly ranked features and significantly differ-
ent from χ2.

L1 L2 L3 L4 IG SU χ2

Xa 20 5 5 5 .0008 .0012 19.29
Xb 40 20 20 20 .0005 .0008 12.0
Xc 2000 500 500 500 .0178 .0217 385.7
Xd 1700 1800 1700 1800 .0010 .0010 5.71

Figure 4: Four hypothetical features in a 4 label clas-
sification problem, with the number of training items
from each class using the feature listed in the first four
columns. The top three features under each ranking are
shown in bold.
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Figure 5: For all pairs of relevancy metrics, we show the
number of features that appear in the top n of both. The
result for low n is highlighted in the left plot, showing a
high similarity between SU and IG.

5.3 Redundancy

The second component of thorough feature selection
is the removal of redundant features. From an ex-
perimental point of view, it is inaccurate to compare
feature selection systems under evaluation of the top
n features or the number of features with ranking
statistic at or beyond some threshold if redundancy
has not been taken into account. Furthermore, as
our stated goal is a list of discriminative patterns,
multiple representations of the same pattern clearly
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degrade the quality of our output. This is especially
necessary when using TSG rules as features, as it is
possible to define many slightly different rules that
essentially represent the same linguistic act.

Redundancy detection must be able to both deter-
mine that a set of features are redundant and also
select the feature to retain from such a set. We use
a greedy method that allows us to investigate differ-
ent relevancy metrics for selection of the representa-
tive feature for a redundant set (Yu and Liu, 2004).
The algorithm begins with a list S containing the
full list of features, sorted by an arbitrary metric of
relevancy. While S is not empty, the most relevant
feature X∗ in S is selected for retention, and all fea-
tures Xi are removed from S if R(X∗, Xi) > ρ for
some redundancy metric R and some threshold ρ.

We consider two probabilistic metrics for redun-
dancy detection, the first being SU, as defined in
the previous section. We contrast this metric with
Normalized Pointwise Mutual Information (NPMI)
which uses only the events A = X+

a and B = X+
b

and has a range of [-1,1].

NPMI(Xa, Xb) =
log(P (A|B))− log(P (A))

− log(P (A,B))

Another option that we explore is the structural
redundancy between TSG rules themselves. We de-
fine a 0-1 redundancy metric such that R(Xa, Xb) is
one if there exists a fragment that contains both Xa

and Xb with a total number of CFG rules less than
the sum of the number of CFG rules in Xa and Xb.
The latter constraint ensures that Xa and Xb overlap
in the containing fragment. Note that this is not the
same as a nonempty set intersection of CFG rules,
as can be seen in Figure 6.

S

NP

NN

VP

S

NP

PRP

VP

S

NP VP

VBZ

Figure 6: Three similar fragments that highlight the be-
havior of the structural redundancy metric; the first two
fragments are not considered redundant, while the third
is made redundant by either of the others.

6 Experiments

6.1 Relevancy Metrics

The traditional evaluation criterion for a feature se-
lection system such as ours is classification accuracy
or expected risk. However, as our desired output is
not a set of features that capture a decision bound-
ary as an ensemble, a per feature risk evaluation bet-
ter quantifies the performance of a system for our
purposes. We plot average risk against number of
predicted features to view the rate of quality degra-
dation under a relevancy measure to give a picture
of a each metric’s utility.

The per feature risk for a feature X is an eval-
uation of the ML estimate of PX(L) = P (L|X+)
from the training data on TX , the test sentences that
contain the feature X . The decision to evaluate only
sentences in which the feature occurs removes an
implicit bias towards more common features.

We calculate the expected risk R(X) using a 0-1
loss function, averaging over TX .

R(X) =
1

|TX |
∑
t∈TX

PX(L 6= L∗t )

where L∗t is the gold standard L1 label of test item
t. This metric has two important properties. First,
given any true distribution over class labels in TX ,
the best possible PX(L) is the one that matches
these proportions exactly, ensuring that preferred
features make generalizable predictions. Second, it
assigns less risk to rules with lower entropy, as long
as their predictions remain generalizable. This cor-
responds to features that find larger differences in
usage frequency across L1 labels.

The alternative metric of per feature classifica-
tion accuracy creates a one to one mapping between
features and native languages. This unnecessarily
penalizes features that are associated with multiple
native languages, as well as features that are selec-
tively dispreferred by certain L1 speakers. Also, we
wish to correctly quantify the distribution of a fea-
ture over all native languages, which goes beyond
correct prediction of the most probable.

Using cross validation with each corpus as a fold,
we plot the average R(X) for the best n features
against n for each relevancy metric in Figure 7. This
clearly shows that for highly ranked features χ2 is
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Figure 7: Per-feature Average Expected Loss plotted
against top N features using χ2, IG, and SU as a rele-
vancy metric

able to best single out the type of features we de-
sire. Another point to be taken from the plot is
that it is that the top ten features under SU are
remarkably inferior. Inspection of these rules re-
veals that they are precisely the type of overly fre-
quent but only slightly discriminative features that
we predicted would corrupt feature selection using
IG based measures.

6.2 Redundancy Metrics

We evaluate the redundancy metrics by using the top
n features retained by redundancy filtering for en-
semble classification. Under this evaluation, if re-
dundancy is not being effectively eliminated perfor-
mance should increase more slowly with n as the
set of test items that can be correctly classified re-
mains relatively constant. Additionally, if the metric
is overzealous in its elimination of redundancy, use-
ful patterns will be eliminated leading to diminished
increase in performance. Figure 8 shows the tradeoff
between Expected Loss on the test set and the num-
ber of features used with SU, NPMI, and the overlap
based structural redundancy metric described above.
We performed a coarse grid search to find the opti-
mal values of ρ for SU and NPMI.

Both the structural overlap hueristic and SU per-
form similarly, and outperform NPMI. Analysis re-
veals that NPMI seems to overstate the similarity of
large fragments with their small subcomponents. We
choose to proceed with SU, as it is not only faster in
our implementation but also can generalize to fea-
ture types beyond TSG rules.
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Figure 8: The effects of redundancy filtering on classi-
fication performance using different redundancy metrics.
The cutoff values (ρ) used for SU and NPMI are .2 and .7
respectively.

6.3 TSG Induction

We demonstrate the flexibility and effectiveness of
our general model of mixtures of TSGs for labeled
data by example. The tunable parameters are the
number of grammars K, the Dirichlet priors νη over
grammar distributions for each label η, and the con-
centration parameter γ of the smoothing DP.

For a first baseline we set the number of grammars
K = 1, making the Dirichlet priors ν irrelevant.
With a large γ = 1020, we essentially recover the
basic block sampling algorithm of Cohn and Blun-
som (2010). We refer to this model as M1. Our
second baseline model, M2, sets K to the number of
native language labels, and sets the ν variables such
that each η is mapped to a single grammar by its L1
label, creating a naive Bayes model. For M2 and
the subsequent models we use γ = 1000 to allow
moderate smoothing.

We also construct a model (M3) in which we set
K = 9 and νη is such that three grammars are likely
for any single η; one shared by all η with the same
L1 label, one shared by all η with the same corpus
label, and one shared by all η. We compare this with
another K = 9 model (M4) where the ν are set to
be uniform across all 9 grammars.

We evaluate these systems on the percent of their
resulting grammar that rejects the hypothesis of lan-
guage independence using a χ2 test. Slight adjust-
ments were made to α for these models to bring
their output grammar size into the range of approxi-
mately 12000 rules. We average our results for each
model over single states drawn from five indepen-

91



p < .1 p < .05 p < .01 p < .001

M1 56.5(3.1) 54.5(3.0) 49.8(2.7) 45.1(2.5)

M2 55.3(3.7) 53.7(3.6) 49.1(3.3) 44.7(3.0)

M3 59.0(4.1) 57.2(4.1) 52.4(3.6) 48.4(3.3)

M4 58.9(3.8) 57.0(3.7) 51.9(3.4) 47.2(3.1)

Figure 9: The percentage of rules from each model that
reject L1 independence at varying levels of statistical sig-
nificance. The first number is with respect to the number
rules that pass the L1/corpus independence and redun-
dancy tests, and the second is in proportion to the full list
returned by grammar induction.

dent Markov chains.
Our results in Figure 9 show that using a mixture

of grammars allows the induction algorithm to find
more patterns that fit arbitrary criteria for language
dependence. The intuition supporting this is that in
simpler models a given grammar must represent a
larger amount of data that is better represented with
more vague, general purpose rules. Dividing the re-
sponsibility among several grammars lets rare pat-
terns form clusters more easily. The incorporation of
informed structure in M3 further improves the per-
formance of this latent mixture technique.

7 Discussion

Using these methods, we produce a list of L1 as-
sociated TSG rules that we release for public use.
We perform grammar induction using model M3,
apply our data dependence and redundancy filters,
rank for relevancy using χ2 and filter at the level of
p < .1 statistical significance for relevancy. Each
entry consists of a TSG rule and its matrix of counts
with each η. We provide the total for each L1 la-
bel, which shows the overall prediction of the pro-
portional use of that item. We also provide the χ2

statistics for L1 dependence and the dependence of
L1 and corpus.

It is speculative to assign causes to the discrimi-
native rules we report, and we leave quantification
of such statements to future work. However, the
strength of the signal, as evidenced by actual counts
in data, and the high level interpretation that can be
easily assigned to the TSG rules is promising. As
understanding the features requires basic knowledge

of Treebank symbols, we provide our interpretations
for some of the more interesting rules and summa-
rize their L1 distributions. Note that by describing a
rule as being preferred by a certain set of L1 labels,
our claim is relative to the other labels only; the true
cause could also be a dispreference in the comple-
ment of this set.

One interesting comparison made easy by our
method is the identification of similar structures that
have complementary L1 usage. An example is the
use of a prepositional phrase just before the first
noun phrase in a sentence, which is preferred in Ger-
man and Spanish, especially in the former. However,
German speakers disprefer a prepositional phrase
followed by a comma at the beginning of the sen-
tence, and Chinese speakers use this pattern more
frequently than the other L1s. Another contrastable
pair is the use of the word “because” with upper or
lower case, signifying sentence initial or medial use.
The former is preferred in Chinese and Japanese
text, while the latter is preferred in German and even
more so in Spanish L1 data.

As these examples suggest, the data shows a
strong division of preference between European
and Asian languages, but many patterns exist that
are uniquely preferred in single languages as well.
Japanese speakers are seen to frequently use a per-
sonal pronoun as the subject of the sentence, while
Spanish speakers use the phrase “the X of Y”, the
verb “go”, and the determiner “this” with markedly
higher frequency. Germans tend to begin sentences
with adverbs, and various modal verb constructions
are popular with Chinese speakers. We suspect these
patterns to be evidence of preference in the speci-
fied language, rather than dispreference in the other
three.

Our strategy in regard to the hard filters for L1-
corpus dependence and redundancy has been to pre-
fer recall to precision, as false positives can be easily
ignored through subsequent inspection of the data
we supply. This makes the list suitable for human
qualitative analysis, but further work is required for
its use in downstream automatic systems.

8 Conclusion

This work contributes to the goal of leveraging NLI
data in SLA applications. We provide evidence for
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our hypothesis that relevancy metrics based on mu-
tual information are ill-suited for this task, and rec-
ommend the use of the χ2 statistic for rejecting the
hypothesis of language independence. Explicit con-
trols for dependence between L1 and corpus are
proposed, and redundancy between features are ad-
dressed as well. We argue for the use of TSG rules as
features, and develop an induction algorithm that is
a supervised mixture of hierarchical grammars. This
generalizable formalism is used to capture linguistic
assumptions about the data and increase the amount
of relevant features extracted at several thresholds.

This project motivates continued incorporation of
more data and induction of TSGs over these larger
data sets. This will improve the quality and scope of
the resulting list of discriminative syntax, allowing
broader use in linguistics and SLA research. The
prospect of high precision and recall in the extrac-
tion of such patterns suggests several interesting av-
enues for future work, such as determination of the
actual language transfer phenomena evidenced by an
arbitrary count profile. To achieve the goal of auto-
matic detection of plausible transfer the native lan-
guages themselves must be considered, as well as a
way to distinguish between preference and dispref-
erence based on usage statistics. Another exciting
application of such a refined list of patterns is the
automatic integration of its features in L1 targeted
SLA software.
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Abstract

The frequency of words and syntactic con-

structions has been observed to have a sub-

stantial effect on language processing. This

begs the question of what causes certain con-

structions to be more or less frequent. A the-

ory of grounding (Phillips, 2010) would sug-

gest that cognitive limitations might cause lan-

guages to develop frequent constructions in

such a way as to avoid processing costs. This

paper studies how current theories of working

memory fit into theories of language process-

ing and what influence memory limitations

may have over reading times. Measures of

such limitations are evaluated on eye-tracking

data and the results are compared with predic-

tions made by different theories of processing.

1 Introduction

Frequency effects in language have been isolated

and observed in many studies (Trueswell, 1996;

Jurafsky, 1996; Hale, 2001; Demberg and Keller,

2008). These effects are important because they il-

luminate the ontogeny of language (how individual

speakers have acquired language), but they do not

answer questions about the phylogeny of language

(how the language came to its current form).

Phillips (2010) has hypothesized that grammar

rule probabilities may be grounded in memory lim-

itations. Increased delays in processing center-

embedded sentences as the number of embeddings

increases, for example, are often explained in terms

of a complexity cost associated with maintaining in-

complete dependencies in working memory (Gib-

son, 2000; Lewis and Vasishth, 2005). Other stud-

ies have shown a link between processing delays

and the low frequency of center-embedded construc-

tions like object relatives (Hale, 2001), but they

have not explored the source of this low frequency.

A grounding hypothesis would claim that the low

probability of generating such a structure may arise

from an associated memory load. In this account,

while these complexity costs may involve language-

specific concepts such as referent or argument link-

ing, the underlying explanation would be one of

memory limitations (Gibson, 2000) or neural acti-

vation (Lewis and Vasishth, 2005).

This paper seeks to explore the different predic-

tions made by these theories on a broad-coverage

corpus of eye-tracking data (Kennedy et al., 2003).

In addition, the current experiment seeks to isolate

memory effects from frequency effects in the same

task. The results show that memory load measures

are a significant factor even when frequency mea-

sures are residualized out.

The remainder of this paper is organized as fol-

lows: Sections 2 and 3 describe several frequency

and memory measures. Section 4 describes a proba-

bilistic hierarchic sequence model that allows all of

these measures to be directly computed. Section 5

describes how these measures were used to predict

reading time durations on the Dundee eye-tracking

corpus. Sections 6 and 7 present results and discuss.

2 Frequency Measures

2.1 Surprisal

One of the strongest predictors of processing com-

plexity is surprisal (Hale, 2001). It has been shown

in numerous studies to have a strong correlation

with reading time durations in eye-tracking and self-

paced reading studies when calculated with a variety
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of models (Levy, 2008; Roark et al., 2009; Wu et al.,

2010).

Surprisal predicts the integration difficulty that a

word xt at time step t presents given the preceding

context and is calculated as follows:

surprisal(xt) = − log2

(
∑

s∈S(x1...xt)
P (s)

∑

s∈S(x1...xt−1)
P (s)

)

(1)

where S(x1 . . . xt) is the set of syntactic trees whose

leaves have x1 . . . xt as a prefix.1

In essence, surprisal measures how unexpected

constructions are in a given context. What it does

not provide is an explanation for why certain con-

structions would be less common and thus more sur-

prising.

2.2 Entropy Reduction

Processing difficulty can also be measured in terms

of entropy (Shannon, 1948). A larger entropy over a

random variable corresponds to greater uncertainty

over the observed value it will take. The entropy of

a syntactic derivation over the sequence x1 . . . xt is

calculated as:2

H(x1...t) =
∑

s∈S(x1...xt)

−P (s) · log2 P (s) (2)

Reduction in entropy has been found to predict

processing complexity (Hale, 2003; Hale, 2006;

Roark et al., 2009; Wu et al., 2010; Hale, 2011):

∆H(x1...t) = max(0, H(x1...t−1)−H(x1...t)) (3)

This measures the change in uncertainty about the

discourse as each new word is processed.

3 Memory Measures

3.1 Dependency Locality

In Dependency Locality Theory (DLT) (Gibson,

2000), complexity arises from intervening referents

introduced between a predicate and its argument.

Under the original formulation of DLT, there is a

1The parser in this study uses a beam. However, given high

parser accuracy, Roark (2001) showed that calculating com-

plexity metrics over a beam should obtain similar results to the

full complexity calculation.
2The incremental formulation used here was first proposed

in Wu et al. (2010).

storage cost for each new referent introduced and an

integration cost for each referent intervening in a de-

pendency projection. This is a simplification made

for ease of computation, and subsequent work has

found DLT to be more accurate cross-linguistically

if the intervening elements are structurally defined

rather than defined in terms of referents (Kwon et

al., 2010). That is, simply having a particular ref-

erent intervene in a dependency projection may not

have as great an effect on processing complexity as

the syntactic construction the referent appears in.

Therefore, this work reinterprets the costs of depen-

dency locality to be related to the events of begin-

ning a center embedding (storage) and completing

a center embedding (integration). Note that anti-

locality effects (where longer dependencies are eas-

ier to process) have also been observed in some lan-

guages, and DLT is unable to account for these phe-

nomena (Vasishth and Lewis, 2006).

3.2 ACT-R

Processing complexity has also been attributed to

confusability (Lewis and Vasishth, 2005) as defined

in domain-general cognitive models like ACT-R

(Anderson et al., 2004).

ACT-R is based on theories of neural activation.

Each new word is encoded and stored in working

memory until it is retrieved at a later point for mod-

ification before being re-encoded into the parse. A

newly observed sign (word) associatively activates

any appropriate arguments from working memory,

so multiple similarly appropriate arguments would

slow processing as the parser must choose between

the highly activated hypotheses. Any intervening

signs (words or phrases) that modify a previously

encoded sign re-activate it and raise its resting acti-

vation potential. This can ease later retrieval of that

sign in what is termed an anti-locality effect, con-

tra predictions of DLT. In this way, returning out of

an embedded clause can actually speed processing

by having primed the retrieved sign before it was

needed. ACT-R attributes locality phenomena to fre-

quency effects (e.g. unusual constructions) overrid-

ing such priming and to activation decay if embed-

ded signs do not prime the target sign through mod-

ification (as in parentheticals). Finally, ACT-R pre-

dicts something like DLT’s storage cost due to the

need to differentiate each newly encoded sign from
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Figure 1: Two disjoint connected components of a phrase

structure tree for the sentence The studio bought the pub-

lisher’s rights, shown immediately prior to the word pub-

lisher.

those previously encoded (similarity-based encod-

ing interference) (Lewis et al., 2006).

3.3 Hierarchic Sequential Prediction

Current models of working memory in structured

tasks are defined in terms of hierarchies of sequen-

tial processes, in which superordinate sequences can

be interrupted by subordinate sequences and resume

when the subordinate sequences have concluded

(Botvinick, 2007). These models rely on temporal

cueing as well as content-based cueing to explain

how an interrupted sequence may be recalled for

continuation.

Temporal cueing is based on a context of temporal

features for the current state (Howard and Kahana,

2002). The temporal context in which the subor-

dinate sequence concludes must be similar enough

to the temporal context in which it was initiated to

recall where in the superordinate sequence the sub-

ordinate sequence occurred. For example, the act

of making breakfast may be interrupted by a phone

call. Once the call is complete, the temporal context

is sufficiently similar to when the call began that one

is able to continue preparing breakfast. The associ-

ation between the current temporal context and the

temporal context prior to the interruption is strong

enough to cue the next action.

Temporal cueing is complemented by sequential

(content-based) cueing (Botvinick, 2007) in which

the content of an individual element is associated

with, and thus cues, the following element. For ex-

ample, recalling the 20th note of a song is difficult,

but when playing the song, each note cues the fol-

lowing note, leading one to play the 20th note with-

out difficulty.

Hierarchic sequential prediction may be directly

applicable to processing syntactic center embed-

dings (van Schijndel et al., in press). An ongoing

parse may be viewed graph-theoretically as one or

more connected components of incomplete phrase

structure trees (see Figure 1). Beginning a new sub-

ordinate sequence (a center embedding) introduces

a new connected component, disjoint from that of

the superordinate sequence. As the subordinate se-

quence proceeds, the new component gains asso-

ciated discourse referents, each sequentially cued

from the last, until finally it merges with the super-

ordinate connected component at the end of the em-

bedded clause, forming a single connected compo-

nent representing the parse up to that point. Since

it is not connected to the subordinate connected

component prior to merging, the superordinate con-

nected component must be recalled through tempo-

ral cueing.

McElree (2001; 2006) has found that retrieval

of any non-focused (or in this case, unconnected)

element from memory leads to slower processing.

Therefore, integrating two disjoint connected com-

ponents should be expected to incur a processing

cost due to the need to recall the current state of the

superordinate sequence to continue the parse. Such

a cost would corroborate a DLT-like theory where

integration slows processing.

3.4 Dynamic Recruitment of Additional

Processing Resources

Language processing is typically centered in the left

hemisphere of the brain (for right-handed individ-

uals). Just and Varma (2007) provide fMRI re-

sults suggesting readers dynamically recruit addi-

tional processing resources such as the right-side ho-

mologues of the language processing areas of the

brain when processing center-embedded construc-

tions. Once an embedded construction terminates,

the reader may still have temporary access to these

extra processing resources, which may briefly speed

processing.

This hypothesis would, therefore, predict an en-

coding cost when a center embedding is initiated.

The resulting inhibition would trigger recruitment of

additional processing resources, which would then
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allow the rest of the embedded structure to be pro-

cessed at the usual speed. Upon completing an em-

bedding, the difficulty arising from memory retrieval

(McElree, 2001) would be ameliorated by these ex-

tra processing resources, and the reduced process-

ing complexity arising from reduced memory load

would yield a temporary facilitation in processing.

No longer requiring the additional resources to cope

with the increased embedding, the processor would

release them, returning the processor to its usual

speed. Unlike anti-locality, where processing is

facilitated in longer passages due to accumulating

probabilistic evidence, a model of dynamic recruit-

ment of additional processing resources would pre-

dict universal facilitation after a center embedding

of any length, modulo frequency effects.

3.5 Embedding Difference

Wu et al. (2010) propose an explicit measure of

the difficulty associated with processing center-

embedded constructions, which is similar to the pre-

dictions of dynamic recruitment and is defined in

terms of changes in memory load. They calcu-

late a probabilistically-weighted average embedding

depth as follows:

µemb(x1 . . . xt) =
∑

s∈S(x1...xt)

d(s) · P (s) (4)

where d(s) returns the embedding depth of the

derivation s at xt in a variant of a left-corner pars-

ing process.3 Embedding difference may then be de-

rived as:

EmbDiff (x1 . . . xt) =µemb(x1 . . . xt)− (5)

µemb(x1 . . . xt−1)

This is hypothesized to correlate positively with

processing load: increasing the embedding depth in-

creases processing load and decreasing it reduces

processing load. Note that embedding difference

makes the opposite prediction from DLT in that in-

tegrating an embedded clause is predicted to speed

processing. In fact, the predictions of embedding

3As pointed out by Wu et al. (2010), in practice this can be

computed over a beam of potential parses in which case it must

be normalized by the total probability of the beam.

difference are such that it may be viewed as an im-

plementation of the predictions of a hierarchic se-

quential processing model with dynamic recruitment

of additional resources.

4 Model

This paper uses a hierarchic sequence model imple-

mentation of a left-corner parser variant (van Schijn-

del et al., in press), which represents connected com-

ponents of phrase structure trees in hierarchies of

hidden random variables. This requires, at each time

step t:

• a hierarchically-organized set of N connected

component states qnt , each consisting of an ac-

tive sign of category aqn
t

, and an awaited sign

of category bqn
t

, separated by a slash ‘/’; and

• an observed word xt.

Each connected component state in this model then

represents a contiguous portion of a phrase structure

tree (see Figure 1 on preceding page).

The operations of this parser can be defined as a

deductive system (Shieber et al., 1995) with an input

sequence consisting of a top-level connected com-

ponent state ⊤/⊤, corresponding to an existing dis-

course context, followed by a sequence of observed

words x1, x2, . . . 4 If an observation xt can attach as

the awaited sign of the most recent (most subordi-

nate) connected component a/b, it is hypothesized

to do so, turning this incomplete sign into a com-

plete sign a (F–, below); or if the observation can

serve as a lower descendant of this awaited sign, it

is hypothesized to form the first complete sign a′ in

a newly initiated connected component (F+):

a/b xt

a
b → xt (F–)

a/b xt

a/b a′
b

+
→ a′ ... ; a′ → xt (F+)

Then, if either of these complete signs (a or a′

above, matched to a′′ below) can attach as an initial

4A deductive system consists of inferences or productions

of the form:
P

Q
R, meaning premise P entails conclusion Q ac-

cording to rule R.

98



⊤/⊤ the
⊤/⊤, D

F+

⊤/⊤, NP/N
L–

studio

⊤/⊤, NP
F–

⊤/⊤, S/VP
L–

bought

⊤/⊤, S/VP, V
F+

⊤/⊤, S/NP
L+

the

⊤/⊤, S/NP, D
F+

⊤/⊤, S/NP, NP/N
L–

publisher

⊤/⊤, S/NP, NP
F–

⊤/⊤, S/NP, D/G
L–

’s

⊤/⊤, S/NP, D
F–

⊤/⊤, S/N
L+

rights

⊤/⊤, S
F–

⊤/⊤
L+

Figure 2: Example parse (in the form of a deductive proof) of the sentence The studio bought the publisher’s rights,

using F+, F–, L+, and L– productions. Each pair of deductions combines a context of one or more connected compo-

nent states with a sign (word) observed in that context. By applying the F and L rules to the observed sign and context,

the parser is able to generate a consequent context. Initially, the context corresponds to a connected pre-sentential

dialogue state ⊤/⊤. When the is observed, the parser applies F+ to begin a new connected component state D. By

applying L–, the parser determines that this new connected component is unfinished and generates an appropriate

incomplete connected component state NP/N, encoding the superordinate state ⊤/⊤ for later retrieval. Further on, the

parser observes ’s and uses F– to avoid generating a new connected component, which completes the sign D. The

parser follows this up with L+ to recall the superordinate connected component state S/NP and integrate it into the

most deeply embedded connected component, which results in a less deeply embedded structure.

child of the awaited sign of the immediately superor-

dinate connected component state a/b, it is hypoth-

esized to do so and terminate the subordinate con-

nected component state, with xt as the last observa-

tion of the terminated connected component (L+); or

if the observation can serve as a lower descendant of

this awaited sign, it is hypothesized to remain dis-

joint and form its own connected component (L–):

a/b a′′

a/b′′
b → a′′ b′′ (L+)

a/b a′′

a/b a′/b′′
b

+
→ a′ ... ; a′ → a′′ b′′ (L–)

These operations can be made probabilistic. The

probability σ of a transition at time step t is defined

in terms of (i) a probability φ of initiating a new con-

nected component state with xt as its first observa-

tion, multiplied by (ii) the probability λ of terminat-

ing a connected component state with xt as its last

observation, multiplied by (iii) the probabilities α
and β of generating categories for active and awaited

signs aqn
t

and bqn
t

in the resulting most subordinate

connected component state qnt . This kind of model

can be defined directly on PCFG probabilities and

trained to produce state-of-the-art accuracy by using

the latent variable annotation of Petrov et al. (2006)

(van Schijndel et al., in press).5

An example parse is shown in Figure 2. Since

two binary structural decisions (F and L) must be

made in order to generate each word, there are four

possible structures that may be generated (see Ta-

ble 1). The F+L– transition initiates a new level

of embedding at word xt and so requires the super-

ordinate state to be encoded for later retrieval (e.g.

on observing the in Figure 2). The F–L+ transi-

tion completes the deepest level of embedding and

therefore requires the recall of the current superor-

dinate connected component state with which the

5The model has been shown to achieve an F-score of 87.8,

within .2 points of the Petrov and Klein (2007) parser, which

obtains an F-score of 88.0 on the same task. Because the se-

quence model is defined over binary-branching phrase structure,

both parsers were evaluated on binary-branching phrase struc-

ture trees to provide a fair comparison.
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F–L– Cue Active Sign

F+L– Initiate/Encode

F–L+ Terminate/Integrate

F+L+ Cue Awaited Sign

Table 1: The hierarchical structure decisions and the op-

erations they represent. F+L– initiates a new connected

component, F–L+ integrates two disjoint connected com-

ponents into a single connected component, and F–L–

and F+L+ sequentially cue, respectively, a new active

sign (along with an associated awaited sign) and a new

awaited sign from the most recent connected component.

subordinate connected component state will be in-

tegrated. For example, in Figure 2, upon observ-

ing ’s, the parser must use temporal cueing to re-

call that it is in the middle of processing an NP (to

complete an S), which sequentially cues a prediction

of N. F–L– transitions complete the awaited sign of

the most subordinate state and so sequentially cue

a following connected component state at the same

tier of the hierarchy. For example, in Figure 2, after

observing studio, the parser uses the completed NP

to sequentially cue the prediction that it has finished

the left child of an S. F+L+ transitions locally ex-

pand the awaited sign of the most subordinate state

and so should also not require any recall or encod-

ing. For example, in Figure 2, observing bought

while awaiting a VP sequentially cues a prediction

of NP.

F+L–, then, loosely corresponds to a storage ac-

tion under DLT as more hierarchic levels must now

be maintained at each future step of the parse. As

stated before, it differs from DLT in that it is sensi-

tive to the depth of embedding rather than a partic-

ular subset of syntactic categories. Wu et al. (2010)

found that increasing the embedding depth led to

longer reading times in a self-paced reading experi-

ment. In ACT-R terms, F+L– corresponds to an en-

coding action, potentially causing processing diffi-

culty resulting from the similarity of the current sign

to previously encoded signs.

F–L+, by contrast, is similar to DLT’s integra-

tion action since a subordinate connected compo-

nent is integrated into the rest of the parse structure.

This represents a temporal cueing event in which

the awaited category of the superordinate connected

Theory F+L– F–L+

DLT positive positive

ACT-R positive positive

Hier. Sequential Prediction positive

Dynamic Recruitment positive negative

Embedding Difference positive negative

Table 2: Each theory’s prediction of the direction of

the correlation between each hierachical structure predic-

tor and reading times. Hierarchic sequential prediction

is agnostic about the processing speed of F+L– opera-

tions, and none of the theories make any predictions as to

the sign associated with the within-embedding measures

F–L– and F+L+.

component is recalled. In contrast to DLT, embed-

ding difference and dynamic recruitment would pre-

dict a shorter reading time in the F–L+ case be-

cause of the reduction in memory load. In an ACT-R

framework, reading time durations can increase at

the retrieval site because the retrieval causes compe-

tition among similarly encoded signs in the context

set. While it is possible for reading times to decrease

when completing a center embedding in ACT-R (Va-

sishth and Lewis, 2006), this would be expressed

as a frequency effect due to certain argument types

commonly foreshadowing their predicates (Jaeger et

al., 2008). Since frequency effects are factored sep-

arately from memory effects in this study, ACT-R

would predict longer residual (memory-based) read-

ing times when completing an embedding.

Predicted correlations to reading times for the F

and L transitions are summarized in Table 2.

5 Eye-tracking

Eye-tracking and reading time data are often used to

test complexity measures (Gibson, 2000; Demberg

and Keller, 2008; Roark et al., 2009) under the as-

sumption that readers slow down when reading more

complex passages. Readers saccade over portions of

text and regress back to preceding text in complex

patterns, but studies have correlated certain mea-

sures with certain processing constraints (see Clifton

et al. 2007 for a review). For example, the initial

length of time fixated on a single word is correlated

with word identification time; whereas regression

durations after a word is fixated (but prior to a fix-

ation in a new region) are hypothesized to correlate
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with integration difficulty.

Since this work focuses on incremental process-

ing, all processing that occurs up to a given point in

the sentence is of interest. Therefore, in this study,

predictions will be compared to go-past durations.

Go-past durations are calculated by summing all fix-

ations in a region of text, including regressions, un-

til a new region is fixated, which accounts for addi-

tional processing that may take place after initial lex-

ical access, but before the next region is processed.

For example, if one region ends at word 5 in a sen-

tence, and the next fixation lands on word 8, then the

go-past region consists of words 6-8 and the go-past

duration sums all fixations until a fixation occurs af-

ter word 8.

6 Evaluation

The measures presented in this paper were evaluated

on the Dundee eye-tracking corpus (Kennedy et al.,

2003). The corpus consists of 2388 sentences of nat-

urally occurring news text written in standard British

English. The corpus also includes eye-tracking data

from 10 native English speakers, which provides

a test corpus of 260,124 subject-duration pairs of

reading time data. Of this, any fixated words ap-

pearing fewer than 5 times in the training data were

considered unknown and were filtered out to obtain

accurate predictions. Fixations on the first or last

words of a line were also filtered out to avoid any

‘wrap-up’ effects resulting from preparing to sac-

cade to the beginning of the next line or resulting

from orienting to a new line. Additionally, following

Demberg and Keller (2008), any fixations that skip

more than 4 words were attributed to track loss by

the eyetracker or lack of attention of the reader and

so were excluded from the analysis. This left the fi-

nal evaluation corpus with 151,331 subject-duration

pairs.

The evaluation consisted of fitting a linear mixed-

effects model (Baayen et al., 2008) to reading time

durations using the lmer function of the lme4 R

package (Bates et al., 2011; R Development Core

Team, 2010). This allowed by-subject and by-item

variation to be included in the initial regression as

random intercepts in addition to several baseline pre-

dictors.6 Before fitting, the durations extracted from

6Each fixed effect was centered to reduce collinearity.

the corpus were log-transformed, producing more

normally distributed data to obey the assumptions of

linear mixed effects models.7

Included among the fixed effects were the posi-

tion in the sentence that initiated the go-past region

(SENTPOS) and the number of characters in the ini-

tiating word (NRCHAR). The difficulty of integrat-

ing a word may be seen in whether the immediately

following word was fixated (NEXTISFIX), and sim-

ilarly if the immediately previous word was fixated

(PREVISFIX) the current word probably need not be

fixated for as long. Finally, unigram (LOGPROB)

and bigram probabilities are included. The bigram

probabilities are those of the current word given the

previous word (LOGFWPROB) and the current word

given the following word (LOGBWPROB). Fossum

and Levy (2012) showed that for n-gram probabili-

ties to be effective predictors on the Dundee corpus,

they must be calculated from a wide variety of texts,

so following them, this study used the Brown corpus

(Francis and Kucera, 1979), the WSJ Sections 02-21

(Marcus et al., 1993), the written text portion of the

British National Corpus (BNC Consortium, 2007),

and the Dundee corpus (Kennedy et al., 2003). This

amounted to an n-gram training corpus of roughly

87 million words. These statistics were smoothed

using the SRILM (Stolcke, 2002) implementation of

modified Kneser-Ney smoothing (Chen and Good-

man, 1998). Finally, total surprisal (SURP) was in-

cluded to account for frequency effects in the base-

line.

The preceding measures are commonly used in

baseline models to fit reading time data (Demberg

and Keller, 2008; Frank and Bod, 2011; Fossum and

Levy, 2012) and were calculated from the final word

of each go-past region. The following measures

create a more sophisticated baseline by accumulat-

ing over the entire go-past region to capture what

must be integrated into the discourse to continue the

parse. One factor (CWDELTA) simply counts the

number of words in each go-past region. Cumula-

7In particular, these models assume the noise in the data is

normally distributed. Initial exploratory trials showed that the

residuals of fitting any sensible baseline also become more nor-

mally distributed if the response variable is log-transformed. Fi-

nally, the directions of the effects remain the same whether or

not the reading times are log-transformed, though significance

cannot be ascertained without the transform.
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tive total surprisal (CUMUSURP) and cumulative en-

tropy reduction (ENTRED) give the surprisal (Hale,

2001) and entropy reduction (Hale, 2003) summed

over the go-past region. To avoid convergence is-

sues, each of the cumulative measures is residual-

ized from the next simpler model in the following

order: CWDELTA from the standard baseline, CU-

MUSURP from the baseline with CWDELTA, and EN-

TRED from the baseline with all other effects.

Residualization was accomplished by using the

simpler mixed-effects model to fit the measure of in-

terest. The residuals from that model fit were then

used in place of the factor of interest. All joint inter-

actions were included in the baseline model as well.

Finally, to account for spillover effects (Just et al.,

1982) where processing from a previous region con-

tributes to the following duration, the above baseline

predictors from the previous go-past region were in-

cluded as factors for the current region.

Having SURP as a predictor with CUMUSURP may

seem redundant, but initial analyses showed SURP

was a significant predictor over CUMUSURP when

CWDELTA was a separate factor in the baseline (cur-

rent: p = 2.2 · 10−16 spillover: p = 2 · 10−15)

and vice versa (current: p = 2.2 · 10−16 spillover:

p = 6 · 10−5). One reason for this could be that

go-past durations conflate complexity experienced

when initially fixating on a region with the difficulty

experienced during regressions. By including both

versions of surprisal, the model is able to account

for frequency effects occurring in both conditions.

This study is only interested in how well the pro-

posed memory-based measures fit the data over the

baseline, so to avoid fitting to the test data or weak-

ening the baseline by overfitting to training data, the

full baseline was used in the final evaluation.

Each measure proposed in this paper was summed

over go-past regions to make it cumulative and

was residualized from all non-spillover factors be-

fore being included on top of the full baseline as a

main effect. Likewise, the spillover version of each

proposed measure was residualized from the other

spillover factors before being included as a main ef-

fect. Only a single proposed measure (or its spillover

corrollary) was included in each model. The results

shown in Table 3 reflect the probability of the full

model fit being obtained by the model lacking each

factor of interest. This was found via posterior sam-

Factor Operation t-score p-value

F–L– Cue Active 0.60 0.55

F+L– Initiate 7.10 2.22·10−14

F–L+ Integrate -5.44 5.23·10−8

F+L+ Cue Awaited -1.55 0.12

Table 3: Significance of each of the structure generation

outcomes at predicting log-transformed durations when

added to the baseline as a main effect after being residu-

alized from it. The sign of the t-score indicates the direc-

tion of the correlation between the residualized factor and

go-past durations. Note that these factors are all based

on the current go-past region; the spillover corollaries of

these were not significant predictors of reading times.

pling of each factor using the Markov chain Monte

Carlo implementation of the languageR R package

(Baayen, 2008).

The results indicate that the F+L– and F–L+ mea-

sures were both significant predictors of duration as

expected. Further, F–L– and F+L+, which both sim-

ply reflect sequential cueing, were not significant

predictors of go-past duration, also as expected.

7 Discussion and Conclusion

The fact that F+L– was strongly predictive over the

baseline is encouraging as it suggests that memory

limitations could provide at least a partial explana-

tion of why certain constructions are less frequent in

corpora and thus yield a high surprisal. Moreover,

it indicates that the model corroborates the shared

prediction of most of the memory-based models that

initiating a new connected component slows pro-

cessing.

The fact that F–L+ is predictive but has a neg-

ative coefficient could be evidence of anti-locality,

or it could be an indication of some sort of pro-

cessing momentum due to dynamic recruitment of

additional processing resources (Just and Varma,

2007). Since anti-locality is an expectation-based

frequency effect, and since this study controlled for

frequency effects with n-grams, surprisal, and en-

tropy reduction, an anti-locality explanation would

rely on either (i) more precise variants of the met-

rics used in this study or (ii) other frequency metrics

altogether. Future work could investigate the possi-

bility of anti-locality by looking at the distance be-

tween an encoding operation and its corresponding
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integration action to see if the integration facilita-

tion observed in this study is driven by longer em-

beddings or if there is simply a general facilitation

effect when completing embeddings.

The finding of a negative integration cost was pre-

viously observed by Wu et al. (2010) as well as

Demberg and Keller (2008), although Demberg and

Keller calculated it using the original referent-based

definitions of Gibson (1998; 2000) and varied which

parts of speech counted for calculating integration

cost. Ultimately, Demberg and Keller (2008) con-

cluded that the negative coefficient was evidence

that integration cost was not a good broad-coverage

predictor of reading times; however, this study has

replicated the effect and showed it to be a very strong

predictor of reading times, albeit one that is corre-

lated with facilitation rather than inhibition.

It is interesting that many studies have found

negative integration cost using naturalistic stimuli

while others have consistently found positive inte-

gration cost when using constructed stimuli with

multiple center embeddings presented without con-

text (Gibson, 2000; Chen et al., 2005; Kwon et al.,

2010). It may be the case that any dynamic re-

cruitment is overwhelmed by the memory demands

of multiply center-embedded stimuli. Alternatively,

it may be that the difficulty of processing multiply

center-embedded sentences containing ambiguities

produces anxiety in subjects, which slows process-

ing at implicit prosodic boundaries (Fodor, 2002;

Mitchell et al., 2008). In any case, the source of this

discrepancy presents an attractive target for future

research.

In general, sequential prediction does not seem

to present people with any special ease or difficulty

as evidenced by the lack of significance of F–L–

and F+L+ predictions when frequency effects are

factored out. This supports a theory of sequential,

content-based cueing (Botvinick, 2007) that predicts

that certain states would directly cue other states and

thus avoid recall difficulty. An example of this may

be seen in the case of a transitive verb triggering

the prediction of a direct object. This kind of cue-

ing would show up as a frequency effect predicted

by surprisal rather than as a memory-based cost,

due to frequent occurrences becoming ingrained as

a learned skill. Future work could use these sequen-

tial cueing operations to investigate further claims

of the dynamic recruitment hypothesis. One of the

implications of the hypothesis is that recruitment of

resources alleviates the initial encoding cost, which

allows the parser to continue on as before the em-

bedding. DLT, on the other hand, predicts that there

is a storage cost for maintaining unresolved depen-

dencies during a parse (Gibson, 2000). By weight-

ing each of the sequential cueing operations with the

embedding depth at which it occurs, an experiment

may be able to test these two predictions.

This study has shown that measures based on

working memory operations have strong predictivity

over other previously proposed measures including

those associated with frequency effects. This sug-

gests that memory limitations may provide a partial

explanation of what gives rise to frequency effects.

Lastly, this paper provides evidence that there is a

robust facilitation effect in English that arises from

completing center embeddings.

The hierarchic sequence model, all evaluation

scripts, and regression results for all baseline pre-

dictors used in this paper are freely available at

http://sourceforge.net/projects/modelblocks/.
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Abstract

We propose a new approach to identifying
semantically similar words across languages.
The approach is based on an idea that two
words in different languages are similar if they
are likely to generate similar words (which in-
cludes both source and target language words)
as their top semantic word responses. Se-
mantic word responding is a concept from
cognitive science which addresses detecting
most likely words that humans output as free
word associations given some cue word. The
method consists of two main steps: (1) it uti-
lizes a probabilistic multilingual topic model
trained on comparable data to learn and quan-
tify the semantic word responses, (2) it pro-
vides ranked lists of similar words accord-
ing to the similarity of their semantic word
response vectors. We evaluate our approach
in the task of bilingual lexicon extraction
(BLE) for a variety of language pairs. We
show that in the cross-lingual settings without
any language pair dependent knowledge the
response-based method of similarity is more
robust and outperforms current state-of-the art
methods that directly operate in the semantic
space of latent cross-lingual concepts/topics.

1 Introduction

Cross-lingual semantic word similarity addresses
the task of detecting words that refer to similar se-
mantic concepts and convey similar meanings across
languages. It ultimately boils down to the automatic
identification of translation pairs, that is, bilingual
lexicon extraction (BLE). Such lexicons and seman-
tically similar words serve as important resources

in cross-lingual knowledge induction (e.g., Zhao et
al. (2009)), statistical machine translation (Och and
Ney, 2003) and cross-lingual information retrieval
(Ballesteros and Croft, 1997; Levow et al., 2005).

From parallel corpora, semantically similar words
and bilingual lexicons are induced on the basis of
word alignment models (Brown et al., 1993; Och
and Ney, 2003). However, due to a relative scarce-
ness of parallel texts for many language pairs and
domains, there has been a recent growing interest in
mining semantically similar words across languages
on the basis of comparable data readily available on
the Web (e.g., Wikipedia, news stories) (Haghighi et
al., 2008; Hassan and Mihalcea, 2009; Vulić et al.,
2011; Prochasson and Fung, 2011).

Approaches to detecting semantic word similarity
from comparable corpora are most commonly based
on an idea known as the distributional hypothesis
(Harris, 1954), which states that words with sim-
ilar meanings are likely to appear in similar con-
texts. Each word is typically represented by a high-
dimensional vector in a feature vector space or a so-
called semantic space, where the dimensions of the
vector are its context features. The semantic similar-
ity of two words, wS

1 given in the source language
LS with vocabulary V S and wT

2 in the target lan-
guage LT with vocabulary V T is then:

Sim(wS
1 , w

T
2 ) = SF (cv(wS

1 ), cv(wT
2 )) (1)

cv(wS
1 ) = [scS1 (c1), . . . , sc

S
1 (cN )] denotes a context

vector for wS
1 with N context features ck, where

scS1 (ck) denotes the score for wS
1 associated with

context feature ck (similar for wT
2 ). SF is a sim-

ilarity function (e.g., cosine, the Kullback-Leibler
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divergence, the Jaccard index) operating on the con-
text vectors (Lee, 1999; Cha, 2007).

In order to compute cross-lingual semantic word
similarity, one needs to design the context features
of words given in two different languages that span
a shared cross-lingual semantic space. Such cross-
lingual semantic spaces are typically spanned by:
(1) bilingual lexicon entries (Rapp, 1999; Gaussier
et al., 2004; Laroche and Langlais, 2010; Tamura
et al., 2012), or (2) latent language-independent se-
mantic concepts/axes (e.g., latent cross-lingual top-
ics) induced by an algebraic model (Dumais et al.,
1996), or more recently by a generative probabilis-
tic model (Haghighi et al., 2008; Daumé III and Ja-
garlamudi, 2011; Vulić et al., 2011). Context vec-
tors cv(wS

1 ) and cv(wT
2 ) for both source and target

words are then compared in the semantic space in-
dependently of their respective languages.

In this work, we propose a new approach to con-
structing the shared cross-lingual semantic space
that relies on a paradigm of semantic word respond-
ing or free word association. We borrow that con-
cept from the psychology/cognitive science litera-
ture. Semantic word responding addresses a task
that requires participants to produce first words that
come to their mind that are related to a presented cue
word (Nelson et al., 2000; Steyvers et al., 2004).

The new cross-lingual semantic space is spanned
by all vocabulary words in the source and the target
language. Each axis in the space denotes a semantic
word response. The similarity between two words is
then computed as the similarity between the vectors
comprising their semantic word responses using any
of existing SF -s. Two words are considered seman-
tically similar if they are likely to generate similar
semantic word responses and assign similar impor-
tance to them.

We utilize a shared semantic space of latent cross-
lingual topics learned by a multilingual probabilistic
topic model to obtain semantic word responses and
quantify the strength of association between any cue
word and its responses monolingually and across
languages, and, consequently, to build semantic re-
sponse vectors. That effectively translates the task
of word similarity from the semantic space spanned
by latent cross-lingual topics to the semantic space
spanned by all vocabulary words in both languages.

The main contributions of this article are:

• We propose a new approach to modeling cross-
lingual semantic similarity of words based on
the similarity of their semantic word responses.

• We present how to estimate and quantify se-
mantic word responses by means of a multilin-
gual probabilistic topic model.

• We demonstrate how to employ our novel
paradigm that relies on semantic word respond-
ing in the task of bilingual lexicon extraction
(BLE) from comparable data.

• We show that the response-based model of sim-
ilarity is more robust and obtains better results
for BLE than the models that operate in the se-
mantic space spanned by latent semantic con-
cepts, i.e., cross-lingual topics directly.

The following sections first review relevant prior
work and provide a very short introduction to multi-
lingual probabilistic topic modeling, then describe
our response-based approach to modeling cross-
lingual semantic word similarity, and finally present
our evaluation and results on the BLE task for a va-
riety of language pairs.

2 Related Work

When dealing with the cross-lingual semantic word
similarity, the focus of the researchers is typically
on BLE, since usually the most similar words across
languages are direct translations of each other. Nu-
merous approaches emerged over the years that try
to induce bilingual word lexicons on the basis of
distributional information. Especially challenging
is the task of mining semantically similar words
from comparable data without any external knowl-
edge source such as machine-readable seed bilin-
gual lexicons used in (Fung and Yee, 1998; Rapp,
1999; Fung and Cheung, 2004; Gaussier et al., 2004;
Morin et al., 2007; Andrade et al., 2010; Tamura
et al., 2012), predefined explicit ontology or cate-
gory knowledge used in (Déjean et al., 2002; Hassan
and Mihalcea, 2009; Agirre et al., 2009), or ortho-
graphic clues as used in (Koehn and Knight, 2002;
Haghighi et al., 2008; Daumé III and Jagarlamudi,
2011). This work addresses that particularly difficult
setting which does not assume any language pair de-
pendent background knowledge. It makes methods
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developed in such a setting applicable even on dis-
tant language pairs with scarce resources.

Recently, Griffiths et al. (2007), and Steyvers and
Griffiths (2007) proposed models of free word asso-
ciation and semantic word similarity in the monolin-
gual settings based on per-topic word distributions
from probabilistic topic models such as pLSA (Hof-
mann, 1999) and LDA (Blei et al., 2003). Addition-
ally, Vulić et al. (2011) constructed several models
that utilize a shared cross-lingual topical space ob-
tained by a multilingual topic model (Mimno et al.,
2009; De Smet and Moens, 2009; Boyd-Graber and
Blei, 2009; Ni et al., 2009; Jagarlamudi and Daumé
III, 2010; Zhang et al., 2010) to identify potential
translation candidates in the cross-lingual settings
without any background knowledge. In this paper,
we show that a transition from their semantic space
spanned by cross-lingual topics to a semantic space
spanned by all vocabulary words yields more robust
models of cross-lingual semantic word similarity.

3 Modeling Word Similarity as the
Similarity of Semantic Word Responses

This section contains a detailed description of our
semantic word similarity method that relies on se-
mantic word responses. Since the method utilizes
the concept of multilingual probabilistic topic mod-
eling, we first provide a very short overview of that
concept, then present the intuition behind the ap-
proach, and finally describe our method in detail.

3.1 Multilingual Probabilistic Topic Modeling

Assume that we are given a multilingual corpus
C of l languages, and C is a set of text collec-
tions {C1, . . . , Cl} in those languages. A multi-
lingual probabilistic topic model (Mimno et al.,
2009; De Smet and Moens, 2009; Boyd-Graber
and Blei, 2009; Ni et al., 2009; Jagarlamudi and
Daumé III, 2010; Zhang et al., 2010) of a mul-
tilingual corpus C is defined as a set of semanti-
cally coherent multinomial distributions of words
with values Pj(w

j
i |zk), j = 1, . . . , l, for each vo-

cabulary V 1, . . . , V j , . . . , V l associated with text
collections C1, . . . , Cj , . . . , Cl ∈ C given in lan-
guages L1, . . . , Lj , . . . , Ll. Pj(w

j
i |zk) is calculated

for eachwj
i ∈ V j . The probability scores Pj(w

j
i |zk)

build per-topic word distributions, and they consti-

tute a language-specific representation (e.g., a prob-
ability value is assigned only for words from V j)
of a language-independent cross-lingual latent con-
cept, that is, latent cross-lingual topic zk ∈ Z .
Z = {z1, . . . , zK} represents the set of all K la-
tent cross-lingual topics present in the multilingual
corpus. Each document in the multilingual corpus
is thus considered a mixture of K cross-lingual top-
ics from the set Z . That mixture for some docu-
ment dj

i ∈ Cj is modeled by the probability scores
Pj(zk|dj

i ) that altogether build per-document topic
distributions.

Each cross-lingual topic from the set Z can be
observed as a latent language-independent concept
present in the multilingual corpus, but each lan-
guage in the corpus uses only words from its own
vocabulary to describe the content of that concept.
For instance, having a multilingual collection in En-
glish, Spanish and Dutch and discovering a topic
on Soccer, that cross-lingual topic would be repre-
sented by words (actually probabilities over words)
{player, goal, coach, . . .} in English, {balón (ball),
futbolista (soccer player), goleador (scorer), . . .}
in Spanish, and {wedstrijd (match), elftal (soccer
team), doelpunt (goal), . . .} in Dutch. We have∑

wj
i∈V j Pj(w

j
i |zk) = 1, for each vocabulary V j

representing language Lj , and for each topic zk ∈
Z . Therefore, the latent cross-lingual topics also
span a shared cross-lingual semantic space.

3.2 The Intuition Behind the Approach

Imagine the following thought experiment. A group
of human subjects who have been raised bilingually
and thus are native speakers of two languages LS

and LT , is playing a game of word associations.
The game consists of possibly an infinite number of
iterations, and each iteration consists of 4 rounds.
In the first round (the S-S round), given a word in
the language LS , the subject has to generate a list
of words in the same language LS that first occur
to her/him as semantic word responses to the given
word. The list is in descending order, with more
prominent word responses occurring higher in the
list. In the second round (the S-T round), the sub-
ject repeats the procedure, and generates the list of
word responses to the same word from LS , but now
in the other language LT . The third (the T-T round)

108



and the fourth round (the T-S round) are similar to
the first and the second round, but now a list of word
responses in both LS and LT has to be generated for
some cue word from LT . The process of generating
the lists of semantic responses then continues with
other cue words and other human subjects.

As the final result, for each word in the source
language LS , and each word in the target language
LT , we obtain a single list of semantic word re-
sponses comprising words in both languages. All
lists are sorted in descending order, based on some
association score that takes into account both the
number of times a word has occurred as an asso-
ciative response, as well as the position in the list
in each round. We can now measure the similarity
of any two words, regardless of their corresponding
languages, according to the similarity of their cor-
responding lists that contain their word responses.
Words that are equally likely to trigger the same as-
sociative responses in the human brain, and more-
over assign equal importance to those responses, as
provided in the lists of associative responses, are
very likely to be closely semantically similar. Addi-
tionally, for a given word wS

1 in the source language
LS , some word wT

2 in LT that has the highest simi-
larity score among all words inLT should be a direct
word-to-word translation of wS

1 .

3.3 Modeling Semantic Word Responses via
Cross-Lingual Topics

Cross-lingual topics provide a sound framework to
construct a probabilistic model of the aforemen-
tioned experiment. To model semantic word re-
sponses via the shared space of cross-lingual top-
ics, we have to set a probabilistic mass that quan-
tifies the degree of association. Given two words
w1, w2 ∈ V S ∪ V T , a natural way of expressing the
asymmetric semantic association is by modeling the
probability P (w2|w1) (Griffiths et al., 2007), that is,
the probability to generate word w2 as a response
given word w1. After the training of a multilin-
gual topic model on a multilingual corpus, we obtain
per-topic word distributions with scores PS(wS

i |zk)
and PT (wT

i |zk) (see Sect. 3.1).1 The probability

1A remark on notation throughout the paper: Since the
shared space of cross-lingual topics allows us to construct a
uniform representation for all words regardless of a vocabulary
they belong to, due to simplicity and to stress the uniformity,

P (w2|w1) is then decomposed as follows:

Resp(w1, w2) = P (w2|w1) =

K∑
k=1

P (w2|zk)P (zk|w1) (2)

The probability scores P (w2|zk) select words that
are highly descriptive for each particular topic. The
probability scores P (zk|w1) ensure that topics zk
that are semantically relevant to the given word
w1 dominate the sum, so the overall high score
Resp(w1, w2) of the semantic word response is as-
signed only to highly descriptive words of the se-
mantically related topics. Using the shared space
of cross-lingual topics, semantic response scores can
be derived for any two words w1, w2 ∈ V S ∪ V T .1

The generative model closely resembles the ac-
tual process in the human brain - when we gener-
ate semantic word responses, we first tend to as-
sociate that word with a related semantic/cognitive
concept, in this case a cross-lingual topic (the factor
P (zk|w1)), and then, after establishing the concept,
we output a list of words that we consider the most
prominent/descriptive for that concept (words with
high scores in the factor P (w2|zk)) (Nelson et al.,
2000; Steyvers et al., 2004). Due to such modeling
properties, this model of semantic word responding
tends to assign higher association scores for high
frequency words. It eventually leads to asymmet-
ric associations/responses. We have detected that
phenomenon both monolingually and across lan-
guages. For instance, the first response to Span-
ish word mutación (mutation) is English word gene.
Other examples include caldera (boiler)-steam, de-
portista (sportsman)-sport, horario (schedule)-hour
or pescador (fisherman)-fish. In the other associa-
tion direction, we have detected top responses such
as merchant-comercio (trade) or neologism-palabra
(word). In the monolingual setting, we acquire
English pairs such as songwriter-music, discipline-
sport, or Spanish pairs gripe (flu)-enfermedad (dis-
ease), cuenca (basin)-rı́o (river), etc.

3.4 Response-Based Model of Similarity
Eq. (2) provides a way to measure the strength of
semantic word responses. In order to establish the

we sometimes use notation P (wi|zk) and P (zk|wi) instead of
PS(wi|zk) or PS(zk|wi) (similar for subscript T ). However,
the reader must be aware that, for instance, P (wi|zk) actually
means PS(wi|zk) if wi ∈ V S , and PT (wi|zk) if wi ∈ V T .
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Semantic responses Response-based similarity

dramaturgo (playwright) play playwright dramaturgo

obra (play) .101 play .142 play .122 playwright
escritor (writer) .083 obra (play) .111 escritor (writer) .087 dramatist

play .066 player .033 obra (play) .073 tragedy
writer .050 escena (scene) .031 writer .060 play
poet .047 jugador (player) .026 poeta (poet) .055 essayist

autor (author) .041 adaptation .025 poet .053 novelist
poeta (poet) .039 stage .024 autor (author) .046 drama

teatro (theatre) .030 game .022 teatro (theatre) .043 tragedian
drama .026 juego (game) .021 tragedy .031 satirist

contribution .025 teatro (theatre) .019 drama .026 writer

Table 1: An example of top 10 semantic word responses and the final response-based similarity for some Spanish and
English words. The responses are estimated from Spanish-English Wikipedia data by bilingual LDA. We can observe
several interesting phenomena: (1) High-frequency words tend to appear higher in the lists of semantic responses
(e.g., play and obra for all 3 words), (2) Due to the modeling properties that give preference to high-frequency words
(Sect. 3.3), a word might not generate itself as the top semantic response (e.g., playwright-play), (3) Both source
and target language words occur as the top responses in the lists, (4) Although play is the top semantic response in
English for both dramaturgo and playwright, its list of top semantic responses is less similar to the lists of those two
words, (5) Although the English word playwright does not appear in the top 10 semantic responses to dramaturgo,
and dramaturgo does not appear in the top 10 responses to playwright, the more robust response-based similarity
method detects that the two words are actually very similar based on their lists of responses, (6) dramaturgo and
playwright have very similar lists of semantic responses which ultimately leads to detecting that playwright is the
most semantically similar word to dramaturgo across the two languages (the last column), i.e., they are direct one-to-
one translations of each other, (7) Another English word dramatist very similar to Spanish dramaturgo is also pushed
higher in the final list, although it is not found in the list of top semantic responses to dramaturgo.

final similarity between two words, we have to com-
pare their semantic response vectors, that is, their
semantic response scores over all words in both
vocabularies. The final model of word similarity
closely mimics our thought experiment. First, for
each word wS

i ∈ V S , we generate probability scores
P (wS

j |wS
i ) for all words wS

j ∈ V S (the S-S rounds).
Note that P (wS

i |wS
i ) is also defined by Eq. (2).

Following that, for each word wS
i ∈ V S , we gen-

erate probability scores P (wT
j |wS

i ), for all words
wT

j ∈ V T (the S-T rounds). Similarly, we calcu-
late probability scores P (wT

j |wT
i ) and P (wS

j |wT
i ),

for each wT
i , w

T
j ∈ V T , and for each wS

j ∈ V S (the
T-T and T-S rounds).

Now, each word wi ∈ V S ∪ V T may be repre-
sented by a (|V S |+ |V T |)-dimensional context vec-
tor cv(wi) as follows:2

[P (wS
1 |wi), . . . , P (wS

|V S ||wi), . . . , P (wT
|V T ||wi)].

We have created a language-independent cross-

2We assume that the two sets V S and V T are disjunct. It
means that, for instance, Spanish word pie (foot) from V S and
English word pie from V T are treated as two different word
types. In that case, it holds |V S ∪ V T | = |V S |+ |V T |.

lingual semantic space spanned by all vocabulary
words in both languages. Each feature corresponds
to one word from vocabularies V S and V T , while
the exact score for each feature in the context
vector cv(wi) is precisely the probability that this
word/feature will be generated as a word response
given word wi. The degree of similarity between
two words is then computed on the basis of similar-
ity between their feature vectors using some of the
standard similarity functions (Cha, 2007).

The novel response-based approach of similarity
removes the effect of high-frequency words that tend
to appear higher in the lists of semantic word re-
sponses. Therefore, the real synonyms and trans-
lations should occur as top candidates in the lists
of similar words obtained by the response-based
method. That property may be exploited to identify
one-to-one translations across languages and build a
bilingual lexicon (see Table 1).

4 Experimental Setup

4.1 Data Collections

We work with the following corpora:
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• IT-EN-W: A collection of 18, 898 Italian-
English Wikipedia article pairs previously used
by Vulić et al. (2011).

• ES-EN-W: A collection of 13, 696 Spanish-
English Wikipedia article pairs.

• NL-EN-W: A collection of 7, 612 Dutch-
English Wikipedia article pairs.

• NL-EN-W+EP: The NL-EN-W corpus aug-
mented with 6,206 Dutch-English document
pairs from Europarl (Koehn, 2005). Although
Europarl is a parallel corpus, no explicit use is
made of sentence-level alignments.

All corpora are theme-aligned, that is, the aligned
document pairs discuss similar subjects, but are
in general not direct translations (except the Eu-
roparl document pairs). NL-EN-W+EP serves to test
whether better semantic responses could be learned
from data of higher quality, and to measure how it
affects the response-based similarity method and the
quality of induced lexicons. Following (Koehn and
Knight, 2002; Haghighi et al., 2008; Prochasson and
Fung, 2011), we consider only noun word types. We
retain only nouns that occur at least 5 times in the
corpus. We record the lemmatized form when avail-
able, and the original form otherwise. Again follow-
ing their setup, we use TreeTagger (Schmid, 1994)
for POS tagging and lemmatization.

4.2 Multilingual Topic Model

The multilingual probabilistic topic model we use
is a straightforward multilingual extension of the
standard Blei et al.’s LDA model (Blei et al., 2003)
called bilingual LDA (Mimno et al., 2009; Ni et
al., 2009; De Smet and Moens, 2009). For the de-
tails regarding the modeling assumptions, generative
story, training and inference procedure of the bilin-
gual LDA model, we refer the interested reader to
the aforementioned relevant literature. The poten-
tial of the model in the task of bilingual lexicon ex-
traction was investigated before (Mimno et al., 2009;
Vulić et al., 2011), and it was also utilized in other
cross-lingual tasks (e.g., Platt et al. (2010); Ni et
al. (2011)). We use Gibbs sampling for training.
In a typical setting for mining semantically similar
words using latent topic models in both monolingual

(Griffiths et al., 2007; Dinu and Lapata, 2010) and
cross-lingual setting (Vulić et al., 2011), the best re-
sults are obtained with the number of topics set to
a few thousands (≈ 2000). Therefore, our bilingual
LDA model on all corpora is trained with the number
of topics K = 2000. Other parameters of the model
are set to the standard values according to Steyvers
and Griffiths (2007): α = 50/K and β = 0.01.
We are aware that different hyper-parameter settings
(Asuncion et al., 2009; Lu et al., 2011), might have
influence on the quality of learned cross-lingual top-
ics, but that analysis is out of the scope of this paper.

4.3 Compared Methods
We evaluate and compare the following word simi-
larity approaches in all our experiments:
1) The method that regards the lists of semantic
word responses across languages obtained by Eq.
(2) directly as the lists of semantically similar words
(Direct-SWR).
2) The state-of-the-art method that employs a simi-
larity function (SF) on theK-dimensional word vec-
tors cv(wi) in the semantic space of latent cross-
lingual topics. The dimensions of the vectors are
conditional topic distribution scores P (zk|wi) that
are obtained by the multilingual topic model directly
(Steyvers and Griffiths, 2007; Vulić et al., 2011). We
have tested different SF-s (e.g., the Kullback-Leibler
and the Jensen-Shannon divergence, the cosine mea-
sure), and have detected that in general the best
scores are obtained when using the Bhattacharyya
coefficient (BC) (Bhattacharyya, 1943; Kazama et
al., 2010) (Topic-BC).
3) The best scoring similarity method from Vulić
et al. (2011) named TI+Cue. This state-of-the-art
method also operates in the semantic space of latent
cross-lingual concepts/topics.
4) The response-based similarity described in Sect.
3. As for Topic-BC, we again use BC as the simi-
larity function, but now on |V S ∪ V T |-dimensional
context vectors in the semantic space spanned by
all words in both vocabularies that represent seman-
tic word responses (Response-BC). Given two N -
dimensional word vectors cv(wS

1 ) and cv(wT
2 ), the

BC or the fidelity measure (Cha, 2007) is defined as:

BC(cv(wS
1 ), cv(wT

2 )) =

N∑
n=1

√
scS

1 (cn) · scT
2 (cn) (3)
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Corpus: IT-EN-W ES-EN-W NL-EN-W NL-EN-W+EP

Method Acc1 MRR Acc10 Acc1 MRR Acc10 Acc1 MRR Acc10 Acc1 MRR Acc10

Direct-SWR .501 .576 .740 .332 .437 .675 .186 .254 .423 .344 .450 .652
Topic-BC .578 .667 .834 .433 .576 .843 .237 .314 .489 .534 .630 .836

TI+Cue .597 .702 .897 .429 .569 .828 .225 .296 .459 .446 .569 .808
Response-BC .622 .729 .882 .517 .635 .891 .236 .320 .511 .574 .653 .864

Table 2: BLE performance of all the methods for Italian-English, Spanish-English and Dutch-English (with 2 different
corpora utilized for the training of bilingual LDA and the estimation of semantic word responses for Dutch-English).

For the Topic-BC method N = K, while N =
|V S ∪ V T | for Response-BC. Additionally, since
P (zk|wi) > 0 and P (wk|wi) > 0 for each zk ∈ Z
and each wk ∈ V S ∪ V T , a lot of probability mass
is assigned to topics and semantic responses that
are completely irrelevant to the given word. Re-
ducing the dimensionality of the semantic repre-
sentation a posteriori to only a smaller number of
most important semantic axes in the semantic spaces
should decrease the effects of that statistical noise,
and even more firmly emphasize the latent corre-
lation among words. The utility of such semantic
space truncating or feature pruning in monolingual
settings (Reisinger and Mooney, 2010) was also de-
tected previously for LSA and LDA-based models
(Landauer and Dumais, 1997; Griffiths et al., 2007).
Therefore, unless noted otherwise, we perform all
our calculations over the best scoring 200 cross-
lingual topics and the best scoring 2000 semantic
word responses.3

4.4 Evaluation

Ground truth translation pairs.4 Since our task
is bilingual lexicon extraction, we designed a set
of ground truth one-to-one translation pairs for all
3 language pairs as follows. For Dutch-English
and Spanish-English, we randomly sampled a set
of Dutch (Spanish) nouns from our Wikipedia cor-
pora. Following that, we used the Google Trans-
late tool plus an additional annotator to translate
those words to English. The annotator manually
revised the lists and retained only words that have

3The values are set empirically. Calculating similarity
Sim(wS

1 , wT
2 ) may be interpreted as: “Given word wS

1 detect
how similar word wT

2 is to the word wS
1 .” Therefore, when

calculating Sim(wS
1 , wT

2 ), even when dealing with symmetric
similarity functions such as BC, we always consider only the
scores P (·|wS

1 ) for truncating.
4Available online: http://people.cs.kuleuven.be

/∼ivan.vulic/software/

their corresponding translation in the English vo-
cabulary. Additionally, only one possible translation
was annotated as correct. When more than 1 trans-
lation is possible, the annotator marked as correct
the translation that occurs more frequently in the En-
glish Wikipedia data. Finally, we built a set of 1000
one-to-one translation pairs for Dutch-English and
Spanish-English. The same procedure was followed
for Italian-English, but there we obtained the ground
truth one-to-one translation pairs for 1000 most fre-
quent Italian nouns in order to test the effect of word
frequency on the quality of semantic word responses
and the overall lexicon quality.
Evaluation metrics. All the methods under con-
sideration actually retrieve ranked lists of semanti-
cally similar words that could be observed as poten-
tial translation candidates. We measure the perfor-
mance on BLE as Top M accuracy (AccM ). It de-
notes the number of source words from ground truth
translation pairs whose top M semantically simi-
lar words contain the correct translation according
to our ground truth over the total number of ground
truth translation pairs (=1000) (Tamura et al., 2012).
Additionally, we compute the mean reciprocal rank
(MRR) scores (Voorhees, 1999).

5 Results and Discussion

Table 2 displays the performance of each compared
method on the BLE task. It shows the difference in
results for different language pairs and different cor-
pora used to extract latent cross-lingual topics and
estimate the lists of semantic word responses. Ex-
ample lists of semantically similar words over all 3
language pairs are shown in Table 3. Based on these
results, we are able to derive several conclusions:
(i) Response-BC performs consistently better than
the other 3 methods over all corpora and all language
pairs. It is more robust and is able to find some
cross-lingual similarities omitted by the other meth-
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Italian-English (IT-EN) Spanish-English (ES-EN) Dutch-English (NL-EN)

(1) affresco (2) spigolo (3) coppa (1) caza (2) discurso (3) comprador (1) behoud (2) schroef (3) spar
(fresco) (edge) (cup) (hunting) (speech) (buyer) (conservation) (screw) (fir)

fresco polyhedron club hunting rhetoric purchase conservation socket conifer
mural polygon competition hunt oration seller preservation wire pine
nave vertices final hunter speech tariff heritage wrap firewood
wall diagonal champion hound discourse market diversity wrench seedling

testimonial edge football safari dialectic bidding emphasis screw weevil
apse vertex trophy huntsman rhetorician auction consequence pin chestnut

rediscovery binomial team wildlife oratory bid danger fastener acorn
draughtsman solid relegation animal wisdom microeconomics contribution torque girth

ceiling graph tournament ungulate oration trade decline pipe lumber
palace modifier soccer chase persuasion listing framework routing bark

Table 3: Example lists of top 10 semantically similar words across all 3 language pairs according to our Response-BC
similarity method, where the correct translation word is: (col. 1) found as the most similar word, (2) contained lower
in the list, and (3) not found in the top 10 words.

IT-EN ES-EN NL-EN

direttore-director flauta-flute kustlijn-coastline
radice-root eficacia-efficacy begrafenis-funeral

sintomo-symptom empleo-employment mengsel-mixture
perdita-loss descubierta-discovery lijm-glue

danno-damage desalojo-eviction kijker-viewer
battaglione-battalion miedo-fear oppervlak-surface

Table 4: Example translations found by the Response-BC
method, but missed by the other 3 methods.

ods (see Table 4). The overall quality of the cross-
lingual word similarities and lexicons extracted by
the method is dependent on the quality of estimated
semantic response vectors. The quality of these
vectors is of course further dependent on the qual-
ity of multilingual training data. For instance, for
Dutch-English, we may observe a rather spectacular
increase in overall scores (the tests are performed
over the same set of 1000 words) when we aug-
ment Wikipedia data with Europarl data (compare
the scores for NL-EN-W and NL-EN-W+EP).
(ii) A transition from a semantic space spanned by

cross-lingual topics (Topic-BC) to a semantic space
spanned by vocabulary words (Response-BC) leads
to better results over all corpora and language pairs.
The difference is less visible when using training
data of lesser quality (the scores for NL-EN-W).
Moreover, since the shared space of cross-lingual
topics is used to obtain and quantify semantic word
responses, the quality of learned cross-lingual topics
influences the quality of semantic word responses.
If the semantic coherence of the cross-lingual top-
ical space is unsatisfying, the method is unable to
generate good semantic response vectors, and ul-

timately unable to correctly identify semantically
similar words across languages.
(iii) Due to its modeling properties that assign more
importance to high-frequency words, Direct-SWR
produces reasonable results in the BLE task only for
high-frequency words (see results for IT-EN-W). Al-
though Eq. (2) models the concept of semantic word
responding in a sound way (Griffiths et al., 2007),
using the semantic word responses directly is not
suitable for the actual BLE task.
(iv) The effect of word frequency is clearly visi-
ble when comparing the results obtained on IT-EN-
W with the results obtained on the other Wikipedia
corpora. High-frequency words produce more re-
dundancies in training data that are captured by sta-
tistical models such as latent topic models. High-
frequency words then obtain better estimates of their
semantic response vectors which consequently leads
to better overall scores. The effect of word fre-
quency on statistical methods in the BLE task was
investigated before (Pekar et al., 2006; Prochasson
and Fung, 2011; Tamura et al., 2012), and we also
confirm their findings.
(v) Unlike (Koehn and Knight, 2002; Haghighi et
al., 2008), our response-based method does not rely
on any orthographic features such as cognates or
words shared across languages. It is a pure statis-
tical method that only relies on word distributions
over a multilingual corpus. Based on these distribu-
tions, it performs the initial shallow semantic analy-
sis of the corpus by means of a multilingual prob-
abilistic model. The method then builds, via the
concept of semantic word responding, a language-
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independent semantic space spanned by all vocabu-
lary words/responses in both languages. That makes
the method portable to distant language pairs. How-
ever, for similar languages, including more evidence
such as orthographic clues might lead to further in-
crease in scores, but we leave that for future work.

6 Conclusion

We have proposed a new statistical approach to iden-
tifying semantically similar words across languages
that relies on the paradigm of semantic word re-
sponding previously defined in cognitive science.
The proposed approach is robust and does not make
any additional language-pair dependent assumptions
(e.g., it does not rely on a seed lexicon, orthographic
clues or predefined concept categories). That effec-
tively makes it applicable to any language pair. Our
experiments on the task of bilingual lexicon extrac-
tion for a variety of language pairs have proved that
the response-based approach is more robust and out-
performs the methods that operate in the semantic
space of latent concepts (e.g., cross-lingual topics)
directly.

Acknowledgments

We would like to thank Steven Bethard and the
anonymous reviewers for their useful suggestions.
This research has been carried out in the frame-
work of the TermWise Knowledge Platform (IOF-
KP/09/001) funded by the Industrial Research Fund,
KU Leuven, Belgium.

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Pasca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distributional
and WordNet-based approaches. In Proceedings of
NAACL-HLT, pages 19–27.

Daniel Andrade, Tetsuya Nasukawa, and Junichi Tsujii.
2010. Robust measurement and comparison of context
similarity for finding translation pairs. In Proceedings
of COLING, pages 19–27.

Arthur Asuncion, Max Welling, Padhraic Smyth, and
Yee Whye Teh. 2009. On smoothing and inference for
topic models. In Proceedings of UAI, pages 27–34.

Lisa Ballesteros and W. Bruce Croft. 1997. Phrasal
translation and query expansion techniques for cross-

language information retrieval. In Proceedings of SI-
GIR, pages 84–91.

A. Bhattacharyya. 1943. On a measure of divergence be-
tween two statistical populations defined by their prob-
ability distributions. Bulletin of the Calcutta Mathe-
matical Society, 35:199–209.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Jordan Boyd-Graber and David M. Blei. 2009. Multilin-
gual topic models for unaligned text. In Proceedings
of UAI, pages 75–82.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: parameter esti-
mation. Computational Linguistics, 19(2):263–311.

Sung-Hyuk Cha. 2007. Comprehensive survey on
distance/similarity measures between probability den-
sity functions. International Journal of Mathematical
Models and Methods in Applied Sciences, 1(4):300–
307.
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Emmanuel Morin, Béatrice Daille, Koichi Takeuchi, and
Kyo Kageura. 2007. Bilingual terminology mining -
using brain, not brawn comparable corpora. In Pro-
ceedings of ACL, pages 664–671.

Douglas L. Nelson, Cathy L. McEvoy, and Simon Den-
nis. 2000. What is free association and what does it
measure? Memory and Cognition, 28:887–899.

Xiaochuan Ni, Jian-Tao Sun, Jian Hu, and Zheng Chen.
2009. Mining multilingual topics from Wikipedia. In
Proceedings of WWW, pages 1155–1156.

Xiaochuan Ni, Jian-Tao Sun, Jian Hu, and Zheng Chen.
2011. Cross lingual text classification by mining mul-
tilingual topics from Wikipedia. In Proceedings of
WSDM, pages 375–384.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Viktor Pekar, Ruslan Mitkov, Dimitar Blagoev, and An-
drea Mulloni. 2006. Finding translations for low-
frequency words in comparable corpora. Machine
Translation, 20(4):247–266.

John C. Platt, Kristina Toutanova, and Wen-Tau Yih.
2010. Translingual document representations from
discriminative projections. In Proceedings of EMNLP,
pages 251–261.

Emmanuel Prochasson and Pascale Fung. 2011. Rare
word translation extraction from aligned comparable
documents. In Proceedings of ACL, pages 1327–1335.

Reinhard Rapp. 1999. Automatic identification of word
translations from unrelated English and German cor-
pora. In Proceedings of ACL, pages 519–526.

Joseph Reisinger and Raymond J. Mooney. 2010. A
mixture model with sharing for lexical semantics. In
Proceedings of EMNLP, pages 1173–1182.

Helmut Schmid. 1994. Probabilistic part-of-speech tag-
ging using decision trees. In International Conference
on New Methods in Language Processing.

Mark Steyvers and Tom Griffiths. 2007. Probabilistic
topic models. Handbook of Latent Semantic Analysis,
427(7):424–440.

Mark Steyvers, Richard M. Shiffrin, and Douglas L. Nel-
son. 2004. Word association spaces for predicting se-
mantic similarity effects in episodic memory. In Ex-
perimental Cognitive Psychology and Its Applications,
pages 237–249.

Akihiro Tamura, Taro Watanabe, and Eiichiro Sumita.
2012. Bilingual lexicon extraction from comparable
corpora using label propagation. In Proceedings of
EMNLP, pages 24–36.

Ellen M. Voorhees. 1999. The TREC-8 question answer-
ing track report. In Proceedings of TREC, pages 77–
82.
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Abstract

Humans identify word boundaries in continu-
ous speech by combining multiple cues; exist-
ing state-of-the-art models, though, look at a
single cue. We extend the generative model of
Goldwater et al (2006) to segment using sylla-
ble stress as well as phonemic form. Our new
model treats identification of word boundaries
and prevalent stress patterns in the language as
a joint inference task. We show that this model
improves segmentation accuracy over purely
segmental input representations, and recov-
ers the dominant stress pattern of the data.
Additionally, our model retains high perfor-
mance even without single-word utterances.
We also demonstrate a discrepancy in the per-
formance of our model and human infants on
an artificial-language task in which stress cues
and transition-probability information are pit-
ted against one another. We argue that this dis-
crepancy indicates a bound on rationality in
the mechanisms of human segmentation.

1 Introduction

For an adult speaker of a language, word segmen-
tation from fluid speech may seem so easy that
it barely needed to be learned. However, pauses
in speech and word boundaries are not well cor-
related (Cole & Jakimik, 1980), word boundaries
are marked by a conspiracy of partially-informative
cues (Johnson & Jusczyk, 2001), and different lan-
guages mark their boundaries differently (Cutler &
Carter, 1987). This makes the problem of unsuper-
vised word segmentation acquisition, whether by a
computational model or an infant, a daunting task.

Effective segmentation relies on the flexible in-
tegration of multiple types of segmentation cues,
among them statistical regularities in phonemes and
prosody, coarticulation, and allophonic variation. In-
fants begin using multiple segmentation cues within
their first year of life (Johnson & Jusczyk, 2001).
Despite this, many state-of-the-art models look at
only one type of information: phonemes.

In this study, we expand an existing model to
incorporate multiple cues, leading to an improve-
ment in segmentation performance and opening new
ways of investigating human segmentation acquisi-
tion. On the latter point, we show that rational learn-
ers can learn to segment without encountering words
in isolation, and that human learners deviate from ra-
tionality in certain segmentation tasks.

2 Previous work

The prevailing unsupervised word segmentation sys-
tems (e.g., Brent, 1999; Goldwater, Griffiths, &
Johnson, 2006; Blanchard & Heinz, 2008) use only
phonemic information to segment speech. However,
human segmenters use additional information types,
notably stress information, in their segmentation.
We present an overview of these phonemic mod-
els here before discussing the prosodic model ex-
pansion. A more complete review is available in
Goldwater (2007).

2.1 Goldwater et al (2006)

The Goldwater et al model is related to Brent
(1999)’s model, both of which use strictly phone-
mic information to segment. The model assumes that
the corpus is generated by a Dirichlet process over
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word bigrams.1 We present a basic overview here,
based on Sect. 5.5 of Goldwater, 2007. To generate
the word wi given the preceding word wi−1:

1. Decide if bigram bi = 〈wi−1, wi〉 is novel

2. If bi non-novel, draw bi from bigram lexicon

3. If bi novel, decide whether wi is novel
a. If wi non-novel, draw wi from word lexicon
b. If wi novel, draw wi from word-generating
distribution P0.

The Dirichlet process first decides whether to
draw a non-novel (“nn”) bigram, with probability
proportional to the number of times the previous
word has appeared in the corpus:

p(〈wi−1, wi〉 nn|wi−1) =
n〈wi−1,·〉

n〈wi−1,·〉 + α1
, (1)

where n〈x,y〉 is the token count for bigram 〈x, y〉.
If the bigram is non-novel, word wi is drawn in
proportion to the number of times it has appeared
after wi−1 in the corpus:

p(wi = x|〈wi−1, wi〉 nn) =
n〈wi−1,x〉

n〈wi−1,·〉
(2)

If the bigram is novel, this could either be due to
wi being a novel word or due to wi being an existing
word that had not appeared with wi−1 before. The
probability of wi being a non-novel word x is

p(wi = x,wi nn| 〈wi−1, wi〉
novel

) =
b〈·,wi〉

(b〈·,·〉 + α0)
,

(3)
where b〈.,.〉 is the count of word bigram types.
Finally, if wi is a new word, its phonemic form is
generated from a distribution P0. In the Goldwater
et al model, this distribution is simply the product of
the unigram probabilities of the phonemes, P (σj),
times the probability of a word boundary, p#, to end
the word:

p(wi = σ1 · · ·σM |
wi

novel ) = p#(1− p#)M−1
∏
P (σj)

(4)
1We will only discuss the bigram model here because it is

more appropriate from both a cognitive perspective (it posits la-
tent hierarchical structure) and engineering perspective (it seg-
ments more accurately) than the unigram model.

To segment an observed corpus, the model Gibbs
samples over the possible word boundaries (utter-
ance boundaries are assumed to be word bound-
aries).2 The exchangability of draws from a Dirichlet
process allows for Gibbs sampling of each possible
boundary given all the others.

2.2 A cognitively-plausible variant

Phillips and Pearl (2012) make these Bayesian seg-
mentation models more cognitively plausible in two
ways. The first is to move from phonemes to syl-
lables as the base representational unit from which
words are constructed, as infants learn to categorize
syllables before phonemes (Eimas, 1999). The sec-
ond is to add memory and processing constraints on
the learner. They find that syllable-based segmen-
tation is better than phoneme-based segmentation
in the bigram model (though worse in the unigram
model), and that, counter-intuitively, the constrained
learner outperforms the unconstrained learner. This
improvement appears to be driven by better perfor-
mance in segmenting more common words. In this
work, we adopt the syllabified representation but re-
tain the unconstrained rational learner assumption.

2.3 Other multiple-cue models

Some previous models have incorporated multiple
cues, specifically the phonemic and stress infor-
mation that our model will use. Two prominent
examples are Christiansen, Allen, and Seidenberg
(1998)’s connectionist model and Gambell and Yang
(2006)’s algebraic model. The connectionist model
places word boundaries where the combination of
phonemic and stress information predict likely ut-
terance boundaries, but does not include an explicit
sense of “word”, and performs only modestly on
the segmentation task (boundary F-scores of .40-
.45). The algebraic model also underperforms the
Bayesian model (Phillips & Pearl, 2012) unless it
includes the heuristic that there is a word bound-
ary between any two stressed syllables. Our model
presents a more general and completely unsuper-
vised approach to segmentation with multiple cue-
types.

2The model assumes that utterance boundaries are generated
just like other words, and includes an adjustable parameter p$

to account for their frequency.
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In general, joint inference is becoming more com-
mon in language acquisition problems and has been
shown to improve performance over single-feature
inference. Examples include joint inference of a
lexicon and phonetic categories (Feldman, Grif-
fiths, & Morgan, 2009), joint inference of syntactic
word order and word reference (Maurits, Perfors, &
Navarro, 2009), and joint inference of word mean-
ings and speaker intentions in child-directed speech
(Frank, Goodman, & Tenenbaum, 2009).

3 Model design

Our model changes P0 from a single-cue distribu-
tion, generating only phonemes, to a multiple-cue
distribution that generates a stress form as well. This
can improve segmentation performance and allows
the investigation of rational segmentation behavior
in a multiple-cue world.

In the original model, P0(wi = σ1 · · ·σM ) ∝∏
j P (σj), where P (σj) is the frequency of the

phoneme σj . In the multiple-cue model, we first
generate a phonemic form wi, then assign a stress
pattern si to it.

P0(wi, si) = PW (wi)PS(si|M)

= p#(1− p#)M−1
M∏
j

P (σj)PS(si|M) (5)

The phonemic form wi has the same product-of-
segments probability as the Goldwater et al model,
but σj are now syllables instead of phonemes. We
discuss the rationale behind this change in the next
section.

The phonemic form is generated first, and the
stress form is then drawn as a multinomial over all
possible stress patterns with the same number of syl-
lables as wi. The stress distribution PS is a multino-
mial distribution over word-length stress templates.
PS can be learned by the model based on a Dirich-
let prior, but for simplicity in the present implemen-
tation, we estimate PS as the plus-one-smoothed
frequency of the stress patterns in the current seg-
mentation. There are two stress levels (stressed or
unstressed), and 2M possible stress templates for a
word of length M .3

3We do not assume that each word has one and only one

Unlike phonemic forms, stress patterns are drawn
as a whole word. This allows the model to capture
a wide range of stress biases, although it prevents
the model from generalizing biases across different
word lengths. A potential future change to PS that
would allow for better generalization is discussed in
Section 6.

3.1 On syllabification and stress

We change from segmenting on phonemes to seg-
menting on syllables in order to more easily imple-
ment stress information, which is a supersegmental
feature most appropriately located on syllables. Syl-
labified data has been used in some previous mod-
els of segmentation, especially those using stress
information or syllable-level transition probabilities
(Christiansen et al., 1998; Swingley, 2005; Gambell
& Yang, 2006; Phillips & Pearl, 2012).

For studying human word segmentation, Phillips
and Pearl argue syllabified speech may be a
more cognitively plausible testing ground. 3-month-
old infants appear to have categorical representa-
tions of syllables (Eimas, 1999), three months be-
fore word segmentation appears (Borfeld, Morgan,
Golinkoff, & Rathbun, 2005), and seven months
before phoneme categorization (Werker & Tees,
1984). In addition, syllabification is assumed in
much work on human word segmentation, especially
in artificial-language studies (e.g., Thiessen & Saf-
fran, 2003), which calculate statistical cues at the
syllable level.

The assumption that syllable boundaries are
known affects the baseline performance of the
model, as it reduces the number of possible word
boundary locations (since a word boundary is nec-
essarily a syllable boundary). As such performance
over syllabified data cannot be directly compared to
performance on non-syllabified data.

It may seem that syllabification is so closely tied
to word segmentation that including the former in a
model of the latter leaves little to the model. How-
ever, the determinants of syllable boundaries are not
the same as those for word boundaries. The prob-

stressed syllable, which would reduce the number of possible
stress templates to M , for two reasons. First, in the current cor-
pus, some words have citation forms with multiple stressed syl-
lables. Second, in actual speech this assumption will not hold
(e.g., many function words go unstressed).
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lem of assigning syllable boundaries is a question of
deciding where a boundary goes between two syl-
lable nuclei, with the assumption that there must be
a boundary there. The problem of assigning word
boundaries is a question of deciding whether there
is a boundary between two syllable nuclei, and if so,
where it is. Knowing the syllable boundaries reduces
the set of possible word boundaries, but does not di-
rectly address the question of how likely a boundary
is. The difference in these tasks is supported by the
three-month gap between syllable and word identifi-
cation in infants.

4 Data

We use the Korman (1984) training corpus, as com-
piled by Christiansen et al. (1998), in this study. This
is a 24493-word corpus of English spoken by adults
to infants aged 6–16 weeks.4 Phonemes, stresses,
and syllable boundaries are the same as those used
by Christiansen et al, which were based on citation
forms in the MRC Psycholinguistic Database. All
monosyllabic words were coded as stressed. Only
utterances for which all words had citation forms
were included.

This corpus is largely monosyllabic (87.3% of all
word tokens), and heavily biased toward initial stress
(89.2% of all multisyllable word tokens). No word
is longer than three syllables, and most words have
only one stressed syllable. A breakdown of the cor-
pus by stress pattern is given in Table 1. This mono-
syllabic bias is an inherent property of English, not
idiosyncratic to this corpus. The Bernstein-Ratner
child-directed corpus is also over 80% monosyl-
labic. We expect that the results of segmentation on
child-directed data will extend to adult speech, as
the adult-directed corpus used by Gambell and Yang
(2006) has an average word length of 1.17 syllables.

5 Experiments

We test the model on three problems. First, we show
that the addition of stress information improves seg-
mentation performance compared to a stress-less
model. Next, we apply the model to a question in
human segmentation acquisition. Finally, we look at

4Approximately 150 word tokens from the original corpus
were omitted in our version of the corpus due to a disparity
between recorded number of syllables and number of stresses.

Types Tokens
Stress pattern Count Stress pattern Count

S 21402 S 523
SW 2231 SW 208
SS 389 WS 40

WS 284 SWW 24
SWW 182 SS 7
WSW 33 WSW 7
Other 5 Other 2

Table 1: Corpus stress patterns by types and tokens,
showing an initial-stress bias in all lengths.

a task where the rational model deviates from human
performance.

5.1 Parameter setting

The model has four free parameters: α0 and α1,
which affect the likelihood of new words and bi-
grams, respectively, and p# and p$, which affect the
expected likelihood of word and utterance bound-
aries. Following Goldwater, Griffiths, and Johnson
(2009), we set α0 = 20, α1 = 100, p# = 0.8 and
p$ = 0.5 in all experiments.5

In all cases, the model performed five indepen-
dent runs of 20000 iterations of Gibbs sampling the
boundaries for the full corpus. Simulated annealing
was performed during the burn-in period to improve
convergence. All performance measures are reported
as the mean of these five runs.

Performance is measured as word, boundary, and
lexicon precision, recall, and F-scores. A word is
matched iff both of its true boundaries are marked
as boundaries and no internal boundaries are marked
as word boundaries. Boundary counts omit utterance
boundaries, which are assumed to be word bound-
aries. Lexical counts are based on word type counts.

5.2 Stress improves performance

We begin by showing that including a second
cue type improves segmentation performance. We
compare segmentation on a corpus with the at-
tested stress patterns to that of a corpus with-
out stress. With stress information included in
the model, word/boundary/lexicon F-scores are

5Performance was similar for a range of settings between 1
and 100 for α0 and between 10 and 200 for α1.
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With stress Without stress
Word Bnd Lex Word Bnd Lex

Prec .76 .99 .75 .76 .99 .72
Rec .61 .70 .87 .60 .69 .84

F .68 .82 .80 .67 .82 .77

Table 2: Precision, recall, and F-score over corpora with
and without stress information available. Stress informa-
tion especially improves lexical performance.

.68/.82/.80. Without stress, performance drops to

.67/.82/.77.6 Full results are given in Table 2.
Stress information primarily improves lexicon

performance, along with a small improvement in
token segmentation. Accounting for stress reduces
both false positives and negatives in the lexicon; the
fact that the lexical improvement is greater than that
for words or boundaries suggests that much of the
improvement rests is on rare words.

These effects are small but significant. For word
token performance, we performed a paired t-test
on utterance token F-scores between the with- and
without-stress models. This difference was signif-
icant (t = 11.28, df = 8125, p < .001). We
performed a similar utterance-by-utterance test on
boundaries; again a small singificant improvement
was found (t = 8.92, df = 6084, p < .001). To
assess lexicon performance, we calculated for each
word type in the gold-standard lexicon the propor-
tion of the five trials in which that word appeared
in the learned lexicon for the two models. We then
examined the words where the proportions differed
between the models. 89 true words appeared more
often in the with-stress lexicons; 40 appeared more
often in the without-stress lexicons. (683 appeared
equally often in both.) By a sign test, this is signif-
icant at p < .001. We also tested lexicon perfor-
mance with a binomial test on the two models’ lexi-
con accuracy; this result was marginal (p = .06).

The explicit tracking of stress information also
improves the model’s acquisition of the stress bias of
the language. Acquisition of the stress bias is poten-
tially useful for generalization; stress patterns can be
used for an initial segmentation if few or none of the
words are familiar. In practice, we see children use

6Recall that due to the syllabified data, these results are not
directly comparable to unsyllabified results in previous work.

their stress biases to segment new words from En-
glish speech (Jusczyk, Houston, & Newsome, 1999)
as well as artificial languages (Thiessen & Saffran,
2003).

We assess the learned stress bias by dividing up
the corpus as the model has segmented it, and count
the number of tokens with SW versus WS stress pat-
terns.7 With stress representation, the learned stress
bias is 6.77:1, and without stress representation, the
stress bias is lower, at 6.33:1. Although these are
both underestimates of the corpus’s true stress bias
(7.86:1), the stressed model is stronger and a better
estimate of the true value.

The model’s performance can be compared to
various baselines, but perhaps the strongest is one
with every syllable boundary being a word bound-
ary. This baseline represents a shift from boundary
precision being at ceiling (as in the model) to bound-
ary recall being at ceiling. In fact, due to the pre-
ponderance of monosyllabic words in English child-
directed speech, this baseline outperforms the model
on word and boundary F-scores (.68 and .82 in the
model, .82 and .91 in the baseline). However, the
baseline’s lexicon is much worse than the model’s
(F=.80 in the with-stress model, F=.64 in the base-
line), and the baseline fails to learn anything about
the language’s stress biases. In addition, the base-
line oversegments, whereas both the model and in-
fant segmenters undersegment (Peters, 1983). This
raises an important question about what the model
should seek to optimize: though the baseline is more
accurate by token, no structure is learned; type per-
formance is more important if we want to learn the
underlying structure.

5.3 Are isolated words necessary?

We next use this model to test the necessity of iso-
lated words in rational word segmentation. It is not
immediately obvious how human learners begin to
segment words from fluid speech. Stress biases and
other phonological cues are dominant in all but the
earliest of infant word segmentation (Johnson &
Jusczyk, 2001). This raises a chicken-and-egg prob-
lem; if the cues infants favor to segment words, such
as stress biases, are dependent on the words of the

7Note this defines a stress bias for the stressless model as
well.
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language, how do they learn enough words to deter-
mine the cues’ biases?

One existing proposal is that human learners de-
velop their stress biases based on words frequently
heard in isolation (Jusczyk et al., 1999). In En-
glish, these include names and common diminutives
(e.g., mommy, kitty) that generally have initial stress.
These single-word utterances could offer the seg-
menter an initial guess of the stress bias, by suppos-
ing that short utterances are single words and record-
ing their stress patterns. The most common stress
patterns in short utterances could then be used as
an initial guess at the stress bias to bootstrap other
words and thereby improve the learned stress bias.

We test the rational learner’s need for such ex-
plicit bootstrapping by learning to segment a corpus
with all single-word utterances removed. The corpus
is produced by excising all single-word utterances
from the Korman corpus. This results in a 22081-
word corpus, 10% fewer tokens than in the original.
However, it does not substantially change the lexi-
con; the number of distinct word types only drops
from 811 to 806.

We compare performance only on ambiguous
boundaries and lexicon, as these are comparable
between the corpora, and find that the model per-
forms almost equally well. Without single-word ut-
terances, boundary and lexical F-scores are .81 and
.80, compared to .82 and .80 with single-word utter-
ances. This shows that rational learners are able to
segment even without the possibility of bootstrap-
ping stress patterns from single-word utterances.

5.4 Bounded rationality in human
segmentation

Lastly, we use this model to examine rational per-
formance in a multiple-cue segmentation task. We
show that humans’ segmentation does not adhere to
these predictions, suggesting a bound on human ra-
tionality in word segmentation.

We consider an artificial language study by
Thiessen and Saffran (2003). In this study, infants
are exposed to an artificial language consisting of
four bisyllabic word types uttered repeatedly with-
out pauses. Each syllable appears in only one word
type, so within-word transition probabilities are al-
ways 1, while across-word transition probabilities
are less than 0.5. Segmentation strategies that hy-

Against bias, with TP
AB CD CD AB
WS WS WS WS
With bias, against TP

A BC DC DA B
W SW SW SW S

Table 3: Examples of segmenting an artificial language
according to transition probabilities (top) or stress bias
(bottom), when the true words have weak-strong stress.
Vertical lines represent word boundaries. The top seg-
mentation produces a smaller lexicon, but the bottom seg-
mentation produces primarily words with the preferred
stress pattern.

pothesize word boundaries at low transition proba-
bilities or that seek to minimize the lexicon size will
segment out the four word types as expected.

Segmentation in the experiment is complicated by
the presence of stress in the artificial language. De-
pending on the condition, the words are either all
strong-weak or all weak-strong. In the first condi-
tion, segmenting according to transition probabili-
ties, lexicon size, or English stress bias favors the
same segmentation. In the second condition, though,
segmenting by the English stress bias to yield a lex-
icon of strong-weak words requires boundaries in
the middle of the words. The segmenter must decide
whether transition probabilities or preferred stress
patterns are more important in segmentation. This
situation is illustrated in Table 3, with a corpus con-
sisting of two word types, AB and CD, each with
weak-strong stress.

Thiessen and Saffran found that seven-month-
old English-learning infants consistently segmented
according to the transition probabilities, regardless
of stress. However, nine-month-olds segmented ac-
cording to the English stress bias, even if this meant
going against the transition probabilities.

Intuitively, this could be rational behavior accord-
ing to our model. A child’s increasing age means
more exposure to data, potentially leading the child
to develop more confidence in the stress bias. As
confidence in the stress bias increases, the cost of
segmenting against it increases as well. A suffi-
ciently strong stress preference could lead the seg-
menter to accept a large lexicon, all of whose words
have the preferred stress pattern, over a small lexi-
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con, all of whose words have the dispreferred stress
pattern.

To judge by the Korman corpus, English has a
stress bias of approximately 7:1 in favor of SW bi-
syllabic stress over WS.8 If human segmentation be-
havior follows the rational model, the model should
predict segmentation to favor strong-weak words
over the transition probabilities when the stress bias
is approximately this strong.

We test this rationality hypothesis with a smaller
version of the Thiessen and Saffran artificial lan-
guage, consisting of 48 tokens.9 In one version,
all tokens have the preferred SW pattern, and in
the other all tokens have the dispreferred WS pat-
tern. We then adjust the PS distribution such that
PS(SW |M = 2) = b ∗ PS(WS|M = 2), where
b is the bias ratio. We run the model otherwise the
same as in the previous experiments, except with 10
runs instead of 5.

Contrary to this hypothesis, the model’s segmen-
tation with b = 7 was the same whether the true
words were strong-weak or weak-strong. In all ten
runs, transition probabilities dictated the segmenta-
tion. To switch to stress-based segmentation, the bias
must be orders of magnitude greater than the English
bias. Figure 1 shows the proportions of runs in the
weak-strong condition that show segmentation ac-
cording to the stress bias, as the bias increases by
factors of 10. When b = 10000, three of the ten runs
segmented according to the stress bias; below that,
the stress bias did not affect the rational model’s seg-
mentation.

Why is this? In the Bayesian model, the stress bias
of a language affects only the PS(si|M) term in the
P0 distribution, so non-novel words are not penal-
ized for their stress pattern. The model pays only
once to create a word; once the word is generated,
no matter how a priori implausible the word was,
it may be cheaply drawn again as a non-novel word.
This effect can be illustrated with a brief calculation.

Consider a corpus built from four bisyllabic word
types (AB, CD, EF, GH), each appearingN times. If

8The specific bias varies from corpus to corpus, but this ap-
pears to be a representative value.

9The 48 tokens come from four word types, with two types
appearing 16 times and the other two appearing 8 times, mim-
icking the relative frequencies of Thiessen and Saffran’s lan-
guages. Their test language had 270 tokens.
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Figure 1: Percentage of runs segmented with the stress
bias, against transition probabilities, as bias varies. At
English-level biases, the rational model still overrules the
stress bias when segmenting.

the corpus is segmented against the transition proba-
bilities, the resulting lexicon will have 16 bisyllabic
word types (BA, BC, BE, BG, DA, etc.), each occur-
ring approximately N

4 times.
The probability of the against-bias corpus (CWS)

is proportional to the probability of generating the
four word types, and then drawing them non-novelly
from the lexicon.10 (To simplify the calculations,
we use the unigram version of the Goldwater et al
model.)

p(CWS) ∝ P 4
WPS(WS)4(N !)4

1

4N !
(6)

The first two terms are the probability of gen-
erating the four word types (Eqn. 5);11 the second
two terms are the Dirichlet process draws from
the existing lexicon N times each (Eqn. 2). By
comparison, the probability of the with-bias corpus
CSW depends on generating the 16 word types, and
drawing each non-novelly N

4 times.

p(CSW ) ∝ P 16
W PS(SW )16

(
N

4
!

)16 1

4N !
(7)

Given an SW bias b and a uniform distribution
over syllables (so PW = 1

64 ), we find:

p(CWS)

p(CSW )
= 6412 (b+ 1)12

b16

(N !)4

(N
4 !)16

(8)

10It is also possible to generate this corpus by re-drawing the
words novelly, but this is much less likely than non-novel draws.

11Because all syllables have equal unigram probabilities, the
probability of all words’ phonemic forms are equal, and will be
written as PW .

123



This equation shows that the rational model is
heavily biased toward the segmentation that fits the
transition probabilities. Increasing the stress bias b
or decreasing the number of observed word tokens
makes the rational model more likely to segment
with the stress bias (against transition probabilities),
but as we see in the experimental results, the stress
bias must be very strong to overcome the efficient
lexicon that the transition probability segmentation
provides.

Since humans do not show this same inherent
bias (or quickly lose it as they acquire the stress
bias), we can ask how humans deviate from ratio-
nality. One possibility is that humans simply do not
segment in this Bayesian manner. However, previ-
ous work (Frank, Goldwater, Griffiths, & Tenen-
baum, 2010) has shown that human word segmen-
tation shows similar behavior to a resource-limited
Bayesian model. Equation 8 suggests that human
segmentation could deviate from rationality by hav-
ing an effectively stronger bias than English would
suggest (reducing the first fraction)12 or, as with
Phillips and Pearl’s constrained learners, by having
effectively less input than the model assumes (reduc-
ing the second fraction).

6 Future work

Introducing stress into the Bayesian segmentation
model suggests a few additional expansions. One
possibility is to add other cues into the genera-
tive model via P0. Any cue that is based on the
word itself can be added in this way, with little
change to the general model structure. Phonotactics
can be added using an n-gram distribution for P0

(Blanchard & Heinz, 2008). Coarticulation between
adjacent phonemes is also used in human segmen-
tation (Johnson & Jusczyk, 2001), so the P0 distri-
bution could predict higher within-word coarticula-
tion. Integrating additional cues used by human seg-
menters extends the investigation of the bounds on
rationality in human segmentation and in balancing
multiple conflicting cues.

12A potential source of an inflated bias is infants’ preference
for strong-weak patterns. Jusczyk, Cutler, and Redanz (1993)
found English-hearing infants listened longer to strong-weak
patterns than weak-strong. This could lead to overestimation of
the stress bias by making possible strong-weak segmentations
more prominent in the segmenter’s mind.

A more complex view of the stress system of a
language may also be useful. One possibility is to
place a Dirichlet prior over the stress templates and
allow PS to be learned as a latent variable in the
model. Another possibility is to treat the stress tem-
plates more generally; in the present implementa-
tion, knowledge of the preferred stress patterns for
word of one length tells the segmenter nothing about
preferred stress patterns in another length. Cross-
linguistically common stress rules (e.g., those that
place stress a certain number of syllables from the
left or right edge of a word) can be coded into PS to
improve generalization. Each rule dictates a specific
stress pattern for each word length. When a word
is generated in the Dirichlet process, the generative
model would decide whether to assign stress accord-
ing to one of these rules or to assign lexical stress
from a default multinomial distribution. (This “de-
fault” distribution would handle idiosyncratic stress
assignments, as one might see with names or mor-
phologically complex words, like Spanish reflexive
verbs.) A sparse prior over these rules, asymmetri-
cally weighted against the default category, will en-
courage the model to explain as much of the ob-
served stress patterns as possible with a few domi-
nant rules, improving the phonological structure that
the segmenter learns.

Improving the realism of the data is also impor-
tant. The corpora used in much of segmentation re-
search are idealized representations of the true data,
and the dictionary-based phoneme and stress pat-
terns used in this study are no exception. This ideal
setting may paint a skewed picture of the segmen-
tation problem, by providing a more consistent and
learnable data source than humans actually receive.
Elsner, Goldwater, and Eisenstein (2012)’s model
unifying lexical and phonetic acquisition takes a sig-
nificant step in showing that a rational segmenter
can handle noisy input by recognizing phonetic vari-
ants of a base form. In terms of stress representa-
tions, dictionary-based stress has been standard in
previous work (Christiansen et al., 1998; Gambell &
Yang, 2006; Rytting, Brew, & Fosler-Lussier, 2010),
but it is important to confirm such results against a
(currently nonexistent) corpus with stresses based on
the actual utterances. Effective use of stress in a less
idealized setting may require a more complex repre-
sentation of stress in the model.
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7 Conclusion

Effective word segmentation combines multiple fac-
tors to make predictions about word boundaries. We
extended an existing Bayesian segmentation model
to account for two factors, phonemes and stress,
when segmenting. This improves segmentation per-
formance and opens up new possibilities for compar-
ing rational segmentation and human segmentation.
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Abstract

We consider the problem of training a sta-

tistical parser in the situation when there are

multiple treebanks available, and these tree-

banks are annotated according to different lin-

guistic conventions. To address this problem,

we present two simple adaptation methods:

the first method is based on the idea of using

a shared feature representation when parsing

multiple treebanks, and the second method on

guided parsing where the output of one parser

provides features for a second one.

To evaluate and analyze the adaptation meth-

ods, we train parsers on treebank pairs in four

languages: German, Swedish, Italian, and En-

glish. We see significant improvements for

all eight treebanks when training on the full

training sets. However, the clearest benefits

are seen when we consider smaller training

sets. Our experiments were carried out with

unlabeled dependency parsers, but the meth-

ods can easily be generalized to other feature-

based parsers.

1 Introduction

When developing a data-driven syntactic parser, we

need to fit the parameters of its statistical model on

a collection of syntactically annotated sentences – a

treebank. Generally speaking, a larger collection of

examples in the training treebank will give a higher

quality of the resulting parser, but the cost in time

and effort of annotating training sentences is fairly

high. Most existing treebanks are in the range of a

few thousand sentences.

However, there is an abundance of theoretical

models of syntax and there is no consensus on how

treebanks should be annotated. For some languages,

there exist multiple treebanks annotated according

to different syntactic theories. Apart from German,

Swedish, and Italian, which will be considered in

this paper, there are important examples among the

world’s major languages, such as Arabic and Chi-

nese.

To exemplify how syntactic annotation conven-

tions may differ in even such a simple case as un-

labeled dependency annotation, consider the Italian

sentence fragment la sospensione o l’interruzione

(’the suspension or the interruption’) in Figure 1. As

we will see in detail in §3.1.3, there are two Ital-

ian treebanks: the ISST and TUT. If annotating as

in the ISST treebank (drawn above the sentence)

determiners (la, l’) are annotated as dependents of

the following nouns (sospensione, interruzione); in

TUT (drawn below the sentence), we have the re-

verse situation. There are also differences in how

coordinate structures are represented: in ISST, the

two conjuncts are directly conjoined and the con-

junction attached to the first of them, while in TUT

the conjunction acts as a link between the conjuncts.

osospensionela interruzionel’

Figure 1: Differences in dependency annotation styles.

Given the high cost of treebank annotation and the

importance of a proper amount of data for parser de-

velopment, this situation is frustrating. How could

we then make use of multiple treebanks when train-

ing a parser? A naı̈ve way would be simply to con-

catenate them, but as we will see this results in a

parser that performs badly on all the treebanks.

In this paper, we investigate two simple adapta-

tion methods to bridge the gap between differing
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syntactic annotation styles, allowing us to use more

data for parser training. The first approach treats

the problem of parsing with multiple syntactic an-

notation styles as a multiview learning problem and

addresses it by using feature representation that is

partly shared between the views. In the second one

we use a parser trained on one treebank to guide a

new parser trained on another treebank. We evaluate

these methods as well as their combination on four

languages: German, Swedish, Italian, and English.

In all four languages, we see a similar picture: the

shared features approach is generally better when

one of the treebanks is very small, while the guided

parsing approach is better when the treebanks are

more similar in size. However, for most training

set sizes the combination of the the two methods

achieves a higher performance than either of them

individually.

2 Methods for Training Parsers on

Multiple Treebanks

We now describe the two adaptation methods to

leverage multiple treebanks for parser training. For

clarity of presentation, we assume that there are

two treebanks, although we can easily generalize to

more. We use a common graph-based parsing tech-

nique (Carreras, 2007); the approaches described

here could be used in transition-based parsing as

well.

In a graph-based parser, for a given sentence x

the task of finding the top-scoring parse ŷ is stated

as an optimization problem of maximizing a linear

objective function:

ŷ = argmax
y

w · f(x, y).

Here w is a weight vector produced by some learn-

ing algorithm and f(x, y) a feature representation

that maps the sentence x with a parse tree y to

a high-dimensional vector; the adaptation methods

presented in this work is implemented as modifica-

tions of the feature representation function f . Since

the search space is too large to be enumerated, the

maximization must be handled carefully, and how

this is done determines the expressivity of the fea-

ture representation f . In the parser by Carreras

(2007) the maximization is carried out by a dynamic

programming procedure relying on crucial indepen-

dence assumptions to break down the search space

into tractable parts. The factorization used in this

approach allows f to express features extracted not

only from single edges, as McDonald et al. (2005),

but also from sibling and grandchild edges.

To understand the machine learning problem of

training parsers on incompatible treebanks, we com-

pare it to the related problem of domain adapta-

tion: training a system for a target domain, using

a large collection of training data from a source do-

main combined with a small labeled or large unla-

beled set from the target domain. Some algorithms

for domain adaptation rely on the assumption that

the differences between source and target distribu-

tions Ps and Pt can be explained in terms of a co-

variate shift: Ps(y|x) = Pt(y|x) for all x, y, but

Ps(x) 6= Pt(x) for some x. In our case, we have the

reverse situation: the input distribution is at least in

theory unchanged between the two treebanks, while

the input–output relation (i.e. the treebank annota-

tion style) is different. However, domain adaptation

and cross-treebank training can be seen as instances

of the more general problem of multitask learning

(Caruana, 1997). Indeed, one of the simplest and

most well-known approaches to domain adaptation

(Daumé III, 2007), which will also be considered in

this paper, should more correctly be seen as a trick

to handle multitask learning with any machine learn-

ing algorithm. On the other hand, there is no point

in trying to use domain adaptation methods assum-

ing a covariate shift, e.g. instance weighting, or any

method in which the target data is unlabeled (Blitzer

et al., 2007; Ben-David et al., 2010).

2.1 Sharing Feature Representations

Our first adaptation method relies on the intuition

that some properties of two treebanks are shared,

while others are unique to each of them. For in-

stance, as we have seen in Figure 1 the two Ital-

ian treebanks annotate coordination differently; on

the other hand, these treebanks also annotate sev-

eral other linguistic phenomena in the same way.

This observation can then be used to devise a model

where we train two parsers at the same time and use

a feature representation that is partly shared between

the two models, allowing the machine learning algo-

rithm to automatically determine which properties
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of the two datasets are common and which are dif-

ferent. The idea of using features that are shared be-

tween the source and target training sets is a slight

generalization of a well-known method for super-

vised domain adaptation (Daumé III, 2007).

In practice, this is implemented as follows. As-

sume that originally a sentence x with a parse tree y

was represented as f1(x, y) if it came from the first

treebank, and f2(x, y) if from the second treebank.

We then add a shared feature representation fs to f1
and f2, and embed them into a single feature space.

The resulting feature vectors then become

f1(x, y) ⊕ 02 ⊕ fs(x, y) (1)

for a sentence from the first treebank, and

01 ⊕ f2(x, y)⊕ fs(x, y) (2)

for the second treebank. Here, 01 means an all-zero

vector with the dimensionality of the feature space

of f1, and ⊕ is vector concatenation. Using this new

representation, the two datasets are combined and a

single model trained. The hope is then that the learn-

ing algorithm will store the information about the re-

spective particularities in the weights for f1 and f2,

and about the commonalities in the weights for fs.

The result of this process is a symmetric parser that

can handle both treebank formats: when we parse

a sentence at test time, we just use the representa-

tion (1) if we want an output according to the first

treebank and (2) for the second treebank.

In this work, f1, f2, and fs are identical: all of

them correspond to the feature set described by Car-

reras (2007). However, it is certainly imaginable

that fs could consist of specially tailored features

that make generalization easier. In particular, using

a generalized fs would allow us to use this approach

in more complex cases than considered here, for in-

stance if the dependencies would be labeled with

two different sets of grammatical function labels, or

if one of the treebanks would use constituents rather

than dependencies.

2.2 Using One Parser to Guide Another

The second method is inspired by work in parser

combination, an idea that has been applied success-

fully several times and relies on the fact that dif-

ferent parsing methods have different strengths and

weaknesses (McDonald and Nivre, 2007), so that

combining them may result in a better overall pars-

ing accuracy. There are several ways to combine

parsers; one of the simplest and most successful

methods of parsing combination uses one parser as

a guide for a second parser. This is normally im-

plemented as a pipeline where the second parser ex-

tracts features based on the output of the first parser.

Nivre and McDonald (2008) used this approach

for combining a graph-based and a transition-based

parser and achieved excellent results on test sets for

several languages, and similar ideas were proposed

by Martins et al. (2008).

We added guide features to the parser feature rep-

resentation. However, the features by Nivre and

McDonald (2008) are slightly too simple since they

only describe whether two words are directly con-

nected or not. That makes sense if the two parsers

are trying to predict the same type of representation,

but will not help us if there are systematic annota-

tion differences between the two treebanks, for in-

stance in whether to annotate a function word or a

lexical word as the head. Instead, following work

in semantic role labeling and similar areas, we use a

generalized notion of syntactic relationship that we

encode by determining a path between two nodes

in a syntactic tree. We defined the function Path(x,

y) as a representation describing the steps required

to traverse the parse tree from x to y, first the steps

up from x to the common ancestor a and then down

from a to y. Since we are working with unlabeled

trees, the path can be represented as just two inte-

gers; to generalize to labeled dependency parsing,

we could have used a full path representation as

commonly used in dependency-based semantic role

labeling (Johansson and Nugues, 2008).

We added the following path-based feature tem-

plates, assuming we have a potential head h with

dependent d, a sibling dependent s and grandchild

(dependent-of-dependent) g:

• POS(h)+POS(d)+Path(h, d)

• POS(h)+POS(s)+Path(h, s)

• POS(h)+POS(d)+POS(s)+Path(h, s)

• POS(h)+POS(g)+Path(h, g)

• POS(h)+POS(d)+POS(g)+Path(h, g)

To exemplify, consider again the example la

sospensione o l’interruzione shown in Figure 1. As-
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sume that we are parsing according to the ISST rep-

resentation (drawn above the sentence) and we con-

sider adding an edge with sospensione as head and

la as dependent, and another parser following the

TUT representation (below the sentence) has cre-

ated an edge in the opposite direction. The first

feature template above would then result in a fea-

ture NOUN+DET+(1,0), where (1,0) represents the

path relationship between the two words in the TUT

tree (one step up, no step down). Similarly, when

the ISST parser adds the coordination edge between

sospensione and interruzione, it can make use of

the information that these two nouns are indirectly

connected in the output by the TUT parser; this is

represented as a path (1,3). This is an example of

a situation where we have a systematic correspon-

dence where a single edge in one representation cor-

responds to several edges in the other.

Like the multiview approach described above, this

method is trivially adaptable to more complex situ-

ations such as labeled dependency parsers with dif-

fering label sets, or dependency/constituent parsing.

2.3 Combining Methods

The two adaptation methods are orthogonal and can

easily be combined. When trying to improve the per-

formance of a parser trained on the primary treebank

T1 by leveraging a supporting treebank T2, we then

use T2 in two different ways: first by training a guide

parser, and secondly by concatenating it to T1 using

a shared feature representation.

3 Experiments

We carried out experiments to evaluate the cross-

framework adaptation methods. The evaluations

were carried out using the official CoNLL-X eval-

uation script using the default parameters. Since our

parsers do not predict edge labels, we report unla-

beled attachment scores in all tables and plots.

3.1 Treebanks Used in the Experiments

In our experiments, we used four languages: Ger-

man, Swedish, Italian, and English. For each lan-

guage, we had two treebanks. Our approaches cur-

rently require that the treebanks use the same tok-

enization conventions, so for Italian and Swedish we

automatically retokenized the treebanks. We also

made sure that the two treebanks for one language

used the same part-of-speech tag sets, by applying

an automatic tagger when necessary.

3.1.1 German: Tiger and TüBa-D/Z

For German, there are two treebanks available:

Tiger (Brants et al., 2002) and TüBa-D/Z (Telljo-

hann et al., 2004). These treebanks are constituent

treebanks, but dependency versions are available:

TüBa-D/Z (version 7.0) includes the dependency

version in the distribution, while for Tiger we used

the version from CoNLL-X (Buchholz and Marsi,

2006). The constituent annotation styles in the two

treebanks are radically different: Tiger uses a very

flat structure with a minimal amount of intermediate

nodes, while TüBa-D/Z uses a more elaborate struc-

ture including topological field information. How-

ever, the dependency versions are actually quite sim-

ilar, at least with respect to attachment. The most

common systematic difference we observed is in the

annotation of coordination.

Both treebanks are large: for Tiger, the training

set was 31,243 sentences and the test set 7,973 sen-

tences, and for TüBa-D/Z 40,000 and 11,428 sen-

tences respectively. We did not use the Tiger test set

from the CoNLL-X shared task since it is very small.

We applied the TreeTagger POS tagger (Schmid,

1994) to both treebanks, using the pre-trained Ger-

man model.

3.1.2 Swedish: Talbanken05 and Syntag

As previously noted by Nivre (2002) inter alia,

Swedish has a venerable tradition in treebanking:

there are not only one but two treebanks which must

be counted among the earliest efforts of that kind.

The oldest one is the Talbanken or MAMBA tree-

bank (Einarsson, 1976), which has later been repro-

cessed for modern use (Nilsson et al., 2005). The

original annotation is a function-tagged constituent

syntax without phrase labels, but the reprocessed re-

lease includes a version converted to dependency

syntax. The dependency treebank was used in the

CoNLL-X Shared Task (Buchholz andMarsi, 2006),

and we used that version version in this work.

The second treebank is called Syntag (Järborg,

1986). Similar to Talbanken, its representation uses

function-tagged constituents but no phrase labels.

We developed a conversion to dependency trees,

which was straightforward since many constituents
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have explicitly defined heads (Johansson, 2013).

The two treebank annotation styles have signifi-

cant differences. Most prominently, the Syntag an-

notation is fairly semantically oriented in its treat-

ment of function words such as prepositions and

subordinating conjunctions: in Talbanken, a prepo-

sition is the head of a prepositional phrase, while

in Syntag the head is the prepositional complement.

There are also some domain differences: Talbanken

consists of student essays and public information,

while Syntag consists of news text.

To make the two treebanks compatible on the to-

ken level, we retokenized Syntag – which handles

punctuation in an idiosyncratic way – and applied a

POS tagger trained on the Stockholm–Umeå Corpus

(Gustafson-Capková and Hartmann, 2006) to both

treebanks. For Talbanken, we used 7,362 sentences

for training and set aside a new test set of 3,680 sen-

tences since the CoNLL-X test set is too small for

serious experimental purposes – only 389 sentences.

For Syntag, we split the treebank into 3,524 sen-

tences for training and 1,763 sentences for testing.

3.1.3 Italian: ISST and TUT

There are two Italian treebanks. The first is the

Italian Syntactic–Semantic Treebank or ISST (Mon-

temagni et al., 2003). Here, we used the version that

was prepared (Montemagni and Simi, 2007) for the

CoNLL-2007 Shared Task (Nivre et al., 2007).

The TUT treebank1 is a more recent effort. This

treebank is available in multiple constituent and de-

pendency formats, and we have used the CoNLL-

formatted dependency version in this work. The

representation used in TUT is inspired by the Word

Grammar theory (Hudson, 1984) and tends to be

more surface-oriented than that of ISST. For in-

stance, as pointed out above in the discussion of

Figure 1, TUT differs from ISST in its treatment of

determiner–noun constructions and coordination. It

has been noted (Bosco and Lavelli, 2010; Bosco et

al., 2010) that the TUT representation is easier to

parse than the ISST representation.

We simplified the tokenization of both treebanks.

In ISST, we split multiwords into separate tokens

and reattached clitics to nonfinite verb forms. For in-

stance, a single token a causa di was converted into

1
http://www.di.unito.it/˜tutreeb/

three tokens a, causa, di, and the three tokens trovar-

se-lo into a single token trovarselo. In TUT, we

applied the same conversions and also recomposed

preposition–article and multiple-clitic contractions

that had been split by the annotators, e.g. della,

glielo etc.2 After changing the tokenization, we ap-

plied the TreeTagger POS tagger (Schmid, 1994) to

both treebanks, using the pre-trained Italian model

with the Baroni tagset3.

After preprocessing the data, we created training

and test sets. For ISST, the training set was 2,239

and the test set 1,120 sentences, while for TUT the

training set was 1,906 and the test set 954 sentences.

3.1.4 English: Two Different Conversions of

the Penn Treebank

For English, there is no significant dependency

treebank so we followed most previous work in us-

ing dependency trees automatically derived from

constituent trees in the large Penn Treebank WSJ

corpus (Marcus et al., 1993). Due to the fact

that there is a highly parametrizable constituent-

to-dependency conversion tool available (Johansson

and Nugues, 2007), we could create two dependency

treebanks with very different annotation styles.

The first training set was created from sections

02–12 of theWSJ corpus. By default, the conversion

tool outputs a treebank using the annotation style

of the CoNLL-2008 Shared Task (Surdeanu et al.,

2008); however we wanted to create a more surface-

oriented style for this treebank, so we turned on op-

tions to make wh-words heads of relative clauses,

and possessive markers heads of noun phrases. This

corpus had 20,706 sentences, and will be referred to

as WSJ Part 1 in the experimental section.

The second training treebank was built from sec-

tions 13–22. For this treebank, we inverted the

value of most options in order to get a more seman-

tically oriented treebank where content words are

connected directly. In this treebank, we also used

“Prague-style” annotation of coordination: the con-

juncts are annotated as dependents of the conjunc-

tion. This set contained 20,826 sentences, and will

2It should be noted that these conversions also make sense

from a practical NLP point of view, since a number of contrac-

tions are homonymic with other words.
3
http://sslmit.unibo.it/˜baroni/

collocazioni/itwac.tagset.txt
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be called WSJ Part 2.

We finally applied both conversion methods to

sections 24 and 23 to create development and test

sets. The development set contained 1,346 and the

test set 2,416 sentences. We did not change the tok-

enization or part-of-speech tags of the WSJ corpora.

Here, we should note that we have a slightly more

synthetic and controlled experimental setting than

for Swedish and German: the parsers are evaluated

on the same test set, so we know that there is no

difference in test set difficulty. We also know a pri-

ori that performance differences are not due to any

significant differences in genre, since all texts come

from the same source (the Wall Street Journal) and

tend to focus on business-oriented news.

3.2 Baseline Parsing Performance

As a starting point, we trained parsers on all tree-

banks. In addition, we created a parser using a naı̈ve

adaptation method by combining the training sets for

each language, and training parsers on those three

sets. We then applied all three parsers for every lan-

guage on both test sets for that language. The re-

sults for German, Swedish, Italian, and English are

presented in Table 1.

Every parser performed well on the test set anno-

tated in the same annotation style as its training set.

As has been observed previously, surface-oriented

styles are easier to parse than semantically oriented

styles: The Talbanken and WSJ Part 1 parsers all

achieve much higher performance on their respec-

tive test sets than the Syntag and WSJ Part 2 parsers.

The better performance of the Talbanken parser is

also partly explainable by the fact that its training

set is more than twice as large as the Syntag training

set. Similarly for German, we see slightly higher

performance for TüBa-D/Z than for Tiger.

However, as can be expected every parser per-

formed very poorly when applied to the test set us-

ing the annotation style it was not trained on. For

Swedish and English, the accuracy figures are in the

range of 50-60, while the figure are a bit less poor

for German since the two treebanks are more simi-

lar. We also see, again unsurprisingly, that the naı̈ve

combination baseline performs poorly in all situa-

tions: we just get a “worst-of-both-worlds” parser

that performs badly on both test sets.

GERMAN Acc. on Tiger Acc. on TBDZ

Tiger 87.8 72.0

TüBa-D/Z 71.8 89.4

Tiger+TBDZ 77.7 87.7

SWEDISH Acc. on ST Acc. on TB

Syntag 81.4 52.6

Talbanken 50.3 88.2

Syntag+Talbanken 61.8 82.7

ITALIAN Acc. on ISST Acc. on TUT

ISST 81.1 57.4

TUT 55.9 84.0

ISST+TUT 73.9 71.6

ENGLISH Acc. on WSJ 1 Acc. on WSJ 2

WSJ part 1 92.6 57.4

WSJ part 2 57.4 89.5

WSJ parts 1+2 75.3 72.1

Table 1: Baseline performance figures.

3.3 Evaluation on the Full Training Sets

We trained new parsers using the shared features and

guided parsing adaptation methods described in §2.
Additionally, we trained parsers using both methods

at the same time; we refer to these parsers as com-

bined. Including the baseline parsers, this gave us

24 parsers to evaluate on their respective test sets.

The results for German are given in Table 2. Here,

we see that all three adaptation methods give statis-

tically significant4 improvements over the baseline

when parsing the Tiger treebank. In particular, the

combined method gives a strong 0.7-point improve-

ment, a 6% error reduction. For TüBa-D/Z, the im-

provements are smaller, although still significant ex-

cept for the guided parsing method.

Method Acc. on Tiger Acc. on TüBa-D/Z

Baseline 87.8 89.4

Shared 88.1 89.6

Guided 88.4 89.5

Combined 88.5 89.6

Table 2: Performance figures for the German adapted

parsers. Results that are significantly different from the

baseline performances are written in boldface.

4At the 95% level. The significance levels of differences

were computed using permutation tests.
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Method Acc. on ST Acc. on TB

Baseline 81.4 88.2

Shared 81.3 88.3

Guided 82.5 88.4

Combined 82.5 88.5

Table 3: Performance of the Swedish adapted parsers.

For Swedish, we have a similar story: we see

stronger improvements in the weak parser. Since

the Talbanken treebank is twice as large as the Syn-

tag treebank and has a surface-oriented representa-

tion that is easier to parse, this parser is useful as

a guide for the Syntag parser: the improvements of

the guided and combined Syntag parsers are statis-

tically significant. However, it is harder to improve

the Talbanken parser, for which the baseline is much

stronger. 3 shows the results for the Swedish parsers.

Method Acc. on ISST Acc. on TUT

Baseline 81.1 84.0

Shared 81.5 84.4

Guided 81.7 84.3

Combined 81.8 84.7

Table 4: Performance of the Italian adapted parsers.

When we turn to the English corpora, the adapta-

tion methods again gave us a number of very large

improvements. The results are shown in Table 5.

The shared features and combined methods gave sta-

tistically significant improvements for the WSJ Part

1 parser, and the guided parsing method an improve-

ment that is nearly significant. However the most

dramatic change is the 1.2-point improvement of the

WSJ Part 2 parser, given by the guided parsing and

combined methods. It is possible that this result

partly can be explained by the fact that this exper-

iment is a bit cleaner: in particular, as outlined in

§3.1.4, there are no domain differences.

Method Acc. on WSJ 1 Acc. on WSJ 2

Baseline 92.6 89.5

Shared 92.8 89.5

Guided 92.8 90.7

Combined 92.9 90.7

Table 5: Performance of the English adapted parsers.

For WSJ Part 2, we analyzed the differences

between the baseline and the best adapted parser.

While there were improvements for all POS tags, the

most notable one was in the attachment of conjunc-

tions, where we got an increase from 69% to 75%

in attachment accuracy, an 18% relative error reduc-

tion. Here we saw a very clear benefit of guided

parsing: since this treebank uses “Prague-style” co-

ordination annotation (i.e. the conjunction governs

the conjuncts), it is hard for the parser to handle va-

lencies and selectional preferences when there is a

conjunction involved. It has been noted (Nilsson et

al., 2007) that this style of annotating coordination

is hard to parse. Since the WSJ Part 1 parser uses

a coordination style that is easier to parse, the WSJ

Part 2 parser can rely on its judgment.

Although conclusions must be very tentative since

we are testing on just four languages, we can make

a few general observations.

• The largest improvements (absolute and rela-

tive) all happen in treebanks that are harder to

parse. In particular, Syntag and WSJ Part 2 are

harder to parse due to their representation, and

to some extent this may be true for Tiger as well

– its learning curve rises more slowly than for

TüBa-D/Z. Of course, in some cases (in partic-

ular Syntag, but also Tiger) this may partly be

explained by the training set being smaller, but

not for WSJ Part 2. In these cases, the guided

parsing method seems to be more effective.

• The languages where the shared features

method gives significant improvement for both

treebanks are German and Italian, where we do

not have the situation that one treebank is much

larger or much easier to parse.

• The combination of the two methods gave sig-

nificant improvements in all eight cases, and

had the highest performance in six cases.

3.4 The Effect of the Training Set Size

In order to better understand the differences between

the adaptation methods, we analyzed the impact of

training set size on the improvement given by the

respective methods. Let us refer to the training tree-

bank annotated according to the same style as the

test set as the primary treebank, and the other one

as the supporting treebank. We carried out the ex-

periments in this section by varying the number of
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Figure 2: Error reduction by training set size, German.

training sentences in the primary treebank and keep-

ing the size of the supporting treebank constant.

In order to highlight the differences between the

three adaptation methods, we show error reduction

plots in Figures 2, 3, 4, and 5 for German, Swedish,

Italian, and English respectively. For each training

set size on the x axis, the plot shows the reduction

in relative error with respect to the baseline.

We note that every single one of the 24 adapted

parsers learns faster than the corresponding baseline

parser. While we saw a number of significant im-

provements in §3.3 when using the full training sets,

the relative improvements are much stronger when

the training sets are small- and medium-sized.

These plots illustrate the different properties of

the two methods. Using a shared feature represen-

tation tends to be very effective when the primary

treebank is small: the error reductions are over 40

percent for German and over 25 percent for English.

Guided parsing works best for mid-sized sets, and

the relative effectiveness of both methods decreases

as the size of the primary treebank increases. Again,

we see that guided parsing is less effective if the

guide uses an annotation style that is hard to parse.
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Figure 3: Error reduction by training set size, Swedish.
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Figure 4: Error reduction by training set size, Italian.
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In particular, for Swedish the Syntag parser never

gives a very large improvement when guiding the

Talbanken parser, and this is also true of both Italian

parsers. To a smaller extent, this also holds for En-

glish and German: the WSJ Part 2 and Tiger parsers

are less useful as guides than their counterparts.

The combination method generally performs very

well: in all eight experiments, it outperforms the

other two for almost every training set size. Its per-

formance is very close to that of the guided parsing

method for larger training sets, when the effect of

the shared features method is less pronounced.
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Figure 5: Error reduction by training set size, English.

4 Conclusion

We have considered the problem of training a de-

pendency parser on incompatible treebanks, and we

studied two very simple methods for addressing this

problem, the shared features and guided parsing

methods. These methods allow us to use more than

one treebank when training dependency parsers. We

evaluated the methods on eight treebanks in four

languages, and had statistically significant improve-

ments in all eight cases. In particular, for English

we saw a strong 1.2-point absolute improvement (an

11% relative error reduction) in the performance of a

semantically oriented parser when trained on the full

training set. For German, we also had very strong

results for the Tiger treebank: a 6% error reduction.

For Swedish, the parser trained on the small Syntag

treebank got a boost from a guide parser trained on

the larger Talbanken. In general, it seems to be eas-

ier to improve parsers that use representations that

are harder to parse.

For all eight treebanks, both methods achieved

large improvements for small training set sizes,

while the effect gradually diminished as the training

set size increased. The shared features method was

the most effective for very small training sets, while

guided parsing surpassed it when training sets got

larger. The combination of the twomethods was also

effective, in most cases outperforming both methods

on their own. In particular, when using the full train-

ing sets, this was the only method that had statisti-

cally significant improvements for all treebanks.

While this work used an unlabeled graph-based

dependency parser, our methods generalize naturally

to other parsing approaches, including transition-

based dependency parsing. Labeled parsing with

incompatible label sets is easy to implement in the

shared features framework by removing the label in-

formation from the shared feature representation fs,

and similar modifications of fs could be carried out

to handle more complex situations such as combined

constituent and dependency parsing. Furthermore,

the paths used by the feature extractor in the guided

parser can be extended without much effort as well.

The models presented here are very simple, and in

future work we would like to explore more com-

plex approaches such as quasi-synchronous gram-

mars (Smith and Eisner, 2009; Li et al., 2012) or au-

tomatic treebank transformation (Niu et al., 2009).
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Stockholm University.

Richard Hudson. 1984. Word Grammar. Blackwell.

Jerker Järborg. 1986. Manual för syntaggning. De-

partment of Linguistic Computation, University of

Gothenburg.

Richard Johansson and Pierre Nugues. 2007. Ex-

tended constituent-to-dependency conversion for En-

glish. In NODALIDA 2007 Conference Proceedings,

pages 105–112, Tartu, Estonia.

Richard Johansson and Pierre Nugues. 2008. The ef-

fect of syntactic representation on semantic role label-

ing. In Proceedings of the 22nd International Con-

ference on Computational Linguistics (Coling 2008),

pages 393–400, Manchester, United Kingdom.

Richard Johansson. 2013. Bridging the gap between

two Swedish treebanks. Northern European Journal

of Language Technology. Submitted.

Zhenghua Li, Ting Liu, and Wanxiang Che. 2012. Ex-

ploiting multiple treebanks for parsing with quasi-

synchronous grammars. In Proceedings of the 50th

Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 675–684,

Jeju Island, Korea.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann

Marcinkiewicz. 1993. Building a large annotated cor-

pus of English: the Penn Treebank. Computational

Linguistics, 19(2):313–330.
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Abstract

Most work on weakly-supervised learning for
part-of-speech taggers has been based on un-
realistic assumptions about the amount and
quality of training data. For this paper, we
attempt to create true low-resource scenarios
by allowing a linguist just two hours to anno-
tate data and evaluating on the languages Kin-
yarwanda and Malagasy. Given these severely
limited amounts of either type supervision
(tag dictionaries) or token supervision (labeled
sentences), we are able to dramatically im-
prove the learning of a hidden Markov model
through our method of automatically general-
izing the annotations, reducing noise, and in-
ducing word-tag frequency information.

1 Introduction

The high performance achieved by part-of-speech
(POS) taggers trained on plentiful amounts of la-
beled word tokens is a success story of computa-
tional linguistics (Manning, 2011). However, re-
search on learning taggers using type supervision
(e.g. tag dictionaries or morphological transducers)
has had a more checkered history. The setting is
a seductive one: by labeling the possible parts-of-
speech for high frequency words, one might learn
accurate taggers by incorporating the type informa-
tion as constraints to a semi-supervised generative
learning model like a hidden Markov model (HMM).
Early work showed much promise for this strategy
(Kupiec, 1992; Merialdo, 1994), but successive ef-
forts in recent years have continued to peel away and
address layers of unrealistic assumptions about the

size, coverage, and quality of the tag dictionaries
that had been used (Toutanova and Johnson, 2008;
Ravi and Knight, 2009; Hasan and Ng, 2009; Gar-
rette and Baldridge, 2012). This paper attempts to
strip away further layers so we can build better intu-
itions about the effectiveness of type-supervised and
token-supervised strategies in a realistic setting of
POS-tagging for low-resource languages.

In most previous work, tag dictionaries are ex-
tracted from a corpus of annotated tokens. To ex-
plore the type-supervised scenario, these have been
used as a proxy for dictionaries produced by lin-
guists. However, this overstates their effectiveness.
Researchers have often manually pruned tag dictio-
naries by removing low-frequency word/tag pairs;
this violates the assumption that frequency informa-
tion is not available. Others have also created tag
dictionaries by extracting every word/tag pair in a
large, labeled corpus, including the test data—even
though actual applications would never have such
complete lexical knowledge. Dictionaries extracted
from corpora are also biased towards including only
the most likely tag for each word type, resulting in
a cleaner dictionary than one would find in real sce-
nario. Finally, tag dictionaries extracted from anno-
tated tokens benefit from the annotation process of
labeling and review and refinement over an extended
collaboration period. Such high quality annotations
are simply not available for most low-resource lan-
guages.

This paper describes an approach to learning
a POS-tagger that can be applied in a truly low-
resource scenario. Specifically, we discuss tech-
niques that allow us to learn a tagger given only
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the amount of labeled data that a human annotator
could provide in two hours. Here, we evaluate on
the languages Malagasy and Kinyarwanda, as well
as English as a control language. Furthermore, we
are interested in whether type-supervision or token-
supervision is more effective, given the strict time
constraint; accordingly, we had annotators produce
both a tag dictionary and a set of labeled sentences.

The data produced under our conditions differs in
several ways from the labeled data used in previous
work. Most obviously, there is less of it. Instead
of using hundreds of thousands of labeled tokens
to construct a tag dictionary (and hundreds of thou-
sands more as unlabeled (raw) data for training), we
only use the 1k-2k labeled tokens or types provided
by our annotators within the timeframe. Our train-
ing data is also much noisier than the data from a
typical corpus: the annotations were produced by
a single non-native-speaker working alone for two
hours. Therefore, dealing with the size and quality
of training data were core challenges to our task.

To learn a POS-tagger from so little labeled data,
we developed an approach that starts by generalizing
the initial annotations to the entire raw corpus. Our
approach uses label propagation (LP) (Talukdar and
Crammer, 2009) to infer tag distributions on unla-
beled tokens. We then apply a novel weighted vari-
ant of the model minimization procedure originally
developed by Ravi and Knight (2009) to estimate se-
quence and word-tag frequency information from an
unlabeled corpus by approximating the minimal set
of tag bigrams needed to explain the data. This com-
bination of techniques turns a tiny, unweighted, ini-
tial tag dictionary into a weighted tag dictionary that
covers the entire corpus’s vocabulary. This weighted
information limits the potential damage of tag dic-
tionary noise and bootstraps frequency information
to approximate a good starting point for the learning
of an HMM using expectation-maximization (EM),
and far outperforms just using EM on the raw an-
notations themselves.

2 Data

Our experiments use Kinyarwanda (KIN), Malagasy
(MLG), and English (ENG). KIN is a Niger-Congo
language spoken in Rwanda. MLG is an Austrone-
sian language spoken in Madagascar. Both KIN and

MLG are low-resource and KIN is morphologically-
rich. For each language, the word tokens are divided
into four sets: training data to be labeled by anno-
tators, raw training data, development data, and test
data. For consistency, we use 100k raw tokens for
each language.

Data sources For ENG, we used the Penn Tree-
bank (PTB) (Marcus et al., 1993). Sections 00-04
were used as raw data, 05-14 as a dev set, and 15-24
(473K tokens) as a test set. The PTB uses 45 dis-
tinct POS tags. The KIN texts are transcripts of testi-
monies by survivors of the Rwandan genocide pro-
vided by the Kigali Genocide Memorial Center. The
MLG texts are articles from the websites1 Lakroa and
La Gazette and Malagasy Global Voices,2 a citizen
journalism site.3 Texts in both KIN and MLG were
tokenized and labeled with POS tags by two linguis-
tics graduate students, each of which was studying
one of the languages. The KIN and MLG data have
14 and 24 distinct POS tags, respectively, and were
developed by the annotators.

Time-bounded annotation One of our main goals
is to evaluate POS-tagging for low-resource lan-
guages in experiments that correspond better to a
real-world scenario than previous work. As such, we
collected two forms of annotation, each constrained
by a two-hour time limit. The annotations were done
by the same linguists who had annotated the KIN

and MLG data mentioned above. Our experiments
are thus relevant to the reasonable context in which
one has access to a linguist who is familiar with the
target language and a given set of POS tags.

The first annotation task was to directly produce a
dictionary of words to their possible POS tags—i.e.,
collecting an actual tag dictionary of the form that is
typically simulated in POS-tagging experiments. For
each language, we compiled a list of word types, or-
dered starting with most frequent, and presented it
to the annotator with a list of admissible POS tags.
The annotator had two hours to specify POS tags for
as many words as possible. The word types and fre-
quencies used for this task were taken from the raw
training data and did not include the test sets. This

1www.lakroa.mg and www.lagazette-dgi.com
2mg.globalvoicesonline.org/
3The public-domain data is available at github.com/

dhgarrette/low-resource-pos-tagging-2013
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data is used for what will call type-supervised train-
ing. The second task was annotating full sentences
with POS tags, again for two hours. We refer to this
as token-supervised training.

Having both sets of annotations allows us to in-
vestigate the relative value of each with respect to
training taggers. Token-supervision provides valu-
able frequency and tag context information, but
type-supervision produces larger dictionaries. This
can be seen in Table 1, where the dictionary size
column in the table gives the number of unique
word/tag pairs derived from the data.

We also wanted to directly compare the two an-
notators to see how the differences in their relative
annotation speeds and quality would affect the over-
all ability to learn an accurate tagger. We thus had
them complete the same two tasks for English. As
can be seen in Table 1, there are clear differences
between the two annotators. Most notably, annota-
tor B was faster at annotating full sentences while
annotator A was faster at annotating word types.

3 Approach

Our approach to learning POS-taggers is based on
Garrette and Baldridge (2012), which properly sep-
arated test data from learning data, unlike much pre-
vious work. The input to our system is a raw cor-
pus and either a human-generated tag dictionary or
human-tagged sentences. The majority of the sys-
tem is the same for both kinds of labeled training
data, but the following description will point out dif-
ferences. The system has four main parts, in order:

1. Tag dictionary expansion
2. Weighted model minimization
3. Expectation maximization (EM) HMM training
4. MaxEnt Markov Model (MEMM) training

3.1 Tag dictionary expansion

In a low-resource setting, most word types will not
be found in the initial tag dictionary. EM-HMM train-
ing uses the tag dictionary to limit ambiguity, so a
sparse tag dictionary is problematic because it does
not sufficiently confine the parameter space.4 Small

4This is of course not the case for purely unsupervised tag-
gers, though we also note that it is not at all clear they are actu-
ally learning taggers for part-of-speech.

sent. tok. dict.
KIN human sentences A 90 1537 750
KIN human TD A 1798
MLG human sentences B 92 1805 666
MLG human TD B 1067
ENG human sentences A 86 1897 903
ENG human TD A 1644
ENG human sentences B 107 2650 959
ENG human TD B 1090

Table 1: Statistics for Kinyarwanda, Malagasy, and
English data annotated by annotators A and B.

dictionaries also interact poorly with the model min-
imization of Ravi et al. (2010): if there are too many
unknown words, and every tag must be considered
for them, then the minimal model will simply be the
one that assumes that they all have the same tag.

For these reasons, we automatically expand an
initial small dictionary into one that has coverage for
most of the vocabulary. We use label propagation
(LP)—specifically, the Modified Adsorption (MAD)
algorithm (Talukdar and Crammer, 2009)5—which
is a graph-based technique for spreading labels be-
tween related items. Our graphs connect token
nodes to each other via feature nodes and are seeded
with POS-tag labels from the human-annotated data.

Defining the LP graph Our LP graph has several
types of nodes, as shown in Figure 1. The graph
contains a TOKEN node for each token of the la-
beled corpus (when available) and raw corpus. Each
word type has one TYPE node that is connected to
its TOKEN nodes. Both kinds of nodes are con-
nected with feature nodes. The PREVWORD x and
NEXTWORD x nodes represent the features of a to-
ken being preceded by or followed by word type x in
the corpus. These bigram features capture extremely
simple syntactic information. To capture shallow
morphological relatedness, we use prefix and suffix
nodes that connect word types that share prefix or
suffix character sequences up to length 5. For each
node-feature pair, the connecting edge is weighted
as 1/N where N is the number of nodes connected
to the particular feature.

5The open-source MAD implementation is provided through
Junto: github.com/parthatalukdar/junto
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TOKEN A 1 1 TOKEN walks 2 3

SUFFIX1 e

TOKEN barks 1 3

SUFFIX1 s

PREVWORD dog

SUFFIX2 he

TYPE A

TOKEN The 2 1 TOKEN walks 3 3TOKEN The 3 1

PREVWORD manNEXTWORD .

TYPE barksTYPE The

SUFFIX2 ksDICTPOS D

NEXTWORD dog

DICTPOS N DICTPOS V

TYPE walks

NEXTWORD manPREVWORD 〈b〉

Figure 1: Subsets of the LP graph showing regions of connected nodes. Graph represents the sentences “A
dog barks .”, “The dog walks .”, and “The man walks .”

We also explored the effectiveness of using an ex-
ternal dictionary in the graph since this is one of the
few available sources of information for many low-
resource languages. Though a standard dictionary
probably will not use the same POS tag set that we
are targeting, it nevertheless provides information
about the relatedness of various word types. Thus,
we use nodes DICTPOS p that indicate that a particu-
lar word type is listed as having POS p in the dictio-
nary. Crucially, these tags bear no particular con-
nection to the tags we are predicting: we still tar-
get the tags defined by the linguist who annotated
the types or tokens used, which may be more or
less granular than those provided in the dictionary.
As external dictionaries, we use English Wiktionary
(614k entries), malagasyworld.org (78k entries),
and kinyarwanda.net (3.7k entries).6

Seeding the graph is straightforward. With token-
supervision, labels for tokens are injected into the
corresponding TOKEN nodes with a weight of 1.0.
In the type-supervised case, any TYPE node that ap-
pears in the tag dictionary is injected with a uniform
distribution over the tags in its tag dictionary entry.

Toutanova and Johnson (2008) (also, Ravi and
Knight (2009)) use a simple method for predict-
ing possible tags for unknown words: a set of 100
most common suffixes are extracted and then mod-
els of P(tag|suffix) are built and applied to unknown
words. However, these models suffer with an ex-
tremely small set of labeled data. Our method uses
character affix feature nodes along with sequence
feature nodes in the LP graph to get distributions
over unknown words. Our technique thus subsumes

6Wiktionary (wiktionary.org) has only 3,365 en-
tries for Malagasy and 9 for Kinyarwanda.

theirs as it can infer tag dictionary entries for words
whose suffixes do not show up in the labeled data (or
with enough frequency to be reliable predictors).

Extracting a result from LP LP assigns a label
distribution to every node. Importantly, each indi-
vidual TOKEN gets its own distribution instead of
sharing an aggregation over the entire word type.
From this graph, we extract a new version of the
raw corpus that contains tags for each token. This
provides the input for model minimization.

We seek a small set of likely tags for each token,
but LP gives each token a distribution over the entire
set of tags. Most of the tags are simply noise, some
of which we remove by normalizing the weights and
excluding tags with probability less than 0.1. Af-
ter applying this cutoff, the weights of the remain-
ing tags are re-normalized. We stress that this tag
dictionary cutoff is not like those used in past re-
search, which were done with respect to frequen-
cies obtained from labeled tokens: we use either no
word-tag frequency information (type-supervision)
or very small amounts of word-tag frequency infor-
mation indirectly through LP (token-supervision).7

Some tokens might not have any associated tag
labels after LP. This occurs when there is no
path from a TOKEN node to any seeded nodes or
when all tags for the TOKEN node have weights less
than the threshold. Since we require a distribution
for every token, we use a default distribution for
such cases. Specifically, we use the unsupervised
emission probability initialization of Garrette and
Baldridge (2012), which captures both the estimated
frequency of a tag and its openness using only a

7See Banko and Moore (2004) for further discussion of these
issues.
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〈b〉 The man saw the saw 〈b〉

〈b〉
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Figure 2: Weighted, greedy model minimization
graph showing a potential state between the stages
of the tag bigram choosing algorithm. Solid edges:
selected bigrams. Dotted edges: holes in the path.

small tag dictionary and unlabeled text.
Finally, we ensure that tokens of words in the

original tag dictionary are only assigned tags from
its entry. With this filter, LP of course does not add
new tags to known words (without it, we found per-
formance drops). If the intersection of the small tag
dictionary entry and the token’s resulting distribu-
tion from LP (after thresholding) is empty, we fall
back to the filtered and renormalized default distri-
bution for that token’s type.

The result of this process is a sequence of (ini-
tially raw) tokens, each associated with a distribu-
tion over a subset of tags. From this we can extract
an expanded tag dictionary for use in subsequent
stages that, crucially, provides tag information for
words not covered by the human-supplied tag dic-
tionary. This expansion is simple: an unknown word
type’s set of tags is the union of all tags assigned to
its tokens. Additionally, we add the full entries of
word types given in the original tag dictionary.

3.2 Weighted model minimization

EM-HMM training depends crucially on having a
clean tag dictionary and a good starting point for the
emission distributions. Given only raw text and a
tag dictionary, these distributions are difficult to es-
timate, especially in the presence of a very sparse
or noisy tag dictionary. Ravi and Knight (2009) use
model minimization to remove tag dictionary noise
and induce tag frequency information from raw text.
Their method works by finding a minimal set of tag
bigrams needed to explain a raw corpus.

Model minimization is a natural fit for our system
since we start with little or no frequency informa-
tion and automatic dictionary expansion introduces

noise. We extend the greedy model minimization
procedure of Ravi et al. (2010), and its enhance-
ments by Garrette and Baldridge (2012), to develop
a novel weighted minimization procedure that uses
the tag weights from LP to find a minimal model
that is biased toward keeping tag bigrams that have
consistently high weights across the entire corpus.
The new weighted minimization procedure fits well
in our pipeline by allowing us to carry the tag dis-
tributions forward from LP instead of simply throw-
ing that information away and using a traditional tag
dictionary.

In brief, the procedure works by creating a graph
such that each possible tag of each raw-corpus token
is a vertex (see Figure 2). Any edge that would con-
nect two tags of adjacent tokens is a potential tag bi-
gram choice. The algorithm first selects tag bigrams
until every token is covered by at least one bigram,
then selects tag bigrams that fill gaps between exist-
ing edges until there is a complete bigram path for
every sentence in the raw corpus.8

Ravi et al. (2010) select tag bigrams that cover
the most new words (stage 1) or fill the most holes
in the tag paths (stage 2). Garrette and Baldridge
(2012) introduced the tie-breaking criterion that bi-
gram choices should seek to introduce the small-
est number of new word/tag pairs possible into the
paths. Our criteria adds to this by using the tag
weights on each token: a tag bigram b is chosen by
summing up the node weights of any not-yet cov-
ered words touched by the tag bigram b, dividing
this sum by one plus the number of new word/tag
pairs that would be added by b, and choosing the b
that maximizes this value.9

Summing node weights captures the intuition of
Ravi et al. (2010) that good bigrams are those which
have high coverage of new words: each newly cov-
ered node contributes additional (partial) counts.
However, by using the weights instead of full counts,
we also account for the confidence assigned by LP.
Dividing by the number of new word/tag pairs added
focuses on bigrams that reuse existing tags for words

8Ravi et al. (2010) include a third phase of iterative model
fitting; however, we found this stage to be not only expensive,
but also unhelpful because it frequently yields negative results.

9In the case of token-supervision, we pre-select all tag bi-
grams appearing in the labeled corpus since these are assumed
to be known high-quality tag bigrams and word/tag pairs.
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and thereby limits the addition of new tags for each
word type.

At the start of model minimization, there are no
selected tag bigrams, and thus no valid path through
any sentence in the corpus. As bigrams are selected,
we can begin to cover subsequences and eventually
full sentences. There may be multiple valid taggings
for a sentence, so after each new bigram is selected,
we run the Viterbi algorithm over the raw corpus us-
ing the set of selected tag bigrams as a hard con-
straint on the allowable transitions. This efficiently
identifies the highest-weight path through each sen-
tence, if one exists. If such a path is found, we re-
move the sentence from the corpus and store the tags
from the Viterbi tagging. The algorithm terminates
when a path is found for every raw corpus sentence.
The result of weighted model minimization is this
set of tag paths. Since each path represents a valid
tagging of the sentence, we use this output as a nois-
ily labeled corpus for initializing EM in stage three.

3.3 Tagger training

Stage one provides an expansion of the initial la-
beled data and stage two turns that into a corpus of
noisily labeled sentences. Stage three uses the EM

algorithm initialized by the noisy labeling and con-
strained by the expanded tag dictionary to produce
an HMM.10 The initial distributions are smoothed
with one-count smoothing (Chen and Goodman,
1996). If human-tagged sentences are available as
training data, then we use their counts to supplement
the noisy labeled text for initialization and we add
their counts into every iteration’s result.

The HMM produced by stage three is not used
directly for tagging since it will contain zero-
probabilities for test-corpus words that were unseen
during training. Instead, we use it to provide a
Viterbi labeling of the raw corpus, following the
“auto-supervision” step of Garrette and Baldridge
(2012). This material is then concatenated with the
token-supervised corpus (when available), and used
to train a Maximum Entropy Markov Model tag-
ger.11 The MEMM exploits subword features and

10An added benefit of this strategy is that the EM algorithm
with the expanded dictionary runs much more quickly than
without it since it does not have to consider every possible tag
for unknown words, averaging 20x faster on PTB experiments.

11We use OpenNLP: opennlp.apache.org.

generally produces 1-2% better results than an HMM

trained on the same material.

4 Experiments12

Experimental results are shown in Table 2. Each ex-
periment starts with an initial data set provided by
annotator A or B. Experiment (1) simply uses EM

with the initial small tag dictionary to learn a tag-
ger from the raw corpus. (2) uses LP to infer an ex-
panded tag dictionary and tag distributions over raw
corpus tokens, but then takes the highest-weighted
tag from each token for use as noisily-labeled train-
ing data to initialize EM. (3) performs greedy model-
minimization on the LP output to derive that noisily-
labeled corpus. Finally, (4) is the same as (3), but
additionally uses external dictionary nodes in the LP

graph. In the case of token-supervision, we also in-
clude (0), in which we simply used the tagged sen-
tences as supervised data for an HMM without EM

(followed by MEMM training).
The results show that performance improves with

our LP and minimization techniques compared to
basic EM-HMM training. LP gives large across-the-
board improvements over EM training with only the
original tag dictionary (compare columns 1 & 2).
Weighted model minimization further improves re-
sults for type-supervision settings, but not for token
supervision (compare 2 & 3).

Using an external dictionary in the LP graph has
little effect for KIN, probably due to the available
dictionary’s very small size. However, MLG with
its larger dictionary obtains an improvement in both
scenarios. Results on ENG are mixed; this may be
because the PTB tagset has 45 tags (far more than
the dictionary) so the external dictionary nodes in
the LP graph may consequently serve to collapse dis-
tinctions (e.g. singular and plural) in the larger set.

Our results show differences between token- and
type-supervised annotations. Tag dictionary expan-
sion is helpful no matter what the annotations look
like: in both cases, the initial dictionary is too
small for effective EM learning, so expansion is nec-
essary. However, model minimization only ben-
efits the type-supervised scenarios, leaving token-
supervised performance unchanged. This suggests

12Our code is available at github.com/dhgarrette/
low-resource-pos-tagging-2013
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Human Annotations 0. No EM 1. EM only 2. With LP 3. LP+min 4. LP(ed)+min
Initial data T K U T K U T K U T K U T K U

KIN tokens A 72 90 58 55 82 32 71 86 58 71 86 58 71 86 58
KIN types A 63 77 32 78 83 69 79 83 70 79 83 70
MLG tokens B 74 89 49 68 87 39 74 89 49 74 89 49 76 90 53
MLG types B 71 87 46 72 81 57 74 86 56 76 86 60
ENG tokens A 63 83 38 62 83 37 72 85 55 72 85 55 72 85 56
ENG types A 66 76 37 75 81 56 76 83 56 74 81 55
ENG tokens B 70 87 44 70 87 43 78 90 60 78 90 60 78 89 61
ENG types B 69 83 38 75 82 61 78 85 61 78 86 61

Table 2: Experimental results. Three languages are shown: Kinyarwanda (KIN), Malagasy (MLG), and
English (ENG). The letters A and B refer to the annotator. LP(ed) refers to label propagation including nodes
from an external dictionary. Each result given as percentages for Total (T), Known (K), and Unknown (U).

that minimization is working as intended: it induces
frequency information when none is provided. With
token-supervision, the annotator provides some in-
formation about which tag transitions are best and
which emissions are most likely. This is miss-
ing with type-supervision, so model minimization is
needed to bootstrap word/tag frequency guesses.

This leads to perhaps our most interesting result:
in a time-critical annotation scenario, it seems better
to collect a simple tag dictionary than tagged sen-
tences. While the tagged sentences certainly contain
useful information regarding tag frequencies, our
techniques can learn this missing information auto-
matically. Thus, having wider coverage of word type
information, and having that information be focused
on the most frequent words, is more important. This
can be seen as a validation of the last two decades
of work on (simulated) type-supervision learning for
POS-tagging—with the caveat that the additional ef-
fort we do is needed to realize the benefit.

Our experiments also allow us to compare how the
data from different annotators affects the quality of
taggers learned. Looking at the direct comparison
on English data, annotator B was able to tag more
sentences than A, but A produced more tag dictio-
nary entries in the type-supervision scenario. How-
ever, it appears, based on the EM-only training, that
the annotations provided by B were of higher quality
and produced more accurate taggers in both scenar-
ios. Regardless, our full training procedure is able
to substantially improve results in all scenarios.

Table 3 gives the recall and precision of the tag

Tag Dictionary Source R P
(1) human-annotated TD 18.42 29.33
(2) LP output 35.55 2.62
(3) model min output 30.49 4.63

Table 3: Recall (R) and precision (P) for tag dictio-
naries versus the test data in a “MLG types B” run.

dictionaries for MLG for settings 1, 2 and 3. The ini-
tial, human-provided tag dictionary unsurprisingly
has the highest precision and lowest recall. LP ex-
pands that data to greatly improve recall with a large
drop in precision. Minimization culls many entries
and improves precision with a small relative loss in
recall. Of course, this is only a rough indicator of
the quality of the tag dictionaries since the word/tag
pairs of the test set only partially overlap with the
raw training data and annotations.

Because gold-standard annotations are available
for the English sentences, we also ran oracle ex-
periments using labels from the PTB corpus (es-
sentially, the kind of data used in previous work).
We selected the same amount of labeled tokens or
word/tag pairs as were obtained by the annotators.
We found similar patterns of improved performance
by using LP expansion and model minimization,
and all accuracies are improved compared to their
human-annotator equivalents (about 2-6%). Overall
accuracy for both type and token supervision comes
to 78-80%.
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#Errors 11k 6k 5k 4k 3k
Gold TO NNP NN JJ NNP
Model IN NN JJ NN JJ

Table 4: Top errors from an “ENG types B” run.

Error Analysis One potential source of errors
comes directly from the annotators themselves.
Though our approach is designed to be robust to an-
notation errors, it cannot correct all mistakes. For
example, for the “ENG types B” experiment, the an-
notator listed IN (preposition) as the only tag for
word type “to”. However, the test set only ever as-
signs tag TO for this type. This single error accounts
for a 2.3% loss in overall tagging accuracy (Table 4).

In many situations, however, we are able to auto-
matically remove improbable tag dictionary entries,
as shown in Table 5. Consider the word type “for”.
The annotator has listed RP (particle) as a potential
tag, but only five out of 4k tokens have this tag. With
RP included, EM becomes confused and labels a ma-
jority of the tokens as RP when nearly all should be
labeled IN. We are able to eliminate RP as a possi-
bility, giving excellent overall accuracy for the type.
Likewise for the comma type, the annotator has in-
correctly given “:” as a valid tag, and LP, which
uses the tag dictionary, pushes this label to many to-
kens with high confidence. However, minimization
is able to correct the problem.

Finally, the word type “opposition” provides an
example of the expected behavior for unknown
words. The type is not in the tag dictionary, so
EM assumes all tags are valid and uses many labels.
LP expands the starting dictionary to cover the type,
limiting it to only two tags. Minimization then de-
termines that NN is the best tag for each token.

5 Related work

Goldberg et al. (2008) trained a tagger for Hebrew
using a manually-created lexicon which was not de-
rived from an annotated corpus. However, their lexi-
con was constructed by trained lexicographers over a
long period of time and achieves very high coverage
of the language with very good quality. In contrast,
our annotated data was created by untrained linguis-
tics students working alone for just two hours.

Cucerzan and Yarowsky (2002) learn a POS-

for *IN *RP JJ NN CD
(1) EM 1,221 2764 9 5
(2) LP 4,003
(3) min 4,004 1
gold 3,999 5
, (comma) *, *: JJS PTD VBP
(1) EM 24,708 4 3 3
(2) LP 15,505 9226 1
(3) min 24,730
gold 24,732
opposition NN JJ DT NNS VBP
(1) EM 24 4 1 4 4
(2) LP 41 4
(3) min 45
gold 45

Table 5: Tag assignments in different scenarios. A
star indicates an entry in the human-provided TD.

tagger from existing linguistic resources, namely a
dictionary and a reference grammar, but these re-
sources are not available, much less digitized, for
most under-studied languages.

Subramanya et al. (2010) apply LP to the prob-
lem of tagging for domain adaptation. They con-
struct an LP graph that connects tokens in low- and
high-resource domains, and propagate labels from
high to low. This approach addresses the prob-
lem of learning appropriate tags for unknown words
within a language, but it requires that the language
have at least one high-resource domain as a source
of high quality information. For low-resource lan-
guages that have no significant annotated resources
available in any domain, this technique cannot be
applied.

Das and Petrov (2011) and Täckström et al.
(2013) learn taggers for languages in which there
are no POS-annotated resources, but for which par-
allel texts are available between that language and a
high-resource language. They project tag informa-
tion from the high-resource language to the lower-
resource language via alignments in the parallel text.
However, large parallel corpora are not available for
most low-resource languages. These are also ex-
pensive resources to create and would take consid-
erably more effort to produce than the monolingual
resources that our annotators were able to generate
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in a two-hour timeframe. Of course, if they are avail-
able, such parallel text links could be incorporated
into our approach.

Furthermore, their approaches require the use of
a universal tag set shared between both languages.
As such, their approach is only able to induce POS

tags for the low-resource language if the same tag
set is used to tag the high-resource language. Our
approach does not rely on any such universal tag
set; we learn whichever tags the human annotator
chooses to use when they provide their annotations.
In fact, in our experiments we learn much more de-
tailed tag sets than the fairly coarse universal tag set
used by Das and Petrov (2011) or Täckström et al.
(2013): we learn a tagger for the full Penn Treebank
tag set of 45 tags versus the 12 tags in the universal
set.

Ding (2011) constructed an LP graph for learning
POS tags on Chinese text by propagating labels from
an initial tag dictionary to a larger set of data. This
LP graph contained Wiktionary word/POS relation-
ships as features as well as Chinese-English word
alignment information and used it to directly esti-
mate emission probabilities to initialize an EM train-
ing of an HMM.

Li et al. (2012) train an HMM using EM and an
initial tag dictionary derived from Wiktionary. Like
Das and Petrov (2011), they use a universal POS tag
set, so Wiktionary can be directly applied as a wide-
coverage tag dictionary in their case. Additionally,
they evaluate their approach on languages for which
Wiktionary has high coverage—which would cer-
tainly not get far with Kinyarwanda (9 entries). Our
approach does not rely on a high-coverage tag dic-
tionary nor is it restricted to use with a small tag set.

6 Conclusions and future work

With just two hours of annotation, we obtain 71-78%
accuracy for POS-tagging across three languages us-
ing both type and token supervision. Without tag
dictionary expansion and model minimization, per-
formance is much worse, from 63-74%. We dramat-
ically improve performance on unknown words: the
range of 37-58% improves to 53-70%.

We also have a provisional answer to whether an-
notation should be on types or tokens: use type-
supervision if you also expand and minimize. These

methods can identify missing word/tag entries and
estimate frequency information, and they produce as
good or better results compared to starting with to-
ken supervision. The case of Kinyarwanda was most
dramatic: 71% accuracy for token-supervision com-
pared to 79% for type-supervision. Studies using
more annotators and across more languages would
be necessary to make any stronger claim about the
relative efficacy of the two strategies.
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Abstract

Latent-variable PCFGs (L-PCFGs) are a
highly successful model for natural language
parsing. Recent work (Cohen et al., 2012)
has introduced a spectral algorithm for param-
eter estimation of L-PCFGs, which—unlike
the EM algorithm—is guaranteed to give con-
sistent parameter estimates (it has PAC-style
guarantees of sample complexity). This paper
describes experiments using the spectral algo-
rithm. We show that the algorithm provides
models with the same accuracy as EM, but is
an order of magnitude more efficient. We de-
scribe a number of key steps used to obtain
this level of performance; these should be rel-
evant to other work on the application of spec-
tral learning algorithms. We view our results
as strong empirical evidence for the viability
of spectral methods as an alternative to EM.

1 Introduction

Latent-variable PCFGS (L-PCFGs) are a highly suc-
cessful model for natural language parsing (Mat-
suzaki et al., 2005; Petrov et al., 2006). Recent
work (Cohen et al., 2012) has introduced a spectral
learning algorithm for L-PCFGs. A crucial prop-
erty of the algorithm is that it is guaranteed to pro-
vide consistent parameter estimates—in fact it has
PAC-style guarantees of sample complexity.1 This
is in contrast to the EM algorithm, the usual method
for parameter estimation in L-PCFGs, which has the
weaker guarantee of reaching a local maximum of
the likelihood function. The spectral algorithm is
relatively simple and efficient, relying on a singular
value decomposition of the training examples, fol-
lowed by a single pass over the data where parame-
ter values are calculated.

Cohen et al. (2012) describe the algorithm, and
the theory behind it, but as yet no experimental re-
sults have been reported for the method. This paper

1under assumptions on certain singular values in the model;
see section 2.3.1.

describes experiments on natural language parsing
using the spectral algorithm for parameter estima-
tion. The algorithm provides models with slightly
higher accuracy than EM (88.05% F-measure on test
data for the spectral algorithm, vs 87.76% for EM),
but is an order of magnitude more efficient (9h52m
for training, compared to 187h12m, a speed-up of
19 times).

We describe a number of key steps in obtain-
ing this level of performance. A simple backed-off
smoothing method is used to estimate the large num-
ber of parameters in the model. The spectral algo-
rithm requires functions mapping inside and outside
trees to feature vectors—we make use of features
corresponding to single level rules, and larger tree
fragments composed of two or three levels of rules.
We show that it is important to scale features by their
inverse variance, in a manner that is closely related
to methods used in canonical correlation analysis.
Negative values can cause issues in spectral algo-
rithms, but we describe a solution to these problems.

In recent work there has been a series of results in
spectral learning algorithms for latent-variable mod-
els (Vempala and Wang, 2004; Hsu et al., 2009;
Bailly et al., 2010; Siddiqi et al., 2010; Parikh et
al., 2011; Balle et al., 2011; Arora et al., 2012;
Dhillon et al., 2012; Anandkumar et al., 2012). Most
of these results are theoretical (although see Luque
et al. (2012) for empirical results of spectral learn-
ing for dependency parsing). While the focus of
our experiments is on parsing, our findings should
be relevant to the application of spectral methods to
other latent-variable models. We view our results as
strong empirical evidence for the viability of spec-
tral methods as an alternative to EM.

2 Background

In this section we first give basic definitions for L-
PCFGs, and then describe the spectral learning algo-
rithm of Cohen et al. (2012).
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2.1 L-PCFGs: Basic Definitions
We follow the definition in Cohen et al. (2012)
of L-PCFGs. An L-PCFG is an 8-tuple
(N , I,P,m, n, π, t, q) where:

• N is the set of non-terminal symbols in the
grammar. I ⊂ N is a finite set of in-terminals.
P ⊂ N is a finite set of pre-terminals. We as-
sume thatN = I∪P , and I∩P = ∅. Hence we
have partitioned the set of non-terminals into
two subsets.

• [m] is the set of possible hidden states.2

• [n] is the set of possible words.

• For all a ∈ I, b, c ∈ N , h1, h2, h3 ∈
[m], we have a context-free rule a(h1) →
b(h2) c(h3). The rule has an associated pa-
rameter t(a→ b c, h2, h3|a, h1).

• For all a ∈ P , h ∈ [m], x ∈ [n], we have a
context-free rule a(h) → x. The rule has an
associated parameter q(a→ x|a, h).

• For all a ∈ I, h ∈ [m], π(a, h) is a parameter
specifying the probability of a(h) being at the
root of a tree.

A skeletal tree (s-tree) is a sequence of rules
r1 . . . rN where each ri is either of the form a→ b c
or a→ x. The rule sequence forms a top-down, left-
most derivation under a CFG with skeletal rules.

A full tree consists of an s-tree r1 . . . rN , together
with values h1 . . . hN . Each hi is the value for
the hidden variable for the left-hand-side of rule ri.
Each hi can take any value in [m].

For a given skeletal tree r1 . . . rN , define ai to be
the non-terminal on the left-hand-side of rule ri. For
any i ∈ [N ] such that ri is of the form a→ b c, de-
fine h(2)

i and h(3)
i as the hidden state value of the left

and right child respectively. The model then defines
a probability mass function (PMF) as

p(r1 . . . rN , h1 . . . hN ) =

π(a1, h1)
∏

i:ai∈I
t(ri, h

(2)
i , h

(3)
i |ai, hi)

∏
i:ai∈P

q(ri|ai, hi)

The PMF over skeletal trees is p(r1 . . . rN ) =∑
h1...hN

p(r1 . . . rN , h1 . . . hN ).

2For any integer n, we use [n] to denote the set {1, 2, . . . n}.

The parsing problem is to take a sentence as in-
put, and produce a skeletal tree as output. A stan-
dard method for parsing with L-PCFGs is as follows.
First, for a given input sentence x1 . . . xn, for any
triple (a, i, j) such that a ∈ N and 1 ≤ i ≤ j ≤ n,
the marginal µ(a, i, j) is defined as

µ(a, i, j) =
∑

t:(a,i,j)∈t

p(t) (1)

where the sum is over all skeletal trees t for
x1 . . . xn that include non-terminal a spanning
words xi . . . xj . A variant of the inside-outside
algorithm can be used to calculate marginals.
Once marginals have been computed, Good-
man’s algorithm (Goodman, 1996) is used to find
arg maxt

∑
(a,i,j)∈t µ(a, i, j).3

2.2 The Spectral Learning Algorithm
We now give a sketch of the spectral learning algo-
rithm. The training data for the algorithm is a set
of skeletal trees. The output from the algorithm is a
set of parameter estimates for t, q and π (more pre-
cisely, the estimates are estimates of linearly trans-
formed parameters; see Cohen et al. (2012) and sec-
tion 2.3.1 for more details).

The algorithm takes two inputs in addition to the
set of skeletal trees. The first is an integer m, speci-
fying the number of latent state values in the model.
Typically m is a relatively small number; in our ex-
periments we test values such as m = 8, 16 or 32.
The second is a pair of functions φ and ψ, that re-
spectively map inside and outside trees to feature
vectors in Rd and Rd′ , where d and d′ are integers.
Each non-terminal in a skeletal tree has an associ-
ated inside and outside tree. The inside tree for a
node contains the entire subtree below that node; the
outside tree contains everything in the tree excluding
the inside tree. We will refer to the node above the
inside tree that has been removed as the “foot” of the
outside tree. See figure 1 for an example.

Section 3.1 gives definitions of φ(t) and ψ(o)
used in our experiments. The definitions of φ(t) and

3In fact, in our implementation we calculate marginals
µ(a→ b c, i, k, j) for a, b, c ∈ N and 1 ≤ i ≤ k < j, and
µ(a, i, i) for a ∈ N , 1 ≤ i ≤ n, then apply the CKY algorithm
to find the parse tree that maximizes the sum of the marginals.
For simplicity of presentation we will refer to marginals of the
form µ(a, i, j) in the remainder of this paper.
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Figure 1: The inside tree (shown left) and out-
side tree (shown right) for the non-terminal VP
in the parse tree [S [NP [D the ] [N cat]]
[VP [V saw] [NP [D the] [N dog]]]]

ψ(o) are typically high-dimensional, sparse feature
vectors, similar to those in log-linear models. For
example φ might track the rule immediately below
the root of the inside tree, or larger tree fragments;
ψ might include similar features tracking rules or
larger rule fragments above the relevant node.

The spectral learning algorithm proceeds in two
steps. In step 1, we learn an m-dimensional rep-
resentation of inside and outside trees, using the
functions φ and ψ in combination with a projection
step defined through singular value decomposition
(SVD). In step 2, we derive parameter estimates di-
rectly from training examples.

2.2.1 Step 1: An SVD-Based Projection
For a given non-terminal a ∈ N , each instance of

a in the training data has an associated outside tree,
and an associated inside tree. We define Oa to be
the set of pairs of inside/outside trees seen with a in
the training data: each member of Oa is a pair (o, t)
where o is an outside tree, and t is an inside tree.

Step 1 of the algorithm is then as follows:

1. For each a ∈ N calculate Ω̂a ∈ Rd×d′ as

[Ω̂a]i,j =
1

|Oa|
∑

(o,t)∈Oa

φi(t)ψj(o)

2. Perform an SVD on Ω̂a. Define Ua ∈ Rd×m

(V a ∈ Rd′×m) to be a matrix containing the
m left (right) singular vectors corresponding
to the m largest singular values; define Σa ∈
Rm×m to be the diagonal matrix with the m
largest singular values on its diagonal.

3. For each inside tree in the corpus with root la-
bel a, define

Y (t) = (Ua)>φ(t)

For each outside tree with a foot node labeled
a, define

Z(o) = (Σa)−1(V a)>ψ(o)

Note that Y (t) and Z(o) are both m-dimensional
vectors; thus we have used SVD to project inside
and outside trees to m-dimensional vectors.

2.3 Step 2: Parameter Estimation
We now describe how the functions Y (t) and Z(o)
are used in estimating parameters of the model.
First, consider the t(a→ b c, h2, h3|a, h1) parame-
ters. Each instance of a given rule a→ b c in the
training corpus has an outside tree o associated with
the parent labeled a, and inside trees t2 and t3 as-
sociated with the children labeled b and c. For any
rule a→ b cwe defineQa→b c to be the set of triples
(o, t(2), t(3)) occurring with that rule in the corpus.
The parameter estimate is then

ĉ(a→ b c, j, k|a, i) =
count(a→ b c)

count(a)
× Ea→b c

i,j,k

(2)

where

Ea→b c
i,j,k =

∑
(o,t(2),t(3))

∈Qa→b c

Zi(o)× Yj(t(2))× Yk(t(3))

|Qa→b c|

Here we use count(a→ b c) and count(a) to refer
to the count of the rule a→ b c and the non-terminal
a in the corpus. Note that once the SVD step has
been used to compute representations Y (t) andZ(o)
for each inside and outside tree in the corpus, calcu-
lating the parameter value ĉ(a→ b c, j, k|a, i) is a
very simple operation.

Similarly, for any rule a → x, define Qa→x to
be the set of outside trees seen with that rule in the
training corpus. The parameter estimate is then

ĉ(a→ x|a, i) =
count(a→ x)

count(a)
× Ea→x

i (3)

where Ea→x
i =

∑
o∈Qa→x Zi(o)/|Qa→x|.

A similar method is used for estimating parame-
ters ĉ(a, i) that play the role of the π parameters (de-
tails omitted for brevity; see Cohen et al. (2012)).

2.3.1 Guarantees for the Algorithm
Once the ĉ(a→ b c, j, k|a, i), ĉ(a→ x|a, i) and

ĉ(a, i) parameters have been estimated from the
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training corpus, they can be used in place of the t,
q and π parameters in the inside-outside algorithm
for computing marginals (see Eq. 1). Call the re-
sulting marginals µ̂(a, i, j). The guarantees for the
parameter estimation method are as follows:

• Define Ωa = E[φ(T )(ψ(O))>|A = a] where
A,O, T are random variables corresponding to
the non-terminal label at a node, the outside
tree, and the inside tree (see Cohen et al. (2012)
for a precise definition). Note that Ω̂a, as de-
fined above, is an estimate of Ωa. Then if Ωa

has rank m, the marginals µ̂ will converge to
the true values µ as the number of training ex-
amples goes to infinity, assuming that the train-
ing samples are i.i.d. samples from an L-PCFG.

• Define σ to be the m’th largest singular value
of Ωa. Then the number of samples required
for µ̂ to be ε-close to µ with probability at least
1− δ is polynomial in 1/ε, 1/δ, and 1/σ.

Under the first assumption, (Cohen et al.,
2012) show that the ĉ parameters converge to
values that are linear transforms of the orig-
inal parameters in the L-PCFG. For example,
define c(a→ b c, j, k|a, i) to be the value that
ĉ(a→ b c, j, k|a, i) converges to in the limit of infi-
nite data. Then there exist invertible matrices Ga ∈
Rm×m for all a ∈ N such that for any a→ b c, for
any h1, h2, h3 ∈ Rm,

t(a→ b c, h2, h3|a, h1) =∑
i,j,k

[Ga]i,h1
[(Gb)−1]j,h2

[(Gc)−1]k,h3
c(a→ b c, j, k|a, i)

The transforms defined by the Ga matrices are be-
nign, in that they cancel in the inside-outside algo-
rithm when marginals µ(a, i, j) are calculated. Sim-
ilar relationships hold for the π and q parameters.

3 Implementation of the Algorithm

Cohen et al. (2012) introduced the spectral learning
algorithm, but did not perform experiments, leaving
several choices open in how the algorithm is imple-
mented in practice. This section describes a number
of key choices made in our implementation of the
algorithm. In brief, they are as follows:

The choice of functions φ and ψ. We will de-
scribe basic features used in φ and ψ (single-level
rules, larger tree fragments, etc.). We will also de-
scribe a method for scaling different features in φ
and ψ by their variance, which turns out to be im-
portant for empirical results.

Estimation ofEa→b c
i,j,k andEa→x

i . There are a very
large number of parameters in the model, lead-
ing to challenges in estimation. The estimates in
Eqs. 2 and 3 are unsmoothed. We describe a simple
backed-off smoothing method that leads to signifi-
cant improvements in performance of the method.

Handling positive and negative values. As de-
fined, the ĉ parameters may be positive or negative;
as a result, the µ̂ values may also be positive or neg-
ative. We find that negative values can be a signif-
icant problem if not handled correctly; but with a
very simple fix to the algorithm, it performs well.

We now turn to these three issues in more detail.
Section 4 will describe experiments measuring the
impact of the different choices.

3.1 The Choice of Functions φ and ψ
Cohen et al. (2012) show that the choice of feature
definitions φ and ψ is crucial in two respects. First,
for all non-terminals a ∈ N , the matrix Ωa must
be of rank m: otherwise the parameter-estimation
algorithm will not be consistent. Second, the num-
ber of samples required for learning is polynomial
in 1/σ, where σ = mina∈N σm(Ωa), and σm(Ωa)
is the m’th smallest singular value of Ωa. (Note that
the second condition is stronger than the first; σ > 0
implies that Ωa is of rank m for all a.) The choice
of φ and ψ has a direct impact on the value for σ:
roughly speaking, the value for σ can be thought of
as a measure of how informative the functions φ and
ψ are about the hidden state values.

With this in mind, our goal is to define a rel-
atively simple set of features, which nevertheless
provide significant information about hidden-state
values, and hence provide high accuracy under the
model. The inside-tree feature function φ(t) makes
use of the following indicator features (throughout
these definitions assume that a→ b c is at the root
of the inside tree t):
• The pair of nonterminals (a, b). E.g., for the in-

side tree in figure 1 this would be the pair (VP, V).
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• The pair (a, c). E.g., (VP, NP).
• The rule a→ b c. E.g., VP → V NP.
• The rule a→ b c paired with the rule at the

root of t(i,2). E.g., for the inside tree in fig-
ure 1 this would correspond to the tree fragment
(VP (V saw) NP).
• The rule a→ b c paired with the rule at

the root of t(i,3). E.g., the tree fragment
(VP V (NP D N)).
• The head part-of-speech of t(i,1) paired with a.4

E.g., the pair (VP, V).
• The number of words dominated by t(i,1) paired

with a (this is an integer valued feature).
In the case of an inside tree consisting of a single

rule a→ x the feature vector simply indicates the
identity of that rule.

To illustrate the function ψ, it will be useful to
make use of the following example outside tree:

S

NP

D

the

N

cat

VP

V

saw

NP

D N

dog

Note that in this example the foot node of the out-
side tree is labeled D. The features are as follows:
• The rule above the foot node. We take care

to mark which non-terminal is the foot, using a
* symbol. In the above example this feature is
NP → D∗ N.
• The two-level and three-level rule fragments

above the foot node. In the above example these fea-
tures would be

VP

V NP

D∗ N

S

NP VP

V NP

D∗ N

• The label of the foot node, together with the
label of its parent. In the above example this is
(D, NP).
• The label of the foot node, together with the la-

bel of its parent and grandparent. In the above ex-
ample this is (D, NP, VP).
• The part of speech of the first head word along

the path from the foot of the outside tree to the root
of the tree which is different from the head node of

4We use the English head rules from the Stanford parser
(Klein and Manning, 2003).

the foot node. In the above example this is N.
• The width of the span to the left of the foot node,

paired with the label of the foot node.
• The width of the span to the right of the foot

node, paired with the label of the foot node.

Scaling of features. The features defined above
are almost all binary valued features. We scale the
features in the following way. For each feature φi(t),
define count(i) to be the number of times the feature
is equal to 1, and M to be the number of training
examples. The feature is then redefined to be

φi(t)×

√
M

count(i) + κ

where κ is a smoothing term (the method is rela-
tively insensitive to the choice of κ; we set κ = 5 in
our experiments). A similar process is applied to the
ψ features. The method has the effect of decreasing
the importance of more frequent features in the SVD
step of the algorithm.

The SVD-based step of the algorithm is very
closely related to previous work on CCA (Hotelling,
1936; Hardoon et al., 2004; Kakade and Foster,
2009); and the scaling step is derived from previ-
ous work on CCA (Dhillon et al., 2011). In CCA
the φ and ψ vectors are “whitened” in a preprocess-
ing step, before an SVD is applied. This whiten-
ing process involves calculating covariance matrices
Cx = E[φφ>] and Cy = E[ψψ>], and replacing φ
by (Cx)−1/2φ and ψ by (Cy)−1/2ψ. The exact cal-
culation of (Cx)−1/2 and (Cy)−1/2 is challenging in
high dimensions, however, as these matrices will not
be sparse; the transformation described above can
be considered an approximation where off-diagonal
members of Cx and Cy are set to zero. We will see
that empirically this scaling gives much improved
accuracy.

3.2 Estimation of Ea→b c
i,j,k and Ea→x

i

The number of Ea→b c
i,j,k parameters is very large,

and the estimation method described in Eqs. 2–3 is
unsmoothed. We have found significant improve-
ments in performance using a relatively simple back-
off smoothing method. The intuition behind this
method is as follows: given two random variablesX
and Y , under the assumption that the random vari-
ables are independent, E[XY ] = E[X] × E[Y ]. It
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makes sense to define “backed off” estimates which
make increasingly strong independence assumptions
of this form.

Smoothing of binary rules For any rule a→ b c
and indices i, j ∈ [m] we can define a second-order
moment as follows:

Ea→b c
i,j,· =

∑
(o,t(2),t(3))

∈Qa→b c

Zi(o)× Yj(t
(2))

|Qa→b c|

The definitions ofEa→b c
i,·,k andEa→b c

·,j,k are analogous.
We can define a first-order estimate as follows:

Ea→b c
·,·,k =

∑
(o,t(2),t(3))

∈Qa→b c

Yk(t(3))

|Qa→b c|

Again, we have analogous definitions of Ea→b c
i,·,· and

Ea→b c
·,j,· . Different levels of smoothed estimate can

be derived from these different terms. The first is

E2,a→b c
i,j,k =

Ea→b c
i,j,· × Ea→b c

·,·,k + Ea→b c
i,·,k × Ea→b c

·,j,· + Ea→b c
·,j,k × Ea→b c

i,·,·

3

Note that we give an equal weight of 1/3 to each of
the three backed-off estimates seen in the numerator.
A second smoothed estimate is

E3,a→b c
i,j,k = Ea→b c

i,·,· × Ea→b c
·,j,· × Ea→b c

·,·,k

Using the definition of Oa given in section 2.2.1, we
also define

F a
i =

∑
(o,t)∈Oa Yi(t)

|Oa|
Ha

i =

∑
(o,t)∈Oa Zi(o)

|Oa|

and our next smoothed estimate asE4,a→b c
i,j,k = Ha

i ×
F b

j × F c
k .

Our final estimate is

λEa→b c
i,j,k + (1− λ)

(
λE2,a→b c

i,j,k + (1− λ)Ka→b c
i,j,k

)
where Ka→b c

i,j,k = λE3,a→b c
i,j,k + (1− λ)E4,a→b c

i,j,k .
Here λ ∈ [0, 1] is a smoothing parameter, set to√
|Qa→b c|/(C +

√
|Qa→b c|) in our experiments,

where C is a parameter that is chosen by optimiza-
tion of accuracy on a held-out set of data.

Smoothing lexical rules We define a similar
method for the Ea→x

i parameters. Define

Ea
i =

∑
x′
∑

o∈Qa→x′ Zi(o)∑
x′ |Qa→x′ |

hence Ea
i ignores the identity of x in making its es-

timate. The smoothed estimate is then defined as
νEa→x

i +(1−ν)Ea
i . Here, ν is a value in [0, 1] which

is tuned on a development set. We only smooth lex-
ical rules which appear in the data less than a fixed
number of times. Unlike binary rules, for which the
estimation depends on a high order moment (third
moment), the lexical rules use first-order moments,
and therefore it is not required to smooth rules with
a relatively high count. The maximal count for this
kind of smoothing is set using a development set.

3.3 Handling Positive and Negative Values
As described before, the parameter estimates may
be positive or negative, and as a result the
marginals computed by the algorithm may in some
cases themselves be negative. In early exper-
iments we found this to be a signficant prob-
lem, with some parses having a very large num-
ber of negatives, and being extremely poor in qual-
ity. Our fix is to define the output of the parser
to be arg maxt

∑
(a,i,j)∈t |µ(a, i, j)| rather than

arg maxt
∑

(a,i,j)∈t µ(a, i, j) as defined in Good-
man’s algorithm. Thus if a marginal value µ(a, i, j)
is negative, we simply replace it with its absolute
value. This step was derived after inspection of the
parsing charts for bad parses, where we saw evi-
dence that in these cases the entire set of marginal
values had been negated (and hence decoding under
Eq. 1 actually leads to the lowest probability parse
being output under the model). We suspect that this
is because in some cases a dominant parameter has
had its sign flipped due to sampling error; more the-
oretical and empirical work is required in fully un-
derstanding this issue.

4 Experiments

In this section we describe parsing experiments us-
ing the L-PCFG estimation method. We give com-
parisons to the EM algorithm, considering both
speed of training, and accuracy of the resulting
model; we also give experiments investigating the
various choices described in the previous section.
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We use the Penn WSJ treebank (Marcus et al.,
1993) for our experiments. Sections 2–21 were
used as training data, and sections 0 and 22 were
used as development data. Section 23 is used as
the final test set. We binarize the trees in train-
ing data using the same method as that described in
Petrov et al. (2006). For example, the non-binary
rule VP → V NP PP SBAR would be converted
to the structure [VP [@VP [@VP V NP] PP]
SBAR] where @VP is a new symbol in the grammar.
Unary rules are removed by collapsing non-terminal
chains: for example the unary rule S → VP would
be replaced by a single non-terminal S|VP.

For the EM algorithm we use the initialization
method described in Matsuzaki et al. (2005). For ef-
ficiency, we use a coarse-to-fine algorithm for pars-
ing with either the EM or spectral derived gram-
mar: a PCFG without latent states is used to calcu-
late marginals, and dynamic programming items are
removed if their marginal probability is lower than
some threshold (0.00005 in our experiments).

For simplicity the parser takes part-of-speech
tagged sentences as input. We use automatically
tagged data from Turbo Tagger (Martins et al.,
2010). The tagger is used to tag both the devel-
opment data and the test data. The tagger was re-
trained on sections 2–21. We use the F1 measure
according to the Parseval metric (Black et al., 1991).
For the spectral algorithm, we tuned the smoothing
parameters using section 0 of the treebank.

4.1 Comparison to EM: Accuracy

We compare models trained using EM and the spec-
tral algorithm using values form in {8, 16, 24, 32}.5

For EM, we found that it was important to use de-
velopment data to choose the number of iterations
of training. We train the models for 100 iterations,
then test accuracy of the model on section 22 (devel-
opment data) at different iteration numbers. Table 1
shows that a peak level of accuracy is reached for all
values of m, other than m = 8, at iteration 20–30,
with sometimes substantial overtraining beyond that
point.

The performance of a regular PCFG model, esti-
mated using maximum likelihood and with no latent

5Lower values of m, such as 2 or 4, lead to substantially
lower performance for both models.

section 22 section 23
EM spectral EM spectral

m = 8 86.87 85.60 — —
m = 16 88.32 87.77 — —
m = 24 88.35 88.53 — —
m = 32 88.56 88.82 87.76 88.05

Table 2: Results on the development data (section 22,
with machine-generated POS tags) and test data (section
23, with machine-generated POS tags).

states, is 68.62%.
Table 2 gives results for the EM-trained models

and spectral-trained models. The spectral models
give very similar accuracy to the EM-trained model
on the test set. Results on the development set with
varying m show that the EM-based models perform
better for m = 8, but that the spectral algorithm
quickly catches up as m increases.

4.2 Comparison to EM: Training Speed
Table 3 gives training times for the EM algorithm
and the spectral algorithm for m ∈ {8, 16, 24, 32}.
All timing experiments were done on a single Intel
Xeon 2.67GHz CPU. The implementations for the
EM algorithm and the spectral algorithm were writ-
ten in Java. The spectral algorithm also made use
of Matlab for several matrix calculations such as the
SVD calculation.

For EM we show the time to train a single iter-
ation, and also the time to train the optimal model
(time for 30 iterations of training for m = 8, 16, 24,
and time for 20 iterations for m = 32). Note that
this latter time is optimistic, as it assumes an oracle
specifying exactly when it is possible to terminate
EM training with no loss in performance. The spec-
tral method is considerably faster than EM: for ex-
ample, for m = 32 the time for training the spectral
model is just under 10 hours, compared to 187 hours
for EM, a factor of almost 19 times faster.6

The reason for these speed ups is as follows.
Step 1 of the spectral algorithm (feature calculation,
transfer + scaling, and SVD) is not required by EM,
but takes a relatively small amount of time (about
1.2 hours for all values of m). Once step 1 has been
completed, step 2 of the spectral algorithm takes a

6In practice, in order to overcome the speed issue with EM
training, we parallelized the E-step on multiple cores. The spec-
tral algorithm can be similarly parallelized, computing statistics
and parameters for each nonterminal separately.
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10 20 30 40 50 60 70 80 90 100
m = 8 83.51 86.45 86.68 86.69 86.63 86.67 86.70 86.82 86.87 86.83
m = 16 85.18 87.94 88.32 88.21 88.10 87.86 87.70 87.46 87.34 87.24
m = 24 83.62 88.19 88.35 88.25 87.73 87.41 87.35 87.26 87.02 86.80
m = 32 83.23 88.56 88.52 87.82 87.06 86.47 86.38 85.85 85.75 85.57

Table 1: Results on section 22 for the EM algorithm, varying the number of iterations used. Best results in each row
are in boldface.

single EM spectral algorithm
EM iter. best model total feature transfer + scaling SVD a→ b c a→ x

m = 8 6m 3h 3h32m

22m 49m

36m 1h34m 10m
m = 16 52m 26h6m 5h19m 34m 3h13m 19m
m = 24 3h7m 93h36m 7h15m 36m 4h54m 28m
m = 32 9h21m 187h12m 9h52m 35m 7h16m 41m

Table 3: Running time for the EM algorithm and the various stages in the spectral algorithm. For EM we show the
time for a single iteration, and the time to train the optimal model (time for 30 iterations of training for m = 8, 16, 24,
time for 20 iterations of training for m = 32). For the spectral method we show the following: “total” is the total
training time; “feature” is the time to compute the φ and ψ vectors for all data points; “transfer + scaling” is time
to transfer the data from Java to Matlab, combined with the time for scaling of the features; “SVD” is the time for
the SVD computation; a→ b c is the time to compute the ĉ(a→ b c, h2, h3|a, h1) parameters; a→ x is the time to
compute the ĉ(a→ x, h|a, h) parameters. Note that “feature” and “transfer + scaling” are the same step for all values
of m, so we quote a single runtime for these steps.

single pass over the data: in contrast, EM requires
a few tens of passes (certainly more than 10 passes,
from the results in table 1). The computations per-
formed by the spectral algorithm in its single pass
are relatively cheap. In contrast to EM, the inside-
outside algorithm is not required; however various
operations such as calculating smoothing terms in
the spectral method add some overhead. The net re-
sult is that form = 32 the time for training the spec-
tral method takes a very similar amount of time to a
single pass of the EM algorithm.

4.3 Smoothing, Features, and Negatives

We now describe experiments demonstrating the im-
pact of various components described in section 3.

The effect of smoothing (section 3.2) Without
smoothing, results on section 22 are 85.05% (m =
8, −1.82), 86.84% (m = 16, −1.48), 86.47%
(m = 24, −1.88), 86.47% (m = 32, −2.09) (in
each case we show the decrease in performance from
the results in table 2). Smoothing is clearly impor-
tant.

Scaling of features (section 3.1) Without scaling
of features, the accuracy on section 22 with m = 32

is 84.40%, a very significant drop from the 88.82%
accuracy achieved with scaling.
Handling negative values (section 3.3) Replac-
ing marginal values µ(a, i, j) with their absolute
values is also important: without this step, accu-
racy on section 22 decreases to 80.61% (m = 32).
319 sentences out of 1700 examples have different
parses when this step is implemented, implying that
the problem with negative values described in sec-
tion 3.3 occurs on around 18% of all sentences.
The effect of feature functions To test the effect
of features on accuracy, we experimented with a
simpler set of features than those described in sec-
tion 3.1. This simple set just includes an indicator
for the rule below a nonterminal (for inside trees)
and the rule above a nonterminal (for outside trees).
Even this simpler set of features achieves relatively
high accuracy (m = 8: 86.44 , m = 16: 86.86,
m = 24: 87.24 , m = 32: 88.07 ).

This set of features is reminiscent of a PCFG
model where the nonterminals are augmented their
parents (vertical Markovization of order 2) and bina-
rization is done while retaining sibling information
(horizontal Markovization of order 1). See Klein
and Manning (2003) for more information. The per-
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formance of this Markovized PCFG model lags be-
hind the spectral model: it is 82.59%. This is prob-
ably due to the complexity of the grammar which
causes ovefitting. Condensing the sibling and parent
information using latent states as done in the spectral
model leads to better generalization.

It is important to note that the results for both
EM and the spectral algorithm are comparable to
state of the art, but there are other results previ-
ously reported in the literature which are higher.
For example, Hiroyuki et al. (2012) report an ac-
curacy of 92.4 F1 on section 23 of the Penn WSJ
treebank using a Bayesian tree substitution gram-
mar; Charniak and Johnson (2005) report accuracy
of 91.4 using a discriminative reranking model; Car-
reras et al. (2008) report 91.1 F1 accuracy for a dis-
criminative, perceptron-trained model; Petrov and
Klein (2007) report an accuracy of 90.1 F1, using
L-PCFGs, but with a split-merge training procedure.
Collins (2003) reports an accuracy of 88.2 F1, which
is comparable to the results in this paper.

5 Conclusion

The spectral learning algorithm gives the same level
of accuracy as EM in our experiments, but has sig-
nificantly faster training times. There are several ar-
eas for future work. There are a large number of pa-
rameters in the model, and we suspect that more so-
phisticated regularization methods than the smooth-
ing method we have described may improve perfor-
mance. Future work should also investigate other
choices for the functions φ and ψ. There are natu-
ral ways to extend the approach to semi-supervised
learning; for example the SVD step, where repre-
sentations of outside and inside trees are learned,
could be applied to unlabeled data parsed by a first-
pass parser. Finally, the methods we have described
should be applicable to spectral learning for other
latent variable models.
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Abstract

Topics generated automatically, e.g. using
LDA, are now widely used in Computational
Linguistics. Topics are normally represented
as a set of keywords, often the n terms in a
topic with the highest marginal probabilities.
We introduce an alternative approach in which
topics are represented using images. Candi-
date images for each topic are retrieved from
the web by querying a search engine using the
top n terms. The most suitable image is se-
lected from this set using a graph-based al-
gorithm which makes use of textual informa-
tion from the metadata associated with each
image and features extracted from the images
themselves. We show that the proposed ap-
proach significantly outperforms several base-
lines and can provide images that are useful to
represent a topic.

1 Introduction

Topic models are statistical methods for summaris-
ing the content of a document collection using latent
variables known as topics (Hofmann, 1999; Blei et
al., 2003). Within a model, each topic is a multino-
mial distribution over words in the collection while
documents are represented as distributions over top-
ics. Topic modelling is now widely used in Natural
Language Processing (NLP) and has been applied to
a range of tasks including word sense disambigua-
tion (Boyd-Graber et al., 2007), multi-document
summarisation (Haghighi and Vanderwende, 2009),
information retrieval (Wei and Croft, 2006), image
labelling (Feng and Lapata, 2010a) and visualisation
of document collections (Chaney and Blei, 2012).

Topics are often represented by using the n terms
with the highest marginal probabilities in the topic to
generate a set of keywords. For example, wine, bot-
tle, grape, flavour, dry. Interpreting such lists may
not be straightforward, particularly since there may
be no access to the source collection used to train the
model. Therefore, researchers have recently begun
developing automatic methods to generate meaning-
ful and representative labels for topics. These tech-
niques have focussed on the creation of textual la-
bels (Mei et al., 2007; Lau et al., 2010; Lau et al.,
2011).

An alternative approach is to represent a topic us-
ing an illustrative image (or set of images). Im-
ages have the advantage that they can be under-
stood quickly and are language independent. This is
particularly important for applications in which the
topics are used to provide an overview of a collec-
tion with many topics being shown simultaneously
(Chaney and Blei, 2012; Gretarsson et al., 2012;
Hinneburg et al., 2012).

This paper explores the problem of selecting im-
ages to illustrate automatically generated topics.
Our approach generates a set of candidate images for
each topic by querying an image search engine with
the top n topic terms. The most suitable image is
selected using a graph-based method that makes use
of both textual and visual information. Textual in-
formation is obtained from the metadata associated
with each image while visual features are extracted
from the images themselves. Our approach is evalu-
ated using a data set created for this study that was
annotated by crowdsourcing. Results of the evalu-
ation show that the proposed method significantly
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outperforms three baselines.
The contributions of this paper are as follows: (1)

introduces the problem of labelling topics using im-
ages; (2) describes an approach to this problem that
makes use of multimodal information to select im-
ages from a set of candidates; (3) introduces a data
set to evaluate image labelling; and (4) evaluates the
proposed approach using this data set.

2 Related work

In early research on topic modelling, labels were
manually assigned to topics for convenient presen-
tation of research results (Mei and Zhai, 2005; Teh
et al., 2006).

The first attempt at automatically assigning la-
bels to topics is described by Mei et al. (2007).
In their approach, a set of candidate labels are ex-
tracted from a reference collection using chunking
and statistically important bigrams. Then, a rele-
vance scoring function is defined which minimises
the Kullback-Leibler divergence between word dis-
tribution in a topic and word distribution in candi-
date labels. Candidate labels are ranked according
to their relevance and the top ranked label chosen to
represent the topic.

Magatti et al. (2009) introduced an approach
for labelling topics that relied on two hierarchi-
cal knowledge resources labelled by humans, the
Google Directory and the OpenOffice English The-
saurus. A topics tree is a pre-existing hierarchi-
cal structure of labelled topics. The Automatic La-
belling Of Topics algorithm computes the similarity
between LDA inferred topics and topics in a topics
tree by computing scores using six standard similar-
ity measures. The label for the most similar topic in
the topic tree is assigned to the LDA topic.

Lau et al. (2010) proposed selecting the most rep-
resentative word from a topic as its label. A la-
bel is selected by computing the similarity between
each word and all the others in the topic. Sev-
eral sources of information are used to identify the
best label including Pointwise Mutual Information
scores, WordNet hypernymy relations and distribu-
tional similarity. These features are combined in a
reranking model to achieve results above a baseline
(the most probable word in the topic).

In more recent work, Lau et al. (2011) proposed

a method for automatically labelling topics by mak-
ing use of Wikipedia article titles as candidate la-
bels. The candidate labels are ranked using infor-
mation from word association measures, lexical fea-
tures and an Information Retrieval technique. Re-
sults showed that this ranking method achieves bet-
ter performance than a previous approach (Mei et al.,
2007).

Mao et al. (2012) introduced a method for la-
belling hierarchical topics which makes use of sib-
ling and parent-child relations of topics. Candidate
labels are generated using a similar approach to the
one used by Mei et al. (2007). Each candidate la-
bel is then assigned a score by creating a distribu-
tion based on the words it contains and measuring
the Jensen-Shannon divergence between this and a
reference corpus.

Hulpus et al. (2013) make use of the structured
data in DBpedia1 to label topics. Their approach
maps topic words to DBpedia concepts. The best
concepts are identified by applying graph central-
ity measures which assume that words that co-
occurring in text are likely to refer to concepts that
are close in the DBpedia graph.

Our own work differs from the approaches de-
scribed above since, to our knowledge, it is the first
to propose labelling topics with images rather than
text.

Recent advances in computer vision has lead to
the development of reliable techniques for exploit-
ing information available in images (Datta et al.,
2008; Szeliski, 2010) and these have been combined
with NLP (Feng and Lapata, 2010a; Feng and Lap-
ata, 2010b; Agrawal et al., 2011; Bruni et al., 2011).
The closest work to our own is the text illustration
techniques which have been proposed for story pic-
turing (Joshi et al., 2006) and news articles illustra-
tion (Feng and Lapata, 2010b). The input to text il-
lustration models is a textual document and a set of
image candidates. The goal of the models is to as-
sociate the document with the correct image. More-
over, the problem of ranking images returned from
a text query is related to, but different from, the
one explored in our paper. Those approaches used
queries that were much smaller (e.g. between one
and three words) and more focussed than the ones

1http://dbpedia.org
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we use (Jing and Baluja, 2008). In our work, the in-
put is a topic and the aim is to associate it with an
image, or images, denoting the main thematic sub-
ject.

3 Labelling Topics

In this section we propose an approach to identify-
ing images to illustrate automatically generated top-
ics. It is assumed that there are no candidate images
available so the first step (Section 3.1) is to generate
a set of candidate images. However, when a candi-
date set is available the first step can be skipped.

3.1 Selecting Candidate Images

For the experiments presented here we restrict our-
selves to using images from Wikipedia available un-
der the Creative Commons licence, since this allows
us to make the data available. The top-5 terms from
a topic are used to query Google using its Custom
Search API2. The search is restricted to the English
Wikipedia3 with image search enabled. The top-20
images retrieved for each search are used as candi-
dates for the topic.

3.2 Feature Extraction

Candidate images are represented by two modalities
(textual and visual) and features extracted for each.

3.2.1 Textual Information

Each image’s textual information consists of the
metadata retrieved by the search. The assumption
here is that image’s metadata is indicative of the im-
age’s content and (at least to some extent) related to
the topic. The textual information is formed by con-
catenating the title and the link fields of the search
result. These represent, respectively, the web page
title containing the image and the image file name.
The textual information is preprocessed by tokeniz-
ing and removing stop words.

3.2.2 Visual Information

Visual information is extracted using low-level
image keypoint descriptors, i.e. SIFT features

2https://developers.google.com/
apis-explorer/#s/customsearch/v1

3http://en.wikipedia.org

(Lowe, 1999; Lowe, 2004) sensitive to colour in-
formation. SIFT features denote “interesting” ar-
eas in an image. Image features are extracted us-
ing dense sampling and described using Opponent
colour SIFT descriptors provided by the colorde-
scriptor4 software. Opponent colour SIFT descrip-
tors have been found to give the best performance
in object scene and face recognition (Sande et al.,
2008). The SIFT features are clustered to form a vi-
sual codebook of 1,000 visual words using K-Means
such that each feature is mapped to a visual word.
Each image is represented as a bag-of-visual words
(BOVW).

3.3 Ranking Candidate Images
We rank images in the candidates set using graph-
based algorithms. The graph is created by treating
images as nodes and using similarity scores (textual
or visual) between images to weight the edges.

3.3.1 PageRank
PageRank (Page et al., 1999) is a graph-based al-

gorithm for identifying important nodes in a graph
that was originally developed for assigning impor-
tance to web pages. It has been used for a range
of NLP tasks including word sense disambiguation
(Agirre and Soroa, 2009) and keyword extraction
(Mihalcea and Tarau, 2004).

Let G = (V,E) be a graph with a set of ver-
tices, V , denoting image candidates and a set of
edges, E, denoting similarity scores between two
images. For example, sim(Vi, Vj) indicates the sim-
ilarity between images Vi and Vj . The PageRank
score (Pr) over G for an image (Vi) can be com-
puted by the following equation:

Pr(Vi) = d ·
∑

Vj∈C(Vi)

sim(Vi, Vj)∑
Vk∈C(Vj)

sim(Vj , Vk)
Pr(Vj) + (1 − d)v

(1)

where C(Vi) denotes the set of vertices which are
connected to the vertex Vi. d is the damping factor
which is set to the default value of d = 0.85 (Page et
al., 1999). In standard PageRank all elements of the
vector v are the same, 1

N where N is the number of
nodes in the graph.

4http://koen.me/research/
colordescriptors
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3.3.2 Personalised PageRank

Personalised PageRank (PPR) (Haveliwala et al.,
2003) is a variant of the PageRank algorithm in
which extra importance is assigned to certain ver-
tices in the graph. This is achieved by adjusting the
values of the vector v in equation 1 to prefer certain
nodes. Nodes that are assigned high values in v are
more likely to also be assigned a high PPR score.
We make use of PPR to prefer images with textual
information that is similar to the terms in the topic.

3.3.3 Weighting Graph Edges

Three approaches were compared for computing
the values of sim(Vi, Vj) in equation 1 used to
weight the edges of the graph. Two of these make
use of the textual information associated with each
image while the final one relies on visual features.

The first approach is Pointwise Mutual Infor-
mation (PMI). The similarity between a pair of
images (vertices in the graph) is computed as the
average PMI between the terms in their metadata.
PMI is computed using word co-occurrence counts
over Wikipedia identified using a sliding window of
length 20. We also experimented with other word
association measures but these did not perform as
well. The PageRank over the graph weighted using
PMI is denoted as PRPMI.

The second approach, Explicit Semantic Anal-
ysis (ESA) (Gabrilovich and Markovitch, 2007), is
a knowledge-based similarity measure. ESA trans-
forms the text from the image metadata into vectors
that consist of Wikipedia article titles weighted by
their relevance. The similarity score between these
vectors is computed as the cosine of the angle be-
tween them. This similarity measure is used to cre-
ate the graph and its PageRank is denoted as PRESA.

The final approach uses the visual features ex-
tracted from the images themselves. The visual
words extracted from the images are used to form
feature vectors and the similarity between a pair of
images computed as the cosine of the angle between
them. The PageRank of the graph created using this
approach is PRvis and it is similar to the approach
proposed by Jing and Baluja (2008) for associating
images to text queries.

3.3.4 Initialising the Personalisation Vector
The personalisation vector (see above) is

weighted using the similarity scores computed be-
tween the topic and its image candidates. Similarity
is computed using PMI and ESA (see above). When
PMI and ESA are used to weight the personalisation
vector they compute the similarity between the
top 10 terms for a topic and the textual metadata
associated with each image in the set of candidates.
We refer to the personalisation vectors created
using PMI and ESA as Per(PMI) and Per(ESA)
respectively.

Using PPR allows information about the simi-
larity between the images’ metadata and the topics
themselves to be considered when identifying a suit-
able image label. The situation is different when
PageRank is used since this only considers the sim-
ilarity between the images in the candidate set.

The personalisation vector used by PPR is em-
ployed in combination with a graph created us-
ing one of the approaches described above. For
example, the graph may be weighted using vi-
sual features and the personalisation vector created
using PMI scores. This approach is denoted as
PRvis+Per(PMI).

4 Evaluation

This section discusses the experimental design for
evaluating the proposed approaches to labelling top-
ics with images. To our knowledge no data set for
evaluating these approaches is currently available
and consequently we developed one for this study5.
Human judgements about the suitability of images
are obtained through crowdsourcing.

4.1 Data
We created a data set of topics from two collections
which cover a broad thematic range:

• NYT 47,229 New York Times news articles
(included in the GigaWord corpus) that were
published between May and December 2010.

• WIKI A set of Wikipedia categories randomly
selected by browsing its hierarchy in a breadth-
first-search manner starting from a few seed

5Data set can be downloaded from http://staffwww.
dcs.shef.ac.uk/people/N.Aletras/resources.
html.
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police, officer, crime, street, man, city, gang, suspect, arrested, violence

game, season, team, patriot, bowl, nfl, quarterback, week, play, jet

military, afghanistan, force, official, afghan, defense, pentagon, american, war, gates

Figure 1: A sample of topics and their top-3 image candidates (i.e. with the highest average human annota-
tions).

categories (e.g. SPORTS, POLITICS, COMPUT-
ING). Categories that have more that 80 articles
associated with them are considered. These
articles are collected to produce a corpus of
approximately 60,000 articles generated from
1,461 categories.

Documents in the two collections are tokenised
and stop words removed. LDA was applied to learn
200 topics from NYT and 400 topics from WIKI.
The gensim package6 was used to implement and
compute LDA. The hyperparameters (α, β) were set
to 1

num of topics . Incoherent topics are filtered out
by applying the method proposed by Aletras and
Stevenson (2013).

We randomly selected 100 topics from NYT and
200 topics from WIKI resulting in a data set of 300
topics. Candidate images for these topics were gen-
erated using the approach described in Section 3.1,
producing a total of 6,000 candidate images (20 for

6http://pypi.python.org/pypi/gensim

each topic).

4.2 Human Judgements of Image Relevance

Human judgements of the suitability of each im-
age were obtained using an online crowdsourcing
platform, Crowdflower7. Annotators were provided
with a topic (represented as a set of 10 keywords)
and a candidate image. They were asked to judge
how appropriate the image was as a representation
of the main subject of the topic and provide a rating
on a scale of 0 (completely unsuitable) to 3 (very
suitable).

Quality control is important in crowdscourcing
experiments to ensure reliability (Kazai, 2011). To
avoid random answers, control questions with obvi-
ous answer were included in the survey. Annotations
by participants that failed to answer these questions
correctly or participants that gave the same rating for
all pairs were removed.

7http://crowdflower.com
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The total number of filtered responses obtained
was 62, 221 from 273 participants. Each topic-
image pair was rated at least by 10 subjects. The
average response for each pair was calculated in or-
der to create the final similarity judgement for use as
a gold-standard. The average variance across judges
(excluding control questions) is 0.88.

Inter-Annotator agreement (IAA) is computed as
the average Spearman’s ρ between the ratings given
by an annotator and the average ratings given by all
other annotators. The average IAA across all topics
was 0.50 which indicates the difficulty of the task,
even for humans.

Figure 1 shows three example topics from the data
set together with the images that received the highest
average score from the annotators.

4.3 Evaluation Metrics
Evaluation of the topic labelling methods is carried
out using a similar approach to the framework pro-
posed by Lau et al. (2011) for labelling topics using
textual labels.

Top-1 average rating is the average human rating
assigned to the top-ranked label proposed by the sys-
tem. This provides an indication of the overall qual-
ity of the image the system judges as the best one.
The highest possible score averaged across all top-
ics is 2.68, since for many topics the average score
obtained from the human judgements is lower than
3.

The second evaluation measure is the normalized
discounted cumulative gain (nDCG) (Järvelin and
Kekäläinen, 2002; Croft et al., 2009) which com-
pares the label ranking proposed by the system to
the optimal ranking provided by humans. The dis-
counted cumulative gain at position p (DCGp) is
computed using the following equation:

DCGp = rel1 +

p∑
i=2

reli
log2(i)

(2)

where reli is the relevance of the label to the topic
in position i. Then nDCG is computed as:

nDCGp =
DCGp

IDCGp
(3)

where IDCGp is the optimal ranking of the image
labels, in our experiments this is the ranking pro-
vided by the scores in the human annotated data set.

We follow Lau et al. (2011) in computing nDCG-1,
nDCG-3 and nDCG-5 for the top 1, 3 and 5 ranked
system image labels respectively.

4.4 Baselines
Since there are no previous methods for labelling
topics using images, we compare our proposed mod-
els against three baselines.

The Random baseline randomly selects a label
for the topic from the 20 image candidates. The pro-
cess is repeated 10,000 times and the average score
of the selected labels is computed for each topic.

The more informed Word Overlap baseline se-
lects the image that is most similar to the topic terms
by applying a Lesk-style algorithm (Lesk, 1986) to
compare metadata for each image against the topic
terms. It is defined as the number of common terms
between a topic and image candidate normalised by
the total number of terms in the topic and image’s
metadata.

We also compared our approach with the ranking
returned by the Google Image Search for the top-20
images for a specific topic.

4.5 User Study
A user study was conducted to estimate human per-
formance on the image selection task. Three annota-
tors were recruited and asked to select the best image
for each of the 300 topics in the data set. The anno-
tators were provided with the topic (in the form of a
set of keywords) and shown all candidate images for
that topic before being asked to select exactly one.
The Average Top-1 Rating was computed for each
annotator and the mean of these values was 2.24.

5 Results

Table 1 presents the results obtained for each of the
methods on the collection of 300 topics. Results are
shown for both Top-1 Average rating and nDCG.

We begin by discussing the results obtained us-
ing the standard PageRank algorithm applied to
graphs weighted using PMI, ESA and visual features
(PRPMI, PRESA and PRvis respectively). Results us-
ing PMI consistently outperform all baselines and
those obtained using ESA. This suggests that distri-
butional word association measures are more suit-
able for identifying useful images than knowledge-
based similarity measures. The best results using
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Model Top-1 Av. Rating nDCG-1 nDCG-3 nDCG-5
Baselines

Random 1.79 - - -
Word Overlap 1.85 0.69 0.72 0.74
Google Image Search 1.89 0.73 0.75 0.77

PageRank
PRPMI 1.87 0.70 0.73 0.75
PRESA 1.81 0.67 0.68 0.70
PRvis 1.96 0.73 0.75 0.76

Personalised PageRank
PRPMI+Per(PMI) 1.98 0.74 0.76 0.77
PRPMI+Per(ESA) 1.92 0.70 0.72 0.74
PRESA+Per(PMI) 1.91 0.70 0.72 0.73
PRESA+Per(ESA) 1.88 0.69 0.72 0.74
PRvis+Per(PMI) 2.00 0.74 0.75 0.76
PRvis+Per(ESA) 1.94 0.72 0.75 0.76
User Study 2.24 – – –

Table 1: Results for various approaches to topic labelling.

standard PageRank are obtained when the visual
similarity measures are used to weight the graph,
with performance that significantly outperforms the
word overlap baseline (paired t-test, p < 0.05). This
demonstrates that visual features are a useful source
of information for deciding which images are suit-
able topic labels.

The Personalised version of PageRank produces
consistently higher results compared to standard
PageRank, demonstrating that the additional infor-
mation provided by comparing the image metadata
with the topics is useful for this task. The best
results are obtained when the personalisation vec-
tor is weighted using PMI (i.e. Per(PMI)). The
best overall result for the top-1 average rating (2.00)
is obtained when the graph is weighted using vi-
sual features and the personalisation vector using the
PMI scores (PRvis+Per(PMI)) while the best results
for the various DCG metrics are produced when
both the graph and the personalisation vector are
weighted using PMI scores (PRPMI+Per(PMI)). In
addition, these two methods, PRvis+Per(PMI) and
PRPMI+Per(PMI), perform significantly better than
the word overlap and the Google Image Search base-
lines (p < 0.01 and p < 0.05 respectively). Weight-
ing the personalisation vector using ESA consis-
tently produces lower performance compared to

PMI. These results indicate that graph-based meth-
ods for ranking images are useful for illustrating top-
ics.

6 Discussion

Figure 2 shows a sample of three topics together
with the top-3 candidates (left-to-right) selected by
applying the PRvis+Per(PMI) approach. Reasonable
labels have been selected for the first two topics. On
the other hand, the images selected for the third topic
do not seem to be as appropriate.

We observed that inappropriate labels can be gen-
erated for two reasons. Firstly, the topic may be ab-
stract and difficult to illustrate. For example, one of
the topics in our data set refers to the subject AL-
GEBRAIC NUMBER THEORY and contains the terms
number, ideal, group, field, theory, algebraic, class,
ring, prime, theorem. It is difficult to find a represen-
tative image for topics such as this one. Secondly,
there are topics for which none of the candidate im-
ages returned by the search engine is relevant. An
example of a topic like this in our data set is one
that refers to PLANTS and contains the terms family,
sources, plants, familia, order, plant, species, taxon-
omy, classification, genera. The images returned by
the search engine include pictures of the Sagrada Fa-
milia cathedral in Barcelona, a car called “Familia”
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dance, ballet, dancer, swan, company, dancing, nutcracker, balanchine, ballerina, choreographer

2.3 2.7 2.5 2.8 2.8 2.73
wine, bottle, grape, flavor, dry, vineyard, curtis, winery, sweet, champagne

2.1 2.6 2.7 2.83 2.8 2.8
haiti, haitian, earthquake, paterson, jean, prince, governor, au, cholera, country

1.0 1.2 0.2 1.91 1.7 1.6

Figure 2: A sample of topics and their top-3 images selected by applying the the PRvis+Per(PMI) approach
(left side) and the ones with the highest average human annotations (right side). The number under each
image represents its average human annotations score.

and pictures of families but no pictures of plants.

7 Conclusions

This paper explores the use of images to represent
automatically generated topics. An approach to se-
lecting appropriate images was described. This be-
gins by identifying a set of candidate images us-
ing a search engine and then attempts to select the
most suitable. Images are ranked using a graph-
based method that makes use of both textual and
visual information. Evaluation is carried out on a
data set created for this study. The results show that
the visual features are a useful source of information
for this task while the proposed graph-based method
significantly outperforms several baselines.

This paper demonstrates that it is possible to iden-
tify images to illustrate topics. A possible applica-
tion for this technique is to represent the contents
of large document collections in a way that supports

rapid interpretation and can be used to enable nav-
igation (Chaney and Blei, 2012; Gretarsson et al.,
2012; Hinneburg et al., 2012). We plan to explore
this possibility in future work. Other possible exten-
sions to this work include exploring alternative ap-
proaches to generating candidate images and devel-
oping techniques to automatically identify abstract
topics for which suitable images are unlikely to be
found, thereby avoiding the problem cases described
in Section 6.
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Abstract

Multi-dimensional latent text models, such as
factorial LDA (f-LDA), capture multiple fac-
tors of corpora, creating structured output for
researchers to better understand the contents
of a corpus. We consider such models for
clinical research of new recreational drugs and
trends, an important application for mining
current information for healthcare workers.
We use a “three-dimensional” f-LDA variant
to jointly model combinations of drug (mari-
juana, salvia, etc.), aspect (effects, chemistry,
etc.) and route of administration (smoking,
oral, etc.) Since a purely unsupervised topic
model is unlikely to discover these specific
factors of interest, we develop a novel method
of incorporating prior knowledge by leverag-
ing user generated tags as priors in our model.
We demonstrate that this model can be used
as an exploratory tool for learning about these
drugs from the Web by applying it to the task
of extractive summarization. In addition to
providing useful output for this important pub-
lic health task, our prior-enriched model pro-
vides a framework for the application of f-
LDA to other tasks.

1 Introduction

Topic models aid exploration of the main thematic
elements of large text corpora by revealing latent
structure and producing a high level semantic view
(Blei et al., 2003). Topic models have been used for
understanding the contents of a corpus and identify-
ing interesting aspects of a collection for more in-
depth analysis (Talley et al., 2011; Mimno, 2011).
While standard topic models assume a flat seman-
tic structure, there are potentially many dimen-
sions of a corpus that contribute to word choice,

such as sentiment, perspective and ideology (Mei et
al., 2007; Paul and Girju, 2010; Eisenstein et al.,
2011). Rather than studying these factors in isola-
tion, multi-dimensional topic models can consider
multiple factors jointly.

Paul and Dredze (2012b) introduced factorial
LDA (f-LDA), a general framework for multi-
dimensional text models that capture an arbitrary
number of factors (explained in §3). While a stan-
dard topic model learns distributions over “topics”
in documents, f-LDA learns distributions over com-
binations of multiple factors (e.g. topic, perspec-
tive) called tuples (e.g. (HEALTHCARE,LIBERAL)).
While f-LDA can model factors without supervision,
it has not been used in situations where the user has
prior information about the factors.

In this paper we consider a setting where the user
has prior knowledge about the end application: min-
ing recreational drug trends from user forums, an
important clinical research problem (§2). We show
how to incorporate available information from these
forums into f-LDA as a novel hierarchical prior over
the model parameters, guiding the model toward the
desired output (§3.1).

We then demonstrate the model’s utility in ex-
ploring a corpus in a targeted manner by using it
to automatically extract interesting sentences from
the text, a simple form of extractive multi-document
summarization (Goldstein et al., 2000). In the
same way that topic models can be used for aspect-
specific summarization (Titov and McDonald, 2008;
Haghighi and Vanderwende, 2009), we use f-LDA
to extract snippets corresponding to fine-grained in-
formation patterns. Our results demonstrate that our
multi-dimensional modeling approach targets more
informative text than a simpler model (§4).
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2 Analyzing Drug Trends on the Web

Recreational drug use imposes a significant burden
on the health infrastructure of the United States and
other countries. Accurate information on drugs, us-
age profiles and side effects are necessary for sup-
porting a range of healthcare activities, such as ad-
diction treatment programs, toxin diagnosis, preven-
tion and awareness campaigns, and public policy.
These activities rely on up-to-date information on
drug trends, but it is increasingly difficult to keep
up with current drug information, as distribution and
information-sharing of novel drugs is easier than
ever via the web (Wax, 2002). For the third con-
secutive year, a record number of new drugs (49)
were detected in Europe in 2011 (EMCDDA, 2012).
About two-thirds of these new drugs were synthetic
cannabinoids (used as legal marijuana substitutes),
which led to 11,000 hospitalizations in the U.S. in
2010 (SAMHSA, 2012). Treatment is complicated
by the fact that novel substances like these may have
unknown side effects and other properties.

Accurate information on drug trends can be ob-
tained by speaking directly with users, e.g. focus
groups and interviews (Reyes et al., 2012; Hout
and Bingham, 2012), but such studies are slow and
costly, and can fail to identify the emergence of
new drug classes, such as mephedrone (Dunn et
al., 2011). More recently, researchers have begun
to recognize clinical value in information obtained
from the web (Corazza et al., 2011). By (manu-
ally) analyzing YouTube videos, Drugs-Forum (dis-
cussed below), and other social media websites and
online communities, researchers have uncovered de-
tails about the use, effects, and popularity of a va-
riety of new and emerging drugs (Morgan et al.,
2010; Corazza et al., 2012; Gallagher et al., 2012),
and comprehensive drug reviews now include non-
standard sources such as web forums in addition to
standard sources (Hill and Thomas, 2011).

Organizing and understanding forums requires
significant effort. We propose automated tools to aid
in the exploration and analysis of these data. While
topic models are a natural fit for corpus exploration
(Eisenstein et al., 2012; Chaney and Blei, 2012), and
have been used for similar public health applications
(Paul and Dredze, 2011), online forums can be orga-
nized in many ways beyond topic. Guided by do-

Factor Components
Drug ALCOHOL AMPHETAMINES BETA-KETONES

CANNABINOIDS CANNABIS COCAINE DMT DOWN-
ERS DXM ECSTASY GHB HERBAL ECSTASY KE-
TAMINE KRATOM LSA LSD NOOTROPICS OPIATES
PEYOTE PHENETHYLAMINES SALVIA TOBACCO

Route INJECTION ORAL SMOKING SNORTING

Aspect CHEMISTRY (Pharmacology, TEK)
CULTURE (Culture, Setting, Social, Spiritual)
EFFECTS (Effects)
HEALTH (Health, Overdose, Side effects)
USAGE (Dose, Storing, Weight)

Table 1: The three factors of our model (details in §3.1).
The forum tags shown in parentheses are grouped to-
gether to form aspects.

main experts, we seek to model forums as a combi-
nation of drug type, route of intake (oral, injection,
etc.) and aspect (cultural settings, drug chemistry,
etc.) A multi-dimensional topic model can jointly
capture these factors, providing a more informative
understanding of the data, and can be used to pro-
duce fine-grained information such as the effects of
taking a particular drug orally. Our hope is that mod-
els such as f-LDA can lead to exploratory tools that
aide researchers in learning about new drugs.

2.1 Corpus: Drugs-Forum

Our data set is taken from drugs-forum.com, a
site active for more than 10 years with over 100,000
members and more than 1 million monthly readers.
The site is an information hub where people can
freely discuss recreational drugs with psychoactive
effects, ranging from coffee to heroin, hosting in-
formation and discussions on specific drugs, as well
as drug-related politics, law, news, recovery and ad-
diction. With current information on a variety of
drugs and an extensive archive, Drugs-Forum pro-
vides an ideal information source for public health
researchers (Corazza et al., 2012).

Discussion threads are organized into numerous
forums, including drugs, the law, addiction, etc.
Since we are modeling drug use, we focus on the
drug forums. Each thread is assigned to a specific
forum or subforum (drug) and each thread has a user
specified tag, which can indicate categories like “Ef-
fects” as well as routes of administration like “Oral.”
We organized the tags and subforum categorizations
into factors and components, as shown in Table 1.
We make use of these tags in §3.1.
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3 Multi-Dimensional Text Models

Clinical researchers are interested in specific infor-
mation about drug usage, including drug type, route
of administration, and other aspects of drug use
(e.g. dosage, side effects). Rather than considering
these factors independently, we would like to model
these in a way that can capture interesting interac-
tions between all three factors, because the effects
and other aspects of drugs can vary by route of ad-
ministration. Oral consumption of drugs often pro-
duces longer lasting but milder effects than injec-
tion or smoking, for example. Many mephedrone
users report nose bleeds and nasal pain as a health
effect of snorting the drug: this could be modeled
as the triple (MEPHEDRONE,SNORTING,HEALTH), a
particular combination of all three factors.

To this end, we utilize the multi-dimensional text
model factorial LDA (f-LDA) (Paul and Dredze,
2012b), which jointly models multiple semantic fac-
tors or dimensions. In this section we summarize f-
LDA, then we describe an extension which incorpo-
rates user-generated metadata into the model (§3.1).

In a standard topic model such as LDA (Blei et
al., 2003), each word token is associated with a la-
tent “topic” variable. f-LDA is conceptually similar
to LDA except that rather than a single topic vari-
able, each token is associated with a K-dimensional
vector of latent variables. In a three-dimensional f-
LDA model, each token has three latent variables—
drug, route, and aspect in this case.

In f-LDA, each document has a distribution
over all possible K-tuples (rather than topics),
and each K-tuple is associated with its own word
distribution. Under this model, words are gen-
erated by first sampling a tuple from the docu-
ment’s tuple distribution, then sampling a word
from that tuple’s word distribution. In our three-
dimensional model, we will consider triples such as
(CANNABIS,SMOKING,EFFECTS).

Formally, each document has a distribution θ(d)

over triples, and each token is associated with a la-
tent vector ~z of sizeK=3. (We’ll describe the model
in terms of the three factors we are modeling in this
paper, but f-LDA generalizes toK dimensions.) The
Cartesian product of the three factors forms a set
of triples and the vector ~z references three discrete
components to form a triple ~t = (t1, t2, t3). The car-
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Figure 1: The graphical model for f-LDA augmented
with priors η learned from labeled data (§3.1). In this
work, K = 3.

dinality of each dimension (denoted Zk) is the num-
ber of drugs, routes, and aspects, as shown in Table
1. Each triple has a corresponding word distribution
φ~t. The graphical model is shown in Figure 1.

One would expect that triples that have com-
ponents in common should have similar word
distributions: (CANNABIS,SMOKING,EFFECTS)
is expected to have some commonalities with
(CANNABIS,ORAL,EFFECTS). f-LDA models this
intuition by sharing parameters across priors for
triples which share components: all triples with
CANNABIS as the drug include cannabis-specific
parameters in the prior, and all triples with SMOK-
ING as the route have smoking-specific parameters.
Formally, φ~t (the word distribution for tuple ~t) has a
Dirichlet(ω̂(~t)) prior, where for each word w in the
vector, ω̂(~t)

w is a log-linear function:

ω̂(~t )
w , exp

(
ω(B)+ω(0)

w +ω
(drug)
t1w

+ω
(route)
t2w

+ω
(aspect)
t3w

)
(1)

where ω(B) is a corpus-wide precision scalar (the
bias), ω(0)

w is a corpus-specific bias for word w, and
ω

(k)
tkw

is a bias parameter for word w for component
tk of the kth factor. That is, each drug, route, and
aspect has a weight vector over the vocabulary, and
the prior for a particular triple is influenced by the
weight vectors of each of the three factors. The
ω parameters are all independent and normally dis-
tributed around 0 (effectively L2 regularization).

The prior over each document’s distribution over
triples has a similar log-linear prior, where weights
for each factor are combined to influence the dis-
tribution. Under our model, θ(d) is drawn from
Dirichlet(B · α̂(d)), where · denotes an element-wise
product between B (described below) and α̂(d), with
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α̂
(d)
~t

for each triple ~t defined as:

α̂
(d)
~t

, exp
(
α(B) +α

(D,drug)
t1

+α
(d,drug)
t1

+α
(D,route)
t2

+α
(d,route)
t2

+α
(D,aspect)
t3

+α
(d,aspect)
t3

)
(2)

Similar to the ω formulation, α(B) is a global
bias parameter, while the αD vectors are corpus-
wide weight vectors and αd are document-specific
weight vectors over the components of each fac-
tor. Structuring the prior in this way models the
intuition that if a triple with a particular compo-
nent has high probability, other triples containing
that component are likely to also have high proba-
bility. For example, if a message discusses triples
of the form (CANNABIS,*,EFFECTS), it is more
likely to discuss (CANNABIS,*,HEALTH) than (CO-
CAINE,*,HEALTH), because the message is about
cannabis.

Finally, B is a 3-dimensional array that encodes
a sparsity pattern over the space of possible triples.
This is used to accommodate triples that can be gen-
erated by the model but are not supported by the
data. For example, not all routes of administration
may be applicable to certain drugs, or certain aspects
of a drug may happen to not be discussed in the fo-
rum. Each element b~t of the array is a real-valued
scalar in (0, 1) which is multiplied with α̂(d)

~t
to ad-

just the prior for that triple. If the b value is near
0 for a particular triple, then it will have very low
prior probability. The b values have Beta(γ0,γ1) pri-
ors (γ < 1) which encourage them to be near 0 or 1,
so that they function as binary variables.

Posterior inference and parameter estimation con-
sist of a Monte Carlo EM algorithm that alternates
between an iteration of collapsed Gibbs sampler on
the ~z variables (E-step), and an iteration of gradi-
ent ascent on the α and ω hyperparameters (M-step).
See Paul and Dredze (2012b) for more details.

3.1 Tags and Word Priors
In an unsupervised setting, there is no reason f-LDA
would actually infer parameters corresponding to
the three factors we have been describing. However,
the forums include metadata that can help guide the
model: the messages are organized into forums cor-
responding to drug type (factor 1), and some threads

COCAINE SNORTING HEALTH
η (Prior over ω)

coke snort kidney
cocaine snorting hcv
crack snorted pains
cola nose symptoms COCAINE
blow nasal guidelines SNORTING
lines drip diet HEALTH

ω (Prior over φ) φ (Posterior)
coke snort symptoms nose

cocaine snorting long-term cocaine
crack snorted depression coke
cola passages disorder blood

rocks nostril schizophrenia water
coca insufflating severe pain

Figure 2: Example of parameters learned by f-LDA. The
highest weight words in the ω and η vectors for three
components are shown on the left. These are combined
to form the prior for the word distribution φ. The tripling
of (COCAINE,SNORTING,HEALTH) results in high proba-
bility words about nose bleeds and nasal damage.

are tagged with labels corresponding to routes of ad-
ministration and other aspects (factors 2 and 3). Tags
for aspects are manually grouped into components:
e.g. USAGE (tags: Dose, Storing, Weight). Table 1
shows the factors and components in our model.

One could simply use these tags as labels in a sim-
ple supervised model—this will be our experimental
baseline (§4.1). However, this approach has limita-
tions in that most documents are missing labels (less
than a third of our corpus contains one of the labels
in Table 1) and many messages discuss several com-
ponents, not just the one implied by the tag. For
example, a message tagged “Side effects” may talk
about both side effects and dosage. While a super-
vised classifier may attribute all words to a single
tag, f-LDA learns per-token assignments.

We will instead use the tags to inform the priors
over our f-LDA word distribution parameters. We
do this with a two-stage approach. First, we use the
tags to train parameters of a related but simplified
model. We then use the learned parameters as priors
over the corresponding f-LDA parameters.

In particular, we will place priors on the ω vectors,
the Dirichlet hyperparameters which influence the
word distributions. Suppose that we are given a vec-
tor η(0) which is believed to contain desirable values
for ω(0), the weight vector over words in the corpus,
and similarly we are given vectors η(f)

i over the vo-
cabulary for the ith component of factor f , which
are believed to be good values for ω(f)

i . One option
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is to fix ω as η, forcing the component weights to
match the provided weights. However, in our case η
will only be an approximation of the optimal com-
ponent parameters since it is estimated from incom-
plete data (only some messages have tags) and the η
vectors are learned using an approximate model (see
below). Instead, these weight vectors will merely
guide learning as prior knowledge over model pa-
rameters ω. While f-LDA assumes each ω is drawn
from a 0-mean Gaussian, we alter the means of the
appropriate ω parameters to use η.

ω(0)
w ∼ N (η(0)

w , σ2);ω
(k)
iw ∼ N (η

(k)
iw , σ

2) (3)

Recall that ω(0)
w are corpus-wide bias parameters for

each word and ω(k)
iw are component-specific param-

eters for each word. This yields a hierarchical prior
in which η parameterizes the prior over ω, while ω
parameterizes the prior over φ (the word distribu-
tions). The resulting ω parameters can vary from the
provided priors to adapt to the data. An example of
learned parameters is shown in Figure 2, illustrating
the hierarchical process behind this model.

Learning the Priors In various applications, pri-
ors can come from many different sources, such as
labeled data (Jagarlamudi et al., 2012). We learn
the prior means η from tagged messages. However,
these parameters imply a latent division of responsi-
bility for observed words: some are present because
of the tag while others are general words in the cor-
pus. As a result, they must be estimated.

We learn these parameters from the tagged mes-
sages using SAGE, which model words in a docu-
ment as combinations of background and topic word
distributions. Eisenstein et al. (2011) present SAGE
models for Naive Bayes (one class per document),
admixture models (one class per token), and admix-
ture models where tokens come from multiple fac-
tors. We combine the first and third models, such
that a document has multiple factors which are given
as labels across the entire document—the drug type
and the tag, which could correspond to a component
of either the route or aspect factors. We posit the
following model of text generation per document:

P (word w|drug = i, factorf = j) (4)

=
exp(η

(0)
w + η

(drug)
iw + η

(f)
jw )∑

w′ exp(η
(0)
w′ + η

(drug)
iw′ + η

(f)
jw′)

This log-linear model has a similar form as Eq.
1, but with two factors instead of three, and it is
a distribution rather than a Dirichlet vector. As in
SAGE, we fix η(0) to be the observed vector of cor-
pus log-frequencies over the vocabulary, which acts
as an “overall” weight vector, while parameter esti-
mation yields η(f)

i , the logit parameters for the ith
component of factor f .1 These parameters are then
used as the mean of the Gaussian priors over ω.

Standard optimization methods can be used to es-
timate these parameters. The partial derivative of the
likelihood with respect to the parameter η(drug)

iw is:

∂

∂η
(drug)
iw

=
∑
f

∑
j∈f

c(i, j, w)− π(i, j, w)c(i, j, ∗)

(5)
where c(i, j, w) is the number of times word w ap-
pears in documents labeled with i (drug) and j (tag),
and π(i, j, w) denotes the probability given by (4).
The partial derivative of each η(f)

j is similar.

4 Experiments with Topic Modeling for
Extractive Summarization

Our corpus consists of messages from
drugs-forum.com (§2.1). The site catego-
rizes threads into many forums and subforums,
including some on specific drugs, which are cat-
egorized hierarchically. We treated higher-level
categories with pharmacologically similar drugs as
a single drug type (e.g. OPIOIDS, AMPHETAMINES);
for others we took the finest-granularity subforum
as the drug type. We selected 22 popular drugs and
from these forums we crawled 410K messages. We
selected a subset of tags to form components for
the route and aspect factors. (Some tags were too
general or infrequent to be useful.) A list of the
tags and drugs used appears in Table 1. We also
included a GENERAL component in the latter two
factors to model word usage which does not pertain
to a particular route or aspect; the prior parameters
η for these components were simply set to 0.

We wish to demonstrate that our modified f-LDA
model can be used to discover useful information in
the text. One way to demonstrate this is by using the
model to extract relevant snippets of text from the

1SAGE models sparsity on the weights via a Laplacian prior.
Such sparsity is not modeled in f-LDA, so we ignore this here.
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forums, which will form the basis of our evaluation
experiments. Our goal is not to build a complete
summarization system, but rather to use the model
to direct researchers to interesting messages.

While we model all 22 drugs, our summa-
rization experiments will focus on five drugs
which have been studied only relatively recently:
mephedrone and MDPV (β-ketones), Bromo-
Dragonfly (synthetic phenethylamines), Spice/K2
(synthetic cannabinoids), and salvia divinorum. We
will consider these drugs in particular because these
are the five drugs for which technical reports were
created by the EU Psychonaut Project (Schifano et
al., 2006), an online database of novel and emerg-
ing drugs, whose information is collected by reading
drug websites, including Drugs-Forum. Extensive
technical reports were written about these five pop-
ular drugs, and we can use these reports to produce
reference summaries for our experiments (§4.2).

Of these five drugs, only salvia has its own sub-
forum; the others belong to subforums representing
the broader categories shown in parentheses. We
simply model the drug type as a proxy for the spe-
cific drug, as most of the drugs in each category have
similar effects and properties. The first two drugs are
both in the same subforum, so for the purpose of our
model we treat mephedrone and MDPV as the single
drug type, β-ketones. These two drugs are grouped
together during summarization (§4.2), but the corre-
sponding reference summaries incorporate excepts
from the technical reports on both drugs.

4.1 Model Setup
Of the four drug types being considered for summa-
rization, our data set contains 12K messages with
one of the tags in Table 1 and 30K without. Of
those without tags, we set aside 5K as development
data. There are also over 300K messages (140K
tagged) from the remaining 18 drug types: some
of these messages are utilized when training f-LDA.
Even though we only consider four drug types in our
experiments, our intuition is that it can be benefi-
cial to model other drugs as well, because this will
help to learn parameters for the various aspects and
routes of administration. Our model of the effects of
mephedrone can be informed by also modeling the
effects of other stimulants such as cocaine.

Each message was treated as a document, and we

only used documents with at least five word tokens
after stop words, low-frequency words, and punc-
tuation were removed. The preprocessed data sets
contained an average of 45 tokens per document.

Below, we describe two f-LDA variants as well as
the baseline used in our experiments.

Baseline Our baseline model is a unigram lan-
guage model trained on the subset of messages
which are tagged. We treat the drug subforum as
a label for the drug factor, and each message’s tag
is used as a label for either the route or aspect fac-
tor. For example, the word distribution for the pair
(SALVIA,EFFECTS) is estimated as the empirical dis-
tribution from messages posted in the salvia forum
and tagged with “Effects.” We use add-λ smooth-
ing where λ is chosen to optimize likelihood on the
held-out development set.

This is a two-dimensional model, since we explic-
itly model pairs such as (MEPHEDRONE,SNORTING)
or (SALVIA,EFFECTS). However, we also cre-
ated word distributions for triples such as
(SALVIA,ORAL,EFFECTS) by taking a mixture
of the corresponding pairs: in this example, we
estimate the unigram distribution from salvia
documents tagged with either “Oral” or “Effects.”

Factorial LDA Because f-LDA does not rely on
tagged data (the tags are only used to create priors),
we can run inference on larger sets of data. The
drawback is that despite these priors, it is still mostly
unsupervised and we want to be careful to ensure
the model will learn the patterns we care about. We
thus add some reasonable constraints to the parame-
ter space to guide the model further.

First, we treat the drug type as an observed vari-
able based on the subforum the message comes
from, just as with the baseline. For example, only
tuples of the form (SALVIA,∗,∗) can be assigned to
tokens in the salvia forum. Second, we restrict the
set of possible routes of administration that can be
assigned to tokens in particular drug forums, since
most drugs can be taken through only a subset of
routes. For example, marijuana is typically smoked
or eaten orally, but rarely injected. We therefore
restrict each drug’s allowable set of administration
routes to those which are tagged (e.g. with “Oral” or
“Snorting”) in at least 1% of that drug’s data. Sim-
ilar ideas are used in Labeled LDA (Ramage et al.,
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Reference Text System Snippet
Mephedrone (β-ketones/Bath salts)

It is recommended by users that Mephedrone
be taken on an empty stomach. Doses usually
vary between 100mg–1g.

• If it is SWIYs first time using Mephedrone SWIM recommends
a 100mg oral dose on an empty stomach.

Reported negative side effects include:
• Loss of appetite.
• Dehydration and dry mouth
• Tense jaw, mild muscle clenching, stiff neck,

and bruxia (teeth grinding)
• Anxiety and paranoia
• Increase in mean body temperature (sweat-

ing/Mephedrone sweat and hot flushes)
• Elevated heart rate (tachycardia) and blood

pressure, and chest pains
• Dermatitis like symptoms (Itch and rash)

• Neutral side effects: Lack of appetite, occasional loss of visual
focus, [...] weight loss, possible diuretic. Negative side effects:
Grinding teeth, “Cotton mouth”, unable to acheive orgasm

• Aside from his last session he has never experienced any neg-
ative symptoms at all, no raised heart beat, vasoconstriction ,
sweating, headaches, paranoia e.t.c nothing at all except some-
times cold hands the next day.

• lot of people report that anxiety and paranoia are some of the
side effects of taking mephedrone [...] is it also possible that
alot of the chest pains people are experiencing is due to anxiety?

• moisturize the affected areas of skin twice daily with E45 or a
similar unperfumed dermatalogical lotion.

Salvia divinorum
Sublingual ingestion of the leaf (quid): reduces
intensity of effects and can taste disgusting.
When Salvia is consumed as a smokeable for-
mulation the duration of the trip lasts 30 min-
utes or less, whereas if Salvia is consumed sub-
lingually the effects lasts for 1 hour or more.

• The taste of sublingual salvia is foul and it is easy to have a dud
trip unless large amounts of it are used.

• SWIM has heard from many other users that chewing the fresh
leaves of the Salvia plant allow for a much longer and mellower
trip. [...] SWIM has read that a trip this way can last anywhere
from a half on hour or longer.

Dried leaves and/or salvia extract are smoked
(using a butane lighter) either by pipe (consid-
ered to be the most effective but is considered
to be quite painful) or water bong.

• 2. Use a water pipe. Its harsh and needs to be smoked hot so
this should be self explanatory. 3. Use a torch style lighter
[...] Salvinorin A has a VERY high boiling point (around 700
degrees F I believe) so a regular bic just wont do it

Salvia is appealing to recreational users be-
cause of intense, unique, hallucinatory effects.
Brief hallucinations occur rapidly after admin-
istration and are typically very vivid. Users re-
port weird thoughts, feelings of unreality, feel-
ings of immersion in bizarre non-Euclidian di-
mensions/geometries, feelings of floating.

• He noticed very clear [closed eye visuals], which looked similar
to patterns on a persian rug, or ethnic oriental design. SWIM
felt as if he was moving around, that he had got up and run and
fallen, and that falling had shattered the space around his body
as if I’d fallen through many glass framed pictures [...]

• I was aware of my body and my friends and my life below, but
I was [...] standing outside of time and outside of space.

Figure 3: Example snippets generated by f-LDA along with the corresponding reference text. For space, the references
and snippets shown have been shortened in some cases. “SWIM” and “SWIY” stand for “someone who isn’t me/you”
and are used to avoid self-incrimination on the web forum.

2009), in which tags are used to restrict the space of
allowed topics in a document.

We use f-LDA as a three-dimensional model
which explicitly models triples, but we also obtain
distributions for pairs such as (SALVIA,EFFECTS) by
marginalizing across all distributions of the form
(SALVIA,∗,EFFECTS). We trained f-LDA on two dif-
ferent data sets, yielding the following models:

• f-LDA-1: We use the 12K messages with tags
and fill the set out with 13K messages with tags
uniformly sampled from the 18 other drugs, for
a total of 25K messages.

• f-LDA-2: We use all 37K messages (many
without tags) and fill the set out with 63K mes-
sages with tags uniformly sampled from the 18
other drugs, for a total of 100K messages.

All f-LDA instances are run with 5000 iterations
alternating between a sweep of Gibbs sampling fol-
lowed by a step of gradient ascent on the hyperpa-
rameters. While we do not use the tags as strict la-
bels during sampling, we initialize the Gibbs sam-
pler so that each token in a document is assigned
to its label given by the tag, when available. In the
absence of tags (in f-LDA-2), we initialize tokens
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to the GENERAL components. We initialized ω to
its prior mean (Eq. 3), while the variance σ2 and
the initialization of bias ω(B) are chosen to optimize
likelihood on the held-out development set.

We optimized the hyperparameters and sparsity
array using gradient descent after each Gibbs sweep.
We use a decreasing step size of a/(t+1000), where
t is the current iteration and a=10 for α and 1 for
ω and the sparsity values. To learn priors η, we
ran our version of SAGE for 100 iterations of gra-
dient ascent (fixed step size of 0.1). See Paul and
Dredze (2012a) for examples of parameters (the top
words associated with various triples) learned by
this model on this corpus.

4.2 Summary Generation

We created twelve reference summaries by edit-
ing together excerpts from the five Psychonaut
Project reports ((Psychonaut), 2009). Each refer-
ence is matched to drug-specific pairs and triples.
For example, a paragraph describing the dif-
ferences in effects of salvia between smoking
and oral routes was matched to distributions for
(SALVIA,EFFECTS), (SALVIA,SMOKING,EFFECTS),
(SALVIA,ORAL,EFFECTS). Descriptions of creat-
ing tinctures and blotters for oral consumption were
matched to (SALVIA,ORAL,CHEMISTRY). We con-
sider pairs in addition to triples because not all sum-
maries correspond to particular routes or aspects.

For each tuple-specific word distribution (a pair or
a triple), we create a “summary” by extracting a set
of five text snippets which minimize KL-divergence
to the target word distribution. We consider all over-
lapping text windows of widths {10,15,20} in the
corpus as candidate snippets. Following Haghighi
and Vanderwende (2009), we greedily add snippets
one by one with the lowest KL-divergence at each
step until we have added five.

We only considered candidate snippets within the
subforum for the particular drug, and snippets are
based on the preprocessed topic model input with no
stop words. Before presenting snippets to users, we
then map the snippets back to the raw text by taking
all sentences which are at least partly spanned by the
window of tokens. Because each reference may be
matched to more than one tuple, there may be more
than five snippets which correspond to a reference.
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Figure 4: The distribution of annotator scores (§4.3.1).
The “Random” counts have been scaled to fit the same
range as the other systems, since fewer random snippets
were shown to annotators.

4.3 Experimental Results
Recall that the reports used as reference summaries
were themselves created by reading web forums.
Our hypothesis is that f-LDA could be used as an
exploratory tool to expedite the creation of these re-
ports. Thus in our evaluation we want to measure
how useful the extracted snippets would be in in-
forming the writing of such reports. We performed
both human and automatic evaluation on the sum-
maries generated by f-LDA (variants 1 and 2) as well
as our baseline. We also included randomly selected
snippets as a control (five per reference).

Example output is shown in Figure 3.

4.3.1 Human Judgments of Quality
Three annotators were presented snippets pooled

from all four systems we are evaluating alongside
the corresponding reference text. Within each set
corresponding to a reference summary, the snippets
were shown in a random order. Annotators were
asked to judge each snippet independently on a 5-
point Likert scale as to how useful each snippet
would be in writing the reference text.

The distribution of scores is shown in Figure 4 and
summarized in Table 2. Annotators generally agreed
on the relative quality of snippets: the average cor-
relation of scores between each pair of annotators
was 0.49. Snippets produced by f-LDA were given
more high scores and fewer low scores than the base-
line, while the two f-LDA variants were rated com-
parably. The breakdown is more interesting when
we compare scores for snippets that were matched
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Rand. Base. f-LDA-1 f-LDA-2
Annotator Scores

Mean 1.67 2.55 2.79 2.81
Pairs only n/a 2.58 2.79 2.72
Triples only n/a 2.50 2.80 2.95

ROUGE

1-gram .112 .326 .355 .327
2-gram .023 .072 .085 .084

Table 2: Summary quality evaluation across four systems.

to word distributions for pairs versus word distri-
butions for triples. The gap in scores between f-
LDA and the baseline increases when we look at the
scores for only triples: f-LDA beats the baseline by
a margin of 0.45 for snippets matched to triples and
0.21 for pairs. This suggests that we produce better
triples by modeling them jointly. For triples, f-LDA-
2 (which uses more data) beats f-LDA-1 (which uses
only tagged data), while the reverse is true for pairs.

While some of the randomly selected control
snippets happened to be useful, the scores for these
snippets were much lower than those extracted
through model-based systems. This suggests that
exploring the forums in a targeted way (e.g. through
our topic model approach) would be more efficient
than exploring the data in a non-targeted way (akin
to the random approach).

Finally, we asked two expert annotators (faculty
members in psychiatry and behavioral pharmacol-
ogy, who have used drug forums in the past to study
emerging drugs) to rate the snippets corresponding
to mephedrone/MDPV. The best f-LDA system had
an average score of 2.57 compared to a baseline
score of 2.45 and random score of 1.63.

4.3.2 Automatic Evaluation of Recall
The human judgments effectively measured a

form of precision, as the quality of snippets were
judged by their correspondence to the reference text,
without regard to how much of the reference text
was covered by all snippets. We also used the au-
tomatic evaluation metric ROUGE (Lin, 2004) as a
rough estimate of summary recall: this metric com-
putes the percentage of n-grams in the reference text
that appeared in the generated summaries.

We computed ROUGE for both 1-grams and 2-
grams. When computing n-gram counts, we applied
Porter’s stemmer to all tokens. We excluded stop

words from 1-gram counts but included them in 2-
gram counts where we care about longer phrases.2

Results are shown in Table 2. We find that f-LDA-
1 has the highest score for both 1- and 2-grams, sug-
gesting that it is extracting a more diverse set of
relevant snippets. When performing a paired t-test
across the 12 reference summaries, we find that f-
LDA is better than the baseline with p-values 0.14
and 0.10 for 1-gram and 2-gram recall, respectively.
f-LDA’s recall advantage may come from the fact
that it learns from a larger amount of data and it
may learn more diverse word distributions by di-
rectly modeling triples. f-LDA-1 had slightly better
recall (under ROUGE), while f-LDA-2 was slightly
better according to the human annotators.

5 Conclusion

We have proposed exploratory tools for the analy-
sis of online drug communities. Such communi-
ties are an emerging source of drug research, but
manually browsing through large corpora is imprac-
tical and important information could be missed.
We have demonstrated that topic models are capa-
ble of modeling informative portions of text, and in
particular multi-dimensional topic models can tar-
get desired structures such as the combination of as-
pect and route of administration for each drug. We
have presented an extension to factorial LDA tai-
lored to a particular application and data set which
was demonstrated to induce desired properties. As
a technical contribution, this study lays out practical
guidelines for customizing and incorporating prior
knowledge into multi-dimensional text models.
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Abstract

We propose a novel framework for topic la-
beling that assigns the most representative
phrases for a given set of sentences cover-
ing the same topic. We build an entailment
graph over phrases that are extracted from the
sentences, and use the entailment relations to
identify and select the most relevant phrases.
We then aggregate those selected phrases by
means of phrase generalization and merging.
We motivate our approach by applying over
conversational data, and show that our frame-
work improves performance significantly over
baseline algorithms.

1 Introduction

Given text segments about the same topic written in
different ways (i.e., language variability), topic la-
beling deals with the problem of automatically gen-
erating semantically meaningful labels for those text
segments. The potential of integrating topic label-
ing as a prerequisite for higher-level analysis has
been reported in several areas, such as summariza-
tion (Harabagiu and Lacatusu, 2010; Kleinbauer et
al., 2007; Dias et al., 2007), information extraction
(Allan, 2002) and conversation visualization (Liu
et al., 2012). Moreover, the huge amount of tex-
tual data generated everyday specifically in conver-
sations (e.g., emails and blogs) calls for automated
methods to analyze and re-organize them into mean-
ingful coherent clusters.

Table 1 shows an example of two human written
topic labels for a topic cluster collected from a blog1,

1http://slashdot.org

Text: a: Where do you think the term “Horse laugh” comes
from?
b: And that rats also giggled when tickled.
c: My hypothesis- if an animal can play, it can “laugh” or at
least it is familiar with the concept of “laughing”.
Many animals play. There are various sorts of humour though.
Some involve you laughing because your brain suddenly made
a lots of unexpected connections.
Possible extracted phrases: animals play, rats have, laugh,
Horse laugh, rats also giggle, rats
Human-authored topic labels: animals which laugh, animal
laughter

Table 1: Topic labeling example.

and possible phrases that can be extracted from the
topic cluster using different approaches. This ex-
ample demonstrates that although most approaches
(Mei et al., 2007; Lau et al., 2011; Branavan et al.,
2007) advocate extracting phrase-level topic labels
from the text segments, topically related text seg-
ments do not always contain one keyword or key
phrase that can capture the meaning of the topic. As
shown in this example, such labels do not exist in the
original text and cannot be extracted using the exist-
ing probabilistic models (e.g., (Mei et al., 2007)).
The same problem can be observed with many other
examples. This suggests the idea of aggregating and
generating topic labels, instead of simply extracting
them, as a challenging scenario for this field of re-
search.

Moreover, to generate a label for a topic we have
to be able to capture the overall meaning of a topic.
However, most current methods disregard semantic
relations, in favor of statistical models of word dis-
tributions and frequencies. This calls for the integra-
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tion of semantic models for topic labeling.
Towards the solution of the mentioned problems,

in this paper we focus on two novel contributions:
1. Phrase aggregation. We propose to generate
topic labels using the extracted information by pro-
ducing the most representative phrases for each text
segment. We perform this task in two steps. First,
we generalize some lexically diverse concepts in
the extracted phrases. Second, we aggregate and
generate new phrases that can semantically imply
more than one original extracted phrase. For ex-
ample, the phrase “rats also giggle” and “horse
laugh” should be merged into a new phrase “animals
laugh”. Although our method is still relying on ex-
tracting phrases, we move beyond current extractive
approaches, by generating new phrases through gen-
eralization and aggregation of the extracted ones.
2. Building a multidirectional entailment graph
over the extracted phrases to identify and select the
relevant information. We set such problem as an
application-oriented variant of the Textual Entail-
ment (TE) recognition task (Dagan and Glickman,
2004), to identify the information that are seman-
tically equivalent, novel, or more informative with
respect to the content of the others. In this way, we
prune the redundant and less informative text por-
tions (e.g., phrases), and produce semantically in-
formed phrases for the generation phase. In the case
of the example in Table 1, we eliminate phrases such
as “rats have”, “rats” and “laugh” while keeping
“animal play”, “Horse laugh” and “rats also gig-
gle”.

The experimental results over conversational data
sets show that, in all cases, our approach outper-
forms other models significantly. Although conver-
sational data are known to be challenging (Carenini
et al., 2011), we choose to test our method on con-
versations because this is a genre in which topic
modeling is critically needed, as conversations lack
the structure and organization of, for instance, edited
monologues. The results indicate that our frame-
work is sufficiently robust to deal with topic labeling
in less structured, informal genres (when compared
with edited monologues). As an additional result of
our experiments, we show that the identification and
selection phase using semantic relations (entailment
graph) is a necessary step to perform the final step
(i.e., the phrase aggregation).

2 Topic Labeling Framework

Each topic cluster contains the sentences that can
semantically represent a topic. The task of cluster-
ing the sentences into a set of coherent topic clus-
ters is called topic segmentation (Joty et al., 2011),
which is out of the scope of this paper. Our goal is to
generate an understandable label (i.e., a sequence of
words) that could capture the semantic of the topic,
and distinguish a topic from other topics (based on
definition of a good topic label by (Mei et al., 2007)),
given a set of topic clusters. Among possible choices
of word sequences as topic labels, in order to balance
the granularity, we set phrases as valid topic labels.

Extract all

Filter/select

Entailment

Identify

Phrase extraction Entailment Graph

Generalize

Merge

Phrase
aggregation? ? ?

- -

1Figure 1: Topic labeling framework.

As shown in Figure 1, our framework consists of
three main components that we describe in more de-
tails in the following sections.

2.1 Phrase extraction

We tokenize and preprocess each cluster in the col-
lection of topic clusters with lemmas, stems, part-of-
speech tags, sense tags and chunks. We also extract
n-grams up to length 5 which do not start or end with
a stop word. In this phase, we do not include any
frequency count feature in our candidate extraction
pipeline. Once we have built the candidates pool,
the next step is to identify a subset containing the
most significant of those candidates. Since most top
systems in key phrase extraction use supervised ap-
proaches, we follow the same method (Kim et al.,
2010b; Medelyan et al., 2008; Frank et al., 1999).

Initially, we consider a set of features used in the
other systems to determine whether a phrase is likely
to be a key phrase. However, since our dataset is
conversational (more details in Section 3), and the
text segments are not long, we aim for a classifier
with high recall. Thus, we only use TFxIDF (Salton
and McGill, 1986), position of the first occurrence
(Frank et al., 1999) and phrase length as our fea-
tures. We merge the training and test data released
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for SemEval-2010 Task #5 (Kim et al., 2010b),
which consists of 244 scientific articles and 3705
key phrases, to train a Naive Bayes classifier in or-
der to learn a supervised model. We then apply our
model to extract the candidate phrases from the col-
lected candidates pool.

As a further step, to increase the coverage (re-
call) of our extracted phrases and to reduce the num-
ber of very short phrases (frequent keywords), we
choose the chunks containing any of the extracted
keywords. We add those chunks to our extracted
phrases and eliminate the associated keywords.

2.2 Entailment graph

So far, we have extracted a pool of key phrases from
each topic cluster. Many such phrases include re-
dundant information which are semantically equiv-
alent but vary in lexical choices. By identifying the
semantic relations between the phrases we can dis-
cover the information in one phrase that is seman-
tically equivalent, novel, or more/less informative
with respect to the content of the other phrase.

We set this problem as a variant of the Textual
Entailment (TE) recognition task (Mehdad et al.,
2010b; Adler et al., 2012; Berant et al., 2011). We
build an entailment graph for each topic cluster,
where nodes are the extracted phrases and edges are
the entailment relations between nodes. Given two
phrases (ph1 and ph2), we aim at identifying and
handling the following cases:
i) ph1 and ph2 express the same meaning (bidirec-
tional entailment). In such cases one of the phrases
should be eliminated;
ii) ph1 is more informative than ph2 (unidirectional
entailment). In such cases, the entailing phrase
should replace or complement the entailed one;
iii) ph1 contains facts that are not present in ph2,
and vice-versa (the “unknown” cases in TE par-
lance). In such cases, both phrases should remain.

Figure 2 shows how entailment relations can help
in selecting the phrases by removing the redun-
dant and less informative ones. For example, the
phrase “animals laugh” entails “rats giggle”, “Horse
laugh” and “Mice chuckle”,2 but not “Animals play”.

2Assuming that “animals laugh” is interpreted as “all ani-
mals laugh”.

rats
giggle

Horse
laugh

laugh

rats

Mice
chuckle

animals
laugh

Animals
playx

x

1

Figure 2: Building an entailment graph over phrases. Ar-
rows and “x” represent the entailment direction and un-
known cases respectively.

So we can keep “animals laugh” and “Animals play”
and eliminate others. In this way, TE-based phrase
identification method can be designed to distinguish
meaning-preserving variations from true divergence,
regardless of lexical choices and structures.

Similar to previous approaches in TE (e.g., (Be-
rant et al., 2011; Mehdad et al., 2010b; Mehdad et
al., 2010a)), we use supervised method. To train and
build the entailment graph, we perform the follow-
ing three steps.

2.2.1 Training set collection
In the last few years, TE corpora have been cre-

ated and distributed in the framework of several
evaluation campaigns, including the Recognizing
Textual Entailment (RTE) Challenge3 and Cross-
lingual textual entailment for content synchroniza-
tion4 (Negri et al., 2012). However, such datasets
cannot directly support our application. Specifi-
cally, our entailment graph is built over the extracted
phrases (with max. length of 5 tokens per phrase),
while the RTE datasets are composed of longer sen-
tences and paragraphs (Bentivogli et al., 2009; Negri
et al., 2011).

In order to collect a dataset which is more similar
to the goal of our entailment framework, we decide
to select a subset of the sixth and seventh RTE chal-
lenge main task (i.e., RTE within a Corpus). Our

3http://pascallin.ecs.soton.ac.uk/Challenges/RTE/
4http://www.cs.york.ac.uk/semeval-2013/task8/
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dataset choice is based on the following reasons: i)
the length of sentence pairs in RTE6 and RTE7 is
shorter than the others, and ii) RTE6 and RTE7 main
task datasets are originally created for summariza-
tion purpose which is closer to our work. We sort
the RTE6 and RTE7 dataset pairs based on the sen-
tence length and choose the first 2000 samples with
a equal number of positive and negative examples.
The average length of words in our training data is
6.7 words. There are certainly some differences be-
tween our training set and our phrases. However, the
collected training samples was the closest available
dataset to our purpose.

2.2.2 Feature representation and training
Working at the phrase level imposes another con-

straint. Phrases are short and in terms of syntactic
structure, they are not as rich as sentences. This lim-
its our features to the lexical level. Lexical mod-
els, on the other hand, are less computationally ex-
pensive and easier to implement and often deliver a
strong performance for RTE (Sammons et al., 2011).

Our entailment decision criterion is based on
similarity scores calculated with a phrase-to-phrase
matching process. Each example pair of phrases
(ph1 and ph2) is represented by a feature vector,
where each feature is a specific similarity score esti-
mating whether ph1 entails ph2.

We compute 18 similarity scores for each pair of
phrases. In order to adapt the similarity scores to the
entailment score, we normalize the similarity scores
by the length of ph2 (in terms of lexical items), when
checking the entailment direction from ph1 to ph2.
In this way, we can check the portion of informa-
tion/facts in ph2 which is covered by ph1.

The first 5 scores are computed based on the exact
lexical overlap between the phrases: word overlap,
edit distance, ngram-overlap, longest common sub-
sequence and Lesk (Lesk, 1986). The other scores
were computed using lexical resources: Word-
Net (Fellbaum, 1998), VerbOcean (Chklovski and
Pantel, 2004), paraphrases (Denkowski and Lavie,
2010) and phrase matching (Mehdad et al., 2011).
We used WordNet to compute the word similarity
as the least common subsumer between two words
considering the synonymy-antonymy, hypernymy-
hyponymy, and meronymy relations. Then, we cal-
culated the sentence similarity as the sum of the sim-

ilarity scores of the word pairs in Text and Hypothe-
sis, normalized by the number of words in Hypothe-
sis. We also use phrase matching features described
in (Mehdad et al., 2011) which consists of phrasal
matching at the level on ngrams (1 to 5 grams). The
rationale behind using different entailment features
is that combining various scores will yield a better
model (Berant et al., 2011).

To combine the entailment scores and optimize
their relative weights, we train a Support Vector Ma-
chine binary classifier, SVMlight (Joachims, 1999),
over an equal number of positive and negative exam-
ples. This results in an entailment model with 95%
accuracy over 2-fold and 5-fold cross-validation,
which further proves the effectiveness of our fea-
ture set for this lexical entailment model. The reason
that we gained a very high accuracy is because our
selected sentences are a subset of RTE6 and RTE7
with a shorter length (less number of words) which
makes the entailment recognition task much easier
than recognizing entailment between paragraphs or
complex long sentences.

2.2.3 Graph edge labeling
We set the edge labeling problem as a two-way

classification task. Two-way classification casts
multidirectional entailment as a unidirectional prob-
lem, where each pair is analyzed checking for en-
tailment in both directions (Mehdad et al., 2012). In
this condition, each original test example is correctly
classified if both pairs originated from it are cor-
rectly judged (“YES-YES” for bidirectional,“YES-
NO” and “NO-YES” for unidirectional entailment
and “NO-NO” for unknown cases). Two-way clas-
sification represents an intuitive solution to capture
multidimensional entailment relations. Moreover,
since our training examples are labeled with binary
judgments, we are not able to train a three-way clas-
sifier.

2.2.4 Identification and selection
Assigning all entailment relations between the ex-

tracted phrase pairs, we are aiming at identifying
relevant phrases and eliminating the redundant (in
terms of meaning) and less informative ones. In or-
der to perform this task we follow a set of rules based
on the graph edge labels. Note that since entailment
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# Merging patterns
1 merge ( cw11(CP OS=[N|V |J])

..w1n , cw21(CP OS=[N|V |J])
..w2n ) = w11..w1n and w22..w2n

E.g. merge ( challenging situation , challenging problem ) = challenging situation and problem
2 merge ( w11..cw1n(CP OS=[N|V |J])

, w21..cw2n(CP OS=[N|V |J])
) = w11..w1n−1 and w21..w2n

E.g. merge ( wet Mars , warm Mars ) = wet and warm Mars
3 merge ( w11..cw1n(CP OS=[N|V |J])

, cw21(CP OS=[N|V |J])
..w2n ) = w11..w1n w22..w2n

E.g. merge ( interesting story , story continues ) = interesting story continues
4 merge ( cw11(CP OS=[N|V |J])

..w1n , w21..cw2n(CP OS=[N|V |J])
) = w21..w2n w12..w1n

E.g. merge ( LHC shutting down , details about LHC ) = details about LHC shutting down
5 merge ( w11Cpos

, cw12(CP OS=[N|V |J])
, w13Cpos

, w21Cpos
, cw22(CP OS=[N|V |J])

, w23Cpos
) = w11 and w21 w22 w23

and w13

E.g. merge ( technology grow fast , media grow exponentially ) = technology and media grow exponentially and fast

Table 2: Phrase merging patterns.

is a transitive relation, our entailment graph is transi-
tive i.e., if entail(ph1,ph2) and entail(ph2,ph3) then
entail(ph1,ph3) (Berant et al., 2011).
Rule 1) If there is a chain of entailing nodes, we
keep the one which is in the root of the chain and
eliminate others (e.g. “animals laugh” in Figure 2);
Rule 2) Among the nodes that are connected
with bidirectional entailment (semantically equiva-
lent nodes) we keep only the one with more outgoing
bidirectional and unidirectional entailment relations,
respectively;
Rule 3) Among the nodes that are connected with
unknown entailment (novel information with respect
to others) we keep the ones with no incoming entail-
ment relation (e.g., “Animals play” in Figure 2).

Although deleting might be harsh, in our current
framework, we only rely on the performance of an
entailment model which gives us a yes/no entailment
decision. In future, we are planning to improve our
entailment graph by weighting the edges. In this
way, we can take advantage of the weights to make
a more conservative decision in pruning the entail-
ment chains.

2.3 Phrase aggregation

Once we have identified and selected the informa-
tive phrases, the generation of topic labels can be
done in two steps. First, we generalize the phrases
containing the concepts that are lexically connected.
Second, we merge the phrases with a set of hand
written linguistically motivated patterns.

2.3.1 Phrase generalization
In this step, we generalize phrases that contain

concepts which are lexically connected. For this

purpose, we search in phrases for different words
with the same part-of-speech and sense tag. Then,
we find the link between those words in WordNet. If
they are connected and the shortest path connecting
them is less than 3 (estimated over the development
set), we replace both by their common parent in the
WordNet. In the case that they belong to the same
synset, we can replace one by another. Note that we
limit our search to nouns and verbs. For example,
“rat” and “horse” can be replaced by “animal”, or
“giggle” and “chuckle” can be replaced by “laugh”.
The motivation behind the generalization step is to
enrich the common terms between the phrases in fa-
vor of increasing the chance that they could merge
to a single phrase. This also helps to move beyond
the limitation of original lexical choices.

2.3.2 Phrase merging

The goal is to merge the phrases that are con-
nected, and to generate a human readable phrase that
contains more information than a single extracted
phrase. Several approaches have been proposed to
aggregate and merge sentences in Natural Language
Generation (NLG) (e.g. (Barzilay and Lapata, 2006;
Cheng and Mellish, 2000)), however most of them
use syntactic structure of the sentences. To merge
phrases at the lexical level, we set few common lin-
guistically motivated aggregation patterns such as:
simple conjunction, and conjunction via shared par-
ticipants (Reiter and Dale, 2000).

Table 2 demonstrates the merging patterns, where
wij is the jth word (or segment) in phrase i, cw
is the common word (or segment) in both phrases
and CPOS is the common part-of-speech tag of
the corresponding word. To illustrate, pattern 1
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looks for the first segment of each phrase (wi1).
If they are same (cwi1) and share the same POS
tag (CPOS), then we aggregate the first phrase
(w11..w1n) and the second phrase removing the first
element (w22..w2n) by using the connective “and”.
For instance, the aggregation of “animals laugh” and
“animals play” results in “animals laugh and play”.
The rest of the patterns follow the same logic and for
the sake of brevity we avoid illustrating each pattern.
These patterns are among the most common domain
and application independent methods by which two
phrases/sentences can be aggregated, as described in
the NLG literature (Reiter and Dale, 2000).

In our aggregation pipeline, we group the phrases
based on their lexical overlap (number of common
words). The merging process is conducted over each
group in descending order (larger number of words
in common), in order to increase the chance of merg-
ing rules application. Then, we perform the merg-
ing over the resulting generated phrases from each
group. If our phrases cannot be merged (i.e., do not
match merging patterns), we select them as labels
for the topic cluster.

3 Datasets and Evaluation Metrics

3.1 Datasets

To verify the effectiveness of our approach, we ex-
periment with two different conversational datasets.
Our interest in dealing with conversational texts de-
rives from two reasons. First, the huge amount of
textual data generated everyday in these conversa-
tions validates the need of text analysis frameworks
to process such conversational texts effectively. Sec-
ond, conversational texts pose challenges to the tra-
ditional techniques, including redundancies, disflu-
encies, higher language variabilities and ill-formed
sentence structure (Liu et al., 2011).

Our conversational datasets are from two differ-
ent asynchronous media: email and blog. For email,
we use the dataset presented in (Joty et al., 2010),
where three individuals annotated the publicly avail-
able BC3 email corpus (Ulrich et al., 2008) with top-
ics. The corpus contains 40 email threads (or conver-
sations) at an average of 5 emails per thread. On av-
erage it has 26.3 sentences and 2.5 topics per thread.
A topic has an average length of 12.6 sentences. In
total, the three annotators found 269 topics in a cor-

pus of 1,024 sentences.
There are no publicly available blog corpora an-

notated with topics. For this study, we build our
own blog corpus containing 20 blog conversations of
various lengths from Slashdot, each annotated with
topics by three human annotators.5 The number of
comments per conversation varies from 30 to 101
with an average of 60.3 and the number of sentences
per conversation varies from 105 to 430 with an av-
erage of 220.6. The annotators first read a conversa-
tion and list the topics discussed in the conversation
by a short description (e.g., Game contents or size,
Bugs or faults) which provides a high-level overview
of the topic. Then, they assign the most appropriate
topic to each sentence in the conversation. The short
high-level descriptions of the topics serve as refer-
ence (or gold) topic labels in our experiments. The
target number of topics was not given in advance and
the annotators were instructed to find as many topics
as needed to convey the overall content structure of
the conversation. The annotators found 5 to 23 top-
ics per conversation with an average of 10.77. The
number of sentences per topic varies from 11.7 to
61.2 with an average of 27.16. In total, the three
annotators found 512 topics in our blog corpus con-
taining 4,411 sentences overall.

Note that our annotators performed topic segmen-
tation and labeling independently. In the email cor-
pus, the three annotators found 100, 77 and 92 top-
ics respectively (269 in total), and in the blog corpus,
they found 251, 119 and 192 topics respectively (562
in total). For the evaluation, there is a single gold
standard per topic written by each annotator. Table
1 shows a case in which two annotators selected the
same topical cluster and so we have two labels for
the same cluster.

3.2 Evaluation metrics

Traditionally, key phrase extraction is evaluated us-
ing precision, recall and f-measure based on exact
matches on all the extracted key phrases with gold
standards for a given text. However, as claimed
by (Kim et al., 2010a), this approach is not flexible
enough as it ignores the near-misses. Moreover, in
the case of topic labeling, most of the human written

5The new blog corpus annotated with topics will be made
publicly available for research purposes.
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topic labels cannot be found in the text. Recently,
(Kim et al., 2010a) evaluated the utility of differ-
ent n-gram-based metrics for key phrase extraction
and showed that the metric R-precision correlates
most with human judgments. R-precision normal-
izes the approximate matching score by the maxi-
mum number of words in the reference and candi-
date phrases. Since this penalize our aggregation
phase, where the phrases tend to be longer than orig-
inal extracted phrase, we decide to use R-f1 as our
evaluation metric which considers length of both ref-
erence and candidate phrases.

R−precision =
1

k

k∑
i=1

overlap(candi, ref)

#words(candi)

R−recall =
1

k

k∑
i=1

overlap(candi, ref)

#words(ref)

R−f1 =
2 ∗R−precision ∗R−recall

(R−precision + R−recall)

The metric described above only considers word
overlap and ignores other semantic relations (e.g.,
synonymy, hypernymy) between words. However,
annotators write labels of their own and may use
words that are not directly from the conversation but
are semantically related. Therefore, we propose to
also use another variant of R-f1 that incorporates se-
mantic relation between words. To calculate the Se-
mantic R-f1, we count the number of overlaps not
only when they have the same form, but also when
they are connected in WordNet with a synonymy,
hypernymy, hyponymy and entailment relation.

Its worth noting that the generalizations phase and
the evaluation method are completely independent.
In the generalization step, we try to generalize the
phrases which are automatically extracted from the
text segments. While, in the evaluation, we compare
the human written gold standards with the system
output. Therefore, using WordNet in the generaliza-
tion step does not bias the results in the evaluation.

4 Experiments and Results

4.1 Experimental settings

We conduct our experiments over the blog and email
datasets described in Section 3.1, after eliminating
the development set from the test datasets. In our ex-

periments, the development set was used for the pat-
tern extraction and the shortest path threshold con-
necting the words in Wordnet in the generalization
phase. Our test dataset consists of 461 topics (i.e.,
clusters and their associated topic labels) from 20
blog conversations and 242 topics from 40 email
conversations.

For preprocessing our dataset we use OpenNLP6

for tokenization, part-of-speech tagging and chunck-
ing. For sense disambiguation, we use the extended
gloss overlap measure with the window size of 5,
developed by (Pedersen et al., 2005). We also apply
Snowball algorithm (Porter, 2001) for stemming.

We compare our approach with two strong base-
lines. The first baseline Freq-BL ranks the words
according to their frequencies and select the top 5
candidates applying Maximum Marginal Relevance
algorithm (Carbonell and Goldstein, 1998) using
the same pre- and post-processing as the work by
(Mihalcea and Tarau, 2004). The second baseline
Lead-BL, ranks the words based on their relevance
to the leading sentences.7 The ranking criteria is
log(tfw,Lt + 1)× log(tfw,t + 1), where tfw,Lt and
tfw,t are the number of times word w appears in a
set of leading sentences Lt and topic cluster t, re-
spectively (Allan, 2002). The log expressions, as the
ranking criterion, assign more weights to the words
in the topic segment, that also appear in the leading
sentences. This is because topics tend to be intro-
duced in the first few sentences of a topical cluster.
We also measure the performance of our framework
at each step in order to compare the effectiveness of
each phase independently or in combination.

4.2 Results

We evaluate the performance of different models us-
ing the metrics R-f1 and Semantic R-f1 (Sem-R-f1),
described in Section 3.2. Table 4 shows the results
in percentage for different models. The results show
that our framework outperforms the baselines signif-

6http://opennlp.sourceforge.net/
7The key intuitions for this baseline is the leading sentences

of a topic cluster carry the most informative clues for the topic
labels. Based on our development set, when we consider the
first three sentences, the coverage of content words that appear
in human labeled topics are 39% and 49% for blog and email,
respectively.
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Blog Email
Human-authored system generated Human-authored system generated
Shutting down the LHC story about the LHC shutting down (#3) How it affects coding it screws my coding
typical shutdown and upgrade times typical and scheduled shutdown (#2) Opinions and preferences of tools opinion about what tools
MARS was warm and wet 3B years ago Mars was warm and wet early history (#3) white on black for disabled users white text on black background (#3)
Moon Treaty and outer space treaty Moon and Outer Space Treaty (#2) Contact with Steven email to Steven Pemberton (#3)

Table 3: Successful examples of human-authored and system generated labels for blog and email datasets. The number
near some examples refers to the aggregation patterns in Table 2.

Models
R-f1 Sem-R-f1

blog email blog email
Lead-BL 13.5 14.0 34.5 30.1
Freq-BL 15.3 13.1 34.7 29.1
Extraction-BL 13.9 16.0 31.6 33.2

Entailment 12.2 15.6 30.8 33.3
Extraction+Aggregation 15.1 18.5 35.5 37.6
Extraction+Entailment+
Aggregation 17.9 20.4 38.7 41.6

Table 4: Results for candidate topic labels on blog and
email corpora.

icantly8 in both datasets.
On the blog corpus, our key phrase extraction

method (Extraction-BL) fails to beat the other base-
lines (Lead-BL and Freq-BL) in majority of cases
(except R-f1 for Lead-BL). However, in the email
dataset, it improves the performance over both base-
lines in both evaluation metrics. This might be due
to the shorter topic clusters (in terms of number of
sentences) in email corpus which causes a smaller
number of phrases to be extracted.

We also observe the effectiveness of the aggre-
gation phase. In all cases, there is a significant
improvement (p < 0.05) after applying the ag-
gregation phase over the extracted phrases (Extrac-
tion+Aggregation).

Note that there is no improvement over the ex-
traction phase after the entailment (Entailment row).
This is mainly due to the fact that the entailment
phase filters the equivalent phrases. This affects the
results negatively when such filtered phrases share
many common words with our human-authored
phrases. However, the results improve more sig-
nificantly (p < 0.01) when the aggregation is con-
ducted after the entailment. This demonstrates that,
the combination of these two steps are beneficial for
topic labeling over conversational datasets.

In addition, the differences between the results us-
8The statistical significance tests was calculated by approx-

imate randomization described in (Yeh, 2000).

ing R-f1 and Sem-R-f1 metrics suggests the need for
more flexible automatic evaluation methods for this
task. Moreover, although the same trend of improve-
ment is observed in blog and email corpora, the dif-
ferences between their performance suggest the in-
vestigation of specialized methods for various con-
versational modalities.
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Figure 3: Sem-R-f1 results distribution after each phase
of our pipeline for blog corpus. The x-axis represents the
examples sorted based on their Sem-R-f1 score.

To further analyze the performance, in Figure 3,
we show the Sem-R-f1 results distribution for our
blog dataset.9 We can observe that the aggrega-
tion after the entailment phase (bold curve) clearly
increase the number of correct labels, while such
improvement can be only achieved when the en-
tailment relations is used to identify the relevant
phrases. This further highlights the need of seman-
tics in this task. Comparing both datasets, this ef-
fect is more dominant in blogs. We believe that this
is due to the length of topic clusters. Presumably,
building an entailment graph over a greater pool of

9For brevity’s sake we do not show the email dataset graph.
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original phrases is more effective to filter the redun-
dant information and identify the relevant phrases.

5 Discussion

After analyzing the results and through manual veri-
fication of some cases, we observe that our approach
led to some interestingly successful examples. Table
3 shows few generated labels and the human written
topics for such cases.

In general, given that the results are expressed in
percentage, it appears that the performance is still
far from satisfactory level. This leaves an interesting
challenge for the research community to tackle.
However, this is not always due to the weakness
of our proposed model. We have identified three
different system independent sources of error:10

Type 1: Abstractive human-authored labels: the
nature of our method is based on extraction (with
the exception of our simple generalization phase)
and in many cases the human-written labels cannot
be extracted from the text and require more complex
generalizations. In fact, only 9.81% of the labels
in blog and 12.74% of the labels in email appear
verbatim in their respective conversations. For
example:
Human-authored label: meeting schedule and location

Generated phrases: meeting, Boston area, mid October

Type 2: Evaluation methods: in this work, we
proposed a semantic method to evaluate our system.
However, the current evaluation methods fail to
capture the meaning. For example:
Human-authored label: Food choices

Generated phrase: I would ask what people want to eat

Type 3: Subjective topic labels: often is not easy
for human to agree on one label for a topic cluster.11

For example:
Human-authored label 1: Member introduction

Human-authored label 2: Bio of Len

Generated phrases: own intro, Len Kasday, chair

In light of this analysis, we conclude that a more
comprehensive evaluation method (e.g., human eval-
uation) could better reveal the potential of our sys-

10There are many examples of such cases, however for
brevity we just mention one example for each type.

11The mean R-precision agreements computed based on one-
to-one mappings of the topic clusters are 20.22 and 36.84 on
blog and email data sets, respectively.

tem in dealing with topic labeling, specially on con-
versational data.

6 Conclusion

In this paper, we study the problem of automatic
topic labeling, and propose a novel framework to la-
bel topic clusters with meaningful readable phrases.
Within such framework, this paper makes two main
contributions. First, in contrast with most current
methods based on fully extractive models, we pro-
pose to aggregate topic labels by means of gener-
alizing and merging techniques. Second, beyond
current approaches which disregard semantic infor-
mation, we integrate semantics by means of build-
ing textual entailment graphs over the topic clusters.
To achieve our objectives, we successfully applied
our framework over two challenging conversational
datasets. Coherent results on both datasets demon-
strate the potential of our approach in dealing with
topic labeling task.

Future work will address both the improvement of
our aggregation phase and ranking the output candi-
date phrases for each topic cluster. On one hand,
we plan to accommodate more sophisticated NLG
techniques for the aggregation and generation phase.
Incorporating a better source of prior knowledge in
the generalization phase (e.g., YAGO or DBpedia) is
also an interesting research direction towards a bet-
ter phrase aggregation step. On the other hand, we
plan to apply a ranking strategy to select the top can-
didate phrases generated by our framework.
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Abstract

We present a new hierarchical Bayesian model
for unsupervised topic segmentation. This new
model integrates a point-wise boundary sam-
pling algorithm used in Bayesian segmenta-
tion into a structured topic model that can cap-
ture a simple hierarchical topic structure latent
in documents. We develop an MCMC infer-
ence algorithm to split/merge segment(s). Ex-
perimental results show that our model out-
performs previous unsupervised segmentation
methods using only lexical information on
Choi’s datasets and two meeting transcripts
and has performance comparable to those pre-
vious methods on two written datasets.

1 Introduction

Documents are usually comprised of topically co-
herent text segments, each of which contains some
number of text passages (e.g., sentences or para-
graphs) (Salton et al., 1996). Within each topically
coherent segment, one would expect that the word
usage demonstrates more consistent lexical distri-
butions (known as lexical cohesion (Eisenstein and
Barzilay, 2008)) than that across segments. A linear
partition of texts into topic segments may reveal in-
formation about, for example, themes of segments
and the overall thematic structure of the text, and
can subsequently be useful for text analysis tasks,
such as information retrieval (e.g., passage retrieval
(Salton et al., 1996)), document summarisation and
discourse analysis (Galley et al., 2003).

In this paper we consider how to automatically
find a topic segmentation. It involves identifying

the most prominent topic changes in a sequence
of text passages, and splits those passages into a
sequence of topically coherent segments (Hearst,
1997; Beeferman et al., 1999). This task can be cast
as an unsupervised machine learning problem: plac-
ing topic boundaries in unannotated text.

Although a variety of cues in text can be used for
topic segmentation, such as cue phases (Beeferman
et al., 1999; Reynar, 1999; Eisenstein and Barzi-
lay, 2008)) and discourse information (Galley et al.,
2003), in this paper, we focus on lexical cohesion
and use it as the primary cue in developing an un-
supervised segmentation model. The effectiveness
of lexical cohesion has been demonstrated by Text-
Tiling (Hearst, 1997), c99 (Choi, 2000), MinCut
(Malioutov and Barzilay, 2006), PLDA (Purver et
al., 2006), Bayesseg (Eisenstein and Barzilay, 2008),
TopicTiling (Riedl and Biemann, 2012), etc.

Our work uses recent progress in hierarchi-
cal topic modelling with non-parametric Bayesian
methods (Du et al., 2010; Chen et al., 2011; Du et
al., 2012a), and is based on Bayesian segmentation
methods (Goldwater et al., 2009; Purver et al., 2006;
Eisenstein and Barzilay, 2008) using topic mod-
els. This can also be viewed as a multi-topic exten-
sion of hierarchical Bayesian segmentation (Eisen-
stein, 2009), although our use of hierarchies is used
to improve the performance of linear segmentation,
rather than develop hierarchical segmentation.

Recently, topic models are increasingly used in
various text analysis tasks including topic segmen-
tation. Previous work (Purver et al., 2006; Misra
et al., 2008; Sun et al., 2008; Misra et al., 2009;
Riedl and Biemann, 2012) has shown that using
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topic assignments or topic distributions instead of
word frequency can significantly improve segmen-
tation performance. Here we consider more ad-
vanced topic models that model dependencies be-
tween (sub-)sections in a document, such as struc-
tured topic models (STMs) presented in (Du et al.,
2010; Du et al., 2012b). STMs treat each text as
a sequence of segments, each of which is a set of
text passages (e.g., a paragraph or sentence). Text
passages in a segment share the same prior distribu-
tion on their topics. The topic distributions of seg-
ments in a single document are then encouraged to
be similar via a hierarchical prior. This gives a sub-
stantial improvement in modelling accuracy. How-
ever, instead of explicitly learning the segmentation,
STMs just leverage the existing structure of docu-
ments from the given segmentation.

Given a sequence of text passages, how can we
automatically learn the segmentation? The word
boundary sampling algorithm introduced in (Gold-
water et al., 2009) uses point-wise sampling of word
boundaries after phonemes in an utterance. Simi-
larly, the segmentation method of PLDA (Purver
et al., 2006) samples segment boundaries, but also
jointly samples a topic model. This is different to
other topic modelling approaches that run LDA as
a precursor to a separate segmentation step (Misra
et al., 2009; Riedl and Biemann, 2012). While con-
ceptually similar to PLDA, our non-parametric ap-
proach built on STM required new methods to im-
plement, but the resulting improvement by the stan-
dard segmentation scores is substantial.

This paper presents a new hierarchical Bayesian
unsupervised topic segmentation model, integrating
a point-wise boundary sampling algorithm with a
structured topic model. This new model takes ad-
vantage of the high modelling accuracy of structured
topic models (Du et al., 2010) to produce a topic
segmentation based on the distribution of latent top-
ics. We show that this model provides high quality
segmentation performance on Choi’s dataset, as well
as two sets of meeting transcripts and written texts.

In the following sections we describe our topic
segmentation model and an MCMC inference al-
gorithm for the non-parametric split/merge pro-
cess. The rest of the paper is organised as follows. In
Section 2 we review recent related work in the topic
segmentation literature. Section 3 presents the new

topic segmentation model, followed by the deriva-
tion of a sampling algorithm in Section 4. We report
the experimental results by comparing several re-
lated topic segmentation methods in Section 5. Sec-
tion 6 concludes the paper.

2 Related Work

We are interested in unsupervised topic segmenta-
tion in either written or spoken language. There is a
large body of work on unsupervised topic segmen-
tation of text based on lexical cohesion. It can be
characterised by how lexical cohesion is modelled.

One branch of this work represents the lexical co-
hesion in a vector space by exploring the word co-
occurrence patterns, e.g., TF or TF-IDF. Work fol-
lowing this line includes TextTiling (Hearst, 1997),
which calculates the cosine similarity between two
adjacent blocks of words purely based on the word
frequency; C99 (Choi, 2000), an algorithm based
on divisive clustering with a matrix-ranking scheme;
LSeg (Galley et al., 2003), which uses a lexical
chain to identify and weight word repetitions; U00
(Utiyama and Isahara, 2001), a probalistic approach
using dynamic programming to find a segmenta-
tion with a minimum cost; MinCut (Malioutov and
Barzilay, 2006), which casts segmentation as a graph
cut problem, and APS (Kazantseva and Szpakowicz,
2011), which uses affinity propagation to learn clus-
tering for segmentation.

The other branch of this work characterises the
lexical cohesion using topic models, to which the
model introduced in Section 3 belongs. Lexical co-
hesion in this line of research is modelled by a
probabilistic generative process. PLDA presented by
Purver et al. (2006) is an unsupervised topic mod-
elling approach for segmentation. It chains a set of
LDAs (Blei et al., 2003) by assuming a Markov
structure on topic distributions. A binary topic shift
variable is attached to each text passage (i.e., an ut-
terance in (Purver et al., 2006)). It is sampled to in-
dicate whether the jth text passage shares the topic
distribution with the (j − 1)th passage.

Using a similar Markov structure, SITS (Nguyen
et al., 2012) chains a set of HDP-LDAs (Teh et al.,
2006). Unlike PLDA, SITS assumes each text pas-
sage is associated with a speaker identity that is at-
tached to the topic shift variable as supervising in-
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formation. SITS further assumes speakers have dif-
ferent topic change probabilities that work as pri-
ors on topic shift variables. Instead of assuming
documents in a dataset share the same set of top-
ics, Bayesseg (Eisenstein and Barzilay, 2008) treats
words in a segment generated from a segment spe-
cific multinomial language model, i.e., it assumes
each segment is generated from one topic, and a
later hierarchical extension (Eisenstein, 2009) as-
sumes each segment is generated from one topic or
its parents. Other methods using as input the output
of topic models include (Sun et al., 2008), (Misra et
al., 2009), and (Riedl and Biemann, 2012).

In this paper we take a generative approach ly-
ing between PLDA and SITS. In contrast to PLDA,
which uses a flat topic model (i.e., LDA), we assume
each text has a latent topic structure that can reflect
the topic coherence pattern, and the model adapts its
parameters to the segments to further improve per-
formance. Unlike SITS that targets analysing multi-
party meeting transcripts, where speaker identities
are available, we are interested in more general texts
and assume each text has a specific topic change
probability, since (1) the identity information is not
always available for all kinds of texts (e.g., continu-
ous broadcast news transcripts (Allan et al., 1998)),
(2) even for the same author, topic change probabil-
ities for his/her different articles might be different.

3 Segmentation with Topic Models

In documents, topically coherent segments usually
encapsulate a set of consecutive passages that are
semantically related (Wang et al., 2011). However,
the topic boundaries between segments are often un-
available a priori. Thus we treat all passage bound-
aries (e.g., sentence boundaries, paragraph bound-
aries or pauses between utterances) as possible topic
boundaries. To recover the topic boundaries we de-
velop a structured topic segmentation model by inte-
grating ideas from the segmented topic model (Du et
al., 2010, STM) and Bayesian segmentation models.

The basic idea of our model is that each docu-
ment consists of a set of segments where text pas-
sages in the same segment are generated from the
same topic distribution, called segment level topic
distribution. The segment level topic distribution is
drawn from a topic distribution associated with the

whole document, called document level topic distri-
bution. The relationships between the levels is man-
aged using Bayesian non-parametric methods and a
significant change in segment level topic distribution
indicates a segment change.

Our unsupervised topic segmentation model is
based on the premise that using a hierarchical topic
model like the STM with a point-wise segment
sampling algorithm should allow better detection
of topic boundaries. We believe that (1) segment
change should be associated with significant change
in the topic distribution, (2) topic cohesion can be
reflected in document topic structure, (3) the log-
likelihood of a topically coherent segment is typi-
cally higher than an incoherent segment (Misra et
al., 2008).

Assume we have a corpus of D documents, each
document d consists of a sequence of Ud text pas-
sages, and each passage u contains a set of Nd,u

words denoted by wd,u that are from a vocabulary
W . Our model consists of:

Modelling topic boundary: We assume each
document has its own topic shift probability
πd, a Beta distributed random variable, i.e.,
πd∼Beta(λ0, λ1). Then, we associate a bound-
ary indicator variable ρd,u with u, like the
topic shift variable in PLDA and SITS. ρd,u
is Bernoulli distributed with parameter πd, i.e.,
ρd,u∼Bernoulli(πd). It indicates whether there is a
topic boundary after text passage u or not. To sample
ρd,u, we use a point-wise sampling algorithm. Con-
sequently, a sequence of ρ’s defines a set of seg-
ments, i.e., a topic segmentation of d. For example,
let a ρ vector ρ = (0, 0, 1, 0, 1, 0, 0, 1)1, it gives
us three segments, which are {1, 2, 3}, {4, 5} and
{6, 7, 8}.

Modelling topic structure: Following the idea of
the STM, we assume each document d is associated
with a document level topic distribution µd, which
is drawn from a Dirichlet distribution with param-
eter α; and text passages in topic segment s in d
are generated from νd,s, a segment level topic dis-
tribution. The number of segments Sd can be com-
puted as Sd=1 +

∑Ud−1
u=1 ρd,u. Then, a Pitman-Yor

1The last 1 in ρ is the document boundary that is know a
priori. This means one does not need to sample it.
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Figure 1: The topic segmentation model

process with a discount parameter a and a concen-
tration parameter b is used to link µd and νd,s by
νd,s∼PYP(a, b, µd), which forms a simple topic
hierarchy. The idea here is that topics discussed in
segments can be variants of topics of the whole
document. Du et al. (2010) have shown that this
topic structure can significantly improve the mod-
elling accuracy, which should contribute to more ac-
curate segmentation. This generative process is dif-
ferent from PLDA. PLDA does not assume the docu-
ment level topic distribution and each time generates
the segment level topic distribution directly from a
Dirichlet distribution.

The complete probabilistic generative process,
shown as a graph in Figure 1 is as follows:

1. For each topic k ∈ {1, . . . , K}, draw a word distribution
φk ∼ DirichletW (γ).

2. For each document d ∈ {1, . . . , D},

(a) Draw topic shift probability πd ∼ Beta(λ0, λ1).
(b) Draw µd ∼ DirichletK (α).
(c) For each text passage (except last) u ∈
{1, . . . , Ud − 1}, draw ρd,u ∼ Bernoulli(πd).

(d) Compute Sd the number of segments as 1 +∑Ud−1
u=1 ρd,u.

(e) For each segment s ∈ {1, . . . , Sd}, draw νd,s ∼
PYP(a, b, µd).

(f) For each text passage u ∈ {1, . . . , Ud},
i. Set segment sd,u = 1 +

∑u−1
v=1 ρd,v .

ii. For each word index n ∈ {1, . . . , Nd,u},
A. Draw topic zd,u,n ∼ DiscreteK

(
νd,sd,u

)
.

B. Draw word wd,u,n ∼ DiscreteK(φzd,u,n
).

where sd,u indicates which segment text passage u
belongs to. We assume the dimensionality of the
Dirichlet distribution (i.e., the number of topics) is
known and fixed, and word probabilities are param-
eterized with a K × Wmatrix Φ = (φ1, . . . , φK).
In future work we plan to investigate replace the

Table 1: List of statistics
Mk,w total number of words with topic k.
Mk a vector of Mk,w.
nd,s,k total number of words with topic k in segment

s in document d.
Nd,s total number of words in segment s.
td,s,k table count of topic k in the CRP for segment

s in document d.
td,s a vector of td,s,k for segment s in d.
Td,s total table count in segment s.
cd,1 total number of topic boundaries in d.
cd,0 total number of non-topic boundaries in d.

Dirichlet prior α on µ with a Pitman-Yor prior (Pit-
man and Yor, 1997) to make the model fully non-
parametric, like SITS.

4 Posterior Inference

In this section we develop a collapsed Gibbs sam-
pling algorithm to do an approximate inference
by integrating out some latent variables (i.e., µ’s,
ν’s and πd’s). The hierarchy in our model can be
well explained with the Chinese restaurant franchise
metaphor introduced in (Teh et al., 2006). For easier
understanding, terminologies of the Chinese Restau-
rant Process (CRP) will be used throughout this sec-
tion, i.e., customers, dishes and restaurants, corre-
spond to words, topics, and segments respectively.
Statistics used are listed in Table 1.

To integrate out the νd,s’s generated from the
PYP, we use the technique presented in (Chen et
al., 2011), which computes the joint posterior for
the PYP by summing out all the possible seating
arrangements for a sequence of customers (Teh,
2006). In this technique an auxiliary binary variable,
called table indicator (δd,u,n), is introduced to fa-
cilitate computing table count td,s,k for topic k. This
method has two effects: (1) faster mixing of the sam-
pler, and (2) elimination of the need for dynamic
memory to store the populations/counts of each ta-
ble in the CRP. In the CRP each word wd,u,n in topic
k (i.e., where zd,u,n=k) contributes a count to nd,s,k
for u ∈ s; and, if wd,u,n, as a customer, also opens
a new table to the CRP, it leads to increasing td,s,k
by one. In this case, δd,u,n=1 indicates wd,u,n is the
first customer on the table, called table head. Thus,

td,s,k =
∑
u∈s

Nd,u∑
n=1

δd,u,n1zd,u,n=k . (1)

Note the two constraints on these two counts, i.e.,

nd,s,k≥td,s,k≥0 and td,s,k=0 iff nd,s,k=0 (2)
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can be replaced be a simpler constraint in the table
indicator representation.

The sampler we develop is an MCMC sampler
on the space θ = {z, δ,ρ} where z defines the
topic assignments of words, δ maintains the needed
CRP configuration (from which t is derived) and ρ
defines the segmentation. Moreover, it is not a tra-
ditional Gibbs sampler changing one variable at a
time, but is a block Gibbs sampler where two dif-
ferent kinds of blocks are used. The first block is
(zd,u,n, δd,u,n) (for each word wd,u,n), which can
be sampled with a table indicator variant of a hier-
archical topic sampler (Du et al., 2010), described
in Section 4.1. This corresponds to Equation (6) in
(Purver et al., 2006). The second kind of block is
a boundary indicator ρd,u together with a particular
constrained set of table counts designed to handle
splitting and merging, which corresponds to Equa-
tion (7) in (Purver et al., 2006). Sampling this sec-
ond kind of block is harder in our non-parametric
model requiring a potentially exponential summa-
tion, a problem we overcome using symmetric poly-
nomials, shown in Section 4.2.

4.1 Sampling Topics
One step in our model is to sample the assignments
of topics to words conditioned on all ρ’s. As dis-
cussed in Section 3, given the sequence of ρd,u’s,
ρd, one can figure out which segment s text passage
u belongs to. Thus, conditioned on a set of segments
s given by ρ, the joint posterior distribution ofw, z
and δ is computed as p(z,w, δ |ρ, Φ, a, b, γ)

=
∏
d

BetaK
(
α+

∑
s td,s

)
BetaK (α)

∏
k

BetaW (γ +Mk)

BetaW (γ)∏
d

∏
s∈s

(b|a)Td,s

(b)Nd,s

∏
k

Snd,s,k

td,s,k,a

(
nd,s,k
td,s,k

)−1

, (3)

where BetaK(·) is a K-dimension Beta function,
(x|y)n the Pochhammer symbol2, and Snt,a the gen-
eralised Stirling number of the second kind (Hsu
and Shiue, 1998)3 precomputed in a table so cost-

2The Pochhammer symbol (x|y)n denotes the rising facto-
rial with a specified increment, i.e., y. It is defined as (x|y)n =
x(x+ y)...(x+ (n− 1)y).

3A Stirling number of the second kind is used to study
the number of ways of partitioning a set of n objects into
k nonempty subsets. The generalised version given by Hsu
and Shiue (1998) has a linear recursion which in our case is
Sn+1

m,a = Sn
m−1,a + (n−ma)Sn

m,a.

ing O(1) to use (Buntine and Hutter, 2012).Eq (3)
is an indicator variant of Eq (1) in (Du et al., 2010)
with applying Theorem 1 in (Chen et al., 2011).

Given the current segmentation and topic assign-
ments for all other words, using Bayes rule, we can
derive the following two conditionals from Eq (3):

1. The joint probability of assigning topic k to word
wd,u,n and wd,u,n being a table head, p(zd,u,n =
k, δd,u,n = 1 |θ′)

=
γwi,j,n +Mk,wi,j,n∑

w(γw +Mk,w)

αk +
∑
s td,s,k∑

k αk +
∑
s,k td,s,k

b+ aTd,s
b+Nd,s

S
nd,s,k+1
td,s,k+1,a

S
nd,s,k

td,s,k,a

td,s,k + 1

nd,s,k + 1
(4)

2. The joint probability of assigning k to wd,u,n
and wd,u,n not being a table head, p(zd,u,n =
k, δd,u,n = 0 |θ′)

=
γwi,j,l

+Mk,wi,j,l∑
w γw +Mk,w

1

b+Nd,s

S
nd,s,k+1
td,s,k,a

S
nd,s,k

td,s,k,a

nd,s,k + 1− td,s,k
nd,s,k + 1

(5)

where θ′ = {z−zd,u,n ,w, δ−δd,u,n ,ρ,α, a, b,γ}.
From the two conditionals, we develop a blocked
Gibbs sampling algorithm for (zd,u,n, δd,u,n).

4.2 Sampling Segmentation Boundaries
In our model, each segment corresponds to a
Chinese restaurant in the CRP. Sampling topic
boundaries corresponds to splitting/merging restau-
rant(s). This is different from the split-merge process
proposed by Jian and Neal (2004), where one actu-
ally splits/merges table(s). To our knowledge, there
has been no method developed to split/merge restau-
rant(s). We tried different approximations, such
as the minimum-path-assumption (Wallach, 2008),
which in our case assumes one table for each topic
k, and all words in k are placed in the same ta-
ble. Although this simplifies the split-merge pro-
cess, it yielded poor results. We instead developed a
novel approximate block Gibbs sampling algorithm
using symmetric polynomials. Its segmentation per-
formance worked well in our development dataset.

For simplicity, we consider a passage u in doc-
ument d, and assume: (1) If ρd,u=1, there are two
segments, sl and sr; sl ends at text passage u, and sr
starts at text passage u+1. (2) If ρd,u=0, there is one
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segment, sm, where u is is somewhere in the middle
of sm. The split-merge choice we sample is one to
many, for a given split pair (sl, sr) we consider a set
of merged states sm (represented by different possi-
ble table counts). Then, to compute the Gibbs prob-
ability for splitting/merging restaurant(s), we con-
sider the probability of the single split, the probabil-
ity of the corresponding set of merges, and then if a
merge is selected, we have to sample from the set of
merges. These are as follows:

Splitting: split sm into sr and sl by placing a
boundary after u. Since passages have a fixed order
in each document, all the words are put into sr and
sl based on which passages they belong to. Then,
given all the topic assignments, we first sample all
table indicators δd,u′,n, for n ∈ {1, ..., Nd,u′} and
u′ ∈ sm using Bernoulli sampling without replace-
ment. It runs as follows: 1) sample δd,u′,n according
to probability td,sm,k/nd,sm,k; 2) decrease td,sm,k if
δd,u′,n = 1, otherwise, just decrease nd,sm,k. Us-
ing the sampled δd,u′,n’s we compute the inferred ta-
ble counts td,s,k (from Eq (1)) and customer counts
nd,s,k respectively for segments s=sl and sr and
topics k. The computation may result in the follow-
ing cases: for a given topic k,

(I) Both sl and sr have nd,s,k>0 and td,s,k≥1, which
means both segments have words assigned to k and
words being labelled with table head. According
to constraints (2), after splitting, restaurants corre-
sponding to sl and sr are valid. We do not make any
change on table counts.

(II) Either sl or sr has nd,s,k=0 and td,s,k=0. In this
case, for example, all the words assigned to k in sm
are in sl after splitting, and all those labelled with
table head should also be in sl. sr has no words as-
signed to k. Thus, there is no need to change table
counts.

(III) Either sl or sr has nd,s,k>0 and td,s,k=0. Both seg-
ments have words assigned to k, but those labelled
with table head only exist in one segment. For in-
stance, if they only exist in sl then sr has no table
head, which means the restaurant of sr has customers
eating a dish, but no tables serving that dish. Thus,
we set td,sr,k=1 to make the constraints (2) satisfied.

The Gibbs probability for splitting a segment is

p(ρd,u = 1 |θ′′) ∝ λ1 + cd,1
λ0 + λ1 + cd,0 + cd,1

(6)

BetaK
(
α+

Sd∑
s=1

td,s
) ∏
s∈{sl,sr}

(b|a)Td,s

(b)Nd,s

∏
k

Snd,s,k

td,s,k,a
,

where θ′′ = {z,w, δ,ρ−ρd,u ,α, a, b, λ0, λ1}.

Merging: remove the boundary after u, and merge
sr and sl to one segment sm. For this case, both
sr and sl satisfy constraints (2) for all k’s, and set
nd,sm,k=nd,sr,k + nd,sl,k. The following cases are
considered: for a topic k

(I) Both sl and sr have nd,s,k>0 and td,s,k>1. We
compute td,sm,k using Eq (7). Thus table counts
before and after merging are equal.

(II) Either sl or sr has nd,s,k=0 and td,s,k=0. Similar
to the above case, we use Eq (7).

(III) Both sl and sr have nd,s,k>0, and either of them
has td,s,k=1 or both. We have to choose between
Eq (7) and Eq (8), i.e., to decide whether a table
should be removed or not.

td,sm,k = td,sl,k + td,sr,k (7)
td,sm,k = td,sl,k + td,sr,k − 1 (8)

Note that choosing Eq (8) means we need to de-
crease the table count td,sm,k by one. The idea here
is that we sample to decide whether the remove table
was added due to splitting case (III) or not. Clearly,
we have a one-to-many split-merge choice. To com-
pute the probability of a set of possible merges,
we use elementary symmetric polynomials as fol-
lows: letKS be a set of topic-segment combinations
that satisfy the condition in merging case (III), for
(k, s) ∈ KS , we sample either Eq (7) or Eq (8).
Let T = {td,s,k : (k, s) ∈ KS} be the set of table
counts affected by the changes of Eq (7) or Eq (8).
The Gibbs probability for merging two segments is

p(ρd,u = 0 |θ′′′) =
∑
T
p(ρd,u = 0, T |θ′′′) (9)

∝
∑
T

(
λ0 + cd,0

λ0 + λ1 + cd,0 + cd,1
BetaK

(
α+

Sd∑
s=1

td,s
)

(b|a)Td,sm

(b)Nd,sm

∏
k

Snd,sm,k

td,sm,k,a

)
,

where θ′′′ = {z,w, t − T ,ρ−ρd,u ,α, a, b, λ0, λ1}.
This is converted to a sum on |T | booleans with
independent terms and evaluated recursively in
O(|T |2) by symmetric polynomials. If a merge is
chosen, one then samples according to the terms in
the sum using a similar recursion.

5 Experiments

To demonstrate the effectiveness of our model (de-
noted by TSM) in topic segmentation tasks, we
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evaluate it on three different kinds of corpora4: a
set of synthetic documents, two meeting transcripts
and two sets of text books (see Tables 2 and 3);
and compare TSM with the following methods: two
baselines (the Random algorithm that places topic
boundaries uniformly at random, and the Even al-
gorithm that places a boundary after every mth text
passage, where m is the average gold-standard seg-
ment length (Beeferman et al., 1999)), C99, MinCut,
Bayesseg, APS (Kazantseva and Szpakowicz, 2011),
and PLDA.

Metrics: We evaluated the segmentation perfor-
mance with PK (Beeferman et al., 1999) and Win-
dowDiff (WDr) (Pevzner and Hearst, 2002), which
are two common metrics used in topic segmenta-
tion. Both move a sliding window of fixed size k
over the document, and compare the inferred seg-
mentation with the gold-standard segmentation for
each window. The window size is usually set to
the half of the average gold-standard segment size
(Pevzner and Hearst, 2002). In addition, we also
used an extended WindowDiff proposed by Lam-
prier et al. (2007), denoted by WDe. One problem
of WDr is that errors near the two ends of a text are
penalised less than those in the middle. To solve the
problem WDe adds k fictive text passages at the be-
ginning and the end of the text when computing the
score. We evaluated all the methods with the same
Java code for the three metrics.

Parameter Settings: In order to make all the
methods comparable, we chose for each method
the parameter settings that give the gold-standard
number of segments5. Specifically, we used a
11 × 11 rank mask for C99, as suggested by
Choi (2000), the configurations included in the code
(http://groups.csail.mit.edu/rbg/code)
for Bayesseg and manually tuned parameters for
MinCut. For APS, a greedy approach was used to
search parameter settings that can approximately
give the gold-standard number of segments. For
PLDA, two randomly initialised Gibbs chains were
used. Each chain ran for 75,000 burn-in iterations,
then 1000 samples were drawn at a lag of 25 from
each chain. For TSM, 10 randomly initialised

4For preprocessing, we only removed stop words.
5The segments learnt by those methods will differ, but just

the segment count will be the same as the gold-standard count.

Table 2: The Choi’s dataset
Range of n 3-11 3-5 6-8 9-11

#docs 400 100 100 100

DocLen mean 69.7 39.3 69.6 98.6
std 8.2 2.6 2.9 3.5

SegLen mean 7 4 7 10
std 2.57 0.84 0.87 1.03

Table 3: Real dataset statistics
ICSI Election Fiction Clinical

# doc 25 4 84 227

DocLen mean 994.5 144.3 325.0 139.5
std 354.5 16.4 230.1 110.4

SegLen mean 188 7 22 35
std 219.1 8.9 23.8 41.7

Gibbs chains were used. Each chain ran for 30,000
iterations with 25,000 for burn-in, then 200 samples
were drawn. The concentration parameter b in TSM
was sampled using the Adaptive-Reject sampling
scheme introduced in (Du et al., 2012b), the dis-
count parameter a = 0.2, and λ0 = λ1 = 0.1. To
derive the final segmentation for PLDA and TSM,
we first estimated the marginal probabilities of
placing boundaries after text passages from the total
of 2000 samples. These probabilities were then
thresholded to give the gold-standard number of
segments. Precisely, we apply a small amount of
Gaussian smoothing to the marginal probabilities
(except for Choi’s dataset), like Puerver et al. (2006)
does. Finally, we used a symmetric Dirichlet prior
in PLDA and STM, the one on topic distributions is
α = 0.1, the other on word distributions γ = 0.01.

5.1 Evaluation on Choi’s Dataset

Choi’s dataset (Choi, 2000) is commonly used in
evaluating topic segmentation methods. It consists
of 700 documents, each being a concatenation of 10
segments. Each segment is the first n sentences of
a randomly selected document from the Brown cor-
pus, s.t. 3 ≤ n ≤ 11. Those documents are divided
into 4 subsets with different range of n, as shown in
Table 2. We ran PLDA and STM with 50 topics. Re-
sults in Table 4 show that our model significantly
outperforms all the other methods on the four sub-
sets over all the metrics. Furthermore, comparing to
other published results, this also outperforms (Misra
et al., 2009) (see their table 2), and (Riedl and Bie-
mann, 2012) (they report an average of 1.04 and 1.06
in Tables 1 and 2, whereas TSM averages 0.93). This
gives TSM the best reported results to date.
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Table 4: Comparison on Choi’s datasets with WD and PK (%)
3-11 3-5 6-8 9-11

WDr WDe PK WDr WDe PK WDr WDe PK WDr WDe PK
Random 51.7 49.1 48.7 51.4 50.0 48.4 52.5 49.9 49.2 52.4 48.9 49.2
Even 49.1 46.7 49.0 46.3 45.8 46.3 38.8 37.3 38.8 30.0 28.6 30.0
MinCut 30.4 29.8 26.7 41.6 41.5 37.3 28.2 27.4 25.5 23.6 22.7 21.6
APS 40.7 38.8 38.4 32.0 30.6 31.8 34.4 32.6 32.7 34.5 32.2 33.2
C99 13.5 12.3 12.3 11.3 10.2 10.8 10.2 9.3 9.8 8.9 8.1 8.6
Bayesseg 11.6 10.9 10.9 11.8 11.5 11.1 7.7 7.2 7.3 6.1 5.7 5.7
PLDA 2.4 2.2 1.8 4.0 3.9 3.3 3.6 3.5 2.7 3.0 2.8 2.0
TSM 0.8 0.8 0.6 1.3 1.3 1.0 1.4 1.4 0.9 1.9 1.8 1.2

Table 5: Comparison on the meeting transcripts and written texts with WD and PK (%)
ICSI Election Fiction Clinical

WDr WDe PK WDr WDe PK WDr WDe PK WDr WDe PK
Random 46.3 41.7 44.1 51.0 49.7 45.1 51.0 48.7 47.5 45.9 38.5 44.1
Even 48.3 43.0 46.4 56.0 55.1 51.2 48.1 45.9 46.3 49.2 42.0 48.8
C99 42.9 37.4 39.9 43.1 41.5 37.0 48.1 45.1 42.1 39.7 31.9 38.7
MinCut 40.6 36.9 36.9 43.6 43.3 39.0 40.5 39.7 37.1 38.2 36.2 36.8
APS 58.2 49.7 54.6 47.7 36.8 40.6 48.0 45.8 45.1 39.9 32.8 39.6
Bayesseg 32.4 29.7 26.7 41.1 41.3 34.1 33.7 32.8 27.8 35.0 28.8 34.0
PLDA 32.6 28.8 29.4 40.6 41.1 32.0 43.0 41.3 36.1 37.3 32.1 32.4
TSM 30.2 26.8 25.8 38.1 38.9 31.3 40.8 38.7 32.5 34.5 29.1 30.6

Note the lexical transitions in these concatenated
documents are very sharp (Malioutov and Barzi-
lay, 2006). The sharp transitions lead to significant
change in segment level topic distributions, which
further implies the variance of these distributions is
large. In TSM, a large variance causes a small con-
centration parameter b. We observed that the sam-
pled b’s (about 0.1) are indeed small for the four sub-
sets, which shows there is no topic sharing among
segments. Therefore, TSM is able to recognise the
segments are unrelated text.

5.2 Evaluation on Meeting Transcripts

We applied our model to segmenting the two meet-
ing transcripts, which are the ICSI meeting tran-
scripts (Janin et al., 2003) and the 2008 presidential
election debates (Boydstun et al., 2011). The ICSI
meeting has 75 transcripts, we used the 25 annotated
transcripts provided by Galley et al. (2003) for eval-
uation. For the election debates, we used the four
annotated debates used in (Nguyen et al., 2012). The
statistics are shown in Table 3. PLDA and TSM were
trained with 10 topics on the ICSI and 50 on the
Election. In this set of experiments, we show that
our model is robust to meeting transcripts.

0
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0.6

p(
l=

1) TSM

0 100 200 300 400 500 600 700 800
0
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Utterance position in sequence

p(
l 

= 
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Figure 2: Probability of a topic boundary, compared with
gold-standard segmentation (shown in red and at the top
of each diagram) on one ICSI transcript.

As shown in Table 5, topic modelling based meth-
ods (i.e., Bayesseg, PLDA and TSM) outperform
those using either TF or TF-IDF, which is consistent
with previously reported results (Misra et al., 2009;
Riedl and Biemann, 2012). Among the topic model
based methods, TSM achieves the best results on all
the three metrics. On the ICSI transcripts, TSM per-
forms 6.8%, 9.7% and 3.4% better than Bayesseg
on the WDr, WDe and PK metrics respectively. Fig-
ure 2 shows an example of how the inferred topic
boundary probabilities at utterances compare with
the gold-standard boundaries on one ICSI meeting
transcript. The gold-standard segmentation is {77,
95, 189, 365, 508, 609, 860}, TSM and PLDA in-
fer {85, 96, 188, 363, 499, 508, 860} and {96, 136,
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Table 6: Sampled concentration parameters

Choi ICSI Election Fiction Clinical
b 0.1 5.2 5.4 18.4 4.8

203, 226, 361, 508, 860} respectively. Both models
miss the boundary after the 609th utterance, but put a
boundary after the 508th utterance. Note the bound-
aries placed by TSM are always within 10 utterances
with respect to the gold standard.

Although TSM still performs the best on the de-
bates, all the methods have relatively worse perfor-
mance than on the ICSI meeting transcripts. Nguyen
et al. (2012) pointed out that the ICSI meetings are
characterised by pragmatic topic changes, in con-
trast, the debates are characterised by strategic topic
changes with strong rewards for setting the agenda,
dodging a question, etc. Thus, considering the prop-
erties of debates might further improve the segmen-
tation performance.

5.3 Evaluation on Written Texts

We further tested TSM on two written text datasets,
Clinical (Eisenstein and Barzilay, 2008) and Fiction
(Kazantseva and Szpakowicz, 2011). The statistics
are shown in Table 3. Each document in the Clinical
dataset is a chapter of a medical textbook. Section
breaks are selected to be the true topic boundaries.
For the Fiction dataset, each document is a fiction
downloaded from Project Gutenberg, the true topic
boundaries are chapter breaks. We trained PLDA
and TSM with 25 topics on the Fiction and 50 on the
Clinical. Results are shown in Table 5. TSM com-
pares favourably with Bayesseg and outperforms the
other methods on the Clinical dataset, but it does not
perform as well as Bayesseg on the Fiction dataset.

In fiction books, the topic boundaries between
sections are usually blurred by the authors for rea-
sons of continuity (Reynar, 1999). We observed that
the sampled concentration (or inverse variance) pa-
rameter b in TSM is about 18.4 on Fiction, but 4.8 on
Clinical, as shown in Table 6. This means the vari-
ance of segment level topic distributions ν learnt by
TSM is not large for the fiction, so chapter breaks
may not necessarily indicate topic changes. For ex-
ample, there is a document in the Fiction dataset
where gold-standard topic boundaries are placed af-
ter each block of text. In contrast, Bayesseg assumes

each segment has its own distribution over words,
i.e., one topic per segment, which means topics are
not shared among segments. We hypothesize that
for certain kinds of documents where the change in
topic distribution is subtle, such as fiction, assuming
one topic per segment can capture subtle changes in
word usage. This is an area for future investigation.

6 Conclusion

In this paper, we have presented a hierarchical
Bayesian model for unsupervised topic segmen-
tation. This new model takes advances of both
Bayesian segmentation and structured topic mod-
elling. It uses a point-wise boundary sampling al-
gorithm to sample a topic segmentation, while con-
currently building a structured topic model. We
have developed a novel approximation to com-
pute the Gibbs probabilities of spliting/merging seg-
ment(s). Our model shows prominent segmentation
performance on both written or spoken texts.

In future work, we would like to make the model
fully nonparametric and investigate the effects of
adding different cues in texts, such as cue phrases,
pronoun usage, prosody, etc. Currently, our model
uses marginal boundary probabilities to generate
the final segmentation. Instead, we could develop a
Metropolis-Hasting sampling algorithm to move one
boundary at a time, given the gold-standard number
of segments. To further study the effectiveness of
our model, we would like to compare it with other
methods, like SITS (Nguyen et al., 2012) and to run
on more datasets, like email (Joty et al., 2010). For
example, in order to compare with SITS, one can
make an assumption that each document just has one
speaker.
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Abstract

The primary way of providing real-time cap-
tioning for deaf and hard of hearing people
is to employ expensive professional stenogra-
phers who can type as fast as natural speak-
ing rates. Recent work has shown that a
feasible alternative is to combine the partial
captions of ordinary typists, each of whom
types part of what they hear. In this paper,
we describe an improved method for combin-
ing partial captions into a final output based
on weighted A∗ search and multiple sequence
alignment (MSA). In contrast to prior work,
our method allows the tradeoff between accu-
racy and speed to be tuned, and provides for-
mal error bounds. Our method outperforms
the current state-of-the-art on Word Error Rate
(WER) (29.6%), BLEU Score (41.4%), and
F-measure (36.9%). The end goal is for
these captions to be used by people, and so
we also compare how these metrics correlate
with the judgments of 50 study participants,
which may assist others looking to make fur-
ther progress on this problem.

1 Introduction

Real-time captioning provides deaf or hard of hear-
ing people access to speech in mainstream class-
rooms, at public events, and on live television. To
maintain consistency between the captions being
read and other visual cues, the latency between when
a word was said and when it is displayed must be
under five seconds. The most common approach to
real-time captioning is to recruit a trained stenogra-
pher with a special purpose phonetic keyboard, who
transcribes the speech to text within approximately 5
seconds. Unfortunately, professional captionists are
quite expensive ($150 per hour), must be recruited in
blocks of an hour or more, and are difficult to sched-
ule on short notice. Automatic speech recognition
(ASR) (Saraclar et al., 2002) attempts to solve this

Figure 1: General layout of crowd captioning systems.
Captionists (C1, C2, C3) submit partial captions that are
automatically combined into a high-quality output.

problem by converting speech to text completely au-
tomatically. However, the accuracy of ASR quickly
plummets to below 30% when used on an untrained
speaker’s voice, in a new environment, or in the ab-
sence of a high quality microphone (Wald, 2006b).

An alternative approach is to combine the efforts
of multiple non-expert captionists (anyone who can
type) (Lasecki et al., 2012; Lasecki and Bigham,
2012; Lasecki et al., 2013). In this approach, mul-
tiple non-expert human workers transcribe an audio
stream containing speech in real-time, and their par-
tial input is combined to produce a final transcript
(see Figure 1). This approach has been shown to
dramatically outperform ASR in terms of both accu-
racy and Word Error Rate (WER), even when us-
ing captionists drawn from Amazon’s Mechanical
Turk. Furthermore, recall approached and even ex-
ceeded that of a trained expert stenographer with
seven workers contributing, suggesting that the in-
formation is present to meet the performance of a
stenographer. However, combining these captions
involves real-time alignment of partial captions that
may be incomplete and that often have spelling er-
rors and inconsistent timestamps. In this paper,
we present a more accurate combiner that leverages
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Multiple Sequence Alignment (MSA) and Natural
Language Processing to improve performance.

Gauging the quality of captions is not easy. Al-
though word error rate (WER) is commonly used in
speech recognition, it considers accuracy and com-
pleteness, not readability. As a result, a lower WER
does not always result in better understanding (Wang
et al., 2003). We compare WER with two other com-
monly used metrics: BLEU (Papineni et al., 2002)
and F-measure (Melamed et al., 2003), and report
their correlation with that of 50 human evaluators.

The key contributions of this paper are as follows:

• We have implemented an A∗-search based Mul-
tiple Sequence Alignment algorithm (Lermen
and Reinert, 2000) that can trade-off speed and
accuracy by varying the heuristic weight and
chunk-size parameters. We show that it outper-
forms previous approaches in terms of WER,
BLEU score, and F-measure.

• We propose a beam-search based technique us-
ing the timing information of the captions that
helps to restrict the search space and scales ef-
fectively to align longer sequences efficiently.

• We evaluate the correlation of WER, BLEU,
and F-measure with 50 human ratings of cap-
tion readability, and found that WER was more
highly correlated than BLEU score (Papineni
et al., 2002), implying it may be a more useful
metric overall when evaluating captions.

2 Related Work

Most of the previous research on real-time caption-
ing has focused on Automated Speech Recognition
(ASR) (Saraclar et al., 2002; Cooke et al., 2001;
Prǎzák et al., 2012). However, experiments show
that ASR systems are not robust enough to be ap-
plied for arbitrary speakers and in noisy environ-
ments (Wald, 2006b; Wald, 2006a; Bain et al., 2005;
Bain et al., 2012; Cooke et al., 2001).

2.1 Crowd Captioning

To address these limitations of ASR-based tech-
niques, the Scribe system collects partial captions
from the crowd and then uses a graph-based in-
cremental algorithm to combine them on the fly
(Lasecki et al., 2012). The system incrementally

builds a chain graph, where each node represents a
set of equivalent words entered by the workers and
the link between nodes are adjusted according to the
order of the input words. A greedy search is per-
formed to identify the path with the highest confi-
dence, based on worker input and an n-gram lan-
guage model. The algorithm is designed to be used
online, and hence has high speed and low latency.
However, due to the incremental nature of the algo-
rithm and due to the lack of a principled objective
function, it is not guaranteed to find the globally op-
timal alignment for the captions.

2.2 Multiple Sequence Alignment

The problem of aligning and combining multiple
transcripts can be mapped to the well-studied Mul-
tiple Sequence Alignment (MSA) problem (Edgar
and Batzoglou, 2006). MSA is an important prob-
lem in computational biology (Durbin et al., 1998).
The goal is to find an optimal alignment from a
given set of biological sequences. The pairwise
alignment problem can be solved efficiently using
dynamic programming inO(N2) time and space,
whereN is the sequence length. The complexity of
the MSA problem grows exponentially as the num-
ber of sequences grows, and has been shown to be
NP-complete (Wang and Jiang, 1994). Therefore,
it is important to apply some heuristic to perform
MSA in a reasonable amount of time.

Most MSA algorithms for biological sequences
follow a progressive alignment strategy that first per-
forms pairwise alignment among the sequences, and
then builds a guide tree based on the pairwise simi-
larity between these sequences (Edgar, 2004; Do et
al., 2005; Thompson et al., 1994). Finally, the input
sequences are aligned according to the order spec-
ified by the guide tree. While not commonly used
for biological sequences, MSA with A∗-style search
has been applied to these problems by Horton (1997)
and Lermen and Reinert (2000).

Lasecki et al. explored MSA in the context of
merging partial captions by using the off-the-shelf
MSA toolMUSCLE(Edgar, 2004), replacing the nu-
cleotide characters by English characters (Lasecki
et al., 2012). The substitution cost for nucleotides
was replaced by the ‘keyboard distance’ between
English characters, learned from the physical lay-
out of a keyboard and based on common spelling
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errors. However, MUSCLE relies on a progressive
alignment strategy and may result in suboptimal so-
lutions. Moreover, it uses characters as atomic sym-
bols instead of words. Our approach operates on a
per-word basis and is able to arrive at a solution that
is within a selectable error-bound of optimal.

3 Multiple Sequence Alignment

We start with an overview of the MSA problem us-
ing standard notations as described by Lermen and
Reinert (2000). LetS1, . . . , SK , K ≥ 2, be theK

sequences over an alphabetΣ, and having length
N1, . . . , NK . The special gap symbol is denoted by
‘−’ and does not belong toΣ. Let A = (aij) be a
K × Nf matrix, whereaij ∈ Σ ∪ {−}, and theith

row has exactly(Nf − Ni) gaps and is identical to
Si if we ignore the gaps. Every column ofA must
have at least one non-gap symbol. Therefore, thejth

column ofA indicates an alignment state for thejth

position, where the state can have one of the2K − 1
possible combinations. Our goal is to find the op-
timum alignment matrixAOPT that minimizes the
sum of pairs (SOP) cost function:

c(A) =
∑

1≤i≤j≤K

c(Aij) (1)

wherec(Aij) is the cost of the pairwise alignment
betweenSi and Sj according toA. Formally,

c(Aij) =
∑Nf

l=1
sub(ail, ajl), where sub(ail, ajl)

denotes the cost of substitutingajl for ail. If ail

and ajl are identical, the substitution cost is usu-
ally zero. For the caption alignment task, we treat
each individual word as a symbol in our alphabet
Σ. The substitution cost for two words is estimated
based on the edit distance between two words. The
exact solution to the SOP optimization problem is
NP-Complete, but many methods solve it approxi-
mately. In this paper, we adapt weighted A∗ search
for approximately solving the MSA problem.

3.1 A∗ Search for MSA

The problem of minimizing the SOP cost func-
tion for K sequences is equivalent to estimating the
shortest path between a single source and single sink
node in aK-dimensional lattice. The total num-
ber of nodes in the lattice is(N1 + 1) × (N2 +

Algorithm 1 MSA-A∗ Algorithm
Require: K input sequencesS = {S1, . . . , SK} having

lengthN1, . . . , NK , heuristic weightw, beam sizeb

1: start← 0K , goal← [N1, . . . , NK ]
2: g(start)← 0, f(start)← w × h(start).
3: Q← {start}
4: while Q 6= ∅ do
5: n← EXTRACT-MIN(Q)
6: for all s ∈ {0, 1}K − {0K} do
7: ni ← n + s

8: if ni = goal then
9: Return the alignment matrix for the reconstructed

path fromstart to ni

10: else if ni 6∈ Beam(b) then
11: continue;
12: else
13: g(ni)← g(n) + c(n, ni)
14: f(ni)← g(ni) + w × h(ni)
15: INSERT-ITEM(Q, ni, f(ni))
16: end if
17: end for
18: end while

1) × · · · × (NK + 1), each corresponding to a dis-
tinct position inK sequences. The source node is
[0, . . . , 0] and the sink node is[N1, . . . , NK ]. The
dynamic programming algorithm for estimating the
shortest path from source to sink treats each node
position[n1, . . . , nK ] as a state and calculates a ma-
trix that has one entry for each node. Assuming the
sequences have roughly same lengthN , the size of
the dynamic programming matrix isO(NK). At
each vertex, we need to minimize the cost over all
its 2K − 1 predecessor nodes, and, for each such
transition, we need to estimate the SOP objective
function that requiresO(K2) operations. Therefore,
the dynamic programming algorithm has time com-
plexity of O(K22KNK) and space complexity of
O(NK), which is infeasible for most practical prob-
lem instances. However, we can efficiently solve it
via heuristic A∗ search (Lermen and Reinert, 2000).

We use A∗ search based MSA (shown in Algo-
rithm 1, illustrated in Figure 2) that uses a prior-
ity queueQ to store dynamic programming states
corresponding to node positions in theK dimen-
sional lattice. Letn = [n1, . . . , nK ] be any node
in the lattice,s be the source, andt be the sink. The
A∗ search can find the shortest path using a greedy
Best First Search according to an evaluation func-
tion f(n), which is the summation of the cost func-
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Figure 2:A∗ MSA search algorithm. Each branch is one of2K − 1 possible alignments for the current input. The
branch with minimum sum of the current alignment cost and theexpected heuristic valuehpair (precomputed).

tionsg(n) and the heuristic functionh(n) for node
n. The cost functiong(n) denotes the cost of the
shortest path from the sources to the current node
n. The heuristic functionh(n) is the approximate
estimated cost of the shortest path fromn to the des-
tination t. At each step of the A∗ search algorithm,
we extract the node with the smallestf(n) value
from the priority queueQ and expand it by one edge.
The heuristic functionh(n) is admissible if it never
overestimates the cost of the cheapest solution from
n to the destination. An admissible heuristic func-
tion guarantees that A∗ will explore the minimum
number of nodes and will always find the optimal
solution. One commonly used admissible heuristic
function ishpair(n):

hpair(n) = L(n → t) =
∑

1≤i<j≤K

c(A∗
p(σ

n
i , σn

j ))

(2)
whereL(n → t) denotes the lower bound on the
cost of the shortest path fromn to destinationt, A∗

p

is the optimal pairwise alignment, andσn
i is the suf-

fix of noden in the i-th sequence. A∗ search using
the pairwise heuristic functionhpair significantly re-
duces the search space and also guarantees finding
the optimal solution. We must be able to estimate
hpair(n) efficiently. It may appear that we need to
estimate the optimal pairwise alignment for all the
pairs of suffix sequences at every node. However,
we can precompute the dynamic programming ma-
trix over all the pair of sequences(Si, Sj) once from
the backward direction, and then reuse these values
at each node. This simple trick significantly speeds
up the computation ofhpair(n).

Despite the significant reduction in the search
space, the A∗ search may still need to explore a
large number of nodes, and may become too slow
for real-time captioning. However, we can further
improve the speed by following the idea ofweighted
A∗ search (Pohl, 1970). We modify the evaluation

functionf(n) = g(n)+hpair(n) to a weighted eval-
uation functionf ′(n) = g(n) + whpair(n), where
w ≥ 1 is a weight parameter. By setting the value
of w to be greater than 1, we increase the relative
weight of the estimated cost to reach the destina-
tion. Therefore, the search prefers the nodes that are
closer to the destination, and thus reaches the goal
faster. Weighted A∗ search can significantly reduce
the number of nodes to be examined, but it also loses
the optimality guarantee of the admissible heuristic
function. We can trade-off between accuracy and
speed by tuning the weight parameterw.

3.2 Beam Search using Time-stamps

The computational cost of the A∗ search algorithm
grows exponentially with increase in the number of
sequences. However, in order to keep the crowd-
sourced captioning system cost-effective, only a
small number of workers are generally recruited at
a time (typicallyK ≤ 10). We, therefore, are more
concerned about the growth in computational cost as
the sequence length increases.

In practice, we break down the sequences into
smaller chunks by maintaining a window of a given
time interval, and we apply MSA only to the smaller
chunks of captions entered by the workers during
that time window. As the window size increases,
the accuracy of our MSA based combining system
increases, but so does the computational cost and la-
tency. Therefore, it is important to apply MSA with
a relatively small window size for real-time caption-
ing applications. Another interesting application can
be the offline captioning, for example, captioning an
entire lecture and uploading the captions later.

For the offline captioning problem, we can fo-
cus less on latency and more on accuracy by align-
ing longer sequences. To restrict the search space
from exploding with sequence length (N ), we apply
a beam constraint on our search space using the time
stamps of each captioned words. For example, if we
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1. so now what i want to do is introduce some of the
2. what i wanna do is introduce some of the aspects of the class
3. so now what i want to do is is introduce some of the aspects of the class
4. so now what i want to do is introduce
5. so now what i want to do is introduce some of the operational of the class
6. so i want to introduce some of the operational aspects of the clas
C. so now what i want to do is introduce some of the operational aspects of the class

Figure 3: An example of applying MSA-A∗ (thresholdtv = 2) to combine 6 partial captions (first 6 lines) by human
workers to obtain the final output caption (C).

set the beam size to be 20 seconds, then we ignore
any state in our search space that aligns two words
having more than 20 seconds time lag. Given a fixed
beam sizeb, we can restrict the number of priority
queue removals by the A∗ algorithm toO(NbK).
The maximum size of the priority queue isO(NbK).
For each node in the priority queue, for each of the
O(2K) successor states, the objective function and
heuristic estimation requiresO(K2) operations and
each priority queue insertion requiresO(log(NbK))
i.e. O(log N + K log b) operations. Therefore,
the overall worst case computational complexity is
O

(

NbK2K(K2 + log N + K log b)
)

. Note that for
fixed beam sizeb and number of sequencesK, the
computational cost grows asO(N log N) with the
increase inN . However, in practice, weighted A∗

search explores much smaller number of states com-
pared to this beam-restricted space.

3.3 Majority Voting after Alignment

After aligning the captions by multiple workers in a
given chunk, we need to combine them to obtain the
final caption. We do that via majority voting at each
position of the alignment matrix containing a non-
gap symbol. In case of tie, we apply the language
model to choose the most likely word.

Often workers type in nonstandard symbols, ab-
breviations, or misspelled words that do not match
with any other workers’ input and end up as a sin-
gle word aligned to gaps in all the other sequences.
To filter out such spurious words, we apply a vot-
ing threshold (tv) during majority voting and filter
out words having less thantv votes. Typically we
settv = 2 (see the example in Figure 3). While ap-
plying the voting threshold improves the word error
rate and readability, it runs the risk of loosing correct
words if they are covered by only a single worker.

3.4 Incorporating an N-gram Language Model

We also experimented with a version of our system
designed to incorporate the score from ann-gram
language model into the search. For this purpose,
we modified the alignment algorithm to produce a
hypothesized output string as it moves through the
input strings, as opposed to using voting to produce
the final string as a post-processing step. The states
for our dynamic programming are extended to in-
clude not only the current position in each input
string, but also the last two words of the hypothesis
string (i.e.[n1, . . . , nK , wi−1, wi−2]) for use in com-
puting the next trigram language model probability.
We replace our sum-of-all-pairs objective function
with the sum of the alignment cost of each input with
the hypothesis string, to which we add the log of the
language model probability and a feature for the to-
tal number of words in the hypothesis. Mathemati-
cally, we consider the hypothesis string to be the 0th
row of the alignment matrix, making our objective
function:

c(A) =
∑

1≤i≤K

c(A0,i) + wlen

Nf
∑

l=1

I(a0,l 6= −)

+ wlm

Nf
∑

l=1

log P (a0,l|a0,l−2, a0,l−1)

wherewlm andwlen are negative constants indicat-
ing the relative weights of the language model prob-
ability and the length penalty.

Extending states with two previous words results
in a larger computational complexity. GivenK se-
quences of lengthN each, we can haveO(NK) dis-
tinct words. Therefore, the number distinct states
is O(NbK(NK)2) i.e. O(N3K2bK). Each state
can haveO(K2K) successors, giving an overall
computational complexity ofO(N3K3bK2K(K2 +
log N + log K + K log b)). Alternatively, if the vo-
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cabulary size|V | is smaller thanNK, the number of
distinct states is bounded byO(NbK |V |2).

3.5 Evaluation Metric for Speech to Text
Captioning

Automated evaluation of speech to text captioning is
known to be a challenging task (Wang et al., 2003).
Word Error Rate (WER) is the most commonly used
metric that finds the best pairwise alignment be-
tween the candidate caption and the ground truth
reference sentence. WER is estimated asS+I+D

N
,

whereS, I, andD is the number of incorrect word
substitutions, insertions, and deletions required to
match the candidate sentence with reference, andN

is the total number of words in the reference. WER
has several nice properties such as: 1) it is easy
to estimate, and 2) it tries to preserve word order-
ing. However, WER does not account for the overall
‘readability’ of text and thus does not always corre-
late well with human evaluation (Wang et al., 2003;
He et al., 2011).

The widely-used BLEU metric has been shown
to agree well with human judgment for evaluating
translation quality (Papineni et al., 2002). However,
unlike WER, BLEU imposes no explicit constraints
on the word ordering. BLEU has been criticized as
an ‘under-constrained’ measure (Callison-Burch et
al., 2006) for allowing too much variation in word
ordering. Moreover, BLEU does not directly esti-
mate recall, and instead relies on the brevity penalty.
Melamed et al. (2003) suggest that a better approach
is to explicitly measure both precision and recall and
combine them via F-measure.

Our application is similar to automatic speech
recognition in that there is a single correct output,
as opposed to machine translation where many out-
puts can be equally correct. On the other hand, un-
like with ASR, out-of-order output is frequently pro-
duced by our alignment system when there is not
enough overlap between the partial captions to de-
rive the correct ordering for all words. It may be
the case that even such out-of-order output can be
of value to the user, and should receive some sort of
partial credit that is not possible using WER. For
this reason, we wished to systematically compare
BLEU, F-measure, and WER as metrics for our task.

We performed a study to evaluate the agreement
of the three metrics with human judgment. We ran-

Metric Spearman Corr. Pearson Corr.

1-WER 0.5258 0.6282
BLEU 0.3137 0.6181

F-measure 0.4389 0.6240

Table 1: The correlation of average human judgment with
three automated metrics: 1-WER, BLEU, and F-measure.

domly extracted one-minute long audio clips from
four MIT OpenCourseWare lectures. Each clip was
transcribed by 7 human workers, and then aligned
and combined using four different systems: the
graph-based system, and three different versions of
our weighted A∗ algorithm with different values of
tuning parameters. Fifty people participated in the
study and were split in two equal sized groups. Each
group was assigned two of the four audio clips,
and each person evaluated all four captions for both
clips. Each participant assigned a score between 1
to 10 to these captions, based on two criteria: 1) the
overall estimated agreement of the captions with the
ground truth text, and 2) the readability and under-
standability of the captions.

Finally, we estimated the correlation coefficients
(both Spearman and Pearson) for the three metrics
discussed above with respect to the average score
assigned by the human participants. The results
are presented in Table 1. Among the three metrics,
WER had the highest agreement with the human par-
ticipants. This indicates that reconstructing the cor-
rect word order is in fact important to the users, and
that, in this aspect, our task has more of the flavor of
speech recognition than of machine translation.

4 Experimental Results

We experiment with the MSA-A∗ algorithm for cap-
tioning different audio clips, and compare the results
with two existing techniques. Our experimental set
up is similar to the experiments by Lasecki et al.
(2012). Our dataset consists of four 5-minute long
audio clips extracted from lectures available on MIT
OpenCourseWare. The audio clips contain speech
from electrical engineering and chemistry lectures.
Each audio clip is transcribed by ten non-expert hu-
man workers in real-time. We then combine these
inputs using our MSA-A∗ algorithm, and also com-
pare with the existing graph-based system and mul-
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Figure 4: Evaluation of different systems on using three
different automated metrics for measuring transcription
quality: 1- Word Error Rate (WER), BLEU, and F-
measure on the four audio clips.

tiple sequence alignment using MUSCLE.

As explained earlier, we vary the four key pa-
rameters of the algorithm: the chunk size (c), the
heuristic weight (w), the voting threshold (tv), and
the beam size (b). The heuristic weight and chunk
size parameters help us to trade-off between speed
versus accuracy; the voting thresholdtv helps im-
prove precision by pruning words having less than
tv votes, and beam size reduces the search space by
restricting states to be inside a time window/beam.
We use affine gap penalty (Edgar, 2004) with dif-
ferent gap opening and gap extension penalty. We
set gap opening penalty to 0.125 and gap extension
penalty to 0.05. We evaluate the performance using
the three standard metrics: Word Error Rate (WER),
BLEU, and F-measure. The performance in terms of
these metrics using different systems is presented in
Figure 4.

Out of the five systems in Figure 4, the first three
are different versions of our A∗ search based MSA
algorithm with different parameter settings: 1) A∗-
10-t system (c = 10 seconds,tv = 2), 2) A∗-15-t (c =
15 seconds,tv = 2), and 3) A∗-15 (c = 15 seconds,tv
= 1 i.e. no pruning while voting). For all three sys-
tems, the heuristic weight parameterw is set to 2.5
and beam sizeb = 20 seconds. The other two sys-
tems are the existing graph-based system and mul-
tiple sequence alignment using MUSCLE. Among
the three A∗ based algorithms, both A∗-15-t and A∗-
10-t produce better quality transcripts and outper-
form the existing algorithms. Both systems apply
the voting threshold that improves precision. The
system A∗-15 applies no threshold and ends up pro-
ducing many spurious words having poor agreement
among the workers, and hence it scores worse in all
the three metrics. The A∗-15-t achieves 57.4% aver-
age accuracy in terms of (1-WER), providing 29.6%
improvement with respect to the graph-based sys-
tem (average accuracy 42.6%), and 35.4% improve-
ment with respect to the MUSCLE-based MSA sys-
tem (average accuracy 41.9%). On the same set of
audio clips, Lasecki et al. (2012) reported 36.6% ac-
curacy using ASR (Dragon Naturally Speaking, ver-
sion 11.5 for Windows), which is worse than all the
crowd-based based systems used in this experiment.
To measure the statistical significance of this im-
provement, we performed at-test at both the dataset
level (n = 4 clips) and the word level (n = 2862
words). The improvement over the graph-based
model was statistically significant with dataset level
p-value 0.001 and word levelp-value smaller than
0.0001. The average time to align each 15 second
chunk with 10 input captions is∼400 milliseconds.

We have also experimented with a trigram lan-
guage model, trained on the British National Cor-
pus (Burnard, 1995) having∼122 million words.
The language-model-integrated A∗ search provided
a negligible 0.21% improvement in WER over the
A∗-15-t system on average. The task of combin-
ing captions does not require recognizing words; it
only requires aligning them in the correct order. This
could explain why language model did not improve
accuracy, as it does for speech recognition. Since
the standard MSA-A∗ algorithm (without language
model) produced comparable accuracy and faster
running time, we used that version in the rest of the
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Figure 5: The trade-off between speed and accuracy for different heuristic weights and chunk size parameters.

experiments.

Next, we look at the critical speed versus accuracy
trade-off for different values of the heuristic weight
(w) and the chunk size (c) parameters. Since WER
has been shown to correlate most with human judg-
ment, we show the next results only with respect to
WER. First, we fix the chunk size at different val-
ues, and then vary the heuristic weight parameter:
w = 1.8, 2, 2.5, 3, 4, 6, and 8. The results are
shown in Figure 5(a), where each curve represents
how time and accuracy changed over the range of
values ofw and a fixed value ofc. We observe that
for smaller values ofw, the algorithm is more accu-
rate, but comparatively slower. Asw increases, the
search reaches the goal faster, but the quality of the
solution degrades as well. Next, we fixw and vary
chunk sizec = 5, 10, 15, 20, 40, 60 second. We re-
peat this experiment for a range of values ofw and
the results are shown in Figure 5(b). We can see that
the accuracy improves steeply up toc = 20 seconds,
and does not improve much beyondc = 40 seconds.
For all these benchmarks, we set the beam size (b)
to 20 seconds and voting threshold (tv) to 2.

In our tests, the beam size parameter (b) did not
play a significant role in performance, and setting it
to any reasonably large value (usually≥ 15 seconds)
resulted in similar accuracy and running time. This
is because the A∗ search withhpair heuristic already
reduces the the search space significantly, and usu-
ally reaches the goal in a number of steps smaller
than the state space size after the beam restriction.

Finally, we investigate how the accuracy of our
algorithm varies with the number of inputs/workers.
We start with a pool of 10 input captions for one of
the audio clips. We vary the number of input cap-
tions (K) to the MSA-A∗ algorithm from 2 up to 10.
The quality of input captions differs greatly among
the workers. Therefore, for each value ofK, we re-
peat the experimentmin

(

20,
(

10

K

))

times; each time
we randomly selectK input captions out of the total
pool of 10. Figure 6 shows that accuracy steeply
increases as the number of inputs increases to 7,
and after that adding more workers does not pro-
vide much improvement in accuracy, but increases
running time.

5 Discussion and Future Work

In this paper, we show that the A∗ search based
MSA algorithm performs better than existing algo-
rithms for combining multiple captions. The exist-
ing graph-based model has low latency, but it usually
can not find a near optimal alignment because of its
incremental alignment. Weighted A∗ search on the
other hand performs joint multiple sequence align-
ment, and is guaranteed to produce a solution hav-
ing cost no more than(1 + ǫ) times the cost of the
optimal solution, given a heuristic weight of(1+ ǫ).
Moreover, A∗ search allows for straightforward in-
tegration of an n-gram language model during the
search.

Another key advantage of the proposed algorithm
is the ease with which we can trade-off between
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Figure 6: Experiments showing how the accuracy of the
final caption by MSA-A∗ algorithm varies with the num-
ber of inputs from 2 to 10.

speed and accuracy. The algorithm can be tailored
to real-time by using a larger heuristic weight. On
the other hand, we can produce better transcripts for
offline tasks by choosing a smaller weight.

It is interesting to compare our results with those
achieved using the MUSCLE MSA tool of Edgar
(2004). One difference is that our system takes a hi-
erarchical approach in that it aligns at the word level,
but also uses string edit distance at the letter level
as a substitution cost for words. Thus, it is able to
take advantage of the fact that individual transcrip-
tions do not generally contain arbitrary fragments of
words. More fundamentally, it is interesting to note
that MUSCLE and most other commonly used MSA
tools for biological sequences make use of aguide
tree formed by a hierarchical clustering of the in-
put sequences. The guide tree produced by the algo-
rithms may or may not match the evolutionary tree
of the organisms whose genomes are being aligned,
but, nevertheless, in the biological application, such
an underlying evolutionary tree generally exists. In
aligning transcriptions, there is no particular reason
to expect individual pairs of transcriptions to be es-
pecially similar to one another, which may make the
guide tree approach less appropriate.

In order to get competitive results, the A∗ search
based algorithm aligns sequences that are at least 7-
10 seconds long. The delay for collecting the cap-
tions within a chunk can introduce latency, however,

each alignment usually takes less than 300 millisec-
onds, allowing us to repeatedly align the stream of
words, even before the window is filled. This pro-
vides less accurate but immediate response to users.
Finally, when we have all the words entered in a
chunk, we perform the final alignment and show the
caption to users for the entire chunk.

After aligning the input sequences, we obtain the
final transcript by majority voting at each alignment
position, which treats each worker equally and does
not take individual quality into account. Recently,
some work has been done for automatically estimat-
ing individual worker’s quality for crowd-based data
labeling tasks (Karger et al., 2011; Liu et al., 2012).
Extending these methods for crowd-based text cap-
tioning could be an interesting future direction.

6 Conclusion

In this paper, we have introduced a new A∗ search
based MSA algorithm for aligning partial captions
into a final output stream in real-time. This method
has advantages over prior approaches both in for-
mal guarantees of optimality and the ability to trade
off speed and accuracy. Our experiments on real
captioning data show that it outperforms prior ap-
proaches based on a dependency graph model and a
standard MSA implementation (MUSCLE). An ex-
periment with 50 participants explored whether ex-
iting automatic metrics of quality matched human
evaluations of readability, showing WER did best.
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Abstract

Automatically assessing the fidelity of a
retelling to the original narrative – a task of
growing clinical importance – is challenging,
given extensive paraphrasing during retelling
along with cascading automatic speech recog-
nition (ASR) errors. We present a word tag-
ging approach using conditional random fields
(CRFs) that allows a diversity of features
to be considered during inference, including
some capturing acoustic confusions encoded
in word confusion networks. We evaluate the
approach under several scenarios, including
both supervised and unsupervised training, the
latter achieved by training on the output of
a baseline automatic word-alignment model.
We also adapt the ASR models to the domain,
and evaluate the impact of error rate on per-
formance. We find strong robustness to ASR
errors, even using just the 1-best system out-
put. A hybrid approach making use of both au-
tomatic alignment and CRFs trained tagging
models achieves the best performance, yield-
ing strong improvements over using either ap-
proach alone.

1 Introduction

Narrative production tasks are an essential compo-
nent of many standard neuropsychological test bat-
teries. For example, narration of a wordless pic-
ture book is part of the Autism Diagnostic Obser-
vation Schedule (ADOS) (Lord et al., 2002) and
retelling of previously narrated stories is part of both
the Developmental Neuropsychological Assessment
(NEPSY) (Korkman et al., 1998) and the Wech-
sler Logical Memory (WLM) test (Wechsler, 1997).

Such tests also arise in reading comprehension, sec-
ond language learning and other computer-based tu-
toring systems (Xie et al., 2012; Zhang et al., 2008).

The accuracy of automated scoring of a narrative
retelling depends on correctly identifying which of
the source narrative’s propositions or events (what
we will call ‘story elements’) have been included
in the retelling. Speakers may choose to relate
these elements using diverse words or phrases, and
an automated method of identifying these elements
needs to model the permissible variants and para-
phrasings. In previous work (Lehr et al., 2012;
Prud’hommeaux and Roark, 2012; Prud’hommeaux
and Roark, 2011), we developed models based on
automatic word-alignment methods, as described
briefly in Section 3. Such alignments are learned
in an unsupervised manner from a parallel corpus of
manual or ASR transcripts of retellings and the orig-
inal source narrative, much as in machine translation
training.

Relying on manual transcripts to train the align-
ment models limits the ability of these methods to
handle ASR errors. By instead training on ASR
transcripts, these methods can automatically capture
some regularities of lexical variants and their com-
mon realizations by the recognizer. Additionally, ev-
idence of acoustic confusability is available in word
lattice output from the recognizer, which can be ex-
ploited to yield more robust automatic scoring, par-
ticularly in high error-rate scenarios.

In this paper, we present and evaluate the use of
word tagging models for this task, in contrast to
just using automatic (unsupervised) word-alignment
methods. The approach is general enough to al-
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low tagging of word confusion networks derived
from lattices, thus allowing us to explore the utility
of such representations to achieve robustness. We
present results under a range of experimental condi-
tions, including: variously adapting the ASR mod-
els to the domain; using maximum entropy models
rather than CRFs; differing tagsets (BIO versus IO);
and with varying degrees of supervision. Finally,
we demonstrate improved utility in terms of using
the automatic scores to classify elderly individuals
as having Mild Cognitive Impairment. Ultimately
we find that hybrid approaches, making use of both
word-alignment and tagging models, yield strong
improvements over either used independently.

2 Wechsler Logical Memory (WLM) task

The Wechsler Logical Memory (WLM) task (Wech-
sler, 1997), a widely used subtest of a battery of neu-
ropsychological tests used to assess memory func-
tion in adults, has been shown to be a good indicator
of Mild Cognitive Impairment (MCI) (Storandt and
Hill, 1989; Petersen et al., 1999; Wang and Zhou,
2002; Nordlund et al., 2005), the stage of cogni-
tive decline that is often a precursor to dementia of
the Alzheimer’s type. In the WLM, the subject lis-
tens to the examiner read a brief narrative and then
retells the narrative twice: immediately upon hear-
ing it and after about 20 minutes. The examiner
grades the subject’s response by counting how many
of the story elements the subject recalled.

An excerpt of the text read by the clinician while
administering the WLM task is shown in Figure 1.
The story elements in the text are delineated using
slashes, 25 elements in all. An example retelling
is shown in Figure 2 to illustrate how the retellings
are scored. The clinical evaluation guidelines spec-
ify what lexical substitutions, if any, are allowed
for each element. Some elements, such as cafeteria
and Thompson, must be recalled verbatim. In other
cases, subjects are given credit for variants, such as
Annie for Anna, or paraphrasing of concepts such as
sympathetic for touched by the woman’s story. The
example retelling received a score of 12, with one
point for each of the recalled story elements: Anna,
Boston, employed, as a cook, and robbed of, she had
four, small children, reported, station, touched by
the woman’s story, took up a collection and for her.

Anna / Thompson / of South / Boston / em-
ployed / as a cook / in a school / cafeteria /
reported / at the police / station / that she had
been held up / on State Street / the night be-
fore / and robbed / . . . / police / touched by the
woman’s story / took up a collection / for her.

Figure 1: Reference text and the set of story elements.

Ann Taylor worked in Boston as a cook. And
she was robbed of sixty-seven dollars. Is
that right? And she had four children and
reported at the some kind of station. The fel-
low sympathetic and made a collection for her
so that she can feed the children.

Figure 2: An example retelling with 12 recalled story elements.

3 Unsupervised generative automated
scoring with word alignment

In previous work (Lehr et al., 2012; Prud’hommeaux
and Roark, 2012; Prud’hommeaux and Roark,
2011), we developed a pipeline for automatically
scoring narrative retellings for the WLM task. The
utterances corresponding to a retelling were rec-
ognized using an ASR system. The story ele-
ments were identified from the 1-best ASR transcript
using word alignments produced by the Berkeley
aligner (Liang et al., 2006), an EM-based word
alignment package developed to align parallel texts
for machine translation. The word alignment model
was estimated in an unsupervised manner from a
parallel corpus consisting of source narrative and
manual transcripts of retellings from a small set of
training subjects, and from a pairwise parallel cor-
pus of manual retelling transcripts.

During inference or test, the ASR transcripts of
the retellings were aligned using the estimated align-
ment model to the source narrative text. If a word
in the retelling was mapped by the alignment model
to a content word in the source narrative, the ele-
ment associated with that content word was counted
as correctly recalled in that retelling. Recall that
the models were trained on unsupervised data so the
aligned words may not always be permissible vari-
ants of the target elements. To alleviate such extra-
neous as well as unaligned words, the alignments
below a threshold of posterior probability are dis-
carded while decoding.
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4 Supervised discriminative automated
scoring with log-linear models

In this work, we frame the task of detecting story
elements as a tagging task. Thus, our problem re-
duces to assigning a tag to each word position in the
retelling, the tag indicating the story element that the
word is associated with. In its simplest form, we
have 26 tags: one for each of the 25 story elements
indicating the word is ‘in’ that element (e.g., I15);
and one for ‘outside’ of any story element (‘O’). By
tagging word positions, we are framing the problem
in a general enough way to allow tagging of word
confusion networks (Mangu et al., 2000), which en-
code word confusions that may provide additional
robustness, particularly in high word-error rate sce-
narios. We make use of log-linear models, which
have been used for tagging confusion networks (Ku-
rata et al., 2012), and which allow very flexible fea-
ture vector definition and discriminative optimiza-
tion.

The model allows us to experiment with three
types of inputs as illustrated in the Figure 3 – the
manual transcript, the 1-best ASR transcript, and the
word confusion network. To create supervised train-
ing data, we force-align ASR transcripts to manual
transcripts and transfer manually annotated story el-
ement tags from the reference transcripts to word po-
sitions in the confusion network or 1-best ASR out-
put using the word-level time marks. Our unsuper-
vised training scenario instead derives story element
tags from a baseline word-alignment based model.

Figure 3: Feature vectors at each word position includes lexi-
cal variants and acoustic confusions.

Markov order 0 Markov order 1
(MaxEnt) (CRF)

Context yi yi−1yi

independent (CI) yixi yi−1yixi

Context yixi−1 yi−1yixi−1

dependent (CD) yixi+1 yi−1yixi+1

Table 1: Feature templates either using or not using neighbor-
ing tag yi−1 (MaxEnt vs. CRF); and for using or not using
neighboring words xi−1, xi+1 (CI vs. CD).

4.1 Features

Given a sequence of word positions x = x1 . . . xn,
the tagger assigns a sequence of labels y = y1 . . . yn

from a tag lexicon. For each word xi in the se-
quence, we can define features in the log-linear
model based on word and tag identities. Table 1
presents several sets of features, defined over words
and tags at various positions relative to the current
word xi and tag yi and compound features are de-
noted as concatenated symbols.

Features that rely only on the current tag yi are
used in a Markov order 0 model, i.e., one for which
each tag is labeled independently. A maximum en-
tropy classifier (see Section 4.2) is used with these
feature sets. Features that include prior tags en-
code dependencies between adjacent tags, and are
used within conditional random fields models (see
Section 4.3). To examine the utility of surrounding
words xi−1 and xi+1, we distinguish between mod-
els trained with context independent features (just
xi) and context dependent features. Note that mod-
els including context dependent feature sets also in-
clude the context independent features, and Markov
order 1 models also include Markov order 0 features.

Two other details about our use of the feature tem-
plates are worth noting. First, when tagging confu-
sion networks, each word in the network at position
i results in a feature instance. Thus, if there are five
confusable words at position i, then there will be
five different xi values being used to instantiate the
features in Table 1. Second, following Kurata et al.
(2012), we multiply the feature counts for the con-
text dependent features by a weight to control their
influence on the model. In this paper, the scaling
weight of the context-dependent features was 0.3.

We investigate two different tagsets for this task,
as presented in Table 2. The simpler tagset (IO) sim-
ply identifies words that are in a story element; the
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Tagging anna rent was due
IO-tags I1 I19 I19 I19
BIO-tags B1 B19 I19 I19

Table 2: Two possible tagsets for labeling.

larger tagset (BIO) differentiates among positions in
a story element chunk. The latter tagset is only of
utility for models with Markov order greater than
zero, and hence are only used with CRF models.

4.2 MaxEnt-based multiclass classifier
Our baseline model is a Maximum Entropy (Max-
Ent) classifier where each position i from the
retelling x gets assigned one of the IO output tags
yi corresponding to the set of 25 story elements and
a null (‘O’) symbol. The output tag is modeled as
the conditional probability p(yi | xi) given the word
xi at position i in the retelling.

p(yi | xi) =

exp

(
d∑

k=1

λkφk(xi, yi)

)
Z(xi)

where Z(xi) is a normalization factor. The feature
functions φ(xi, yi) are the Markov order 0 features
as defined as in the previous section. The parame-
ters λ ∈ <d are estimated by optimizing the above
conditional probability, with L2 regularization. We
use the MALLET Toolkit (McCallum, 2002) with
default regularization parameters.

4.3 CRF-based sequence labeling model
The MaxEnt models assign a tag to each position
from the input retelling independently. However,
there are a few reasons why reframing the task as
a sequence modeling problem may improve tagging
performance. First, some of the story elements are
multiword sequences, such as she had been held up
or on State Street. Second, even if a retelling orders
recalled elements differently than the original narra-
tive, there is a tendency for story elements to occur
in certain orders.

The parameters of the CRF model, λ ∈ <d are
estimated by optimizing the following conditional
probability:

P (y | x) =

exp

(
d∑

k=1

λkφk(x, y)

)
Z(x)

where Φ(x, y) aggregates features across the entire
sequence, and Z(x) is a global normalization con-
stant over the sequence, rather than local for a partic-
ular position as with MaxEnt. Features for the CRF
model are Markov order 1 features, and as with the
MaxEnt training, we use default (L2) regularization
parameters within the MALLET toolkit.

5 Combining tagging and alignment

This paper contrasts a discriminatively trained tag-
ging approach with an unsupervised alignment-
based approach, but there are several ways in which
the two approaches can be combined. First, the
alignment model is unsupervised and can provide
its output as training data to the tagging approach,
resulting in an unsupervised discriminative model.
Second, the alignment model can provide features to
the log-linear tagging model in the supervised condi-
tion. We explore both methods of combination here.

5.1 Unsupervised discriminative tagger
The tagging task based on log-linear models pro-
vides an appropriate framework to easily incorpo-
rate diverse features and discriminatively estimate
the parameters of the model. However, this ap-
proach requires supervised tagged training data, in
this case manual labels indicating the correspon-
dence of phrases in the retellings with story elements
in the original narrative. These manual annotations
are used to derive sequences of story element tags
labeling the words of the retelling. Manually la-
beling the retellings is costly, and the scoring (thus
labeling) scheme is very specific to the test being
analyzed. To avoid manual labeling and provide a
general framework that can easily be adopted in any
retelling based assessment task, we experiment here
with an unsupervised discriminative approach.

In this unsupervised approach, the labeled train-
ing data required by the log-linear model is provided
by the automatic word alignments trained without
supervision. The resulting tag sequences replace the
manual tag sequences used in the standard super-
vised approach.

5.2 Word-alignment derived features
When training discriminative models it is a common
practice to incorporate into the feature space the out-
put from a generative model, since it is a good esti-
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mator. Here we augment the feature space of the
log-linear models with the tags generated by the au-
tomatic word alignments. In addition to the features
defined in Section 4.1, we include new features that
match predicted labels zi from the word-alignment
model with possible labels in the tagger yi. Our fea-
tures include the current tagger label with (1) the
current predicted word-alignment label; (2) the pre-
vious predicted label; and (3) the next predicted la-
bel. Thus, the new features were yizi, yizi−1 and
yizi+1.

6 Experimental evaluations

Corpus: Our models were trained on immediate and
delayed retellings from 144 subjects with a mean
age of 85.4, of whom 36 were clinically diagnosed
with MCI (training set). We evaluated our models
on a set of retellings from 70 non-overlapping sub-
jects with a mean age of 88.5, half of whom had
received a diagnosis of MCI (test set). In contrast
to the unsupervised word-alignment based method,
the method outlined here required manual story el-
ement labels of the retellings. The training and
test sets from this paper are therefore different from
the sets used in previous work (Lehr et al., 2012;
Prud’hommeaux and Roark, 2012; Prud’hommeaux
and Roark, 2011), and the results are not directly
comparable.

The recordings were sometimes made in an infor-
mal setting, such as the subject’s home or a senior
center. For this reason, there are often extraneous
noises in the recordings such as music, footsteps,
and clocks striking the hour. Although this presents
a challenge for ASR, part of the goal of our work
is to demonstrate the robustness of our methods to
noisy audio.

6.1 Automatic transcription

The baseline ASR system used in the current work
is a Broadcast News system which is modeled af-
ter Kingsbury et al. (2011). Briefly, the acoustics
of speech are modeled by 4000 clustered allophone
states defined over a pentaphone context, where
states are represented by Gaussian mixture models
with a total of 150K mixture components. The ob-
servation vectors consist of PLP features, stacked
from 10 neighboring frames and projected to a 50-

1-best oracle oracle
System (%) WCN(%) lat(%)
Baseline 47.2 39.7 27.7
AM adaptation 38.2 35.5 21.2
LM adaptation 28.3 30.7 19.9
AM+LM adaptation 25.6 26.5 16.5

Table 3: Improvement in ASR word error-rate by adapting the
Broadcast News models to the domain of narrative retelling.

dimension space using linear discriminant analysis
(LDA). The acoustic models were trained on 430
hours of transcribed speech from Broadcast News
corpus (LDC97S44, LDC98S71). The language
model is defined over an 84K vocabulary and con-
sists of about 1.8M, 1M and and 331K bigrams, tri-
grams and 4-grams, estimated from standard Broad-
cast news corpus. The decoding is performed in sev-
eral stages using successively refined acoustic mod-
els – a context-dependent model, a vocal-tract nor-
malized model, a speaker-adapted maximum likeli-
hood linear regression (MLLR) model, and finally
a discriminatively trained model with the boosted
MMI criteria (Povey et al., 2008). The system gives
a word error rate of 13.1% on the 2004 Rich Tran-
scription benchmark by NIST (Fiscus et al., 2007),
which is comparable to state-of-the-art for equiva-
lent amounts of acoustic training data. On the WLM
corpus, the recognition word error rate was signifi-
cantly higher at 47.2% due to a mismatch in domain
and the skewed demographics (age) of the speakers.

We improved the performance of the above
Broadcast News models by adapting to the domain
of the WLM retellings. The acoustic models were
adapted using standard MLLR, where linear trans-
forms were estimated in an unsupervised manner
to maximize the likelihood over the transcripts of
the retellings. The transcripts were generated from
the baseline system after the final stage of decod-
ing with the discriminative model. The language
models were adapted by interpolating the in-domain
model (weight=0.7) with the out-of-domain model.
The gains from these adaptations are reported in
the Table 3. As expected, we find substantial gains
from both acoustic model (AM) and language model
(LM) adaptation. Furthermore, we find benefit in
employing them simultaneously. We also include
the oracle word error rate (WER) of the WCNs and
lattices for each ASR configuration.
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One thing to note is that the oracle WER of the
WCNs is worse than the 1-best WER when adapting
the language models. We speculate that this is due
to bias introduced by the language model adapted
to the story retellings, resulting in word candidates
in the bins that are not truly acoustically confusable
candidates. This is one potential reason for the lack
of utility of WCNs in low WER conditions.

6.2 Evaluating retelling scoring

We analyzed the performance of the retelling scor-
ing methods under five different input conditions for
producing transcripts: (1) the out-of-domain Broad-
cast News recognizer with no adaptation; (2) do-
main adapted acoustic model; (3) domain adapted
language model; (4) domain adapted acoustic and
language models; and (5) manual (reference) tran-
scripts. Each story element is automatically labeled
by the systems as either having been recalled or not,
and this is compared with manual scores to derive an
F-score accuracy, by calculating precision and recall
of recalled story elements. Derived word alignments
or tag sequences are converted to binary story ele-
ment indicators by simply setting the element to 1
if any open-class word is tagged for (or aligned to)
that story element.

6.2.1 Word alignment based scoring
We evaluate the word alignment approach only on

1-best ASR transcripts and manual transcripts, not
WCNs. The first row of Table 4 reports the story ele-
ment F-scores for a range of ASR adaptation scenar-
ios. The performance of the model improves signifi-
cantly as the WER reduces with adaptation. With the
fully adapted ASR the F-score improves more than
13%, and it is only 3.4% worse than with the man-

ual transcripts. The alignments produced in each of
these scenarios are used as training data in the unsu-
pervised condition evaluated below.

6.2.2 Log-linear based automated scoring
Context-independent features Table 4 summa-
rizes the performance of the log-linear models us-
ing context independent features (CI) in supervised
(section 4), unsupervised (section 5.1) and hybrid
(section 5.2) training scenarios for different inputs
(reference transcript, ASR 1-best, and word confu-
sion network ASR output) and four different ASR
configurations.

The results show a few clear trends. Both in
the supervised and unsupervised training scenarios
the CRF model provides substantial improvements
over the MaxEnt classifier. The F-scores obtained
in the unsupervised training scenario are slightly
worse than with supervision, though they are compa-
rable to supervised results and an improvement over
just using the word alignment approach, particularly
in high WER scenarios. The hybrid training sce-
nario – supervised learning with word alignment de-
rived features – leads to reduced differences between
MaxEnt and CRF training compared to the other two
training scenarios. In fact, in high WER scenarios,
the MaxEnt slightly outperforms the CRF.

As expected the best performance is obtained with
manual transcripts and the worst with 1-best tran-
scripts generated by the out-of-domain ASR with
relatively high word error rate. For this ASR con-
figuration, using WCNs provide some gain, though
the gain is insignificant for the hybrid approach. In
the hybrid approach, the output labels of the word
alignment are already good indicators of the output
tag and incorporating the confusable words from the

Table 4: Story element F-score achieved by baseline word-alignment model and log-linear models (MaxEnt and CRF) using
context independent features (CI) under 3 different scenarios, with 3 different inputs (1-best ASR, word confusion network, and
manual transcripts) and different ASR models (baseline out-of-domain, AM adapted, LM adapted and AM+LM adapted).

Training Transcripts: 1-best WCN manual
Scenario ASR: baseline AM LM AM+LM baseline AM LM AM+LM N/A
Baseline word-alignment: 71.9 77.3 84.3 85.4 N/A 88.8
Supervised MaxEnt-CI 76.0 81.7 84.6 85.6 78.9 83.4 84.0 84.7 86.4

CRF-CI 80.3 87.3 89.7 91.4 83.7 88.8 88.2 90.8 94.4
Unsupervised MaxEnt-CI 72.1 79.3 82.7 84.2 77.5 81.2 83.4 83.2 84.8

CRF-CI 79.4 85.4 86.8 88.0 81.2 85.8 86.2 87.2 90.5
Hybrid MaxEnt-CI 88.1 89.4 89.2 89.6 87.6 89.2 88.8 89.5 91.8

CRF-CI 87.0 90.9 91.5 92.1 87.4 91.5 90.1 92.4 94.6
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Training Transcripts: 1-best WCN manual
Scenario ASR: baseline AM LM AM+LM baseline AM LM AM+LM N/A
Supervised MaxEnt-CD 80.1 87.3 90.0 91.1 83.5 88.6 88.2 90.3 93.3

CRF-CD-IO 80.6 88.0 89.9 91.2 84.2 89.6 88.8 90.5 94.7
CRF-CD-BIO 81.1 87.9 90.6 91.7 84.5 89.5 88.8 90.8 94.7

Un- MaxEnt-CD 77.1 83.1 86.5 89.0 80.2 85.0 86.2 87.6 90.7
supervised CRF-CD-IO 79.1 85.3 87.1 88.3 81.0 85.9 86.4 87.5 90.3

CRF-CD-BIO 79.1 85.6 87.2 88.4 81.3 85.9 86.2 87.3 90.6
Hybrid MaxEnt-CD 88.4 90.2 90.7 91.6 88.6 90.5 90.4 91.4 93.5

CRF-CD-IO 87.9 91.3 91.6 92.5 88.3 91.7 90.7 92.1 94.8
CRF-BIO 87.8 91.9 91.8 93.0 88.7 92.0 90.7 92.3 94.7

Table 5: Story element F-score achieved by log-linear models (MaxEnt and CRF) when adding context dependent features (CD)
and BIO tags for the CRF models, under 3 different scenarios, with 3 different inputs (1-best ASR, word confusion network, and
manual transcripts) and different ASR models (baseline out-of-domain, AM adapted, LM adapted and AM+LM adapted).

WCN into the feature vector apparently mainly adds
noise.

When the transcripts are generated with the
adapted models, the word confidence score of the 1-
best is higher and the WCN bins have fewer acous-
tically confusable words. Still, the WCN input is
helpful in the AM-adapted ASR system. When
the transcripts are generated with LM adapted mod-
els, the performance is better with 1-best than with
WCNs. As mentioned earlier, adapting the lan-
guage models may introduce a bias due to the rel-
atively low LM perplexity for this domain. In the
lowest WER scenarios, the best performing systems
achieve over 90% F-score, within two percent of the
performance achieved with manual transcripts.

Context-dependent features Exercising the flex-
ibility of log-linear models, we investigated the im-
pact of using context-dependent (CD) features in-
stead of the CI features used in the previous exper-
iments. Our CD features take into account the two
immediately neighboring word positions. As men-
tioned earlier, following Kurata et al. (2012), the
counts from the neighboring word positions were
weighted (α = 0.3) to avoid data sparsity. This re-
duces the sensitivity of the model to time alignment
errors between the tag and feature vector sequences
without increasing the dimensions. In Table 5, we
report the F-scores for the different ASR configu-
rations, inputs, and log-linear models with context
dependent features, using the standard IO tagset as
in Table 4.

Although there are some exceptions, adding con-
text information from the input features improves

the performance of the models. In particular, the
MaxEnt models benefit from incorporating this ex-
tra information. The MaxEnt models improve their
performance substantially for all three training sce-
narios, while the gains for the CRF models are more
modest, especially for the unsupervised approach
where the performance degrades or does not change
much, since some context information is already
captured by the Markov order 1 features.

BIO tagset As detailed in Section 4.1, story el-
ements sometimes span multiple words, so for the
CRF models we investigated two different schemes
for tagging, following typical practice in named en-
tity extraction (Ratinov and Roth, 2009) and syn-
tactic chunking (Sha and Pereira, 2003). The BIO
tagging scheme makes the distinction between the
tokens from the story elements that are in the be-
ginning from the ones that are not. The O tag is
assigned to the tokens that do not belong to any of
the story elements. The IO tagging uses a single tag
for the tokens that fall in the same story element,
which is the approach we have followed so far. In
addition to presenting results using context depen-
dent features, Table 5 presents results with the BIO
tagset.

For the supervised and hybrid approaches, the
BIO tagging provides insignificant but consistent
gains for most of the scenarios. The unsupervised
approach provides mixed results. This may be due to
the way in which the word alignment model scores
the retellings. It tags only those words from the
retelling that are aligned with a content word in the
source narrative, which may result in the loss of the
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Training Transcripts: 1-best WCN manual
Scenario ASR: baseline AM LM AM+LM baseline AM LM AM+LM N/A
Baseline word-alignment: 0.65 0.67 0.74 0.76 N/A 0.79
Supervised MaxEnt-CD 0.65 0.73 0.76 0.77 0.70 0.73 0.77 0.77 0.81

CRF-CD-BIO 0.69 0.76 0.77 0.76 0.73 0.76 0.77 0.78 0.82
Un- MaxEnt-CD 0.65 0.72 0.75 0.76 0.70 0.75 0.75 0.76 0.80
supervised CRF-CD-BIO 0.74 0.75 0.78 0.78 0.71 0.74 0.77 0.76 0.81
Hybrid MaxEnt-CD 0.72 0.76 0.77 0.78 0.74 0.76 0.77 0.77 0.82

CRF-CD-BIO 0.72 0.76 0.78 0.78 0.76 0.77 0.78 0.79 0.81

Table 6: Classification performance (AUC) for the baseline word-alignment model and the best performing log-linear models of
both types (MaxEnt and CRF) under 3 different scenarios with 3 types of input and 4 types of ASR models.

structure of some multiwords story elements that we
are trying to capture with the BIO scheme.

6.3 Evaluating MCI classification

Each of the individuals producing retellings in our
corpus underwent a battery of neuropsychological
tests, and were assigned a Clinical Dementia Rating
(CDR) (Morris, 1993), which is a composite score
derived from measures of cognitive function in six
domains, including memory. Importantly, it is as-
signed independently of the Wechsler Logical Mem-
ory test we are analyzing in this paper, which allows
us to evaluate the utility of our WLM analyses in
an unbiased manner. MCI is defined as a CDR of
0.5 (Ritchie and Touchon, 2000), and subjects in this
study have either a CDR of 0 (no impairment) or 0.5
(MCI).

In previous work, we found that the features
extracted from the retellings are useful in dis-
tinguishing subjects with MCI from neurotyp-
ical age-matched controls (Lehr et al., 2012;
Prud’hommeaux and Roark, 2012; Prud’hommeaux
and Roark, 2011). From each retellings, we extract
Boolean features for each story element, for a total
of 50 features for classification. Each feature indi-
cates whether the retelling contained that story ele-
ment.

In this paper, we carry out similar classification
experiments to investigate the impact of using log-
linear models on the extraction of features for classi-
fication. We build a support vector machine (SVM)
using the LibSVM (Chang and Lin, 2011) exten-
sion to the WEKA data mining Java API (Hall et al.,
2009). This allows recollection of different elements
to be weighted differently. This is unlike the manual
scoring of WLM based on clinical guidelines where
all elements are weighted equally irrespective of the

difficulty. The SVM was trained on manually ex-
tracted story element feature vectors. We compared
the performance of the MCI classification for three
types of input and four ASR configurations under
the supervised, unsupervised, and hybrid scenarios.
For each scenario we chose the best scoring system
from among the automated systems reported in Ta-
bles 4 and 5. Classification results, evaluated as area
under the curve (AUC), are reported in Table 6, both
for the log-linear trained tagging models and for the
baseline word-alignment based method. For refer-
ence (not shown in the table), the SVM classifier
performed at 0.83 when features values are manu-
ally populated.

The results show that the AUC improves steadily
as the quality of the transcription is improved, go-
ing from the baseline system to the adapted mod-
els. This is consistent with the improvements seen in
the F-score for detecting story elements. The differ-
ent approaches for detecting the story elements from
the transcriptions did not ultimately show significant
differences in MCI classification results. Overall,
the best classification values are given by the hy-
brid approach, which performs slightly better than
the other two approaches. The best AUC in the
hybrid scenario (0.79, very close to the AUC=0.81
achieved with manual transcripts) is obtained with
a CRF trained with WCNs from the fully adapted
ASR model and with context dependent features and
BIO tags.

Comparing WCN versus 1-best as inputs, using
WCN as input improves classification performance
when the 1-best transcripts are poor, as in the case
of out-of-domain ASR. The adapted recognizer im-
proves the performance of the 1-best significantly
making it unnecessary to resort to WCN as inputs.

Comparing the MaxEnt model with CRF model
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for extracting story elements, we see that the average
F-scores for the MaxEnt models trained on CD fea-
tures are nearly as good as and sometimes slightly
better than those produced using the CRF models.
The CRF extracted story elements, however, tend to
yield classifiers that perform slightly better, espe-
cially in the unsupervised approach with 1-best in-
puts.

7 Summary and discussion

This paper examines the task of automatically scor-
ing narrative retellings in terms of their fidelity to
the original narrative content, using discriminatively
trained log-linear tagging models. Fully automatic
scoring must account for both lexical variation and
acoustic confusion from ASR errors. Lexical vari-
ation – due to extensive paraphrasing on the part
of the individuals retelling the narrative – can be
modeled effectively using word-alignment models
such as those employed in machine translation sys-
tems (Lehr et al., 2012; Prud’hommeaux and Roark,
2011). This paper focuses on an alternative ap-
proach, where both lexical variation and ASR con-
fusions are modeled using log-linear models. In ad-
dition to very flexible feature definitions, the log-
linear models bring the advantage of a discrimina-
tive model to the task. We see improvements in
story element F-score using these models over unsu-
pervised word-alignment models. Further, the fea-
ture definition flexibility allows us to incorporate the
unsupervised word-alignment labels into these mod-
els, resulting either in fully unsupervised approaches
that perform competitively with the supervised mod-
els or in hybrid (supervised) approaches that provide
the best performing systems in this study.

Our tagging models are able to process word con-
fusion networks as inputs and thus improve perfor-
mance over using 1-best ASR transcripts in scenar-
ios where the speech recognition error rate is high.
These improvements carry through to the MCI clas-
sification task, making use of features computed
from the automatic scoring of narrative retelling.

One advantage of the word-alignment model is
that such approaches do not require manual anno-
tation of the story elements, which is more labor in-
tensive than typical manual transcription of speech.
Thus, the word-alignment model can exploit large

numbers of retellings in an unsupervised manner
when trained on ASR transcripts of the retellings.
Controlled experiments here with relatively limited
training sets demonstrate that semi-supervised ap-
proaches on larger untranscribed sets are likely to
be successful.

Finally, experiments with different amounts of
ASR adaptation show that both acoustic and lan-
guage model adaptations in this domain are effec-
tive, yielding scenarios that are competitive with
manual transcription both for detecting story ele-
ments as well as for subsequent classification. With
full model adaptation to the domain, the 1-best
transcripts improved significantly, and their perfor-
mance was found to be at par with WCNs.

In future work, we would like to investigate two
questions left open by these results. First, word-
alignment models can be extended to process ASR
lattices or word confusion networks as part of the
unsupervised alignment learning algorithm, and in-
corporated into our approach. Second, the con-
textual features can be refined (e.g., concatenated
features instead of smoothed features) when large
amounts of training data is available.

It is noteworthy to mention that the lexical vari-
ants and paraphrasing learned from the data using
automated method may be useful in refining the clin-
ical guidelines for scoring (e.g., allowing additional
lexical variants and paraphrasings, or assigning un-
equal credits for different story elements to reflect
the difficulty of recollecting them) or to create the
guidelines for new languages or stories.
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Abstract

Addressee detection (AD) is an important
problem for dialog systems in human-human-
computer scenarios (contexts involving mul-
tiple people and a system) because system-
directed speech must be distinguished from
human-directed speech. Recent work on AD
(Shriberg et al., 2012) showed good results
using prosodic and lexical features trained on
in-domain data. In-domain data, however, is
expensive to collect for each new domain. In
this study we focus on lexical models and in-
vestigate how well out-of-domain data (either
outside the domain, or from single-user sce-
narios) can fill in for matched in-domain data.
We find that human-addressed speech can be
modeled using out-of-domain conversational
speech transcripts, and that human-computer
utterances can be modeled using single-user
data: the resulting AD system outperforms
a system trained only on matched in-domain
data. Further gains (up to a 4% reduction in
equal error rate) are obtained when in-domain
and out-of-domain models are interpolated.
Finally, we examine which parts of an utter-
ance are most useful. We find that the first
1.5 seconds of an utterance contain most of
the lexical information for AD, and analyze
which lexical items convey this. Overall, we
conclude that the H-H-C scenario can be ap-
proximated by combining data from H-C and
H-H scenarios only.

∗Work done while first author was an intern with Microsoft.

1 Introduction

Before a spoken dialog system can recognize and in-
terpret a user’s speech, it should ideally determine
if speech was even meant to be interpreted by the
system. We refer to this task as addressee detec-
tion (AD). AD is often overlooked, especially in tra-
ditional single-user scenarios, because with the ex-
ception of self-talk, side-talk or background speech,
the majority of speech is usually system-directed.
As dialog systems expand to more natural contexts
and multiperson environments, however, AD can be-
come a crucial part of the system’s operational re-
quirements. This is particularly true for systems in
which explicit system addressing (e.g., push-to-talk
or required keyword addressing) is undesirable.

Past research on addressee detection has focused
on human-human (H-H) settings, such as meetings,
sometimes with multimodal cues (op den Akker and
Traum, 2009). Early systems relied primarily on re-
jection of H-H utterances either because they could
not be interpreted (Paek et al., 2000), or because they
yielded low speech recognition confidence (Dowd-
ing et al., 2006). Some systems combine gaze
with lexical and syntactic cues to detect H-H speech
(Katzenmaier et al., 2004). Others use relatively
simple prosodic features based on pitch and energy
in addition to those derived from automatic speech
recognition (ASR) (Reich et al., 2011).

With some exceptions (Bohus and Horvitz, 2011;
Shriberg et al., 2012), relatively little work has
looked at the human-human-computer (H-H-C) sce-
nario, i.e. at contexts involving two or more people
who interact both with a system and with each other.

221



Shriberg et al. (2012) found that novel prosodic
features were more accurate than lexical or seman-
tic features based on speech recognition for the ad-
dressee task. The corpus, also used herein, is com-
prised of H-H-C dialog in which roughly half of the
computer-addressed speech consisted of a small set
of fixed commands. While the word-based features
map directly to the commands, they had trouble
distinguishing all other (noncommand) computer-
directed speech from human-directed speech. This
is because addressee detection in the H-H-C sce-
nario becomes even more challenging when the sys-
tem is designed for natural speech, i.e., utterances
that are conversational in form and not limited to
command phrases with restricted syntax. Further-
more, H-H utterances can be about the domain of
the system (e.g., discussing the dialog task), mak-
ing AD based on language content more difficult.
The prosodic features were good at both types of
distinctions—even improving performance signifi-
cantly when combined with true-word (cheating)
lexical features that have 100% accuracy on the
commands. Nevertheless, the prior work showed
that lexical n-grams are useful for addressee detec-
tion in the H-H-C scenario.

A problem with lexical features is that they are
highly task- and domain-dependent. As with other
language modeling tasks, one usually has to collect
matched training data in significant quantities. Data
collection is made more cumbersome and expensive
by the multi-user aspect of the scenario. Thus, for
practical reasons alone, it would be much better if
the language models for AD could be trained on
out-of-domain data, and if whatever in-domain data
is needed could be limited to single-user interac-
tion. We show in this paper that precisely this train-
ing scenario is feasible and achieves results that are
comparable or better than using completely matched
H-H-C training data.

In addition to studying the role of out-of-domain
data for lexical AD models, we also examine which
words are useful, and how soon in elapsed time they
are available. Whereas most prior work in AD has
looked at processing of entire utterances, we con-
sider an online processing version where AD deci-
sions are to be made as soon as possible after an
utterance was initiated. We find that most of the
addressee-relevant lexical information can be found

Figure 1: Conversational Browser dialog system en-
vironment with multi-human scenario

in the first 1.5 seconds, and analyze which words
convey this information.

2 Data

We use in-domain and out-of-domain data from var-
ious sources. The corpora used in this work differ in
size, domain, and scenario.

2.1 In-domain data
In-domain data is collected from interactions be-
tween two users and a “Conversational Browser”
(CB) spoken dialog system. We used the same
methodology as Shriberg et al. (2012), but using ad-
ditional data. As depicted in Figure 1, the system
shows a browser on a large TV screen and users
are asked to use natural language for a variety of
information-seeking tasks. For more details about
the dialog system and language understanding ap-
proach, see Hakkani-Tür et al. (2011a; 2011b).

We split the in-domain data into training, devel-
opment, and test sets, preserving sessions. Each ses-
sion is about 5 to 40 minutes long. Even though
the whole conversation is recorded, only the seg-
ments captured by the speech recognition system
are used in our experiments. Each utterance seg-
ment belongs to one of four types: computer-
command (C-command), comprising navigational
commands to the system, computer-noncommand
(C-noncommand), which are computer-directed ut-
terances other than commands, human-directed (H),
and mixed (M) utterances, which contain a combina-
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Table 1: In-domain corpus

(a) Sizes, distribution, and ASR word error rates of in-
domain utterance types

Data set Train Dev Test WER
Transcribed words 6,490 11,298 9,486
ASR words 4,649 6,360 5,514 59.3%
H (%) 19.1 48.6 37.0 87.6%
C-noncomm. (%) 38.3 27.8 32.2 32.6%
C-command (%) 39.9 18.7 27.2 19.7%
M (%) 2.7 4.9 3.6 69.6%

(b) Example utterances by type

Type Example
H Do you want to watch a

movie?
C-noncommand How is the weather today?
C-command Scroll down, Go back.
M Show me sandwich shops.

Oh, are you vegetarian?

tion of human- and computer-directed speech. The
sizes and distribution of all utterance types, as well
as sample utterances are shown in Table 1.

The ASR system used in the system was based on
off-the-shelf acoustic models and had only the lan-
guage model adapted to the domain, using very lim-
ited data. Consequently, as shown in the right-most
column of Table 1(a), the word error rates (WERs)
are quite high, especially for human-directed utter-
ances. While these could be improved with tar-
geted effort, we consider this a realistic application
scenario, where in-domain training data is typically
scarce, at least early in the development process.
Therefore, any lexically based AD methods need to
be robust to poor ASR accuracy.

2.2 Out-of-domain data
To replace the hard-to-obtain in-domain H-H-C data
for training, we use the four out-of-domain corpora
(two H-C and two H-H) shown in Table 2.

Single-user CB data comes from the same Con-
versational Browser system as the in-domain data,
but with only one user present. This data can there-
fore be used for modeling H-C speech. Bing anchor
text (Huang et al., 2010) is a large n-gram corpus of
anchor text associated with links on web pages en-

Table 2: Out-of-domain corpora. “Single-user CB”
is a corpus collected in same environment as the H-
H-C in-domain data, except that only a single user
was present.

Corpus Addressee Size
Single-user CB H-C 21.9k words
Bing anchor text H-C 1.3B bigrams
Fisher H-H 21M words
ICSI meetings H-H 0.7M words

Single user CB, 
Bing –  

out-of-domain 

in-domain  
(HC) 

in-domain 
(HH) 

Fisher, ICSI 
meeting –  

out-of-domain 

Language model for 
human directed 
utterances (H)  

Language model for 
computer directed 

utterances (C)  

𝑃(𝑤|𝐻) 

1

𝑤
𝑙𝑜𝑔

𝑃(𝑤|𝐶)

𝑃(𝑤|𝐻)
 

𝑃(𝑤|𝐶) 

Figure 2: Language model-based score computation
for addressee detection

countered by the Bing search engine. When users
want to follow a link displayed on screen, they usu-
ally speak a variant of the anchor text for the link.
We hypothesized that this corpus might aid the mod-
eling of computer-noncommand type utterances in
which such “verbal clicks” are frequent. Fisher tele-
phone conversations and ICSI meetings are both cor-
pora of human-directed speech. The Fisher corpus
(Cieri et al., 2004) comprises two-person telephone
conversations between strangers on prescribed top-
ics. The ICSI meeting corpus (Janin et al., 2003)
contains multiparty face-to-face technical discus-
sions among colleagues.

3 Method

3.1 Language modeling for addressee detection
We use a lexical AD system that is based on mod-
eling word n-grams in the two addressee-based ut-
terance classes, H (for H-H) and C (for H-C utter-
ances). This approach is similar to language model-
based approaches to speaker and language recogni-
tion, and was shown to be quite effective for this
task (Shriberg et al., 2012). Instead of making
hard decisions, the system outputs a score that is
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the length-normalized likelihood ratio of the two
classes:

1

|w|
log

P (w|C)

P (w|H)
, (1)

where |w| is the number of words in the recognition
output w for an utterance. P (w|C) and P (w|H) are
obtained from class-specific language models. Fig-
ure 2 gives a flow-chart of the score computation.

Class likelihoods are obtained from standard tri-
gram backoff language models, using Witten-Bell
discounting for smoothing (Witten and Bell, 1991).
For combining various training data sources, we use
language model adaptation by interpolation (Bel-
legarda, 2004). First, a separate model is trained
from each source. The probability estimates from
in-domain and out-of-domain models are then aver-
aged in a weighted fashion:

P (wk|hk) = λPin(wk|hk) + (1− λ)Pout(wk|hk)
(2)

where wk is the k-th word, hk is the (n − 1)-gram
history for the wordwk. λ is the interpolation weight
and is obtained by tuning a task-related metric on the
development set. We investigated optimizing λ for
either model perplexity or classification accuracy, as
discussed below.

3.2 Part-of-speech-based modeling
So far we have only been modeling the lexical forms
of words in utterances. If we encounter a word never
before seen, it would appear as an out-of-vocabulary
item in all class-specific language models, and not
contribute much to the decision. More generally, if
a word is rare, its n-gram statistics will be unreliable
and poorly modeled by the system. (The sparseness
issue is exacerbated by small amounts of training
data as in our scenario.)

One common approach to deal with data sparse-
ness in language modeling is to model n-grams over
word classes rather than raw words (Brown et al.,
1992). For example, if we have an utterance How
is the weather in Paris?, the addressee probabilities
are likely to be similar had we seen London instead
of Paris. Therefore, replacing words with properly
chosen word class labels can give better generaliza-
tion from the observed training data. Among the
many methods proposed to class words for language
modeling purposes we chose part-of-speech (POS)

tagging over other, purely data-derived classing al-
gorithms (Brown et al., 1992), for two reasons. First,
our goal here is not to minimize the perplexity of the
data, but to enhance discrimination among utterance
classes. Second, a data-driven class inference algo-
rithm would suffer from the same sparseness issues
when it comes to unseen and rare words (as no ro-
bust statistics are available to infer an unseen word’s
best class in the class induction step). A POS tag-
ger, on the other hand, can do quite well on unseen
words, using context and morphological cues.

A hidden Markov model tagger using POS-
trigram statistics and context-independent class
membership probabilities was used for tagging all
LM training data. The tagger itself had been
trained on the Switchboard (conversational tele-
phone speech) transcripts of the Penn Treebank-
3 corpus (Marcus et al., 1999), and used the 39
Treebank POS labels. To strike a compromise be-
tween generalization and discriminative power in
the language model, we retained the topN most fre-
quent word types from the in-domain training data
as distinct tokens, and varied N as a metaparam-
eter. Barzilay and Lee (2003) used a similar idea
to generalize patterns by substituting words with
slots. This strategy will tend to preserve words that
are either generally frequent function and domain-
independent words, capturing stylistic and syntac-
tic patterns, or which are frequent domain-specific
words, and can thus help characterize computer-
directed utterances.

Here is a sample sentence and its transformed ver-
sion:

Original: Let’s find an Italian restaurant
around this area.
POS-tagged: Let’s find an JJ NN around this
area.

The words except Italian and restaurant are un-
changed because they are in the list of N most fre-
quent words. We transformed all training and test
data in this fashion and then modeled n-gram statis-
tics as before. The one exception was the Bing
anchor-text data, which was only available in the
form of word n-grams (the sentence context required
for accurate POS tagging was missing).
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Table 3: Addressee detection performance (EER) with different training sets

ASR Transcript
Baseline (in-domain only) 31.1 17.3
Fisher+ICSI, Single-user CB+Bing (out-of-domain only) 27.8 14.2
Baseline + Fisher+ICSI, Single CB + Bing (both-all) 26.9 14.0
Baseline + ICSI, Single-user CB (both-small) 26.6 13.0

3.3 Evaluation metrics

Typically, an application-dependent threshold would
be applied to the decision score to convert it into a
binary decision. The optimal threshold is a func-
tion of prior class probabilities and error costs. As
in Shriberg et al. (2012), we used equal error rate
(EER) to compare systems, since we are interested
in the discriminative power of the decision score in-
dependent of priors and costs. EER is the probability
of false detections and misses at the operating point
at which the two types of errors are equally proba-
ble. A prior-free metric such as EER is more mean-
ingful than classification accuracy because the utter-
ance type distribution is heavily skewed (Table 1),
and because the rate of human- versus computer-
directed speech can vary widely depending on the
particular people, domain, and context. We also use
classification accuracy (based on data priors) in one
analysis below, because EERs are not comparable
for different test data subdivisions.

3.4 Online model

The actual dialog system used in this work pro-
cesses utterances after receiving an entire segment
of speech from the recognition subsystem. How-
ever, we envision that a future version of the sys-
tem would perform addressee detection in an online
manner, making a decision as soon as enough evi-
dence is gathered. This raises the question how soon
the addressee can be detected once the user starts
speaking. We simulate this processing mode using a
windowed AD model.

As shown in Figure 3, we define windows start-
ing at the beginning of the utterance and investigate
how AD performance changes as a function of win-
dow size. We use only the words and n-grams falling
completely within a given window. For example, the
word find would be excluded from Window 1 in Fig-

  Let’s          find       an     Italian    restaurant   around  this         area 

Window 1 

Window 2 … 

Figure 3: The window model

ure 3.
The benefit of early detection in this case is that

once speech is classified as human-directed, it does
not need to be sent to the speech recognizer and sub-
sequent semantic processing. This saves processing
time, especially if processing happens on a server.
Based on the window model performance, we can
assess the feasibility of an online AD model, which
can be approached by shifting the detection window
through time and finding addressee changes.

4 Results and Discussion

Table 3 compares the performance of our system us-
ing various training data sources. For diagnostic pur-
poses we also compare performance based on recog-
nized words (the realistic scenario) to that based on
human transcripts (idealized, best-case word recog-
nition).

Somewhat surprisingly, the system trained on out-
of-domain data alone performs better by 3.3 EER
points on ASR output and 3.1 points on transcripts
compared to the in-domain baseline. Combining
in-domain and out-of-domain data (both-all, both-
small) gives about 1 point additional EER gain. Note
that training on in-domain data plus the smaller-size
out-of-domain corpora (both-small) is better than
using all available data (both-all).

Figure 4 shows the detection error trade-off
(DET) between false alarm and miss errors for the
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Figure 4: Detection error trade-off (DET) curves for
the systems in Table 3. Thin lines at the top right
corner use ASR output (1-4); thick lines at the bot-
tom left corner use reference transcripts (5-8). Each
line number represents one of the systems in Table 3:
1,5 = in-domain only, 2,6 = out-of-domain only, 4,7
= both-all, 3,8 = both-small.

systems in Table 3. The DET plot depicts perfor-
mance not only at the EER operating point (which
lies on the diagonal), but over the range of possible
trade-offs between false alarm and miss error rates.
As can be seen, replacing or combining in-domain
data with out-of-domain data gives clear perfor-
mance gains, regardless of operating point (score
threshold), and for both reference and recognized
words.

Figure 5 shows H-H vs. H-C classification accu-
racies on each of the four utterance subtypes listed
in Table 1. It is clear that computer-command ut-
terances are the easiest to classify; the accuracy is
more than 90% using transcripts, and more than 85%
using ASR output. This is not surprising, since
commands are from a fixed small set of phrases.
The biggest gain from use of out-of-domain data
is found for computer-directed noncommand utter-
ances. This is helpful, since in general it is the
noncommand computer-directed utterances (rather
than the commands) that are highly confusable with
human-directed utterances: both use unconstrained
natural language. We note that H-H utterance are
very poorly recognized in the ASR condition when
only out-of-domain data is used. This may be be-
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Figure 5: AD accuracies by utterance type

Table 4: Perplexities (computed on dev set ASR
words) by utterance type, for different training cor-
pora. Interpolation refers to the combination of the
three models listed in each case.

Test class
Training set H-C H-H
In-domain H-C (ASR) 257 1856
Single-user CB 104 1237
Bing anchor text 356 789
Interpolation 58 370
In-domain H-H (ASR) 887 1483
Fisher 995 795
ICSI meeting 2007 1583
Interpolation 355 442

cause the human-human corpora used in training
consist of transcripts, whereas the ASR output for
human-directed utterances is very errorful, creating
a severe train-test mismatch.

As for the optimization of the mixing weight λ,
we found that minimizing perplexity on the devel-
opment set of each class is effective. This is a
standard optimization approach for interpolated lan-
guage models, and can be carried out efficiently us-
ing an expectation maximization algorithm. We also
tried search-based optimization using the classifica-
tion metric (EER) as the criterion. While this ap-
proach could theoretically give better results (since
perplexity is not a discriminative criterion) we found
no significant improvement in our experiments.
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Table 4 shows the perplexities by class of lan-
guage models trained on different corpora. We can
take these as an indication of training/test mismatch
(lower perplexity indicating better match). We also
find substantial perplexity reductions from interpo-
lating models. In order to make perplexities compa-
rable, we trained all models using the union of the
vocabularies from the different sources.

In spite of perplexity being a good way to opti-
mize the weighting of sources, it is not clear that it
is a good criterion for selecting data sources. For
example, we see that the Fisher model has a much
lower perplexity on H-H utterances than the ICSI
meeting model. However, as reflected in Table 3,
the H language model that leaves out the Fisher data
actually performed better. The most likely expla-
nation is that the Fisher corpus is an order of mag-
nitude larger than the ICSI corpus, and that sheer
data size, not stylistic similarity, may account for the
lower perplexity of the Fisher model. Further inves-
tigation is needed regarding good criteria for corpus
selection for classification tasks such as AD.

Table 5 shows the EER performance of the POS-
based model, for various sizes N of the most-
frequent word list. We observe that the partial re-
placement of words with POS tags indeed improves
over the baseline model performance, by 1.5 points
on ASR output and by 1.1 points on transcripts.
We also see that the gain over the corresponding
word-only model is largest for the in-domain base-
line model, and less or non-existent for the out-of-
domain model. This is consistent with the notion
that the in-domain model suffers the most from data
sparseness, and therefore has the most to gain from
better generalization.

Interpolating with out-of-domain data still helps
here. The optimal N differs for ASR output versus
transcripts. The POS-based model with N = 300
improves the EER by 0.5 points on ASR output,
and N = 1000 improves the EER by 0.8 points on
transcripts. Here we use relatively large amounts of
training data, thus the performance gain is smaller,
though still meaningful.

Figure 6 shows the performance of the system
using time windows anchored at the beginnings of
utterances. We incrementally increase the window
width from 0.5 seconds to 3 seconds and compare
results to using full utterances. The leveling off of
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Figure 6: Simulated online performance on incre-
mental windows

Table 6: The top 15 first words in utterances

ASR H-C Transcript H-C ASR H-H Transcript H-H
go go play I

scroll scroll go ohh
start start is so
show stop it yeah
stop show what it’s
bing find this you

search Bing show uh
find search how okay
play pause bing what

pause play select it
look look okay and
what uh does that’s
select what start is
how how so no
the ohh I we

the error plots indicates that most addressee infor-
mation is contained in the first 1 to 1.5 seconds,
although some additional information is found in
the later part of utterances (the plots never level off
completely). This pattern holds for both in-domain
and out-of-domain training, as well as for combined
models.

To give an intuitive understanding of where this
early addressee-relevant information comes from,
we tabulated the top 15 word unigrams in each ut-
terance class, are shown in Table 6. Note that
the substantial differences between the third and
fourth columns in the table reflect the high ASR
error rate for human-directed utterances, whereas
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Table 5: Performance of POS-based model with various top-N word lists (EER)

Training data top100 top200 top300 top400 top500 top1000 top2000 Original
ASR baseline 31.6 31.0 29.6 30.1 30.2 31.4 31.5 31.1

out-of-domain only 36.5 37.0 37.2 36.9 36.8 36.6 37.3 27.8
both-all 28.2 26.6 26.1 26.7 27.4 26.9 27.6 26.9
both-small 28.0 26.5 26.2 26.6 26.4 26.3 26.5 26.6

REF baseline 17.1 16.2 16.6 17.1 16.7 17.0 17.2 17.3
out-of-domain only 17.6 17.6 17.5 17.2 17.1 17.2 18.1 14.2
both-all 12.5 12.5 12.5 12.7 12.8 13.2 13.5 14.0
both-small 13.0 13.2 12.8 13.2 12.8 12.2 12.7 13.0

for computer-directed utterances, the frequent first
words are mostly recognized correctly.

In computer-directed utterances we see mostly
command verbs, which, due to the imperative syn-
tax of these commands occur in utterance-initial po-
sition. Human-directed utterances are characterized
by subject pronouns such as I and it, or answer parti-
cles such as yeah and okay, which likewise occur in
initial position. Based on word frequency and syn-
tax alone it is thus clear why the beginnings of utter-
ances contain strong lexical cues.

5 Conclusion

We explored the use of outside data for training
lexical addressee detection systems for the human-
human-computer scenario. Advantages include sav-
ing the time and expense of an in-domain data col-
lection, as well as performance gains even when
some in-domain data is available. We show that H-
C training data can be obtained from a single-user
H-C collection, and that H-H speech can be mod-
eled using general conversational speech. Using the
outside training data, we obtain results that are even
better than results using matched (but smaller) H-
H-C training data. Results can be improved consid-
erably by adapting H-C and H-H language models
with small amounts of matched H-H-C data, via in-
terpolation. The main reason for the improvement is
better detection of computer-directed noncommand
utterances, which tend to be confusable with human-
directed utterances. Another effective way to over-
come scarce training data is to replace the less fre-
quent words with part-of-speech labels. In both
baseline and interpolated model, we found that POS-

based models that keep an appropriate number of the
topN most frequent word types can further improve
the system’s performance.

In a second study we found that the most salient
phrases for lexical addressee detection occur within
the first 1 to 1.5 seconds of speech in each utter-
ance. It reflects a syntactic tendency of class-specific
words to occur utterance-initially, which shows the
feasibility of the online AD system.

Acknowledgments

We thank our Microsoft colleagues Madhu
Chinthakunta, Dilek Hakkani-Tür, Larry Heck,
Lisa Stiefelman, and Gokhan Tür for developing
the dialog system used in this work, as well as for
many valuable discussions. Ashley Fidler was in
charge of much of the data collection and annotation
required for this study. We also thank Dan Jurafsky
for useful feedback.

228



References
Regina Barzilay and Lillian Lee. 2003. Learning to

paraphrase: An unsupervised approach using multiple-
sequence alignment. In Proceedings HLT-NAACL
2003, pages 16–23, Edmonton, Canada.

Jerome R. Bellegarda. 2004. Statistical language model
adaptation: review and perspectives. Speech Commu-
nication, 42:93–108.

Dan Bohus and Eric Horvitz. 2011. Multiparty turn tak-
ing in situated dialog: Study, lessons, and directions.
In Proceedings ACL SIGDIAL, pages 98–109, Port-
land, OR.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza,
Jenifer C. Lai, and Robert L. Mercer. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18(4):467–479.

Christopher Cieri, David Miller, and Kevin Walker.
2004. The Fisher corpus: a resource for the next gen-
erations of speech-to-text. In Proceedings 4th Interna-
tional Conference on Language Resources and Evalu-
ation, pages 69–71, Lisbon.

John Dowding, Richard Alena, William J. Clancey,
Maarten Sierhuis, and Jeffrey Graham. 2006. Are
you talking to me? dialogue systems supporting mixed
teams of humans and robots. In Proccedings AAAI
Fall Symposium: Aurally Informed Performance: Inte-
grating Machine Listening and Auditory Presentation
in Robotic Systems, Washington, DC.

Dilek Hakkani-Tür, Gokhan Tur, and Larry Heck. 2011a.
Research challenges and opportunities in mobile appli-
cations [dsp education]. IEEE Signal Processing Mag-
azine, 28(4):108 –110.

Dilek Z. Hakkani-Tür, Gökhan Tür, Larry P. Heck, and
Elizabeth Shriberg. 2011b. Bootstrapping domain de-
tection using query click logs for new domains. In
Proceedings Interspeech, pages 709–712.

Jian Huang, Jianfeng Gao, Jiangbo Miao, Xiaolong Li,
Kuansang Wang, and Fritz Behr. 2010. Exploring web
scale language models for search query processing. In
Proceedings 19th International Conference on World
Wide Web, pages 451–460, Raleigh, NC.

Adam Janin, Don Baron, Jane Edwards, Dan Ellis,
David Gelbart, Nelson Morgan, Barbara Peskin, Thilo
Pfau, Elizabeth Shriberg, Andreas Stolcke, and Chuck
Wooters. 2003. The ICSI meeting corpus. In Pro-
ceedings IEEE ICASSP, volume 1, pages 364–367,
Hong Kong.

Michael Katzenmaier, Rainer Stiefelhagen, and Tanja
Schultz. 2004. Identifying the addressee in human-
human-robot interactions based on head pose and
speech. In Proceedings 6th International Conference
on Multimodal Interfaces, ICMI, pages 144–151, New
York, NY, USA. ACM.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. Treebank-3.
Linguistic Data Consortium, catalog item LDC99T42.

Rieks op den Akker and David Traum. 2009. A com-
parison of addressee detection methods for multiparty
conversations. In Proceedings of Diaholmia, pages
99–106.

Tim Paek, Eric Horvitz, and Eric Ringger. 2000. Con-
tinuous listening for unconstrained spoken dialog. In
Proceedings ICSLP, volume 1, pages 138–141, Bei-
jing.

Daniel Reich, Felix Putze, Dominic Heger, Joris Ijssel-
muiden, Rainer Stiefelhagen, and Tanja Schultz. 2011.
A real-time speech command detector for a smart con-
trol room. In Proceedings Interspeech, pages 2641–
2644, Florence.

Elizabeth Shriberg, Andreas Stolcke, Dilek Hakkani-Tür,
and Larry Heck. 2012. Learning when to listen:
Detecting system-addressed speech in human-human-
computer dialog. In Proceedings Interspeech, Port-
land, OR.

Ian H. Witten and Timothy C. Bell. 1991. The zero-
frequency problem: Estimating the probabilities of
novel events in adaptive text compression. IEEE
Transactions on Information Theory, 37(4):1085–
1094.

229



Proceedings of NAACL-HLT 2013, pages 230–238,
Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

Segmentation Strategies for Streaming Speech Translation

Vivek Kumar Rangarajan Sridhar, John Chen, Srinivas Bangalore
Andrej Ljolje, Rathinavelu Chengalvarayan

AT&T Labs - Research
180 Park Avenue, Florham Park, NJ 07932

vkumar,jchen,srini,alj,rathi@research.att.com

Abstract

The study presented in this work is a first ef-
fort at real-time speech translation of TED
talks, a compendium of public talks with dif-
ferent speakers addressing a variety of top-
ics. We address the goal of achieving a sys-
tem that balances translation accuracy and la-
tency. In order to improve ASR performance
for our diverse data set, adaptation techniques
such as constrained model adaptation and vo-
cal tract length normalization are found to be
useful. In order to improve machine transla-
tion (MT) performance, techniques that could
be employed in real-time such as monotonic
and partial translation retention are found to
be of use. We also experiment with inserting
text segmenters of various types between ASR
and MT in a series of real-time translation ex-
periments. Among other results, our experi-
ments demonstrate that a good segmentation
is useful, and a novel conjunction-based seg-
mentation strategy improves translation qual-
ity nearly as much as other strategies such
as comma-based segmentation. It was also
found to be important to synchronize various
pipeline components in order to minimize la-
tency.

1 Introduction

The quality of automatic speech-to-text and speech-
to-speech (S2S) translation has improved so signifi-
cantly over the last several decades that such systems
are now widely deployed and used by an increasing
number of consumers. Under the hood, the individ-
ual components such as automatic speech recogni-
tion (ASR), machine translation (MT) and text-to-
speech synthesis (TTS) that constitute a S2S sys-
tem are still loosely coupled and typically trained
on disparate data and domains. Nevertheless, the

models as well as the pipeline have been optimized
in several ways to achieve tasks such as high qual-
ity offline speech translation (Cohen, 2007; Kings-
bury et al., 2011; Federico et al., 2011), on-demand
web based speech and text translation, low-latency
real-time translation (Wahlster, 2000; Hamon et al.,
2009; Bangalore et al., 2012), etc. The design of a
S2S translation system is highly dependent on the
nature of the audio stimuli. For example, talks, lec-
tures and audio broadcasts are typically long and re-
quire appropriate segmentation strategies to chunk
the input signal to ensure high quality translation.
In contrast, single utterance translation in several
consumer applications (apps) are typically short and
can be processed without the need for additional
chunking. Another key parameter in designing a
S2S translation system for any task is latency. In
offline scenarios where high latencies are permit-
ted, several adaptation strategies (speaker, language
model, translation model), denser data structures (N-
best lists, word sausages, lattices) and rescoring pro-
cedures can be utilized to improve the quality of
end-to-end translation. On the other hand, real-
time speech-to-text or speech-to-speech translation
demand the best possible accuracy at low latencies
such that communication is not hindered due to po-
tential delay in processing.

In this work, we focus on the speech translation
of talks. We investigate the tradeoff between accu-
racy and latency for both offline and real-time trans-
lation of talks. In both these scenarios, appropriate
segmentation of the audio signal as well as the ASR
hypothesis that is fed into machine translation is crit-
ical for maximizing the overall translation quality of
the talk. Ideally, one would like to train the models
on entire talks. However, such corpora are not avail-
able in large amounts. Hence, it is necessary to con-
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form to appropriately sized segments that are similar
to the sentence units used in training the language
and translation models. We propose several non-
linguistic and linguistic segmentation strategies for
the segmentation of text (reference or ASR hypothe-
ses) for machine translation. We address the prob-
lem of latency in real-time translation as a function
of the segmentation strategy; i.e., we ask the ques-
tion “what is the segmentation strategy that maxi-
mizes the number of segments while still maximiz-
ing translation accuracy?”.

2 Related Work

Speech translation of European Parliamentary
speeches has been addressed as part of the TC-
STAR project (Vilar et al., 2005; Fügen et al., 2006).
The project focused primarily on offline translation
of speeches. Simultaneous translation of lectures
and speeches has been addressed in (Hamon et al.,
2009; Fügen et al., 2007). However, the work fo-
cused on a single speaker in a limited domain. Of-
fline speech translation of TED1 talks has been ad-
dressed through the IWSLT 2011 and 2012 evalua-
tion tracks. The talks are from a variety of speakers
with varying dialects and cover a range of topics.
The study presented in this work is the first effort on
real-time speech translation of TED talks. In com-
parison with previous work, we also present a sys-
tematic study of the accuracy versus latency tradeoff
for both offline and real-time translation on the same
dataset.

Various utterance segmentation strategies for of-
fline machine translation of text and ASR output
have been presented in (Cettolo and Federico, 2006;
Rao et al., 2007; Matusov et al., 2007). The work
in (Fügen et al., 2007; Fügen and Kolss, 2007)
also examines the impact of segmentation on of-
fline speech translation of talks. However, the real-
time analysis in that work is presented only for
speech recognition. In contrast with previous work,
we tackle the latency issue in simultaneous transla-
tion of talks as a function of segmentation strategy
and present some new linguistic and non-linguistic
methodologies. We investigate the accuracy versus
latency tradeoff across translation of reference text,
utterance segmented speech recognition output and

1http://www.ted.com

partial speech recognition hypotheses.

3 Problem Formulation

The basic problem of text translation can be formu-
lated as follows. Given a source (French) sentence
f = fJ

1 = f1, · · · , fJ , we aim to translate it into
target (English) sentence ê = êI

1 = ê1, · · · , êI .

ê(f) = arg max
e

Pr(e|f) (1)

If, as in talks, the source text (reference or ASR hy-
pothesis) is very long, i.e., J is large, we attempt
to break down the source string into shorter se-
quences, S = s1 · · · sk · · · sQs , where each sequence
sk = [fjk

fjk+1 · · · fj(k+1)−1], j1 = 1, jQs+1 =
J + 1. Let the translation of each foreign sequence
sk be denoted by tk = [eikeik+1 · · · ei(k+1)−1], i1 =

1, iQs+1 = I
′

+ 12. The segmented sequences can
be translated using a variety of techniques such as
independent chunk-wise translation or chunk-wise
translation conditioned on history as shown in Eqs. 2
and 3, respectively. In Eq. 3, t∗i denotes the best
translation for source sequence si.

ˆ̂e(f) = arg max
t1

Pr(t1|s1) · · · arg max
tk

Pr(tk|sk)

(2)

ˆ̂e(f) = arg max
t1

Pr(t1|s1) arg max
t2

Pr(t2|s2, s1, t
∗
1)

· · · arg max
tk

Pr(tk|s1, · · · , sk, t
∗
1, · · · , t∗k−1)

(3)

Typically, the hypothesis ˆ̂e will be more accurate
than ê for long texts as the models approximating
Pr(e|f) are conventionally trained on short text seg-
ments. In Eqs. 2 and 3, the number of sequences Qs

is inversely proportional to the time it takes to gen-
erate partial target hypotheses. Our main focus in
this work is to obtain a segmentation S such that the
quality of translation is maximized with minimal la-
tency. The above formulation for automatic speech
recognition is very similar except that the foreign
string f̌ = f̌J

1 = f̌1, · · · , f̌J̌ is obtained by decoding
the input speech signal.

2The segmented and unsegmented talk may not be equal in
length, i.e., I 6= I

′
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Model Language Vocabulary #words #sents Corpora
Acoustic Model en 46899 2611144 148460 1119 TED talks

ASR Language Model en 378915 3398460155 151923101 Europarl, WMT11 Gigaword, WMT11 News crawl
WMT11 News-commentary, WMT11 UN, IWSLT11 TED training

Parallel text en 503765 76886659 7464857 IWSLT11 TED training talks, Europarl, JRC-ACQUIS
Opensubtitles, Web data

MT es 519354 83717810 7464857
Language Model es 519354 83717810 7464857 Spanish side of parallel text

Table 1: Statistics of the data used for training the speech translation models.

4 Data

In this work, we focus on the speech translation
of TED talks, a compendium of public talks from
several speakers covering a variety of topics. Over
the past couple of years, the International Work-
shop on Spoken Language Translation (IWSLT) has
been conducting the evaluation of speech translation
on TED talks for English-French. We leverage the
IWSLT TED campaign by using identical develop-
ment (dev2010) and test data (tst2010). However,
English-Spanish is our target language pair as our
internal projects are cater mostly to this pair. As a
result, we created parallel text for English-Spanish
based on the reference English segments released as
part of the evaluation (Cettolo et al., 2012).

We also harvested the audio data from the TED
website for building an acoustic model. A total
of 1308 talks in English were downloaded, out of
which we used 1119 talks recorded prior to Decem-
ber 2011. We split the stereo audio file and dupli-
cated the data to account for any variations in the
channels. The data for the language models was also
restricted to that permitted in the IWSLT 2011 eval-
uation. The parallel text for building the English-
Spanish translation model was obtained from sev-
eral corpora: Europarl (Koehn, 2005), JRC-Acquis
corpus (Steinberger et al., 2006), Opensubtitle cor-
pus (Tiedemann and Lars Nygaard, 2004), Web
crawling (Rangarajan Sridhar et al., 2011) as well as
human translation of proprietary data. Table 1 sum-
marizes the data used in building the models. It is
important to note that the IWSLT evaluation on TED
talks is completely offline. In this work, we perform
the first investigation into the real-time translation of
these talks.

5 Speech Translation Models

In this section, we describe the acoustic, language
and translation models used in our experiments.

5.1 Acoustic and Language Model

We use the AT&T WATSONSM speech recog-
nizer (Goffin et al., 2004). The speech recogni-
tion component consisted of a three-pass decoding
approach utilizing two acoustic models. The mod-
els used three-state left-to-right HMMs representing
just over 100 phonemes. The phonemes represented
general English, spelled letters and head-body-tail
representation for the eleven digits (with ”zero” and
”oh”). The pronunciation dictionary used the appro-
priate phoneme subset, depending on the type of the
word. The models had 10.5k states and 27k HMMs,
trained on just over 300k utterances, using both of
the stereo channels. The baseline model training was
initialized with several iterations of ML training, in-
cluding two builds of context dependency trees, fol-
lowed by three iterations of Minimum Phone Error
(MPE) training.

The Vocal Tract Length Normalization (VTLN)
was applied in two different ways. One was esti-
mated on an utterance level, and the other at the talk
level. No speaker clustering was attempted in train-
ing. The performance at test time was comparable
for both approaches on the development set. Once
the warps were estimated, after five iterations, the
ML trained model was updated using MPE training.
Constrained model adaptation (CMA) was applied
to the warped features and the adapted features were
recognized in the final pass with the VTLN model.
All the passes used the same LM. For offline recog-
nition the warps, and the CMA adaptation, are per-
formed at the talk level. For the real-time speech
translation experiments, we used the VTLN model.
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The English language model was built using the
permissible data in the IWSLT 2011 evaluation. The
texts were normalized using a variety of cleanup,
number and spelling normalization techniques and
filtered by restricting the vocabulary to the top
375000 types; i.e., any sentence containing a to-
ken outside the vocabulary was discarded. First, we
removed extraneous characters beyond the ASCII
range followed by removal of punctuations. Sub-
sequently, we normalized hyphenated words and re-
moved words with more than 25 characters. The re-
sultant text was normalized using a variety of num-
ber conversion routines and each corpus was fil-
tered by restricting the vocabulary to the top 150000
types; i.e., any sentence containing a token outside
the vocabulary was discarded. The vocabulary from
all the corpora was then consolidated and another
round of filtering to the top 375000 most frequent
types was performed. The OOV rate on the TED
dev2010 set is 1.1%. We used the AT&T FSM
toolkit (Mohri et al., 1997) to train a trigram lan-
guage model (LM) for each component (corpus). Fi-
nally, the component language models were interpo-
lated by minimizing the perplexity on the dev2010
set. The results are shown in Table 2.

Accuracy (%)
Model dev2010 test2010
Baseline MPE 75.5 73.8
VTLN 78.8 77.4
CMA 80.5 80.0

Table 2: ASR word accuracies on the IWSLT data
sets.3

5.2 Translation Model

We used the Moses toolkit (Koehn et al., 2007) for
performing statistical machine translation. Mini-
mum error rate training (MERT) was performed on
the development set (dev2010) to optimize the fea-
ture weights of the log-linear model used in trans-
lation. During decoding, the unknown words were
preserved in the hypotheses. The data used to train
the model is summarized in Table 1.

3We used the standard NIST scoring package as we did not
have access to the IWSLT evaluation server that may normalize
and score differently

We also used a finite-state implementation of
translation without reordering. Reordering can pose
a challenge in real-time S2S translation as the text-
to-speech synthesis is monotonic and cannot retract
already synthesized speech. While we do not ad-
dress the text-to-speech synthesis of target text in
this work, we perform this analysis as a precursor
to future work. We represent the phrase transla-
tion table as a weighted finite state transducer (FST)
and the language model as a finite state acceptor
(FSA). The weight on the arcs of the FST is the
dot product of the MERT weights with the transla-
tion scores. In addition, a word insertion penalty
was also applied to each word to penalize short hy-
potheses. The decoding process consists of compos-
ing all possible segmentations of an input sentence
with the phrase table FST and language model, fol-
lowed by searching for the best path. Our FST-based
translation is the equivalent of phrase-based transla-
tion in Moses without reordering. We present re-
sults using the independent chunk-wise strategy and
chunk-wise translation conditioned on history in Ta-
ble 3. The chunk-wise translation conditioned on
history was performed using the continue-partial-
translation option in Moses.

6 Segmentation Strategies

The output of ASR for talks is a long string of
words with no punctuation, capitalization or seg-
mentation markers. In most offline ASR systems,
the talk is first segmented into short utterance-like
audio segments before passing them to the decoder.
Prior work has shown that additional segmentation
of ASR hypotheses of these segments may be nec-
essary to improve translation quality (Rao et al.,
2007; Matusov et al., 2007). In a simultaneous
speech translation system, one can neither find the
optimal segmentation of the entire talk nor tolerate
high latencies associated with long segments. Con-
sequently, it is necessary to decode the incoming au-
dio incrementally as well as segment the ASR hy-
potheses appropriately to maximize MT quality. We
present a variety of linguistic and non-linguistic seg-
mentation strategies for segmenting the source text
input into MT. In our experiments, they are applied
to different inputs including reference text, ASR 1-
best hypothesis for manually segmented audio and
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incremental ASR hypotheses from entire talks.

6.1 Non-linguistic segmentation

The simplest method is to segment the incoming text
according to length in number of words. Such a pro-
cedure can destroy semantic context but has little to
no overhead in additional processing. We experi-
ment with segmenting the text according to word
window sizes of length 4, 8, 11, and 15 (denoted
as data sets win4, win8, win11, win15, respectively
in Table 3). We also experiment with concatenating
all of the text from one TED talk into a single chunk
(complete talk).

A novel hold-output model was also developed in
order to segment the input text. Given a pair of par-
allel sentences, the model segments the source sen-
tence into minimally sized chunks such that crossing
links and links of one target word to many source
words in an optimal GIZA++ alignment (Och and
Ney, 2003) occur only within individual chunks.
The motivation behind this model is that if a segment
s0 is input at time t0 to an incremental MT system,
it can be translated right away without waiting for a
segment si that is input at a later time ti, ti > 0. The
hold-output model detects these kinds of segments
given a sequence of English words that are input
from left to right. A kernel-based SVM was used to
develop this model. It tags a token t in the input with
either the label HOLD, meaning to chunk it with the
next token, or the label OUTPUT, meaning to output
the chunk constructed from the maximal consecutive
sequence of tokens preceding t that were all tagged
as HOLD. The model considers a five word and POS
window around the target token t. Unigram, bigram,
and trigram word and POS features based upon this
window are used for classification. Training and de-
velopment data for the model was derived from the
English-Spanish TED data (see Table 1) after run-
ning it through GIZA++. Accuracy of the model on
the development set was 66.62% F-measure for the
HOLD label and 82.75% for the OUTPUT label.

6.2 Linguistic segmentation

Since MT models are trained on parallel text sen-
tences, we investigate segmenting the source text
into sentences. We also investigate segmenting the
text further by predicting comma separated chunks
within sentences. These tasks are performed by

training a kernel-based SVM (Haffner et al., 2003)
on a subset of English TED data. This dataset con-
tained 1029 human-transcribed talks consisting of
about 103,000 sentences containing about 1.6 mil-
lion words. Punctuation in this dataset was normal-
ized as follows. Different kinds of sentence ending
punctuations were transformed into a uniform end of
sentence marker. Double-hyphens were transformed
into commas. Commas already existing in the input
were kept while all other kinds of punctuation sym-
bols were deleted. A part of speech (POS) tagger
was applied to this input. For speed, a unigram POS
tagger was implemented which was trained on the
Penn Treebank (Marcus et al., 1993) and used or-
thographic features to predict the POS of unknown
words. The SVM-based punctuation classifier relies
on a five word and POS window in order to classify
the target word. Specifically, token t0 is classified
given as input the window t−2t−1tot1t2. Unigram,
bigram, and trigram word and POS features based on
this window were used for classification. Accuracy
of the classifier on the development set was 60.51%
F-measure for sentence end detection and 43.43%
F-measure for comma detection. Subsequently, data
sets pred-sent (sentences) and pred-punct (comma-
separated chunks) were obtained. Corresponding to
these, two other data sets ref-sent and ref-punct were
obtained based upon gold-standard punctuations in
the reference.

Besides investigating the use of comma-separated
segments, we investigated other linguistically moti-
vated segments. These included conjunction-word
based segments. These segments are separated at
either conjunction (e.g. “and,” “or”) or sentence-
ending word boundaries. Conjunctions were iden-
tified using the unigram POS tagger. F-measure
performance for detecting conjunctions by the tag-
ger on the development set was quite high, 99.35%.
As an alternative, text chunking was performed
within each sentence, with each chunk correspond-
ing to one segment. Text chunks are non-recursive
syntactic phrases in the input text. We investi-
gated segmenting the source into text chunks us-
ing TreeTagger, a decision-tree based text chun-
ker (Schmid, 1994). Initial sets of text chunks
were created by using either gold-standard sentence
boundaries or boundaries detected using the punc-
tuation classifier, yielding the data sets chunk-ref-
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Reference text ASR 1-best
BLEU Mean BLEU Mean

Segmentation Segmentation Independent chunk-wise chunk-wise #words Independent chunk-wise chunk-wise #words
type strategy FST Moses with history per segment FST Moses with history per segment

win4 22.6 21.0 25.5 3.9±0.1 17.7 17.1 20.0 3.9±0.1
win8 26.6 26.2 28.2 7.9±0.3 20.6 20.9 22.3 7.9±0.2

Non-linguistic win11 27.2 27.4 29.2 10.9± 0.3 21.5 21.8 23.1 10.9±0.4
win15 28.5 28.5 29.4 14.9±0.6 22.3 22.8 23.3 14.9±0.7
ref-hold 13.3 14.0 17.1 1.6±1.9 12.7 13.1 17.5 1.5±1.0
pred-hold 15.9 15.7 16.3 2.2±1.9 12.6 12.9 17.4 1.5±1.0
complete talk 23.8 23.9 – 2504 18.8 19.2 – 2515
ref-sent 30.6 31.5 30.5 16.7±11.8 24.3 25.1 24.4 17.0±11.6

ref-punct 30.4 31.5 30.3 7.1±5.3 24.2 25.1 24.1 8.7±6.1
pred-punct 30.6 31.5 30.4 8.7±8.8 24.1 25.0 24.0 8.8±6.8
conj-ref-eos 30.5 31.5 30.2 11.2±7.5 24.1 24.9 24.0 11.5±7.7
conj-pred-eos 30.3 31.2 30.3 10.9±7.9 24.0 24.8 24.0 11.4±8.5
chunk-ref-punct 17.9 18.9 21.4 1.3±0.7 14.5 15.2 16.9 1.4±0.7

Linguistic lgchunk1-ref-punct 21.0 21.8 25.1 1.7±1.0 16.9 17.4 19.6 1.8±1.0
lgchunk2-ref-punct 22.4 23.1 26.0 2.1±1.1 17.9 18.4 20.4 2.1±1.1
lgchunk3-ref-punct 24.3 25.1 27.4 2.5±1.7 19.2 19.9 21.3 2.5±1.7
chunk-pred-punct 17.9 18.9 21.4 1.3±0.7 14.5 15.1 16.9 1.4±0.7
lgchunk1-pred-punct 21.2 21.9 25.2 1.8±1.0 16.7 17.2 19.7 1.8±1.0
lgchunk2-pred-punct 22.6 23.1 26.0 2.1±1.2 17.7 18.3 20.5 2.1±1.2
lgchunk3-pred-punct 24.5 25.3 27.4 2.6±1.8 19.1 20.0 21.3 2.5±1.7

Table 3: BLEU scores at the talk level for reference text and ASR 1-best for various segmentation strategies.
The ASR 1-best was performed on manually segmented audio chunks provided in tst2010 set.

punct and chunk-pred-punct. Chunk types included
NC (noun chunk), VC (verb chunk), PRT (particle),
and ADVC (adverbial chunk).

Because these chunks may not provide sufficient
context for translation, we also experimented with
concatenating neighboring chunks of certain types
to form larger chunks. Data sets lgchunk1 concate-
nate together neighboring chunk sequences of the
form NC, VC or NC, ADVC, VC, intended to cap-
ture as single chunks instances of subject and verb.
In addition to this, data sets lgchunk2 capture chunks
such as PC (prepositional phrase) and VC followed
by VC (control and raising verbs). Finally, data sets
lgchunk3 capture as single chunks VC followed by
NC and optionally followed by PRT (verb and its di-
rect object).

Applying the conjunction segmenter after the
aforementioned punctuation classifier in order to de-
tect the ends of sentences yields the data set conj-
pred-eos. Applying it on sentences derived from the
gold-standard punctuations yields the data set conj-
ref-eos. Finally, applying the hold-output model to
sentences derived using the punctuation classifier
produces the data set pred-hold. Obtaining English
sentences tagged with HOLD and OUTPUT directly

from the output of GIZA++ on English-Spanish sen-
tences in the reference produces the data set ref-hold.
The strategies containing the keyword ref for ASR
simply means that the ASR hypotheses are used in
place of the gold reference text.
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Figure 1: Latencies and BLEU scores for tst2010 set
using incremental ASR decoding and translation

We also performed real-time speech translation by
using incremental speech recognition, i.e., the de-
coder returns partial hypotheses that, independent of
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the pruning during search, will not change in the
future. Figure 1 shows the plot for two scenarios:
one in which the partial hypotheses are sent directly
to machine translation and another where the best
segmentation strategy pred-punct is used to segment
the partial output before sending it to MT. The plot
shows the BLEU scores as a function of ASR time-
outs used to generate the partial hypotheses. Fig-
ure 1 also shows the average latency involved in in-
cremental speech translation.

7 Discussion

The BLEU scores for the segmentation strategies
over ASR hypotheses was computed at the talk level.
Since the ASR hypotheses do not align with the
reference source text, it is not feasible to evalu-
ate the translation performance using the gold refer-
ence. While other studies have used an approximate
edit distance algorithm for resegmentation of the hy-
potheses (Matusov et al., 2005), we simply concate-
nate all the segments and perform the evaluation at
the talk level.

The hold segmentation strategy yields the poor-
est translation performance. The significant drop in
BLEU score can be attributed to relatively short seg-
ments (2-4 words) that was generated by the model.
The scheme oversegments the text and since the
translation and language models are trained on sen-
tence like chunks, the performance is poor. For ex-
ample, the input text the sea should be translated
as el mar, but instead the hold segmenter chunks it
as the·sea which MT’s chunk translation renders as
el·el mar. It will be interesting to increase the span
of the hold strategy to subsume more contiguous se-
quences and we plan to investigate this as part of
future work.

The chunk segmentation strategy yields quite poor
translation performance. In general, it does not
make the same kinds of errors that the hold strat-
egy makes; for example, the input text the sea will
be treated as one NC chunk by the chunk seg-
mentation strategy, leading MT to translate it cor-
rectly as el mar. The short chunk sizes of chunk
lead to other kinds of errors. For example, the in-
put text we use will be chunked into the NC we
and the VC use, which will be translated incor-
rectly as nosotros·usar; the infinitive usar is se-

lected rather than the properly conjugated form us-
amos. However, there is a marked improvement in
translation accuracy with increasingly larger chunk
sizes (lgchunk1, lgchunk2, and lgchunk3). Notably,
lgchunk3 yields performance that approaches that of
win8 with a chunk size that is one third of win8’s.

The conj-pred-eos and pred-punct strategies work
the best, and it can be seen that the average seg-
ment length (8-12 words) generated in both these
schemes is very similar to that used for training the
models. It is also about the average latency (4-5
seconds) that can be tolerated in cross-lingual com-
munication, also known as ear-voice span (Lederer,
1978). The non-linguistic segmentation using fixed
word length windows also performs well, especially
for the longer length windows. However, longer
windows (win15) increase the latency and any fixed
length window typically destroys the semantic con-
text. It can also be seen from Table 3 that translat-
ing the complete talk is suboptimal in comparison
with segmenting the text. This is primarily due to
bias on sentence length distributions in the training
data. Training models on complete talks is likely to
resolve this issue. Contrasting the use of reference
segments as input to MT (ref-sent, ref-punct, conj-
ref-eos) versus the use of predicted segments (pred-
sent, pred-punct, conj-pred-eos, respectively), it is
interesting to note that the MT accuracies never dif-
fered greatly between the two, despite the noise in
the set of predicted segments.

The performance of the real-time speech transla-
tion of TED talks is much lower than the offline sce-
nario. First, we use only a VTLN model as perform-
ing CMA adaptation in a real-time scenario typically
increases latency. Second, the ASR language model
is trained on sentence-like units and decoding the en-
tire talk with this LM is not optimal. A language
model trained on complete talks will be more appro-
priate for such a framework and we are investigating
this as part of current work.

Comparing the accuracies of different speech
translation strategies, Table 3 shows that pred-punct
performs the best. When embedded in an incremen-
tal MT speech recognition system, Figure 1 shows
that it is more accurate than the system that sends
partial ASR hypotheses directly to MT. This advan-
tage decreases, however, when the ASR timeout pa-
rameter is increased to more than five or six sec-
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onds. In terms of latency, Figure 1 shows that the
addition of the pred-punct segmenter into the incre-
mental system introduces a significant delay. About
one third of the increase in delay can be attributed
to merely maintaining the two word lookahead win-
dow that the segmenter’s classifier needs to make
decisions. This is significant because this kind of
window has been used quite frequently in previous
work on simultaneous translation (cf. (Fügen et al.,
2007)), and yet to our knowledge this penalty asso-
ciated with this configuration was never mentioned.
The remaining delay can be attributed to the long
chunk sizes that the segmenter produces. An inter-
esting aspect of the latency curve associated with the
segmenter in Figure 1 is that there are two peaks at
ASR timeouts of 2,500 and 4,500 ms, and that the
lowest latency is achieved at 3,000 ms rather than at
a smaller value. This may be attributed to the fact
that the system is a pipeline consisting of ASR, seg-
menter, and MT, and that 3,000 ms is roughly the
length of time to recite comma-separated chunks.
Consequently, the two latency peaks appear to cor-
respond with ASR producing segments that are most
divergent with segments that the segmenter pro-
duces, leading to the most pipeline “stalls.” Con-
versely, the lowest latency occurs when the timeout
is set so that ASR’s segments most resemble the seg-
menter’s output to MT.

8 Conclusion

We investigated various approaches for incremen-
tal speech translation of TED talks, with the aim
of producing a system with high MT accuracy and
low latency. For acoustic modeling, we found that
VTLN and CMA adaptation were useful for increas-
ing the accuracy of ASR, leading to a word accuracy
of 80% on TED talks used in the IWSLT evalua-
tion track. In our offline MT experiments retention
of partial translations was found useful for increas-
ing MT accuracy, with the latter being slightly more
helpful. We experimented with several linguistic
and non-linguistic strategies for text segmentation
before translation. Our experiments indicate that a
novel segmentation into conjunction-separated sen-
tence chunks resulted in accuracies almost as high
and latencies almost as short as comma-separated
sentence chunks. They also indicated that signifi-

cant noise in the detection of sentences and punc-
tuation did not seriously impact the resulting MT
accuracy. Experiments on real-time simultaneous
speech translation using partial recognition hypothe-
ses demonstrate that introduction of a segmenter in-
creases MT accuracy. They also showed that in or-
der to reduce latency it is important for buffers in dif-
ferent pipeline components to be synchronized so as
to minimize pipeline stalls. As part of future work,
we plan to extend the framework presented in this
work for performing speech-to-speech translation.
We also plan to address the challenges involved in
S2S translation across languages with very different
word order.
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Abstract

Treebanks are not large enough to adequately
model subcategorization frames of predica-
tive lexemes, which is an important source of
lexico-syntactic constraints for parsing. As
a consequence, parsers trained on such tree-
banks usually make mistakes when selecting
the arguments of predicative lexemes. In this
paper, we propose an original way to correct
subcategorization errors by combining sub-
parses of a sentence S that appear in the list
of the n-best parses of S. The subcatego-
rization information comes from three differ-
ent resources, the first one is extracted from
a treebank, the second one is computed on a
large corpora and the third one is an existing
syntactic lexicon. Experiments on the French
Treebank showed a 15.24% reduction of er-
roneous subcategorization frames (SF) selec-
tions for verbs as well as a relative decrease of
the error rate of 4% Labeled Accuracy Score
on the state of the art parser on this treebank.

1 Introduction

Automatic syntactic parsing of natural languages
has witnessed many important changes in the last
fifteen years. Among these changes, two have mod-
ified the nature of the task itself. The first one is
the availability of treebanks such as the Penn Tree-
bank (Marcus et al., 1993) or the French Treebank
(Abeillé et al., 2003), which have been used in the
parsing community to train stochastic parsers, such
as (Collins, 1997; Petrov and Klein, 2008). Such
work remained rooted in the classical language the-
oretic tradition of parsing, generally based on vari-

ants of generative context free grammars. The sec-
ond change occurred with the use of discriminative
machine learning techniques, first to rerank the out-
put of a stochastic parser (Collins, 2000; Charniak
and Johnson, 2005) and then in the parser itself (Rat-
naparkhi, 1999; Nivre et al., 2007; McDonald et al.,
2005a). Such parsers clearly depart from classical
parsers in the sense that they do not rely anymore on
a generative grammar: given a sentence S, all pos-
sible parses for S1 are considered as possible parses
of S. A parse tree is seen as a set of lexico-syntactic
features which are associated to weights. The score
of a parse is computed as the sum of the weights of
its features.

This new generation of parsers allows to reach
high accuracy but possess their own limitations. We
will focus in this paper on one kind of weakness
of such parser which is their inability to properly
take into account subcategorization frames (SF) of
predicative lexemes2, an important source of lexico-
syntactic constraints. The proper treatment of SF is
actually confronted to two kinds of problems: (1)
the acquisition of correct SF for verbs and (2) the
integration of such constraints in the parser.

The first problem is a consequence of the use of
treebanks for training parsers. Such treebanks are
composed of a few thousands sentences and only a
small subpart of acceptable SF for a verb actually

1Another important aspect of the new parsing paradigm is
the use of dependency trees as a means to represent syntactic
structure. In dependency syntax, the number of possible syn-
tactic trees associated to a sentence is bounded, and only de-
pends on the length of the sentence, which is not the case with
syntagmatic derivation trees.

2We will concentrate in this paper on verbal SF.

239



occur in the treebank.
The second problem is a consequence of the pars-

ing models. For algorithmic complexity as well as
data sparseness reasons, the parser only considers
lexico-syntactic configurations of limited domain of
locality (in the parser used in the current work, this
domain of locality is limited to configurations made
of one or two dependencies). As described in more
details in section 2, SF often exceed in scope such
domains of locality and are therefore not easy to in-
tegrate in the parser. A popular method for intro-
ducing higher order constraints in a parser consist in
reranking the n best output of a parser as in (Collins,
2000; Charniak and Johnson, 2005). The reranker
search space is restricted by the output of the parser
and high order features can be used. One draw-
back of the reranking approach is that correct SF for
the predicates of a sentence can actually appear in
different parse trees. Selecting complete trees can
therefore lead to sub-optimal solutions. The method
proposed in this paper merges parts of different trees
that appear in an n best list in order to build a new
parse.

Taking into account SF in a parser has been a ma-
jor issue in the design of syntactic formalisms in the
eighties and nineties. Unification grammars, such
as Lexical Functional Grammars (Bresnan, 1982),
Generalized Phrase Structure Grammars (Gazdar et
al., 1985) and Head-driven Phrase Structure Gram-
mars (Pollard and Sag, 1994), made SF part of the
grammar. Tree Adjoining Grammars (Joshi et al.,
1975) proposed to extend the domain of locality of
Context Free Grammars partly in order to be able
to represent SF in a generative grammar. More
recently, (Collins, 1997) proposed a way to intro-
duce SF in a probabilistic context free grammar and
(Arun and Keller, 2005) used the same technique
for French. (Carroll et al., 1998), used subcate-
gorization probabilities for ranking trees generated
by unification-based phrasal grammar and (Zeman,
2002) showed that using frame frequency in a de-
pendency parser can lead to a significant improve-
ment of the performance of the parser.

The main novelties of the work presented here is
(1) the way a new parse is built by combining sub-
parses that appear in the n best parse list and (2)
the use of three very different resources that list the
possible SF for verbs.

The organization of the paper is the following: in
section 2, we will briefly describe the parsing model
that we will be using for this work and give accuracy
results on a French corpus. Section 3 will describe
three different resources that we have been using to
correct SF errors made by the parser and give cov-
erage results for these resources on a development
corpus. Section 4 will propose three different ways
to take into account, in the parser, the resources de-
scribed in section 3 and give accuracy results. Sec-
tion 5 concludes the paper.

2 The Parser

The parser used in this work is the second order
graph based parser (McDonald et al., 2005b) imple-
mentation of (Bohnet, 2010). The parser was trained
on the French Treebank (Abeillé et al., 2003) which
was transformed into dependency trees by (Candito
et al., 2009). The size of the treebank and its de-
composition into train, development and test sets are
represented in table 1.

nb of sentences nb of tokens
TRAIN 9 881 278 083

DEV 1 239 36 508

TEST 1 235 36 340

Table 1: Size and decomposition of the French Treebank

The parser gave state of the art results for parsing
of French, reported in table 2. Table 2 reports the
standard Labeled Accuracy Score (LAS) and Unla-
beled Accuracy Score (UAS) which is the ratio of
correct labeled (for LAS) or unlabeled (for UAS) de-
pendencies in a sentence. We also defined a more
specific measure: the SF Accuracy Score (SAS)
which is the ratio of verb occurrences that have been
paired with the correct SF by the parser. We have
introduced this quantity in order to measure more
accurately the impact of the methods described in
this paper on the selection of a SF for the verbs of a
sentence.

TEST DEV
SAS 80.84 79.88

LAS 88.88 88.53

UAS 90.71 90.37

Table 2: Subcategorization Frame Accuracy, Labeled and
Unlabeled Accuracy Score on TEST and DEV.
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We have chosen a second order graph parser in
this work for two reasons. The first is that it is the
parsing model that obtained the best results on the
French Treebank. The second is that it allows us
to impose structural constraints in the solution of
the parser, as described in (Mirroshandel and Nasr,
2011), a feature that will reveal itself precious when
enforcing SF in the parser output.

3 The Resources

Three resources have been used in this work in order
to correct SF errors. The first one has been extracted
from a treebank, the second has been extracted from
an automatically parsed corpus that is several order
of magnitude bigger than the treebank. The third one
has been extracted from an existing lexico-syntactic
resource. The three resources are respectively de-
scribed in sections 3.2, 3.3 and 3.4. Before describ-
ing the resources, we describe in details, in section
3.1 our definition of SF. In section 3.5, we evalu-
ate the coverage of these resources on the DEV cor-
pus. Coverage is an important characteristic of a re-
source: in case of an SF error made by the parser, if
the correct SF that should be associated to a verb, in
a sentence, does not appear in the resource, it will be
impossible to correct the error.

3.1 Subcat Frames Description

In this work, a SF is defined as a couple (G,L)
where G is the part of speech tag of the element that
licenses the SF. This part of speech tag can either
be a verb in infinitive form (VINF), a past participle
(VPP), a finite tense verb (V) or a present participle
(VPR). L is a set of couples (f, c) where f is a syn-
tactic function tag chosen among a set F and c is
a part of speech tag chosen among the set C. Cou-
ple (f, c) indicates that function f can be realized as
part of speech tag c. Sets F and C are respectively
displayed in top and bottom tables of figure 1. An
anchored SF (ASF) is a couple (v, S) where v is a
verb lemma and S is a SF, as described above.

A resource is defined as a collection of ASF
(v, S), each associated to a count c, to represent the
fact that verb v has been seen with SF S c times. In
the case of the resource extracted form an existing
lexicon (section 3.4), the notion of count is not ap-
plicable and we will consider that it is always equal

SUJ subject
OBJ object
A OBJ indirect object introduced by the preposition à
DE OBJ indirect object introduced by the preposition de
P OBJ indirect object introduced by another preposition
ATS attribute of the subject
ATO attribute of the direct object

ADJ adjective
CS subordinating conjunction
N noun
V verb finite tense
VINF verb infinitive form
VPP verb past participle
VPR verb present participle

Figure 1: Syntactic functions of the arguments of the SF
(top table). Part of speech tags of the arguments of the SF
(bottom table)

to one.
Below is an example of three ASF for the french

verb donner (to give). The first one is a transitive SF
where both the subject and the object are realized as
nouns as in Jean donne un livre (Jean gives a book.).
The second one is ditransitive, it has both a direct
object and an indirect one introduced by the prepo-
sition à as in Jean donne un livre à Marie. (Jean
gives a book to Marie). The third one corresponds
to a passive form as in le livre est donné à Marie par
Jean (The book is given to Marie by Jean).

(donner,(V,(suj,N),(obj,N)))
(donner,(V,(suj,N),(obj,N),(a_obj,N)))
(donner,(VPP,(suj,N),(aux_pass,V),

(a_obj,N),(p_obj,N)))

One can note that when an argument corresponds
to an indirect dependent of the verb (introduced ei-
ther by a preposition or a subordinating conjunc-
tion), we do not represent in the SF, the category
of the element that introduces the argument, but the
category of the argument itself, a noun or a verb.

Two important choices have to be made when
defining SF. The first one concerns the dependents
of the predicative element that are in the SF (argu-
ment/adjunct distinction) and the second is the level
of abstraction at which SF are defined.

In our case, the first choice is constrained by the
treebank annotation guidelines. The FTB distin-
guishes seven syntactic functions which can be con-
sidered as arguments of a verb. They are listed in
the top table of figure 1. Most of them are straight-
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forward and do not deserve an explanation. Some-
thing has to be said though on the syntactic function
P OBJ which is used to model arguments of the verb
introduced by a preposition that is neither à nor de,
such as the agent in passive form, which is intro-
duced by the preposition par.

We have added in the SF two elements that do not
correspond to arguments of the verb: the reflexive
pronoun, and the passive auxiliary. The reason for
adding these elements to the SF is that their pres-
ence influences the presence or absence of some ar-
guments of the verb, and therefore the SF.

The second important choice that must be made
when defining SF is the level of abstraction, or, in
other words, how much the SF abstracts away from
its realization in the sentence. In our case, we have
used two ways to abstract away from the surface re-
alization of the SF. The first one is factoring sev-
eral part of speech tags. We have factored pronouns,
common nouns and proper nouns into a single cat-
egory N. We have not gathered verbs in different
modes into one category since the mode of the verb
influences its syntactic behavior and hence its SF.
The second means of abstraction we have used is
the absence of linear order between the arguments.
Taking into account argument order increases the
number of SF and, hence, data sparseness, without
adding much information for selecting the correct
SF, this is why we have decided to to ignore it. In
our second example above, each of the three argu-
ments can be realized as one out of eight parts of
speech that correspond to the part of speech tag N
and the 24 possible orderings are represented as one
canonical ordering. This SF therefore corresponds
to 12 288 possible realizations.

3.2 Treebank Extracted Subcat Frames
This resource has been extracted from the TRAIN
corpus. At a first glance, it may seen strange to ex-
tract data from the corpus that have been used for
training our parser. The reason is that, as seen in
section 1, SF are not directly modeled by the parser,
which only takes into account subtrees made of, at
most, two dependencies.

The extraction procedure of SF from the treebank
is straightforward : the tree of every sentence is vis-
ited and, for every verb of the sentence, its daughters
are visited, and, depending whether they are consid-

ered as arguments of the verb (with respect to the
conventions or section 3.1), they are added to the SF.
The number of different verbs extracted, as well as
the number of different SF and the average number
of SF per verb are displayed in table 3. Column T
(for Train) is the one that we are interested in here.

T L A0 A5 A10

nb of verbs 2058 7824 23915 4871 3923

nb of diff SF 666 1469 12122 2064 1355

avg. nb of SF 4.83 52.09 14.26 16.16 13.45

Table 3: Resources statistics

The extracted resource can directly be compared
with the TREELEX resource (Kupsc and Abeillé,
2008), which has been extracted from the same tree-
bank. The result that we obtain is different, due to
the fact that (Kupsc and Abeillé, 2008) have a more
abstract definition of SF. As a consequence, they de-
fine a smaller number of SF: 58 instead of 666 in
our case. The smaller number of SF yields a smaller
average number of SF per verb: 1.72 instead of 4.83
in our case.

3.3 Automatically computed Subcat Frames

The extraction procedure described above has been
used to extract ASF from an automatically parsed
corpus. The corpus is actually a collection of three
corpora of slightly different genres. The first one
is a collection of news reports of the French press
agency Agence France Presse, the second is a col-
lection of newspaper articles from a local French
newspaper : l’Est Républicain. The third one is
a collection of articles from the French Wikipedia.
The size of the different corpora are detailed in ta-
ble 4.

The corpus was first POS tagged with the MELT
tagger (Denis and Sagot, 2010), lemmatized with the
MACAON tool suite (Nasr et al., 2011) and parsed
in order to get the best parse for every sentence.
Then the ASF have been extracted.

The number of verbs, number of SF and average
number of SF per verb are represented in table 3,
in column A0 (A stands for Automatic). As one
can see, the number of verbs and SF are unrealis-
tic. This is due to the fact that the data that we ex-
tract SF from is noisy: it consists of automatically
produced syntactic trees which contain errors (recall
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CORPUS Sent. nb. Tokens nb.
AFP 2 041 146 59 914 238

EST REP 2 998 261 53 913 288

WIKI 1 592 035 33 821 460

TOTAL 5 198 642 147 648 986

Table 4: sizes of the corpora used to collect SF

that the LAS on the DEV corpus is 88, 02%). There
are two main sources of errors in the parsed data: the
pre-processing chain (tokenization, part of speech
tagging and lemmatization) which can consider as
a verb a word that is not, and, of course, parsing
errors, which tend to create crazy SF. In order to
fight against noise, we have used a simple thresh-
olding: we only collect ASF that occur more than a
threshold i. The result of the thresholding appears
in columns A5 and A10 , where the subscript is the
value of the threshold. As expected both the number
of verbs and SF decrease sharply when increasing
the value of the threshold.

Extracting SF for verbs from raw data has been
an active direction of research for a long time, dat-
ing back at least to the work of (Brent, 1991) and
(Manning, 1993). More recently (Messiant et al.,
2008) proposed such a system for French verbs. The
method we use for extracting SF is not novel with
respect to such work. Our aim was not to devise
new extraction techniques but merely to evaluate the
resource produced by such techniques for statistical
parsing.

3.4 Using an existing resource

The third resource that we have used is the Lefff
(Lexique des formes fléchies du français — Lexicon
of French inflected form), a large-coverage syntac-
tic lexicon for French (Sagot, 2010). The Lefff was
developed in a semi-automatic way: automatic tools
were used together with manual work. The latest
version of the Lefff contains 10,618 verbal entries
for 7,835 distinct verbal lemmas (the Lefff covers all
categories, but only verbal entries are used in this
work).

A sub-categorization frame consists in a list of
syntactic functions, using an inventory slightly more
fine-grained than in the French Treebank, and for
each of them a list of possible realizations (e.g.,
noun phrase, infinitive clause, or null-realization if

the syntactic function is optional).
For each verbal lemma, we extracted all sub-

categorization frames for each of the four verbal
part-of-speech tags (V, VINF, VPR, VPP), thus cre-
ating an inventory of SFs in the same sense and for-
mat as described in Section 3.1. Note that such SFs
do not contain alternatives concerning the way each
syntactic argument is realized or not: this extraction
process includes a de-factorization step. Its output,
hereafter L, contains 801,246 distinct (lemma, SF)
pairs.

3.5 Coverage
In order to be able to correct SF errors, the three
resources described above must possess two impor-
tant characteristics: high coverage and high accu-
racy. Coverage measures the presence, in the re-
source, of the correct SF of a verb, in a given sen-
tence. Accuracy measures the ability of a resource
to select the correct SF for a verb in a given context
when several ones are possible.

We will give in this section coverage result, com-
puted on the DEV corpus. Accuracy will be de-
scribed and computed in section 4. The reason why
the two measures are not described together is due
to the fact that coverage can be computed on a ref-
erence corpus while accuracy must be computed on
the output of a parser, since it is the parser that will
propose different SF for a verb in a given context.

Given a reference corpus C and a resource R,
two coverage measures have been computed, lexi-
cal coverage, which measures the ratio of verbs of C
that appear in R and syntactic coverage, which mea-
sures the ratio of ASF of C that appear in R. Two
variants of each measures are computed: on types
and on occurrences. The values of these measures
computed on the DEV corpus are summarized in ta-
ble 5.

T L A0 A5 A10

Lex. types 89.56 99.52 99.52 98.56 98.08
cov. occ 96.98 99.85 99.85 99.62 99.50

Synt. types 62.24 78.15 95.78 91.08 88.84
cov. occ 73.54 80.35 97.13 93.96 92.39

Table 5: Lexical and syntactic coverage of the three re-
sources on DEV

The figures of table 5 show that lexical cover-
age of the three resources is quite high, ranging
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from 89.56 to 99.52 when computed on types and
from 96.98 to 99.85 when computed on occurrences.
The lowest coverage is obtained by the T resource,
which does not come as a surprise since it is com-
puted on a rather small number of sentences. It
is also interesting to note that lexical coverage of
A does not decrease much when augmenting the
threshold, while the size of the resource decreases
dramatically (as shown in table 3). This validates
the hypothesis that the resource is very noisy and
that a simple threshold on the occurrences of ASF is
a reasonable means to fight against noise.

Syntactic coverage is, as expected, lower than lex-
ical coverage. The best results are obtained by A0:
95.78 on types and 97.13 on occurrences. Thresh-
olding on the occurrences of anchored SF has a big-
ger impact on syntactic coverage than it had on lexi-
cal coverage. A threshold of 10 yields a coverage of
88.84 on types and 92.39 on occurrences.

4 Integrating Subcat Frames in the Parser

As already mentioned in section 1, SF usually ex-
ceed the domain of locality of the structures that are
directly modeled by the parser. It is therefore dif-
ficult to integrate directly SF in the model of the
parser. In order to circumvent the problem, we have
decided to work on the n-best output of the parser:
we consider that a verb v, in a given sentence S,
can be associated to any of the SF that v licenses in
one of the n-best trees. The main weakness of this
method is that an SF error can be corrected only if
the right SF appears at least in one of the n-best parse
trees.

In order to estimate an upper bound of the SAS
that such methods can reach (how many SF errors
can actually be corrected), we have computed the
oracle SAS on the 100 best trees of the DEV corpus
DEV (for how many verbs the correct SF appears
in at least one of the n-best parse trees). The oracle
score is equal to 95.16, which means that for 95.16%
of the verb occurrences of the DEV, the correct SF
appears somewhere in the 100-best trees. 95.16 is
therefore the best SAS that we can reach. Recall
that the baseline SAS is equal to 79.88% the room
for progress is therefore equal to 15.28% absolute.

Three experiments are described below. In the
first one, section 4.1, a simple technique, called Post

Processing is used. Section 4.2 describes a second
technique, called Double Parsing, which is a is a
refinement of Post Processing. Both sections 4.1
and 4.2 are based on single resources. Section 4.3
proposes a simple way to combine the different re-
sources.

4.1 Post Processing

The post processing method (PP) is the simplest one
that we have tested. It takes as input the different
ASF that occur in the n-best output of the parser as
well as a resource R. Given a sentence, let’s note
T1 . . . Tn the trees that appear in the n-best output
of the parser, in decreasing order of their score. For
every verb v of the sentence, we note S(v) the set
of all the SF associated to v that appear in the trees
T1 . . . Tn.

Given a verb v and a SF s, we define the following
functions:
C(v, s) is the number of occurrences of the ASF

(v, s) in the trees T1 . . . Tn.
F(v) is the SF associated to v in T1

CR(v, s) the number of occurrences of the ASF
(v, s) in the resource R.

We define a selection function as a function that
selects a SF for a given verb in a given sentence.
A selection function has to take into account the in-
formation given by the resource (whether an SF is
acceptable/frequent for a given verb) as well as the
information given by the parser (whether the parser
has a strong preference to associate a given SF to a
given verb).

In our experiments, we have tested two simple
selection functions. ϕR which selects the first SF
s ∈ S(v), such that CR(v, s) > 0 when traversing
the trees T1 . . . Tn in the decreasing order of score
(best tree first).

The second function, ψR(v) compares the most
frequent SF for v in the resourceRwith the SF of the
first parse. If the ratio of the number of occurrences
in the n-best of the former and the latter is above a
threshold α, the former is selected. More formally:

ψR(v) =


ŝ = arg maxs∈S(v) CR(v, s)

if C(v,ŝ)
C(v,F(v)) > α

F(v)
otherwise
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The coefficientα has been optimized on DEV cor-
pus. Its value is equal to 2.5 for the Automatic re-
source, 2 for the Train resource and 1.5 for the Lefff.

The construction of the new solution proceeds as
follows: for every verb v of the sentence, a SF is se-
lected with the selection function. It is important to
note, at this point, that the SF selected for different
verbs of the sentence can pertain to different parse
trees. The new solution is built based on tree T1. For
every verb v, its arguments are potentially modified
in agreement with the SF selected by the selection
function. There is no guarantee at this point that the
solution is well formed. We will return to this prob-
lem in section 4.2.

We have evaluated the PP method with different
selection functions on the TEST corpus. The results
of applying function ψR were more successful. As
a result we just report the results of this function in
table 6. Different levels of thresholding for resource
A gave almost the same results, we therefore used
A10 which is the smallest one.

B T L A
SAS 80.84 83.11 82.14 82.17

LAS 88.88 89.14 89.03 89.03

UAS 90.71 90.91 90.81 90.82

Table 6: LAS and UAS on TEST using PP

The results of table 6 show two interesting facts.
First, the SAS is improved, it jumps from 80.84 to
83.11. PP therefore corrects some SF errors made
by the parser. It must be noted however that this im-
provement is much lower than the oracle score. The
second interesting fact is the very moderate increase
of both LAS and UAS. This is due to the fact that
the number of dependencies modified is small with
respect to the total number of dependencies. The
impact on LAS and UAS is therefore weak.

The best results are obtained with resource T . Al-
though the coverage of T is low, the resource is very
close to the train data, this fact probably explains the
good results obtained with this resource.

It is interesting, at this point, to compare our
method with a reranking approach. In order to do so,
we have compared the upper bound of the number of
SF errors that can be corrected when using rerank-
ing and our approach. The results of the comparison
computed on a list of 100 best trees is reported in

table 7 which shows the ratio of subcat frame errors
that could be corrected with a reranking approach
and the ratio of errors sub-parse recombining could
reach.

DEV TEST
reranking 53.9% 58.5%

sub-parse recombining 75.5% 76%

Table 7: Correction rate for subcat frames errors with dif-
ferent methods

Table 7 shows that combining sub-parses can, in
theory, correct a much larger number of wrong SF
assignments than reranking.

4.2 Double Parsing

The post processing method shows some improve-
ment over the baseline. But it has an important draw-
back: it can create inconsistent parses. Recall that
the parser we are using is based on a second order
model. In other words, the score of a dependency
depends on some neighboring dependencies. When
building a new solution, the post processing method
modifies some dependencies independently of their
context, which may give birth to very unlikely con-
figurations.

In order to compute a new optimal parse tree
that preserves the modified dependencies, we have
used a technique proposed in (Mirroshandel and
Nasr, 2011) that modifies the scoring function of the
parser in such a way that the dependencies that we
want to keep in the parser output get better scores
than all competing dependencies. The new solution
is therefore the optimal solution that preserves the
dependencies modified by the PP method.

The double parsing (DP) method is therefore a
three stage method. First, sentence S is parsed, pro-
ducing the n-best parses. Then, the post processing
method is used, modifying the first best parse. Let’s
note D the set of dependencies that were changed in
this process. In the last stage, a new parse is pro-
duced, that preserves D.

B T L A
SAS 80.84 83.11 82.14 82.17

LAS 88.88 89.30 89.25 89.31

UAS 90.71 91.07 91.05 91.08

Table 8: LAS and UAS on TEST using DP
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The results of DP on TEST are reported in table
8. SAS did not change with respect to PP, because
DP keeps the SF selected by PP. As expected DP
does increase LAS and UAS. Recomputing an op-
timal solution therefore increases the quality of the
parses. Table 8 also shows that the three resources
get almost the same LAS and UAS although SAS is
better for resource T.

4.3 Combining Resources
Due to the different generation techniques of our
three resources, another direction of research is
combining them. We did different experiments con-
cerning all possible combination of resources: A and
L (AL), T and L (TL), T and A (TA), and all tree
(TAL) resources. The results of these combinations
for PP and DP methods are shown in tables 9 and
10, respectively.

The resource are combined in a back-off schema:
we search for a candidate ASF in a first resource. If
it is found, the search stops. Otherwise, the next re-
source(s) are probed. One question that arises is:
which sequence is the optimal one for combining
the resources. To answer this question, we did sev-
eral experiments on DEV set. Our experiments have
shown that it is better to search T resource, then
A, and, eventually, L. The results of this combining
method, using PP are reported in table 9. The best
results are obtained for the TL combination. The
SAS jumps from 83.11 to 83.76. As it was the case
with single resources, the LAS and UAS increase is
moderate.

B AL TL TA TAL
SAS 80.84 82.12 83.76 83.50 83.50

LAS 88.88 89.03 89.22 89.19 89.19

UAS 90.71 90.79 90.98 90.95 90.95

Table 9: LAS and UAS on TEST using PP with resource
combination

With DP (table 9), the order of resource combina-
tion is exactly the same as with PP. As was the case
with single resources, DP has a positive, but moder-
ate, impact on LAS and UAS.

The results of tables 9 and 10 do not show con-
siderable improvement over single resources. This
might be due to the large intersection between our
resources. In other words, they do not have comple-
mentary information, and their combination will not

B AL TL TA TAL
SAS 80.84 82.12 83.76 83.50 83.50

LAS 88.88 89.22 89.31 89.34 89.34

UAS 90.71 91.02 91.05 91.08 91.09

Table 10: LAS and UAS on TEST using DP with resource
combination

introduce much information. Another possible rea-
son for this result is the combination technique used.
More sophisticated techniques might yield better re-
sults.

5 Conclusions

Subcategorization frames for verbs constitute a rich
source of lexico-syntactic information which is hard
to integrate in graph based parsers. In this paper, we
have used three different resources for subcatego-
rization frames. These resources are from different
origins with various characteristics. We have pro-
posed two different methods to introduce the useful
information from these resources in a second order
model parser. We have conducted different exper-
iments on French Treebank that showed a 15.24%
reduction of erroneous SF selections for verbs. Al-
though encouraging, there is still plenty of room
for better results since the oracle score for 100 best
parses is equal to 95.16% SAS and we reached
83.76%. Future work will concentrate on more elab-
orate selection functions as well as more sophisti-
cated ways to combine the different resources.

Acknowledgments

This work has been funded by the French Agence
Nationale pour la Recherche, through the project
EDYLEX (ANR-08-CORD-009).

References
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Abstract

We introduce a new large-scale discrimina-
tive learning algorithm for machine translation
that is capable of learning parameters in mod-
els with extremely sparse features. To ensure
their reliable estimation and to prevent over-
fitting, we use a two-phase learning algorithm.
First, the contribution of individual sparse fea-
tures is estimated using large amounts of par-
allel data. Second, a small development cor-
pus is used to determine the relative contri-
butions of the sparse features and standard
dense features. Not only does this two-phase
learning approach prevent overfitting, the sec-
ond pass optimizes corpus-level BLEU of the
Viterbi translation of the decoder. We demon-
strate significant improvements using sparse
rule indicator features in three different trans-
lation tasks. To our knowledge, this is the
first large-scale discriminative training algo-
rithm capable of showing improvements over
the MERT baseline with only rule indicator
features in addition to the standard MERT fea-
tures.

1 Introduction

This paper is about large scale discriminative
training of machine translation systems. Like
MERT (Och, 2003), our procedure directly optimizes
the cost of the Viterbi output on corpus-level met-
rics, but does so while scaling to millions of features.
The training procedure, which we call the Held-Out
Line Search algorithm (HOLS), is a two-phase iter-
ative batch optimization procedure consisting of (1)
a gradient calculation on a differentiable approxima-
tion to the loss on a large amount of parallel training

data and (2) a line search (using the standard MERT

algorithm) to search in a subspace defined by the
gradient for the weights that minimize the true cost.

While sparse features are successfully used in
many NLP systems, such parameterizations pose a
number of learning challenges. First, since any one
feature is likely to occur infrequently, a large amount
of training data is necessary to reliably estimate their
weights. Therefore, we use the full parallel train-
ing data (rather than a small development set) to
estimate the contribution of the sparse features in
phase 1. Second, sparse features can lead to overfit-
ting. To prevent this from hurting our model’s ability
to generalize to new data, we do two things. First,
we use “grammar and language model folds” (trans-
lation grammars and language models built from
other portions of the training data than are being
used for discriminative training), and second, we
run the phase 2 line search on a held-out develop-
ment set. Finally, since our algorithm requires de-
coding the entire training corpus, it is desirable (on
computational grounds) to only require one or two
passes through the training data. To get the most out
of these passes, we rescale features by their inverse
frequency which improves the scaling of the opti-
mization problem. In addition to learning with few
passes through the training data, the HOLS algorithm
has the advantage that it is easily parallelizable.

After reviewing related work in the next section,
we analyze two obstacles to effective discriminative
learning for machine translation: overfitting (since
both rules and their weights must be learned, if they
are learned together degenerate solutions that fail to
generalize are possible) and poor scaling (since MT
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decoding is so expensive, it is not feasible to make
many passes through large amounts of training data,
so optimization must be efficient). We then present
the details of our algorithm that addresses these is-
sues, give results on three language pairs, and con-
clude.

2 Related Work

Discriminative training of machine translation sys-
tems has been a widely studied problem for the
last ten years. The pattern of using small, high-
quality development sets to tune a relatively small
number of weights was established early (Och and
Ney, 2002; Och, 2003). More recently, standard
structured prediction algorithms that target linearly
decomposable approximations of translation qual-
ity metrics have been thoroughly explored (Liang et
al., 2006; Smith and Eisner, 2006; Watanabe et al.,
2007; Rosti et al., 2010; Hopkins and May, 2011;
Chiang, 2012; Gimpel and Smith, 2012; Cherry and
Foster, 2012; Saluja et al., 2012). These have with-
out exception used sentence-level approximations of
BLEU to determine oracles and update weights using
a variety of criteria and with a variety of different
theoretical justifications.

Despite advancements in discriminative training
for machine translation, large-scale discriminative
training with rule indicator features has remained
notoriously difficult. Rule indicator features are an
extremely sparse and expressive parameterization of
the translation model: every rule has a feature, each
of which has its own separately tuned weight, which
count how often a specific rule is used in a trans-
lation. Early experiments (Liang et al., 2006) used
the structured perceptron to tune a phrase-based sys-
tem on a large subset of the training data, show-
ing improvements when using rule indicator fea-
tures, word alignment features, and POS tag fea-
tures. Another early attempt (Tillmann and Zhang,
2006) used phrase pair and word features in a block
SMT system trained using stochastic gradient de-
scent for a convex loss function, but did not compare
to MERT. Problems of overfitting and degenerate
derivations were tackled with a probabilistic latent
variable model (Blunsom et al., 2008) which used
rule indicator features yet failed to improve upon
the MERT baseline for the standard Hiero features.

Techniques for distributed learning and feature se-
lection for the perceptron loss using rule indicator,
rule shape, and source side-bigram features have re-
cently been proposed (Simianer et al., 2012), but no
comparison to MERT was made.

3 Difficulties in Large-Scale Training

Discriminative training for machine translation is
complicated by several factors. First, both transla-
tion rules and feature weights are learned from par-
allel data. If the same data is used for both tasks,
overfitting of the weights is very possible.1 Second,
the standard MT cost function, BLEU (Papineni et
al., 2002), does not decompose additively over train-
ing instances (because of the “brevity penalty”) and
so approximations are used—these often have prob-
lems with the length (Nakov et al., 2012). Finally,
state-of-the-art MT systems make extensive good
use of “dense” features, such as the log probabil-
ity of translation decisions under a simpler gener-
ative translation model. Our goal is to begin to
use much sparser features without abandoning the
proven dense features; however, extremely sparse
features leads to problems of scaling in the optimiza-
tion problem as we will show.

3.1 Training Data and Overfitting

One of the big questions in discriminative train-
ing of machine translation systems is why standard
machine learning techniques can perform so poorly
when applied to large-scale learning on the train-
ing data. Figure 1 shows a good example of this.
The structured SVM (Tsochantaridis et al., 2004;
Cherry and Foster, 2012) was used to learn the
weights for a Chinese-English Hiero system (Chi-
ang, 2005) with just eight features, using stochastic
gradient descent (SGD) for online learning (Bottou,
1998; Bottou, 2010). The weights were initialized
from MERT values tuned on a 2k-sentence dev set
(MT06), and the figure shows the progress of the on-
line method during a single pass through the 300k-
sentence Chinese-English FBIS training set.

As the training progresses in Figure 1, BLEU
scores on the training data go up, but scores on the

1Previous work has attempted to mitigate the risk of overfit-
ting through careful regularization (Blunsom et al., 2008; Simi-
aner et al., 2012).
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Figure 1: Progress of the online SVM training
method after each training instance on FBIS dataset.
The solid line is BLEU on the test set, training set is
the dashed line, and the dev set is dotted.

dev and test sets go down. If we hope to apply dis-
criminative training techniques for not eight but mil-
lions of features on the training data, we must find a
way to prevent this overfitting.

We suggest that an important reason why overfit-
ting occurs is that the training data is used not only to
tune the system but also to extract the grammar, and
the target side is included in the data used to build
the language model. To test this hypothesis, we
compare tuning using three different dev sets: 1000
sentences from the standard 4-reference MT06 dev
set (Dev1000), a random selection of 1000 sentences
that overlap with the corpus used to extract transla-
tion rules (In1000), and 1000 sentences that came
from the training data but were then excluded from
rule extraction (Out1000). We run MERT on each of
these and evaluate. For evaluation we compare three
different sets: a random 1000 sentences from the
training corpus that was used to create the grammars
but which do not overlap with In1000 (Train1000),
the 1000 sentence dev set (Dev1000), and the stan-
dard 4-reference MT02-03 test set (Test). The en-
tire experiment (including selection of the 1000 sen-
tences) was replicated 5 times.

Table 1 shows the results, averaging over repli-
cations. Out1000 gives much higher scores on the
testing data, validating our hypothesis that tuning on
data used to build the LM and grammar can lead to
overfitting. However, the results also show that tun-
ing on the training data, even when it is held-out, can
still lead to a small reduction in translation quality.
One possible reason is that, unlike the training data

which may come from various domains, the dev data
is in the same domain as the test data and is typically
of higher quality (e.g., it has multiple references).

Table 1: MERT on Zh-En FBIS

Tuning Set Train1000 Dev1000 Test
Dev1000 32.2±1.1 30.2±.1 34.1±.3
In1000 37.0±1.2 25.7±.7 30.1±.6
Out1000 34.9±.8 29.0±.4 33.6±.5

3.2 Poor Scaling
When features occur with different frequencies,
changing the weights of more frequent features has
a larger effect than changing the weights of less fre-
quent features.2 An example of frequent features
that have a large impact on the translation quality are
the language model and translation model features.
These features are non-zero for every sentence, and
changing their weights slightly has a large impact on
translation output. In contrast, changing the weight
drastically for a feature that is non-zero for only one
out of a million sentences has very little effect on
translation metrics. The sensitivity of the translation
output to some feature weights over others was also
pointed out in a recent paper (Chiang, 2012).

When the objective function is more sensitive
in some dimensions than others, the optimization
problem is said to be poorly scaled (Nocedal and
Wright, 2000), and can slow down the convergence
rate for some optimizers. A typical fix is to rescale
the dimensions, as we will do in Section 5.2.

To verify that BLEU is poorly scaled with respect
to weights of rule indicator features, we look at the
effect of changing the weights for individual rules.
We vary the feature weights for four randomly cho-
sen frequent rules and four randomly chosen infre-
quent rules on our FBIS dev set (Figure 2). One
can think of this plot as a “cross-section” of the
BLEU score in the direction of the feature weight.
The dense features are set to MERT-tuned values
which are normalized to one. All other rule indi-
cator features are set to zero, except the rule fea-
ture weight that is varied. The frequent features

2By the “frequency of a feature” we mean this: given a set of
input instances, how many input instances the feature is nonzero
in the space of possible outputs for that input.
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were selected randomly from the 20 most common
rule indictor features in the n-best lists on the dev
set, and the infrequent features were selected from
the features that only occurred once in these n-best
lists. The plots indicate that the BLEU score is
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(a) Four representative frequent sparse features.
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(b) Four representative infrequent sparse features

Figure 2: The effect of varying weights for rule indicator
features on the BLEU score. Note the difference of scale
on the y axis.

poorly scaled for rule feature weights. Changing the
weights for one of the common features changes the
BLEU score by almost 2.5 BLEU points, while for
the infrequent features the BLEU score changes by
at most .02 BLEU points. We take this as a sign that
gradient descent based optimizers for machine trans-
lation with rule features could be slow to converge
due to poor scaling, and that rescaling will improve
convergence.

3.3 Sentence Level Approximations to BLEU

Finally, we note that discriminative training methods
often use a sentence level approximation to BLEU. It
has been shown that optimizing corpus level BLEU
versus sentence level BLEU can lead to improve-
ments of up to nearly .4 BLEU points on the test
set (Nakov et al., 2012). Possible fixes to this prob-
lem include using a proper sentence level metric
such a METEOR (Denkowski and Lavie, 2011) or a
pseudo-corpus from the last few updates (Chiang et
al., 2008). However, in light of the result from sec-
tion 3.1 that tuning on the dev set is still better than
tuning on a held-out portion of the training data, we
observe that tuning a corpus level metric on a high-
quality dev set from the same domain as the test set
probably leads to the best translation quality. At-
tempts to improve upon this strong baseline lead us
to the development of the HOLS algorithm which we
describe next.

4 Held-Out Line Search Algorithm

In this section we give the details of the learning al-
gorithm that we developed for use in large-scale dis-
criminative training for machine translation, which
we call the Held-Out Line Search algorithm (abbre-
viated HOLS). It optimizes millions of features using
evidence from the full set of parallel training data
to obtain optimal predictive performance on a sec-
ondary development set.

The learning algorithm is a batch optimizer where
each iteration has two phases: a gradient calcula-
tion phase and a line search phase. In the gradient
calculation phase, a surrogate loss function is used
to compute a gradient for the feature weights. The
gradient is computed over a subset of the training
data. In the line search phase, a separate optimizer
(MERT) is used to search along this gradient to opti-
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mize the evaluation score of the one-best prediction
of a translation system on a secondary development
set.3 The secondary dev set is a crucial aspect of
the algorithm that helps reduce overfitting (we will
demonstrate this in the experiments section).

During the line search phase we allow some of
the feature weights to be adjusted independently of
the line search. We will call the features we opti-
mize independently the dense features, and the fea-
tures we include in the line search the sparse fea-
tures.4 The feature vector space V is the direct sum
V = Vd ⊕ Vs, where Vd is the vector space of
the dense features and Vs is the vector space of the
sparse features. The feature and weight vectors de-
compose as ~f = ~fd + ~fs and ~w = ~wd + ~ws. ~fd and
~wd are in the dense vector space, and the ~fs and ~ws
are in the sparse vector space.

In the gradient phase, we calculate a gradient of
the surrogate loss function and project it onto the
subspace of the sparse features. Let Ps be the pro-
jection operator onto Vs. Then the gradient projected
onto the sparse feature space is

~g = Ps∇~wL̃(~w,Dg)

where Dg is the subset of the training data used to
calculate this gradient, and L̃ is the surrogate loss
function. This just sets the dense components of the
gradient of L̃ to zero.

In the line search phase, we use a separate opti-
mizer to optimize the weights for the dense features
and the stepsize α. Let L be the loss function we
wish to minimize, then

(~w∗d, α
∗) = arg min

~wd,α
L(~wd + ~ws + α~g,Dl)

Note ~ws is held fixed from the previous iteration. Dl
is the portion of the training data which is used in
the line search phase, and must not overlap with Dg
used in the gradient calculation phase.5

After the line search, the dense weights are up-
dated to ~w∗d, and the sparse weights are updated with
~ws ← ~ws + α∗~g. The process repeats for another
iteration as desired (or until convergence).

3While we use BLEU any loss function whose sufficient
statistics decompose over training instances could be used.

4The split over the features does not have to be done this
way in practice.

5L(~w∗
d, α

∗,Dl) can be thought of as unbiased or more accu-
rately less biased estimator of expected loss whenDl∩Dg = ∅.

5 Procedure for Large-Scale Training

Now that we have described the HOLS algorithm in
general, we next describe how to apply it to large-
scale training of machine translation systems with
millions of features. We find that it is necessary to
use disjoint sets of training instances for grammar
extraction and gradient estimation (§5.1) and to deal
with the poor scaling of the optimization problem
(§5.2).

5.1 Grammar and Language Model Folds

To address the problem of overfitting on the train-
ing data, we split the training data into n-folds, and
extract grammars for each fold using the data from
the other n− 1 folds. Similarly, we build a language
model for each fold using a target language mono-
lingual corpus and the target side of the training data
from the other n − 1 folds. Whenever we decode a
sentence from the training data, we use the gram-
mar and language model for the appropriate fold.
This ensures that a sentence is never decoded using a
grammar or language model it helped build, thereby
reducing the overfitting effect demonstrated in §3.1.

To perform the training, the HOLS algorithm is
used on the training data. In our experiments, only
1-2 passes over the training data are necessary for
significant gains. Data from one of the grammar
folds is used for the line search, and the rest of the
training data is used to calculate the gradient.

The procedure is iterative, first decoding training
data to obtain a gradient, and then performing a line
search with data from a held-out grammar fold. In-
stead of decoding the whole set of sentences used for
the gradient updates at once, one can also decode a
portion of the data, do a gradient update, and then
continue the next iteration of HOLS on the remain-
ing data before repeating.

The last line search of the HOLS algorithm is done
using dev data, rather than training data. This is be-
cause the dev data is higher quality, and from Table
1 we can see that tuning on dev data produces bet-
ter results than tuning on training data (even if the
training data has been held out from the grammar
process). The initial weights are obtained by run-
ning MERT on a subset of the one of the grammar
folds.

If one has an existing implementation of an op-
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timizer for the loss function used during the line
search (in our case MERT), it can be used to perform
the line search. This is done simply by calling MERT

with two extra features in addition to the dense fea-
tures and omitting the sparse features.

To see how, notice that the feature weights
during the line search are decomposed as ~w =
~wdense + ~wsparse + α~g where ~g is in the sparse
feature subspace, so the model score decomposes
as score(x, y) = ~wd · ~fd(x, y) + ~ws · ~fs(x, y) +
α~g · ~fs(x, y) where x is the input translation, y is
the output translation and derivation. If we cre-
ate two new features f1(x, y) = ~ws · ~fs(x, y) and
f2(x, y) = ~g · ~fs(x, y) then the score can be written

score(x, y) = ~wd · ~fd(x, y)

+f1(x, y) + αf2(x, y)

= (~wd, 1, α) · (~fd, f1, f2)

Thus we can do the line search simply by calling
MERT with the features (~fd, f1, f2). 6

In summary our training algorithm is as follows:
1) split the training data into n-folds (we use n = 5),
2) initialize the dense weights to MERT values, 3)
decode some or all the data in 4 of the 5 folds to get
a gradient, 4) condition as in §5.2 (see below), 5) run
MERT on a 10k subset of the remaining fold to do the
line search, 6) repeat steps 3-4 until convergence or
stop as desired, and 7) run MERT on the normal dev
set as a final step. We only run MERT on a 10k subset
of one of the folds so it does not require running
MERT on an entire fold.

In the special case where just one iteration of
HOLS is performed, the procedure is very simple:
decode the training data to get a gradient, include
the components of the gradient as an extra feature
f2 in addition to the dense features, and tune on a
dev set using MERT.

5.2 Conditioning
To address the problem of poor scaling, we use a
simple strategy of rescaling each component of the
gradient based on how frequent the feature is. We
call this process “conditioning.” For each feature,
we simply divide the corresponding dimension of

6We could constrain the weight for f1 to be 1, but this is not
necessary since since MERT is invariant to the overall scale of
the weights.

the gradient by the number of n-best lists in which
the feature was non-zero in.

The necessity for conditioning is evident when we
run the HOLS algorithm as detailed so far on the
training data without conditioning. On subsequent
iterations, we observe that the features with the high-
est component of the gradient oscillate between iter-
ations, but the rest of the feature gradients stay the
same.

Based on our knowledge that the optimization
problem was poorly scaled, we divided by the fre-
quency of the feature. We can give the following
heuristic justification for our method of condition-
ing. For the ith feature weight, we will take a step
∆wi. Assume that we want to take the step ∆wi pro-
portional to the average gradient ĝi calculated from
n-best lists in which the feature is non-zero. In other
words, we want ∆wi = αĝi. Let gi be the total
gradient calculated by adding the gradients over all
n-best lists (i.e. summing over training examples
in the corpus). For a feature that is nonzero in ex-
actly ni n-best lists, the gradient from each example
will have been added up ni times, so the total gra-
dient gi = niĝi. Therefore we should take the step
∆wi = αgi/ni. In other words, we rescale each
component gi of the gradient by 1/ni before taking
the gradient step.

We can relate this argument back to the oscillation
we observed of the rule feature weights. For rules
that are used a thousand times more often than the
average rule, the corresponding component of the
gradient is roughly a thousand times larger. But that
does not indicate that the adjustment ∆wi to the rule
weight should be a thousand times larger in each it-
eration.

6 Experiments

We evaluate and analyze the performance of our
training method with three sets of experiments. The
first set of experiments compares HOLS to other
tuning algorithms used in machine translation in a
medium-scale discriminative setting. The second set
looks in detail at HOLS for large scale discriminative
training for a Chinese-English task. The third set
looks at two other languages.

All the experiments use a Hiero MT system with
rule indicator features for the sparse features and the
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Table 2: Corpora

Language Corpus Sentences Tokens
Source Target

En Gigaword 24M 594M
Ar-En Train 1M 7M 31M

Dev (MT06) 1797 13K 236K
MT05 1,056 7K 144K

MT08nw 813 5K 116K
MT05wb 547 5K 89K

Mg-En Train 89K 2.1M 1.7M
Dev 1,359 34K 28K
Test 1,133 29K 24K

Zh-En Train (FBIS) 302K 1M 9.3M
Dev (MT06) 1,664 4K 192K

Test (MT02-03) 1,797 5K 223K
MT08 1,357 4K 167K

following 8 dense features: LM, phrasal and lexi-
cal p(e|f) and p(f |e), phrase and word penalties,
and glue rule. The total number of features is 2.2M
(Mg-En), 28.8M (Ar-En), and 10.8M (Zh-En). The
same features are used for all tuning methods, ex-
cept MERT baseline which uses only dense features.
Although we extract different grammars from vari-
ous subsets of the training corpus, word alignments
were done using the entire training corpus. We use
GIZA++ for word alignments (Och and Ney, 2003),
Thrax (Weese et al., 2011) to extract the grammars,
our decoder is cdec (Dyer et al., 2010) which uses
KenLM (Heafield, 2011), and we used a 4-gram LM
built using SRILM (Stolcke, 2002). Our optimizer
uses code implemented in the pycdec python inter-
face to cdec (Chahuneau et al., 2012). To speed up
decoding, for each source RHS we filtered the gram-
mars to the top 15 rules ranked by p(e | f). Statistics
about the datasets we used are listed in Table 2.

We use the “soft ramp 3” loss function (Gimpel,
2012; Gimpel and Smith, 2012) as the surrogate loss
function for calculating the gradient in HOLS. It is
defined as

L̃ =
n∑
i=1

[
− log

∑
y∈Gen(xi)

e~w·
~f(xi,y)−cost(yi,y)

+ log
∑

y∈Gen(xi)

e~w·
~f(xi,y)+cost(yi,y)

]

where the sum over i ranges over training exam-
ples, Gen(x) is the space of possible outputs and

derivations for the input x, and cost(yi, y) is add one
smoothing sentence level BLEU.7

Except where noted, all experiments are repeated
5 times and results are averaged, initial weights for
the dense features are drawn from a standard nor-
mal, and initial weights for the sparse features are
set to zero. We evaluate using MultEval (Clark et
al., 2011) and report standard deviations across opti-
mizer runs and significance at p = .05 using MultE-
val’s built-in permutation test. In the large-scale ex-
periments for HOLS, we only run the full optimizer
once, and report standard deviations using multiple
runs of the last MERT run (i.e. the last line search on
the dev data).

6.1 Comparison Experiments for ZH-EN

Our first set of experiments compares the perfor-
mance of the proposed HOLS algorithm to learn-
ing algorithms popularly used in machine transla-
tion on a Chinese-English task. We also compare to
a close relative of the HOLS algorithm: optimizing
the soft ramp 3 loss directly with online stochastic
gradient descent and with conditioning. As we will
see, SGD SOFTRAMP3 performs significantly worse
than HOLS, despite both algorithms optimizing sim-
ilar loss functions.

In the experiments in this section, we do not use
the full version of the training setup described in
§5 since we wish to compare to algorithms that do
not necessarily scale to large amounts of training
data. We therefore use only one fifth of the train-
ing data for learning the weights for both the dense
and sparse features.

In this section we refer to the subset of the train-
ing data used to learn the weights as the tuning set
(Tune). The grammar and LM are built using the
training data that is not in the tuning set (the LM also
includes the English monolingual corpus), and the
weights for the features are tuned using the tuning
set. This is similar to the typical train-dev-test split
commonly used to tune machine translation systems,
except that the tuning set is much larger (60k sen-
tence pairs versus the usual 1k-2k) and comes from
a random subset of the training data rather than a

7We found this loss function to work well, but other “soft”
loss functions (Gimpel, 2012; Gimpel and Smith, 2012) also
work. Gen(x) is restricted to a k-best size of 1000. Following
(Gimpel, 2012) cost(yi, y) is multiplied by a factor of 20.
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Table 3: Comparison Experiments for Zh-En

Algorithm Tune MT08 Runtime
MERT 22.1±.1 23.1±.1 6 hours
PRO 23.8±.05 23.6±.1 2 weeks
MIRA 21.7±.1 22.5±.1 19 hours
SOFTRAMP3 21.5±.3 22.3±.3 29 hours
HOLS 22.3±.1 23.4±.1 10 hours
HILS 24.3±.2 22.4±.1 10 hours

specialized development set.
We compare MERT, PRO (Hopkins and May,

2011), MIRA (Chiang, 2012), SOFTRAMP3, HOLS,
and a variant of HOLS which we call HILS (discussed
below). For HOLS, we used 10k of the 60k tun-
ing set for the line search, and the rest of the tun-
ing set was used for calculating the gradient. For
HILS (“Held-In” Line Search), the full 60k tuning
set was used to calculate the gradient, but the line
search was on a 10k subset of that set. For MERT,
we used a 10k subset of the tuning data because it
takes a long time to run on large datasets, and it only
has the eight dense features and so does not need the
entire 60k tuning set. All the subsets are drawn ran-
domly. Conditioning was performed only for HOLS,
HILS, and SOFTRAMP3 because conditioning would
affect the regularizer for PRO and require modifica-
tions to the MIRA algorithm. To do the condition-
ing for SOFTRAMP3 we used rule count during ex-
traction of the grammar and not the frequency in
the n-best lists because the online nature of SOFT-
RAMP3 prevents us from knowing how frequent a
rule will be (and the dense features are conditioned
using the corpus size). We chose MIRA’s best learn-
ing rate (η = .001) from {.1, .01, .001}, used de-
fault settings for PRO in cdec, and for SOFTRAMP3
we used the same loss function as HOLS but included
an L2 regularizer of strength .001 and used a step-
size of 1 (which was scaled because of condition-
ing). To remedy problems of length bias for sentence
level BLEU, we used brevity penalty smoothed and
grounded BLEU+1 for sentence level scores (Nakov
et al., 2012). Tuning was repeated four times with
different initial weights, except for PRO which we
only ran three times (due to training costs). The ini-
tial weights for MERT were drawn from a standard
normal distribution, and final MERT weights were

used as the initial weights for the dense features for
the other algorithms. Initial weights for the sparse
features were set to zero. For HOLS, and HILS, tun-
ing set BLEU scores were evaluated on the set that
the line search was run on. We also report run times
for 8 threads on an Opteron 6220 processor.8

The results are shown in Table 3. PRO and HOLS

are a statistically significant improvement upon the
MERT baseline on the MT08 test data, but MIRA,
SOFTRAMP3, and HILS are not.

HILS dramatically overfits the tuning set, while
HOLS does not, justifying the use of a held-out
dataset for the line search. SOFTRAMP3 performs
significantly worse than HOLS on the test set. PRO is
a promising training algorithm, but does not scale to
the full FBIS corpus because it requires many itera-
tions.

6.2 Full ZH-EN and Ablation Experiments

This set of experiments evaluates the performance
of the full HOLS algorithm described in §5 for
large-scale discriminative training on the full FBIS
Chinese-English dataset. Since this is a relatively
small and widely studied dataset, we also investigate
what happens if different aspects of the procedure
are omitted.

Table 4 gives the results. The number of updates
is the number of times the HOLS line search opti-
mizer is run (gradient updates). For 2 passes, 4 up-
dates, a line search is performed after a half pass
through the training data, which is repeated four
times for a total of two passes.

Using just one pass through the training data and

8Standard MIRA and SGD SOFTRAMP3 are not paralleliz-
able and only use a single thread. All of these algorithms were
run for one iteration, except for MERT which ran for at least
seven iterations, and PRO which we stopped after 20 iterations.

Table 4: Full-scale Chinese-English and Ablation
Experiments

Configuration Dev Test
MERT Baseline 29.9±.3 34.0±.8
2 Pass, 4 updates 31.1±.2 35.1±.4
1 Pass, 1 update 30.7±.1 34.6±.5
−Folds 30.0±.2 34.0±.4
−Conditioning 30.1±.1 34.2±.2
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Table 5: Arabic-English

System Dev (MT06) MT05 MT08(nw) MT08(wb)
MERT Baseline 39.2±.4 50.3±.4 45.2±.2 29.4±.14

HOLS 1 Pass, 2 updates 39.9±.9 51.2±.4 45.8±.4 30.0±.4

∆BLEU +.7 +.9 +.6 +.6

Table 6: Malagasy-English

System Dev Test
MERT Baseline 19.8±.3 17.7±.2
HOLS 1 Pass, 1 update 20.5±.1 18.4±.2

∆BLEU +.7 +.7

one gradient update, HOLS improves upon the MERT

baseline by .6 BLEU points, which is a statistically
significant improvement. With 2 passes through the
training data and 4 gradient updates, HOLS performs
even better, obtaining a 1.1 BLEU point improve-
ment over the baseline and is also statistically signif-
icant. With 16 threads, 1 pass, 1 update completed
in 9 hours, and 2 pass, 4 updates, completed in 40
hours. The medium-scale PRO setup in §6.1 obtains
a result of 34.4± .1 on this test set, which is a statis-
tically significant improvement of .4 BLEU points
over the MERT baseline but does not beat the large-
scale HOLS results.

Is folding and conditioning necessary? We ex-
periment with what happens if grammar and LM
folds are not used and if conditioning is not done.
−Folds denotes 1 pass 1 update without folds, and
−Conditioning denotes 1 pass 1 update without con-
ditioning. We can see that both these steps are im-
portant for the training procedure to work well.

The decrease in performance of the training pro-
cedure without folds or conditioning is dramatic but
not too surprising. With just one gradient update,
one would expect conditioning to be very important.
And from the lessons learned in section 3.1, one
would also expect the procedure to perform poorly
or even worse than the MERT baseline without gram-
mar or LM folds. But because HOLS runs MERT on
the dev data for the last line search, it is almost im-
possible for HOLS to be worse than the MERT base-
line. (This, in fact, was part of our motivation when
we originally attempted the HOLS algorithm.)

6.3 Other Language Pairs

The last set of experiments looks at the performance
of the learning algorithm for two other languages
and data scenarios for one pass through the training
data. Using the same setup for large-scale discrimi-
native training as before, we apply the training pro-
cedure to a large data scenario Arabic-English task
and a small data scenario Malagasy-English task
(Tables 5 and 6). The training procedure gives statis-
tically significant improvements over the baseline by
.6 to .9 BLEU for Arabic, and a statistically signif-
icant improvement of .7 BLEU for Malagasy. With
16 threads, the runtime was 44 hours for Arabic and
5 hours for Malagasy.

7 Conclusion

We have explored the difficulties encountered
in large-scale discriminative training for machine
translation, and introduced a learning procedure de-
signed to overcome them and scale to large corpora.
We leave to future work to experiment with feature
sets designed for the large-scale discriminative set-
ting. In particular, we hope this framework will fa-
cilitate incorporation of richer linguistic knowledge
into machine translation.
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Abstract

Measuring term informativeness is a funda-
mental NLP task. Existing methods, mostly
based on statistical information in corpora, do
not actually measure informativeness of a term
with regard to its semantic context. This pa-
per proposes a new lightweight feature-free
approach to encode term informativeness in
context by leveraging web knowledge. Given
a term and its context, we model context-
aware term informativeness based on semantic
similarity between the context and the term’s
most featured context in a knowledge base,
Wikipedia. We apply our method to three ap-
plications: core term extraction from snippets
(text segment), scientific keywords extraction
(paper), and back-of-the-book index genera-
tion (book). The performance is state-of-the-
art or close to it for each application, demon-
strating its effectiveness and generality.

1 Introduction

Computationally measuring importance of a word
in text, or “term informativeness” (Kireyev, 2009;
Rennie and Jaakkola, 2005), is fundamental to many
NLP tasks such as keyword extraction, text catego-
rization, clustering, and summarization, etc. Various
features derived from statistical and linguistic infor-
mation can be helpful in encoding term informative-
ness, whereas practical feature definition and selec-
tion are usually ad hoc, data-driven and application
dependent. Statistical information based on term
frequency (TF) and document frequency (DF) tend
to be more effective in finding keywords in large
corpora, but can have issues with small amounts of

text or small corpora. Linguistic information such
as POS tag patterns often require manual selection
based on prior applications. We contend that few
methods actually measure the informativeness of a
term to the discourse unit it contains. For example,
given a context such as “A graph comprises nodes
(also called vertices) connected by links (also known
as edges or arcs)”, it is difficult to measure the
term informativeness of “graph”, “nodes”, or “links”
based on any statistical or linguistic information.

This raises many issues. Is there a fundamental
and less ad hoc way to measure the term informa-
tiveness of a word within a discourse unit? Can we
actually find a general approach based on compre-
hensive and high-level “knowledge” and not have
to nitpick over features? Can this new metric be
effectively applied to real world applications? To
answer these questions, we develop a new term in-
formativeness metric, motivated by query-document
relevance in information retrieval. The higher the
relevance score a query-document pair is, the more
informative the query is to the document. If a sim-
ilar principle also exists between word and con-
text and there is an effective search engine return-
ing ranked contexts for a given word, then we con-
tend that word is more informative in the higher rank
contexts. To see the term informativeness of three
words “graph”, “nodes” and “links” in context, we
manually check the search results from Wikipedia,
Google, and Bing. We found that very similar con-
texts are among the top 5 ranked results of “graph”
while no such contexts appear in that of the other
two words. Thus, we define a context-aware term
informativeness based on the semantic relatedness
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between the context and the term’s featured contexts
(or the top important contexts that cover most of a
term’s semantics).

We apply the context-aware term informativeness
(CTI) to three typical NLP applications: core term
extraction in snippets, keyword extraction and back-
of-the-book index generation. Experiments show
that the method is effective and efficient. Moreover,
the metric can be easily combined with other meth-
ods, or as a feature for learning algorithms.

The remainder of this paper is organized as fol-
lows. Section 2 reviews the literature of term infor-
mativeness measurements. Section 3 proposes the
formal definition of the context-aware term informa-
tiveness as well as its practical implementation using
Web knowledge. Section 4 studies the three appli-
cations. Finally, we conclude with discussion and
future work.

2 Related Work

Most known approaches to measure term informa-
tiveness fall into basically two categories: statistics-
based and semantic-based.

Statistics-based methods, such as TFIDF (Salton
and Buckley, 1988), ResidualIDF(RIDF), Variance,
Burstiness and Gain, are based on derivations from
term frequency (TF) and document frequency (DF).
Sprck Jones defines IDF or inverse document fre-
quency as:

IDF (w) = −log2(dfw/D) (1)

where D is the size of the corpus (Jones, 1972;
Jones, 1973). Based on a finding that informative
words tend to have large deviation between IDF
and collection frequency fw(the total number of oc-
currence of a word), many other informativeness
scores have been proposed. Bookstein and Swan-
son (Bookstein and Swanson, 1974) introduced the
xI as:

XI = fw − dfw

Church and Gale (1995) introduced

variance(w) =
1

D − 1

D∑
d=1

(tdw − t̄w) (2)

where tdw denotes w’s TF in d and t̄w = fw/D indi-
cates its mean expected word rate. Another measure

suggested by them is

burstiness(w) =
fw

dfw
(3)

which tends to compare collection frequency and
document frequency directly. Informative words
were found to have IDF scores that are larger than
what would be expected according to the Poisson
model; residual IDF (RIDF) was introduced to mea-
sure this deviation

RIDF (w) = IDF (w)− ̂IDF (w) (4)

where ̂IDF (w) = −log2(1 − e−t̄w). In addition,
Papineni (2001) introduced the notion of gain as

gain(w) =
dfw

D

(
dfw

D
− 1− log(

dfw

D
)

)
(5)

More recently, Rennie and Jaakkola (2005) intro-
duced an informativeness score based on the fit of
a word’s frequency to a mixture of 2 Unigram dis-
tribution and applied it to named entity detection. It
is worth noting that term necessity, which measures
the probability that a term occurs in documents rel-
evant to a given query, has been well studied in In-
formation Retrieval community (Zhao and Callan,
2010; Yang and Callan, 2010). Though our CIT is
not designed for probabilistic retrieval models, we
may apply it to measure the term necessity in a query
by considering it as a context.

Despite extensive research on semantic analysis
and understanding of word and text (Deerwester et
al., 1990; Budanitsky and Hirst, 2006; Cilibrasi and
Vitanyi, 2007; Gabrilovich and Markovitch, 2007;
Agirre et al., 2009; Yazdani and Popescu-Belis,
2012), little work studied the measurement of the
semantics of term informativeness. An exception
is the LSAspec from Kireyev (2009), based on la-
tent semantic analysis (Deerwester et al., 1990),
which is defined as the ratio of a term’s LSA vec-
tor length to its document frequency and thus can
be interpreted as the rate of vector length growth.
However, latent semantic models such as LSA are
notoriously hard to interpret since the “latent con-
cepts” cannot be readily mapped to human knowl-
edge (Gabrilovich and Markovitch, 2007). Our ap-
proach explicitly leverages the semantics of word
and text using existing knowledge bases.
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Previous methods, all corpus-based, might be ef-
fective in identifying informative words at the doc-
ument or corpus level, but do not the ability to cap-
ture term informativeness in a particular context due
to their absence of semantics and obliviousness of
context. Our method measures the term informative-
ness within a context in a semantic-based approach,
regardless of the absence of statistical information.

3 Context-aware Term Informativeness

3.1 Context
A context of a word or phrase may refer to a few
words nearby (He et al., 2010), a sentence or para-
graph (Soricut and Marcu, 2003), or even a set
of documents containing it (Cilibrasi and Vitanyi,
2007). Here we define context as a syntactic unit
of discourse such as a sentence or paragraph, for ex-
ample, “PL/SQL is one of three key programming
languages embedded in the Oracle Database”, or
“There are two types of functions in PL/SQL”. The
universal context set U(t) of a word t is defined as
all the contexts containing it in the web. Different
contexts vary in their authority just like web pages
vary. For the two examples, we could argue that
the first context is much more “authoritative” than
the second. This can be verified by their popular-
ity on Google; (all results from actual search en-
gines were at the time of this publication) the first
retrieves approximately 302,000 exact matching re-
sults while the second retrieves only one. We con-
sider this as the number of citations of a context,
which, to some extent, indicates its “authority”. We
define the source of a context as the set of all docu-
ments citing it. Here “citing” instead of “containing”
is used because some documents may not literally
contain an exact copy of the context.

Given a term t, define its universal context set
U(t) = {ci} and the source of ci is S(ci) = {dij}.
Ideally, the authority of a context will be contributed
by every document citing it. Therefore, we define
the authority score of a context as

CA(ci) =
∑
j

DA(dij) (6)

where DA(dij) denotes the authority contributed by
dij . It is very difficult to acquire the universal con-
text set of a term. Considering that usually we only

care about the top few results of a query returned by
search engines and ignore a large faction of less im-
portant ones, it is reasonable to assume that a term’s
semantics will be well covered by a few important
contexts. We therefore define the featured context
set of term t, or Uf (t), as the top k contexts with
the highest authority scores, where k is an applica-
tion dependent parameter. In our experiments, the
default k for the Wikipedia based implementation is
20.

3.2 Term Informativeness

We now consider how to measure the term informa-
tiveness in context. Using the context “PL/SQL is
one of three key programming languages embedded
in the Oracle Database” (denoted by Cp) as an ex-
ample, for its term “PL/SQL”, the top three contexts
returned by Google are

1. PL/SQL (Procedural Language/Structured Query Language) is
Oracle Corporation’s procedural extension language for SQL and
the Oracle relational database.

2. PL/SQL is Oracle’s procedural extension to industry-standard
SQL. PL/SQL naturally, efficiently, and safely extends SQL.

3. This Oracle PL SQL tutorial teaches you the basics of program-
ming in PL/SQL like cursors, stored procedures, PlSQL func-
tions.

Those contexts, though being diverse in actual
meaning, all have semantic relatedness to Cp. Even
someone who does not completely understand them
can gain some meaning by observing common
words such as “Oracle”, “database” and “program-
ming”. However, checking the Google results for
“Oracle Database” or “programming languages”, we
will find little relatedness between them and Cp.
This suggests that if term ta in context c is more in-
formative than tb, then most likely the contexts from
ta’s featured context set will be more related to c
than will tb. Thus, given a term t and its featured
context set Uf (t) = {c1, ..., ck}, we define the term
informativeness of t in context ci as

I(t, ci) =
∑

cj∈Uf (t)

κ(ci, cj) · CA(cj) (7)

where κ(ci, cj) is the semantic relatedness of
ci and cj , which can be computed by various
semantic relatedness metrics such as Wikipedia
based (Gabrilovich and Markovitch, 2007; Yazdani
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and Popescu-Belis, 2012), Wordnet based (Agirre et
al., 2009; Budanitsky and Hirst, 2006), or simple co-
sine similarity and Jaccard similarity based (Zobel
and Moffat, 1998).

The context-aware term informativeness (CTI) in-
troduced above is a formal and general definition.
As such the definition in Equation (7) includes sev-
eral features such as context authority score, fea-
tured context set, semantic relatedness, and knowl-
edge base, any or all of which could be flexible for
different applications.

3.3 Implementation
Here, we present a simple practical implementation
using Wikipedia as the knowledge base and the con-
text authority estimated by the discounted rank of
the Wikipedia document. Note that the problem is
how to compute CA(cj) for each context in Uf . We
rewrite Equation (6) as

CA(ci) = DA(di0) +
∑
j ̸=0

DA(dij) (8)

where di0 is the original document of ci and all the
others are further derivatives of “citing” ci. For ex-
ample, the Wikipedia page of “PL/SQL” will be con-
sidered as the original document of Cp while all
other documents citing Cp are its derivatives. Intu-
itively, the authority of a context will mainly rely on
the authority of its original document. Here, we sim-
ply assume that the context authority depends only
on its original document, or

CA(ci) ≈ DA(di0) (9)

We then take the top ranked document returned by
the web knowledge base as the original document.
We present a practical implementation of CTI in
Algorithm 1. The discounted rank is used to rep-
resent the relative context authority score of each
context in Uf . We use Wikipedia as our knowl-
edge base to implement the metric since it is cur-
rently one of the largest and most readily available
knowledge repositories and, more importantly, pro-
vides free, unlimited and fast query APIs1. Given
any keyword, the Wikipedia query API will return
the ranked Wikipedia entries along with the contexts
containing the keyword. We set the default value 20

1http://www.mediawiki.org/wiki/API:Query

for k, or len(Uf ). Note that there could be other
variations of this implementation. For example, we
could rule out duplicate or very similar results in the
Uf . Search engines such as Google and Bing are
also potential sources since they return high qual-
ity web pages along with the contexts containing the
query keyword.

In terms of scalability, the proposed method is
inherently parallelizable, not only at the document
level, but also a the context level, since computing
CTI does not depend on any other context in the doc-
ument. In addition, we do not need to issue the same
query more than once. Our strategy is to locally
cache the returned results of every seen query. For a
new term seen in a previous query, we can directly
access the local cached file. If we have built a large
local pool, the queries will rarely go to a search en-
gine or other source. Given a corpus size N (words
in total), the number of actual issued queries will
be at most the number of unique terms, which is far
less than O(N). Of course, new terms never seen will
have to be processed, but there will be fewer of these
over time.

Algorithm 1: Wikipedia-based I(t, ci)

1 Input: t, ci

2 Output: I(t, ci)
3 begin
4 I ←− 0;
5 Uf ←− queryWikipedia(t);
6 for j ∈ range(len(Uf )) do
7 s←− κ(ci, Uf [j]);
8 if j > 0 then
9 I ←− I + s/ log(j + 1);

10 else I ←− I + s

11 return I;

4 Applications

4.1 Core Terms Extraction from Snippets
We first investigate CTI in a well defined setting.
That is, if we have a collection of terms such that
its most important context is a ”definition,” e.g.
“database” and “A database is a structured collec-
tion of data, which are typically organized to model
relevant aspects of reality, in a way that supports
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Exemplary snippets of computer science terms Top 5 terms ranked by CTI

Acrobat, a document exchange software from Adobe Systems, provides a platform-independent means of
creating, viewing, and printing documents. Acrobat can convert a DOS, Windows, UNIX or Macintosh
documents into a Portable Document Format (PDF) which can be displayed on any computer with an
Acrobat reader. The Acrobat reader can be downloaded free from the Adobe website.

Acrobat:3.19
Acrobat reader:2.94
Portable Document Format:2.08
Adobe website:2.03
Adobe Systems:1.82

Data mining (DM), also known as Knowledge-Discovery in Databases (KDD) or Knowledge-Discovery
and Data Mining (KDD), is the process of automatically searching large volumes of data for patterns. Data
mining uses automated data analysis techniques to uncover previously undetected relationships among
data items. Data mining often involves the analysis of data stored in a data warehouse. Three of the major
data mining techniques are regression, classification and clustering.

data mining:3.77
data mining techniques:3.64
KDD:1.79
Knowledge-Discovery:1.66
data analysis techniques:1.20

Firefox, also known as Mozilla Firefox, is a free, open source, cross-platform, graphical web browser
developed by the Mozilla Corporation and hundreds of volunteers. Firefox includes an integrated pop-up
blocker, tabbed browsing, live bookmarks, support for open standards, and an extension mechanism for
adding functionality. Although other browsers have some of these features, Firefox became the first such
browser to include them all and achieve wide adoption.

Mozilla Firefox:3.89
firefox:3.13
web browser:2.44
browser:2.39
graphical web browser:2.35

Table 1: Term ranked by CTI from exemplary snippets

processes requiring this information”, can CTI iden-
tify “database” as the most informative term in this
context? To construct the term-context pairs, we
could use the Wikipedia title and the top ranked
context returned by searching the title using the
Wikipedia API. Then we could test our metric based
on other search engines such as Google or Bing.
Testing manually, we found the results compare well
to the search engine results, since both Google and
Bing give top ranks to Wikipedia pages if the query
keyword is a Wikipedia title. For further analy-
sis, we need a collection of term-context pairs from
other sources different from Wikipedia. Fortunately,
we found a list of 1255 computer science terms
with its definition snippets manually created by Web
users 2. The snippets are literally different from
those contexts in Wikipedia and some of the terms
are even not Wikipedia titles, e.g. bBlog, BetBug,
etc. These can be part of an “initial” evaluation. The
core term extraction algorithm works in the follow-
ing steps for each term-context pair:

1. Extract all n-grams (1 ≤ n ≤ 4) in the context
as candidates

2. For each candidate, calculate its CTI using
Wikipedia based implementation

3. Return the top K highest CTI as core terms

We used the top 20 returned Wikipedia contexts
as a featured context set Uf and apply the cosine
similarity for κ. We show some exemplary snippets

2http://www.labautopedia.org/mw/index.php/List of
programming and computer science terms

K Precision (%) Recall (%) F1(%)
1 37.5 37.5 37.5
2 35.1 55.2 42.9
3 32.3 64.7 43.1
4 31.3 72.2 43.7
5 27.6 76.3 40.5
10 20.0 88.1 32.6

Table 2: Results on computer science term extrac-
tion from descriptive snippets

with its top 5 core terms and their CTI scores in Ta-
ble 1. The overall performance is shown in Table 2,
in terms of precision, recall and F1 scores based on
the only one titled term of each snippet as the ground
truth. CTI can correctly find the core term for 37.5%
snippets. If we take the top 5 results, then the recall
increase to 76.3%.

Though the algorithm can be easily parallelized,
sequentially runtime on all snippets took only
slightly more than a minute on a 2.35GHz Intel(R)
Xeon(R) 4 processors, 23GB of RAM, and Red Hat
Enterprise Linux Server(5.7) machine. However, the
time could vary due to network conditions.

Though these results look promising, but it could
be due to the high lexical similarity between this
dataset and Wikipedia content. To test on a more
general corpora, we explore more real world tasks.

4.2 Keyword Extraction

There is a rich literature on keyword extraction prob-
lem (Frank et al., 1999; Witten et al., 1999; Turney,
2000; Hulth et al., 2003; Tomokiyo and Hurst, 2003;
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Wiki20 citeulike180
Method P R F P R F
TFIDF 13.7 17.8 15.5 14.4 16.0 15.2
KEA 18.4 21.5 19.8 20.4 22.3 21.3
CTI 19.6 22.7 21.0 18.5 21.4 19.8

Table 3: Results on Wiki20 and citeulike180

Mihalcea and Tarau, 2004; Medelyan and Witten,
2008; Liu, 2010), most of which is treated as a clas-
sification or ranking problem with corresponding
machine learning algorithms that use statistical and
linguistic features in a corpus. Here, we consider
the task as finding the most informative keywords in
a document. Given a document d = {ci}, our key-
word extraction algorithm based on CTI works as
follows.

1. For each context ci in a document, compute the
semantic relatedness s(ci, d) between ci and d

2. For each n-gram (1 ≤ n ≤ 4) t in ci, calculate
I(t, ci) using Wikipedia based implementation

3. Select the top keywords with the highest∑
i I(t, ci) ∗ s(ci, d)

Note that for the last step keywords are selected
based on a summarized weighted informativeness
score over a document. Obviously, the pure co-
sine or Jaccard similarity is not a good choice
to measure semantic relatedness between two text
segments of very low lexical similarity. We thus
use the Wikipedia based ESA (Gabrilovich and
Markovitch, 2007) to compute the semantic relat-
edness s(ci, d) and κ(ci, cj). To make the cal-
culation more efficient, only the Wikipedia pages
whose title is contained in the dataset are used to
build the concept space. We ran the algorithm on
several datasets including Wiki20 (Medelyan et al.,
2008), citeulike180 (Medelyan et al., 2009) and Se-
mEval2010 (Kim et al., 2010) 3.

Though keyword extraction as a research topic
has a rich literature, to the best of our knowledge
there is no large scale datasets publicly available.
The Wiki20 dataset contains 20 computer science
articles each with around 5 terms labeled by 15
different teams. Every term is a Wikipedia title.

3http://code.google.com/p/maui-indexer/downloads/list

Method Precision (%) Recall (%) F1(%)
TFIDF 14.9 15.3 15.1
HUMB 27.2 27.8 27.5

CTI 19.3 20.1 19.7
CTI+ 25.3 26.2 25.7

Table 4: Results on SemEval2010

The citeulike180 contains a set of 180 papers each
tagged with around three tags by 332 users. For each
dataset, the collection of all labeled keywords by dif-
ferent taggers are considered as the gold standard
for a document. We use the set of all keywords for
evaluation; otherwise a more complicated evaluation
metrics for each dataset will be needed. It would
be better to investigate other weighting schemes.
However, the datasets here are relatively small and
the number of tags on which at least two annota-
tors agreed is significantly small; weighting the key-
words might not make too much difference. KEA 4

builds a Naive Bayes model using features TFIDF,
first occurrence, length of a phrase, and node de-
gree (number of candidates that are semantically re-
lated to this phrase) (Witten et al., 1999). First oc-
currence is computed as the percentage of the doc-
ument preceding the first occurrence of the term in
the document. We compute the node degree as the
textrank (Mihalcea and Tarau, 2004) degree in a doc-
ument by simply relating two candidate terms with
each other if they are in the same context. KEA
uses 5 fold cross validation. All precision P, re-
call R and F1 F results are over the top 10 candi-
date keywords and the micro-averaged results of the
first two datasets are shown in Table 3. The CTI-
based algorithm works better than KEA on Wiki20
but slightly worse on citeulike180. We argue that
the reason might be two-fold. First, CTI does not
use any inter-document or corpus information while
KEA learns from the corpus. As such, CTI might not
perform as well as supervised learning methods for a
domain dependent large corpus. Second, the labeled
keywords in Wiki20 are all Wikipedia titles while
those in citeulike are general tags labeled by volun-
tary web users. CTI would give more preference to
Wikipedia titles since their featured context set re-
turned from Wikipedia is more semantically repre-
sentative than other non-Wikipedia title words.

4http://www.nzdl.org/Kea/
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Dataset #Books #Words #Contexts Main domains
Gutenberg 55 7,164,463 301,581 History, Art, Psychology, Philosophy, Literature, Zoology
Open Book 213 22,279,530 1,135,919 Computer Science, Engineering, Information Science

Table 5: Datasets for book index generation evaluation

The SemEval2010 dataset contains a set of 284
scientific papers with 15 keyphrases assigned by
readers and authors. 144 of them are selected as
training set while the other 100 are for testing. A
comparison of CTI to the results from TFIDF and
the best reported results HUMB (Lopez and Romary,
2010) is shown in Table 4. It achieves 19.8% by
micro-averaged F1 score, ranking 11th out of the 19
systems submitted to the competition (Kim et al.,
2010). However, by adding the structural features
used by HUMB into CTI, we can improve the per-
formance by around 6%, making our results close
to that of HUMB. The structural information is en-
coded as weights for context that is located in ti-
tle, abstract, section titles and general content. Each
weight can be regarded as the prior probability that a
keyword will appear in the corresponding location,
whose value can be set according to the fraction of
the number of keyword occurrences of this type of
location with respect to the number of all keyword
occurrences in the entire training set. Here they are
set to be 0.3, 0.4, 0.25, and 0.05.

4.3 Back-of-the-book Index Generation

A back-of-the-book index (or book index) is a col-
lection of words or phrases, often alphabetically ar-
ranged as an index, created to give readers impor-
tant location of important information in a given
book. Usually indexing is done by freelancers hired
by authors or publishers, namely professional in-
dexers 5. Csomai and Mihalcea first evaluated the
performance of different informativeness measure-
ments for selecting book index terms (2007) and
then investigated automatic book index generation
in a supervised learning framework (2008) using
syntactic features, linguistical features, encyclope-
dic features, etc., as a keyword extraction problem
rather than building a actual book index.

A set of keywords is not a back-of-the-book in-
dex. What really matters for such an index is that

5http://www.asindexing.org/

an index term or phrase points to its proper loca-
tion in the text. For example, in “pattern recognition
and machine learning” by Bishop, “hidden Markov
model” appears in more than 20 pages while the
actual index entry has only 2 pages as its locators.
Thus the actual problem is to identify a index term
with its context. As such, learning a robust and ef-
ficient model for real book indexes is challenging.
First, books from different domains vary in vocabu-
lary composition and structure style, requiring vari-
ous indexing specialties. There are different index-
ing guides for medicine (Wyman, 1999), psychol-
ogy (Hornyak, 2002), and law (Kendrick and Zafran,
2001). Second, book indexing is a highly subjec-
tive work and indexes of different books are always
created by different professional indexers who have
their own preferences and background (Diodato and
Gandt, 1991; Diodato, 1994). Third, the training
set is extremely unbalanced. As we found in our
dataset, the index size is only 0.42% of the length of
book on average. All these motivate us to explore the
automatic creation of index terms that are aware of
the context at the term’s locations (locators). To do
so we propose the following efficient training-free
and domain independent approach:

1. For each context ci in a book, compute its
weight wi based on structural features

2. For each candidate term t in ci, calculate
I(t, ci) using Wikipedia based implementation

3. Select term-context pairs with the highest wi ∗
I(t, ci) as index entries

The weight in step 1 represents the relative im-
portance of a context in a book. w(c) = 1 −
cid(c)−cid(titlec)

Ntitlec
measures the weight based on the

normalized distance from the context to its direct
chapter or sub-chapter title, where cid(c) denotes the
id of context c, titlec the title of context c and Ntitlec

the number of contexts under titlec. To select candi-
date terms, we first filter the improbable index terms
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based on POS patterns using the Standard POS Tag-
ger (Toutanova et al., 2003). We then select multi-
word keyphrases based on Pointwise Mutual Infor-
mation (PMI) (Church and Hanks, 1990), which was
shown to be the best metric to measure word associ-
ations (Terra and Clarke, 2003).

To evaluate our back-of-the-book index gener-
ation method, we conduct extensive experiments
on books in various domains, from the Gutenberg
dataset and the open book dataset described in Ta-
ble 5. The first one was created by (Csomai and
Mihalcea, 2006), containing 55 free books collected
from Gutenburg6. Since the dataset does not pro-
vide the locators of index terms, we can only serve
the evaluation as a keyword extraction task. The sec-
ond dataset was collected from CiteSeer repository,
most of which are in computer science and engineer-
ing. We extracted the paged body text and the back
index using Pdfbox7. Having each index term asso-
ciated with its locators (page numbers), we can per-
form an evaluation for different methods, not based
solely on keyword extraction.

We first compare CTI with other metrics on both
datasets for keywords extraction since all other met-
rics are context-oblivious. CTI selects index terms
based on the sum of a term’s CTI scores over all its
contexts, the same as the algorithm used in Section
4.2. The results are shown in Table 6, where the in-
dex size = n indicates the number of output terms is
n times of the true book index size for each book.
The scores are the average recall over a dataset.
The CTI outperforms all other 7 metrics in the two
datasets as the output index size increases. More-
over, results show that TF and TFIDF are better than
RIDF in identifying book index terms, which seems
contradictory to previous findings (Church and Gale,
1995). A possible reason is that a book is much
longer than a regular document thus enhancing TF
as a better indicator of keywords but weakening the
role of IDF . We believe this is why Variance, Gain,
and Burstiness, which relies on DF , are less effec-
tive here. Wikipedia keyphraseness (Csomai and Mi-
halcea, 2008) can only find a small fraction of index
terms because it emphasizes Wikipedia titles that
have high in-degree in hyper-link network formed

6www.gutenberg.org/
7pdfbox.apache.org/
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Figure 1: Results for book index generation

by Wikipedia terms. However, a book index covers
much broader terms not titled in Wikipedia.

We then compare with three baselines TFIDF,
KEA, and SLD (supervised learning using decision
tree in Csomai’s (2008)) on the second dataset. For
SLD, we use all the features except the discourse
comprehension based ones which were too com-
plicate to implement. We choose a decision tree
because its training is much faster than the other
two models while its performance is quite close to
the best. We follow Csomai’s setting to choose
90%(192) books for training and the other 10%(21)
for test. We set two strategies to make the baselines
context-aware. First, we select the page of a term’s
first occurrence as its locator, denoted by “+FO” in
Figure 1. Second, we apply the context weight to
them, denoted by “+CW”. “CI-Indexer” denotes our
method. The results are shown in Figure 1a, 1b and
1c respectively. For all the three baselines, adding
context weight gives better performance than us-
ing the simple first occurrence guess, especially for
TFIDF. KEA benefits least from the context weights,
suggesting its first occurrence and node degree fea-
tures play a similar role as the context weight fea-
tures. SLD outperforms TFIDF and KEA under
both strategies probably because of the new fea-
tures of POS pattern and Wikipedia keyphraseness.
“SLD+CW” is the closest to ours. Finally, we show
in Figure 1d that increasing the size of featured con-
text set for CTI from 5 to 20 can slightly improve

266



Dataset Open book dataset Gutenberg dataset
Index size 1 2 3 4 5 1 2 3 4 5
Variance 2.4 4.8 7.5 10.4 13.4 1.1 2.9 5.3 8.0 11.0
Gain 2.9 6.4 10.2 14.3 18.2 4.9 9.0 14 18.6 23.0
Wikipedia keyphraseness 5.3 9.5 13.5 16.4 20.5 9.2 14.1 18.5 21.4 24.3
Burstiness 6.0 11.4 16.6 21.4 25.8 10.0 15.8 20.2 23.1 26.2
RIDF 8.6 14.5 19.5 23.9 28.0 10.4 15.9 20.1 23.2 26.3
TF 9.8 16.9 23.3 29.0 31.7 10.4 17.6 23.5 28.1 30.7
TFIDF 10.3 17.3 23.8 29.3 33.6 11.8 19.9 24.7 28.9 32.9
CTI 12.4 19.2 25.1 31.5 35.5 14.9 22.3 26.9 29.3 34.5

Table 6: Average recall(%) comparisons as the output index size increases

performance in different index size settings.

4.4 Discussion

The three applications are (incrementally) designed
for different goals. The first is a toy applica-
tion to show the potential capability of this ap-
proach, regardless of syntactic or statistical informa-
tion. Clearly, there are simple heuristics that can
work very well for this task, e.g. the first term
of the context. TF or TFIDF also performs quite
well. We can rewrite each context (by reordering the
terms, changing sentence structures, or substituting
the core terms with pronouns) to make them inef-
fective. However, this will not effect our method,
because what it essentially measures is a term’s in-
formativeness among a list of terms appearing in the
same context. However, for keyword extraction, a
topic with a rich literature, to the best of our knowl-
edge, has no publicly available large scale datasets,
which makes SemEval2010 the best available. We
believe our application on back-of-the-book index
generation showed how CTI can scale real world
large corpora and will scale to millions of books
since each book can be processed separately.

Based on the applications we explored, we can
see that the practical utility of CTI used alone could
be limited, especially for context-oblivious tasks.
It seems reasonable that this method does not out-
perform supervised learning methods designed for
keyword extraction. However, our method shows
what simple but elegant methods can achieve with-
out the overhead of machine learning, especially for
context-aware scenarios such as finding book index
terms.

5 Conclusion and Future Work

We developed a new web knowledge based method
for encoding informativeness of terms within a unit
of discourse. It is totally feature-free, corpus-free,
easy to implement, and inherently parallelizable.
Three typical applications on text snippets, scien-
tific papers and non-fiction books show its effec-
tiveness. The segmentation of context, the size of
featured context set, the semantic relatedness met-
ric κ, and the knowledge base might more or less
affect the final performance of CTI in terms of ac-
curacy or efficiency. For all applications, we treat a
paragraph as an individual context, which is not nec-
essary a complete discourse unit. However, it may
not be fair to set the same number for all context
terms. In addition, selection of semantic relatedness
and knowledge bases need further investigation. The
Wikipedia-based implementation might be a good
choice for the definitional snippets, scientific arti-
cles and text books since they are all “educational”
resources sharing a similar concept space. However,
it is an open question as whether it works for corpora
such as tweets, online reviews, and forum posts.

Based on the proposed methods and encouraging
results, it would be interesting to build an online in-
dexing tool which automatically finds informative
terms in generic text and generates a back-of-the-
book index for a sets of papers, books, theses and
other collections.
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Abstract

We here present and compare two unsuper-
vised approaches for inducing the main con-
ceptual information in rather stereotypical
summaries in two different languages. We
evaluate the two approaches in two differ-
ent information extraction settings: mono-
lingual and cross-lingual information extrac-
tion. The extraction systems are trained on
auto-annotated summaries (containing the in-
duced concepts) and evaluated on human-
annotated documents. Extraction results are
promising, being close in performance to
those achieved when the system is trained on
human-annotated summaries.

1 Introduction

Information Extraction (Piskorski and Yangarber,
2013) and Automatic Text Summarization (Saggion
and Poibeau, 2013) are two Natural Language Pro-
cessing tasks which require domain and language
adaptation. For over two decades (Riloff, 1993;
Riloff, 1996) the natural language processing com-
munity has been interested in automatic or semi-
automatic methods which could be used to port sys-
tems from one domain or task to another, aiming at
reducing at least in part the cost associated with the
creation of human annotated datasets. Automatic
system adaptation can take different forms: if high

∗This work is partially supported by Ministerio de Economı́a
y Competitividad, Secretarı́a de Estado de Investigación, De-
sarrollo e Innovación, Spain under project number TIN2012-
38584-C06-03 and Advanced Research Fellowship RYC-2009-
04291. We thank Biljana Drndarević for proofreading the paper.

quality human annotated data is available, then rule-
based or statistical systems can be trained on this
data (Brill, 1994), reducing the efforts of writing
rules and handcrafting dictionaries. If high quality
human annotated data is unavailable, a large non-
annotated corpus and a bootstrapping procedure can
be used to produce annotated data (Ciravegna and
Wilks, 2003; Yangarber, 2003). Here, we concen-
trate on developing and evaluating automatic proce-
dures to learn the main concepts of a domain and
at the same time auto-annotate texts so that they be-
come available for training information extraction or
text summarization applications. However, it would
be naive to think that in the current state of the art we
would be able to learn all knowledge from text au-
tomatically (Poon and Domingos, 2010; Biemann,
2005; Buitelaar and Magnini, 2005). We therefore
here concentrate on learning template-like represen-
tations from concise event summaries which should
contain the key information of an event.

18 de julio de 1994DateOfAttack . Un atentado
contra la sede de la Asociación Mutual Israelita
ArgentinaTarget de Buenos AiresPlaceOfAttack causa la
muerte de 86NumberOfVictims personas.
(18th July 1994. An attack against the headquarters
of the Jewish Mutual Association in Buenos Aires, Ar-
gentina, kills 86 people.)

Figure 1: Sample of Human Annotated Summary in
Spanish

An example of the summaries we want to learn
from is presented in Figure 1. It is a summary in
the terrorist attack domain in Spanish. It has been
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manually annotated with concepts such as DateO-
fAttack, Target, PlaceOfAttack, and NumberOfVic-
tims, which are key in the domain. Our task is to
discover from this kind of summary what the con-
cepts are and how to recognise them automatically.
As will be shown in this paper and unlike current
approaches (Chambers and Jurafsky, 2011; Leung et
al., 2011), the methods to be presented here do not
require parsing or semantic dictionaries to work or
specification of the underlying number of concepts
in the domain to be learn. The approach we take
learns concepts in the set of domain summaries, re-
lying on noun phrase contextual information. They
are able to generate reasonable domain conceptual-
izations from relatively small datasets and in differ-
ent languages.

The rest of the paper is structured as follows: In
Section 2 we overview related work in the area of
concept induction from text. Next, in Section 3 we
describe the dataset used and how we have processed
it while in Section 4 we outline the two unsuper-
vised learning algorithms we compare in this paper
for template induction from text. Then, in Section 5,
we describe the experiments on template induction
indicating how we have instantiated the algorithms
and in Section 6 we explain how we have extrinsi-
cally evaluated the induction process. In Section 7
we discuss the obtained results and in Section 8 we
summarize our findings and close the paper.

2 Related Work

A long standing issue in natural language process-
ing is how to learn conceptualizations from text in
automatic or semi-automatic ways. The availabil-
ity of redundant data has been used, for example,
to discover template-like representations (Barzilay
and Lee, 2003) or sentence-level paraphrases which
could be used for extraction or generation. Vari-
ous approaches to concept learning use clustering
techniques. (Leung et al., 2011) apply various clus-
tering procedures to learn a small number of slots
in three typical information extraction domains, us-
ing manually annotated data and fixing the num-
ber of concepts to be learnt. (Li et al., 2010) gen-
erate templates and extraction patterns for specific
entity types (actors, companies, etc.). (Chambers
and Jurafsky, 2011) learn the structure of MUC tem-

plates from raw data in English, an approach that
needs both full parsing and semantic interpretation
using WordNet (Fellbaum, 1998) in order to extract
verb arguments and measure the similarity betweern
verbs. In (Saggion, 2012) an iterative learning pro-
cedure is used to discover core domain conceptual
information from short summaries in two languages.
However, the obtained results were not assessed in a
real information extraction scenario. There are ap-
proaches which do not need any human interven-
tion or sophisticated text processing, but learn based
on redundancy of the input dataset and some well
grounded linguistic intuitions (Banko and Etzioni,
2008; Etzioni et al., 2004). Related to the work pre-
sented here are approaches that aim at generating
short stereotypical summaries (DeJong, 1982; Paice
and Jones, 1993; Ratnaparkhi, 2000; Saggion and
Lapalme, 2002; Konstas and Lapata, 2012).

3 Dataset and Text Processing Steps

For the experiments reported here we rely on the
CONCISUS corpus1 (Saggion and Szasz, 2012)
which is distributed free of charge. It is a corpus
of Web summaries in Spanish and English in four
different application domains: Aviation Accidents
(32 English, 32 Spanish), Earthquakes (44 English,
56 Spanish), Train Accidents (36 English, 43 Span-
ish), and Terrorist Attacks (42 English, 53 Spanish).
The dataset contains original and comparable sum-
mary pairs, automatic translations of Spanish sum-
maries into English, automatic translation of English
summaries into Spanish, and associated original full
documents in Spanish and English for two of the do-
mains (Aviation Accidents and Earthquakes). The
dataset comes with human annotations representing
the key information in each domain. In Table 1
we detail the concepts used in each of the domains.
Note that not all concepts are represented in each
of the summaries. Creation of such a dataset can
take up to 500 hours for a human annotator, con-
sidering data collection, cleansing, and annotation
proper. Only one human annotator and one curator
were responsible for the annotation process.

1http://www.taln.upf.edu/pages/concisus/.
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Aviation Accident Airline, Cause, DateOfAccident, Destination, FlightNumber, NumberOfVictims, Origin, Passengers, Place, Sur-
vivors, Crew, TypeOfAccident, TypeOfAircraft, Year

Earthquake City, Country, DateOfEarthquake, Depth, Duration, Epicentre, Fatalities, Homeless, Injured, Magnitude, Other-
PlacesAffected, Province, Region, Survivors, TimeOfEarthquake

Terrorist Attack City, Country, DateOfAccident, Fatalities, Injured, Target, Perpetrator, Place, NumberOfVictims, TypeOfAttack
Train Accident Cause, DateOfAccident, Destination, NumberOfVictims, Origin, Passenger, Place, Survivors, TypeOfAccident,

TypeOfTrain

Table 1: Conceptual Information in Summaries

3.1 Text Processing

In order to carry out experimentation we adopt the
GATE infrastructure for document representation
and annotation (Maynard et al., 2002). All doc-
uments in the dataset are processed with available
natural language processors to compute shallow lin-
gustic information. Documents in English are pro-
cessed with the ANNIE system, a morphological an-
alyzer, and a noun chunker, all three from GATE.
The documents in Spanish are analyzed with Tree-
Tagger (Schmid, 1995), a rule-base noun chunker,
and an SVM-based named entity recognition and
classification system.

4 Concept Induction Algorithms

Two algorithms are used to induce conceptual in-
formation in a domain from a set of textual sum-
maries. The algorithms form concepts based on tar-
get strings (or chunks) in the set of summaries us-
ing token-level linguistic information. The chunks
are represented with different features which are ex-
plained later in Section 5.1. One algorithm we use
is based on clustering, while the other is based on
iterative learning.

4.1 Clustering-based Induction

The procedure for learning conceptual information
by clustering is straithforward: the chunks in the set
of summaries are represented as instances consider-
ing both internal and sourrounding linguistic infor-
mation. These instances are the input to a clustering
procedure which returns a list of clusters each con-
taining a set of chunks. We consider each cluster as
a key concept in the set of domain summaries and
the chunks in each cluster as the concept extension.

4.2 Iterative Induction

We use the iterative learning algorithm described in
(Saggion, 2012) which learns from a set of sum-

maries S, also annotated with target strings (e.g.
chunks) and shallow linguistic information. In a nut-
shell the algorithm is as follows:

(1) Choose a document D from the set of summaries S
and add it to a training set TRAIN. Set REST to
S − TRAIN.

(2) Choose an available target concept T from D, i.e. a
target concept not tried before by the algorithm.

(3) Train a classifier on TRAIN to learn instances of
the target concept using the available linguistic fea-
tures; the classifier uses the linguistic information
provided.

(4) Apply the classifier to REST (all summaries minus
those in TRAIN) to annotate all instances of the tar-
get concept T .

(5) Select a document BEST in REST, where there is an
instance of the concept recognised with the highest
probability in the REST set.

(6) Remove BEST from REST and add BEST to the
training set, remove all identified instances of T
from REST, and go to step 3.

The algorithm is executed a number of times (see
Section 5.1 for parametrization of the algorithms)
to learn all concepts in the set of summaries, and
at each iteration a single concept is formed. There
are two circumstances when a concept being formed
is discarded and their associated initial target con-
cept removed from the learning process: one case is
when there are not enough occurrences of the con-
cept across a set of summaries; another case is when
too many identical strings are proposed as instances
for the concept in the set of summaries. This latter
restriction is only valid if we consider sets of non-
redundant documents, which is the case to which we
restrict our experiments.

4.3 Text Chunks
Given that the algorithms presented above try to in-
duce a concept from the chunks in the summaries,
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we are interested in assessing how the type of chunk
influences the learning process. Also, given that our
objective is to test methods which learn with mini-
mal human intervention, we are interested in inves-
tigating differences between the use of manual and
automatic chunks. We therefore use the following
chunk types in this work: gold chunks (gold) are the
human produced annotations (as in Figure 1); named
entity chunks (ne) are named entities computed by an
off-the-shelf named entity recognizer; noun chunks
(nc) are text chunks identified by rule-based off-the-
shelf NP chunkers and finally, wiki chunks (wiki) are
strings of text in the summaries which happen to be
Wikipedia titles.

In order to automatically compute these chunk
types, different levels of knowledge are needed.
For example, NP chunks require syntactic infor-
mation, while named entities and wiki chunks re-
quire some external form of knowledge, such as
precompiled gazetteer lists or access to an ency-
clopædia or a semantic dictionary. Named enti-
ties and noun chunks are computed as described in
Section 3, while wiki chunks are computed as fol-
lows: string n-grams w1w2...wn are computed in
each summary and strings w1 w2 ... wn are checked
against the Wikipedia on-line encyclopædia, if a
hit occurs (i.e. if for an English n-gram the page
en.wikipedia.org/wiki/w1... wn exists or for a Span-
ish n-gram the page es.wikipedia.org/wiki/w1... wn

exists), the n-gram is annotated in the summary as a
wiki chunk. Wiki chunks are cached to speed up the
automatic annotation process.

Spanish
P R F

Terrorist Attack 0.47 0.10 0.17
Aviation Accident 0.52 0.08 0.14
Earthquake 0.24 0.06 0.10
Train Accident 0.59 0.15 0.24

English
P R F

Terrorist Attack 0.46 0.39 0.42
Aviation Accident 0.40 0.27 0.32
Earthquake 0.27 0.22 0.24
Train Accident 0.57 0.27 0.36

Table 2: Baseline Induction Performance

4.4 Mapping the Induced Concepts onto
Human Concepts

For evaluation purposes, each induced concept is
mapped onto one human concept applying the fol-
lowing procedure: let HCi be the set of summary
offsets where human concept i occurs, and let ICi be
the set of summary offsets where automatic concept
i occurs, then the induced concept j is mapped onto
concept k such that: k = arg maxi(|HCi ∩ ICj |),
where |X| is the size of set X . That is, the in-
duced concept is mapped onto the label it gives it
a best match. As an example, one induced concept
in the terrorist attack domain containing the follow-
ing string instances: two bombs, car bomb, pair of
bombs, 10 coordinated shooting and bombing, two
car bombs, suicide bomb, the attack, guerrilla war-
fare, the coca-growing regions, etc. This induced
concept is mapped onto the TypeOfAttack human
concept in that domain.

4.5 Baseline Concept Induction

A baseline induction mechanism is designed for
comparison with the two learning procedures pro-
posed here. It is based on the mapping of named en-
tity chunks onto concepts in a straightforward way:
each named entity type is considered a different con-
cept and therefore mapped onto human concepts as
in Section 4.4. For example, in the terrorist attack
domain, Organization named entity type is mapped
by this procedure onto the human concept Target
(i.e. churches, government buildings, etc., are com-
mon targets in terrorist attacks) while in the Avia-
tion Accident domain the Organization named en-
tity type is mapped onto TypeOfAircraft (i.e. Boe-
ing, Airbus, etc. are names of organizations).

5 Experimental Setting and Results of the
Induction Process

In this section we detail the different parameters
used by the algorithms and report the performance
of the induction process with different inputs.

5.1 Settings

The features used by the induction procedure are ex-
tracted from the text tokens. We extract the POS tag,
root, and string of each token. The clustering-based
algorithm uses a standard Expectation Maximization
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Spanish
Iterative Clustering

P R F P R F
Terrorist Attack 0.25 0.59 0.35 0.59 0.59 0.59†

Aviation Accident 0.50 0.62 0.55 0.66 0.66 0.66†

Earthquake 0.34 0.51 0.41 0.56 0.53 0.55†

Train Accident 0.41 0.69 0.52 0.58 0.58 0.58
English

Iterative Clustering
P R F P R F

Terrorist Attack 0.23 0.39 0.29 0.50 0.50 0.50†

Aviation Accident 0.57 0.68 0.62 0.79 0.79 0.79†

Earthquake 0.26 0.53 0.34 0.39 0.39 0.39
Train Accident 0.50 0.59 0.54 0.61 0.61 0.61†

Table 3: Conceptual induction (Spanish and English) Using Gold
Chunks for Learning

implementation from the Weka machine learning li-
brary (Witten and Frank, 1999). We instruct the al-
gorithm to decide on the number of clusters based on
the data, instead of setting the number of clusters by
hand. The instances to cluster are representations of
the input chunks; these representations contain the
internal features of the chunks, as well as the infor-
mation of 5 tokens to the left of the beginning of
the chunk and 5 tokens to the right of the end of the
chunk. The transformation from GATE documents
into arff Weka files and the mapping from Weka onto
the GATE documents, is carried out using specific
programs. The classification algorithm used for the
iterative learning process is an SVM classifier dis-
tributed with the GATE system and tuned to per-
form chunk learning using the same features as the
clustering procedure (Li et al., 2004). This classifier
outputs a probability which we use for selecting the
best document at step (5) of the iterative procedure.
The document selected to start the process is the one
with more target strings, and the target string chosen
is the next available in textual order. The iterative
learning procedure is set to stop when the number
of concepts induced reaches the average number of
chunks in the corpus. Induced concepts not covering
at least 10% of the number of documents are dis-
carded, as are concepts with strings repeated at least
10% of the concept extension.

5.2 Experiments and Results

We carry out a number of experiments per domain
where we run the algorithms using as input the sum-
maries annotated with a different chunk type each
time. After each experiment all concepts induced are

Terrorist Attacks
Iterative Clustering

P R F P R F
nc 0.22 0.53 0.31† 0.15 0.51 0.23
ne 0.27 0.14 0.18 0.12 0.42 0.18
wiki 0.15 0.26 0.19 0.22 0.18 0.20
all 0.25 0.53 0.34† 0.12 0.51 0.20

Aviation Accidents
Iterative Clustering

P R F P R F
nc 0.30 0.50 0.38† 0.21 0.51 0.30
ne 0.84 0.07 0.14 0.57 0.07 0.13
wiki 0.29 0.28 0.28† 0.27 0.17 0.21
all 0.39 0.62 0.48† 0.16 0.31 0.21

Earthquakes
Iterative Clustering

P R F P R F
nc 0.29 0.42 0.34† 0.14 0.42 0.21
ne 0.20 0.19 0.20† 0.38 0.02 0.05
wiki 0.16 0.16 0.16 0.24 0.11 0.15
all 0.28 0.50 0.36† 0.12 0.46 0.19

Train Accidents
Iterative Clustering

P R F P R F
nc 0.36 0.66 0.47† 0.23 0.51 0.32
ne 0.33 0.66 0.44† 0.65 0.12 0.20
wiki 0.25 0.25 0.25 0.51 0.13 0.21
all 0.33 0.62 0.44† 0.16 0.50 0.24

Table 4: Comparison of conceptual induction in Spanish

mapped onto the human concepts (see Section 4.4)
producing auto-annotated summaries. The auto-
matic annotations are then compared with the gold
annotations, and precision, recall, and f-score fig-
ures are computed to observe the performance of the
two algorithms, the baseline, and the effect of type
of chunk on the learning process.

In Table 2 we report baseline performance on the
entire dataset. As can be appreciated by the obtained
numbers, directly mapping named entity types onto
concepts does not provide a very good performance,
especially for Spanish; we expected the learning
procedures to produce better results. In Table 3 we
present the results of inducing concepts from the
gold chunks by the two algorithms. In almost all
cases, using gold chunks improves over the baseline
procedure, except for the Terrorist Attack domain
in English, where the iterative learning procedure
underperforms the baseline. In all tested domains,
the clustering-based induction procedure has a very
competitive performance. A t-test is run to verify
differences in performance between the two systems
in terms of f-score. In all tested domains in Span-
ish, except the Train Accident domain, there are sta-
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Terrorist Attacks
Iterative Clustering

P R F P R F
nc 0.43 0.50 0.46† 0.23 0.42 0.30
ne 0.28 0.44 0.34 0.42 0.29 0.34
wiki 0.24 0.33 0.28† 0.15 0.25 0.19
all 0.31 0.49 0.38† 0.09 0.39 0.15

Aviation Accidents
Iterative Clustering

P R F P R F
nc 0.48 0.31 0.38 0.33 0.34 0.34
ne 0.53 0.38 0.44† 0.63 0.27 0.38
wiki 0.31 0.44 0.36† 0.28 0.37 0.32
all 0.50 0.67 0.58† 0.15 0.47 0.23

Earthquakes
Iterative Clustering

P R F P R F
nc 0.29 0.48 0.36† 0.06 0.40 0.10
ne 0.28 0.34 0.30 0.30 0.25 0.28
wiki 0.21 0.30 0.25† 0.16 0.23 0.19
all 0.31 0.44 0.37† 0.08 0.40 0.13

Train Accidents
Iterative Clustering

P R F P R F
nc 0.45 0.54 0.49† 0.32 0.50 0.39
ne 0.47 0.29 0.36 0.58 0.27 0.36
wiki 0.51 0.32 0.39† 0.30 0.29 0.29
all 0.50 0.58 0.53† 0.16 0.49 0.24

Table 5: Comparison of conceptual induction in English

Spanish
P R F

Aviation Accident 0.83 0.60 0.70
Earthquake 0.61 0.48 0.53
Train Accident 0.77 0.54 0.64

English
P R F

Aviation Accident 0.88 0.38 0.53
Earthquake 0.86 0.56 0.68
Train Accident 0.84 0.43 0.57

Table 6: Cross-lingual Information Extraction. System Trained with
Gold Summaries.

tistically significant differences between the cluster-
ing procedure and the iterative learning procedure
(p = 0.01). In all tested domains in English, except
for the Earthquake domain, there are statistically
significant differences between the performance of
clustering and iterative learning (p = 0.01).

Now we turn to the results of both algorithms
when automatic chunks are used, that is, when no
human annotation is provided to the learners. Re-
sults are reported in Tables 4 (Spanish) and 5 (En-
glish). The results are presented by the chunk type
used during the learning procedure. In addition
to the chunk types specified above, we include a
type all, which represents the use of all automat-

Aviation Accidents
Iterative Clustering

P R F P R F
gold 0.85 0.52 0.65† 0.84 0.41 0.55
all 0.88 0.49 0.63† 0.87 0.19 0.32
nc 0.87 0.46 0.60 0.88 0.46 0.60

Earthquakes
Iterative Clustering

P R F P R F
gold 0.65 0.41 0.50† 0.66 0.31 0.43
all 0.64 0.36 0.46 0.62 0.40 0.49
nc 0.63 0.33 0.43 0.67 0.38 0.49

Train Accidents
Iterative Clustering

P R F P R F
gold 0.81 0.54 0.65 0.82 0.52 0.64
all 0.81 0.52 0.64† 0.72 0.31 0.43
nc 0.79 0.54 0.64† 0.79 0.42 0.55

Table 7: Cross-lingual Information Extraction Results in Spanish
Translations. System trained with auto-annotated summaries in Span-
ish.

Aviation Accidents
Iterative Clustering

P R F P R F
gold 0.87 0.35 0.50 0.87 0.37 0.52
all 0.87 0.37 0.52† 0.82 0.18 0.29
nc 0.90 0.21 0.34† 0.90 0.17 0.29

Earthquakes
Iterative Clustering

P R F P R F
gold 0.87 0.53 0.66† 0.87 0.36 0.51
all 0.88 0.51 0.64† 0.87 0.30 0.45
nc 0.88 0.51 0.65† 0.93 0.43 0.59

Train Accidents
Iterative Clustering

P R F P R F
gold 0.82 0.30 0.44 0.87 0.32 0.47
all 0.84 0.39 0.53† 0.91 0.24 0.38
nc 0.89 0.36 0.51† 0.46 0.25 0.32

Table 8: Cross-lingual Information Extraction Results in English
Translations. System trained with auto-annotated summaries in English.

ically computed chunks (i.e. nc, ne, wiki). We
observe that, in general, when presented with au-
tomatic chuks, the iterative learning procedure is
able to induce concepts with a better f-score than
the clustering-based algorithm. A t-test is run to
verify differences between the two induction pro-
cedures within each chunk condition (differences
shown with a † in the tables). In 11 out of 16 cases
in Spanish and in 12 out of 16 cases in English,
statistically significant differences are observed. In
three out of four domains the combination of au-
tomatic chunks outperforms the use of individual
chunk types. Generally, named entity chunks and
wiki chunks have the lowest performance. This is
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Spanish
P R F

Aviation Accident 0.56 0.47 0.51
Earthquake 0.64 0.41 0.50

English
P R F

Aviation Accident 0.61 0.35 0.44
Earthquake 0.78 0.41 0.54

Table 9: Extraction from Full Documents. System Trained on Gold
Summaries.

Aviation Accidents
Iterative Clustering

P R F P R F
gold 0.55 0.37 0.44 0.54 0.31 0.39
all 0.55 0.36 0.43† 0.69 0.17 0.27
nc 0.45 0.22 0.30† 0.52 0.26 0.35

Earthquake
Iterative Clustering

P R F P R F
gold 0.62 0.31 0.41† 0.63 0.22 0.33
all 0.61 0.26 0.37 0.63 0.31 0.41†

nc 0.60 0.24 0.35 0.70 0.28 0.40†

Table 10: Full-text Information Extraction Results in Spanish. Sys-
tem trained with auto-annotated summaries in Spanish.

not an unexpected result since named entities, for
example, cover much fewer strings which may form
part of a concept extension. Additionally, off-the-
shelf entity recogizers only identify a limited num-
ber of entity types.

6 Information Extraction Evaluation
Framework

The numbers above are interesting because they pro-
vide intrinsic evaluation of the concept induction
procedure, but they do not tell us much about their
usability. Therefore, and in order to better assess
the value of the discovered concepts, we decided to
carry out two extrinsic evaluations using an informa-
tion extraction task. Once the conceps are induced
and, as a result, the summaries are auto-annotated
with domain specific concepts, we decide to train
an off-the-shelf SVM token classification procedure
and apply it to unseen human annotated documents.
The SVM classifier uses the same linguistic infor-
mation as the induction procedures: token level in-
formation and a window size of 5 around each token
to be classified.

Aviation Accidents
Iterative Clustering

P R F P R F
gold 0.60 0.28 0.39 0.62 0.31 0.41†

all 0.62 0.30 0.41† 0.54 0.14 0.23
nc 0.53 0.15 0.23† 0.46 0.10 0.16

Earthquake
Iterative Clustering

P R F P R F
gold 0.70 0.35 0.47† 0.72 0.32 0.44
all 0.74 0.37 0.49 0.70 0.22 0.34
nc 0.73 0.36 0.48† 0.73 0.30 0.42

Table 11: Full-text Information Extraction Results in English. Sys-
tem trained with auto-annotated summaries in English.

6.1 Extraction from Automatic Translations
The first task we carry out is cross-lingual informa-
tion extraction where the input documents are auto-
matic translations of summaries in Spanish and En-
glish2. Note that the expriment is performed in three
domains for which such translations are manually
annotated. We first run an experiment to assess the
extraction performance of the SVM when trained on
human annotated data. Results of the experiment
are reported in Table 6 and they should be taken
as an upperbound of the performance of a system
trained on auto-annotated summaries. We then train
the SVM on the different auto-annotated datasets,
but note that due to space restrictions, we here only
report the three most revealing experiments per lan-
guage: concepts induced with gold chunks, noun
chunks, and all automatic chunks. Results are re-
ported in Table 7 (Spanish) and in Table 8 (English).
In most cases the SVM trained with auto-annotated
summaries produced by the iterative learning proce-
dure outperforms the clustering-based method with
statistically significant differences († shown in the
tables) (p = 0.01).

6.2 Extraction from Full Documents
The second and the last evaluation consists in the ap-
plication of the SVM extraction system to full doc-
uments. In this case, the experiment can be run only
in two domains for which full documents have been
provided and manually annotated. We first test the
performance of the system when trained on human
annotated summaries and present the results in Ta-
ble 9. Results of the experiments when the system
is trained on auto-annotated datasets are shown in

2The translations were produced by Google translator.
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Tables 10 (Spanish) and 11 (English). Results are
lower than when training on clean human annotated
summaries. It is unclear which approach is more
competitive when training with auto-annotated sum-
maries. What is clear is that the performance of
the iterative learning algorithm when training with
concepts induced from gold chunks is not statisti-
cally different (according to a t-test and p = 0.01)
from the performance of the algorithm when training
with concepts induced from automatically computed
chunks. We consider this to be a positive outcome of
the experiments.

7 Discussion

The two methods presented here are able to produce
partial domain conceptualizations from a relatively
small set of domain summaries3. We have found
that the clustering-based procedure is very competi-
tive when presented with gold chunks. On the other
hand, the iterative learning procedure performs very
well when presented with automatic chunks in all
tested domains and the two languages. We have also
found that the performance of the iterative induction
system is not much affected by the use of automati-
cally computed chunks. We have run a t-test to ver-
ify the differences in induction performance when
learning with gold and automatic chunks (all con-
dition) and have found statistically significant dif-
ferences in only one domain out of four in Spanish
(Terrorist Attack) and in two domains out of four
in English (Aviation Accident and Train Accident)
(p = 0.01). The applicability of the induction pro-
cess, that is, if the auto-annotated data could be used
for specific tasks, has been tested in two information
extraction experiments. In a cross-lingual informa-
tion extraction setting (Riloff et al., 2002; Saggion
and Szasz, 2011) we have observed that a system
trained on automatically computed chunks has a per-
formance close to one trained on concepts induced
from gold chunks. No statistically significant differ-
ences exist (p = 0.01) between the use of automatic
chunks and gold chunks, except for the Train Acci-
dent domain in English, where the system trained
on fully automatically annotated summaries has a
better performance. In a full document information

3Depending on the language and domain, between 50% and
77% of all concepts are generated.

extraction task, although the best system trained on
auto-annotated summaries in Spanish has a big dif-
ference with respect to a system trained on human-
annotated summaries, in English the differences are
slight. We belive that this is due to the differences
in performance between the underlying text process-
ing components. Our methods work by grouping to-
gether sets of chunks, unlike (Chambers and Juraf-
sky, 2011), whose approach is centered around verb
arguments and clustering, and relies on the avail-
ability of considerable amounts of data. Ontology
learning approaches such as OntoUSP (Poon and
Domingos, 2010) are also clustering-based but fo-
cus on learning is-a relations only. Unlike (Leung et
al., 2011) whose approach is based on gold-standard
humman annotations, we here test the performance
of the induction process using automatically com-
puted candidate strings, and we additionally learn
the number of concepts automatically.

8 Conclusions and Future Work

In this paper we have concentrated on the prob-
lem of knowledge induction from text summaries.
The approaches we have presented are fully unsu-
pervised and are able to produce reasonable con-
ceptualizations (close to human concepts) without
relying on annotated data. Unlike previous work,
our approach does not require full syntactic parsing
or a semantic dictionary. In fact, it only requires
a process of text chunking and named entity recog-
nition, which we have carefully assessed here. We
believe our work contributes with a viable method-
ology to induce conceptual information from texts,
and at the same time with an auto-annotation mech-
anism which could be used to train information ex-
traction systems. Since our procedure requires very
little linguistic information, we believe it can be suc-
cessfully applied to a number of languages. We also
believe that there is much work to be carried out and
that induction from summaries should be comple-
mented with a process that explores full event re-
ports, in order to reinforce some induced concepts,
discard others, and discover additional ones.
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Abstract 

Language variations are generally known to 

have a severe impact on the performance of 

Human Language Technology Systems. In or-

der to predict or improve system performance, 

a thorough investigation into these variations, 

similarities and dissimilarities, is required. 

Distance measures have been used in several 

applications of speech processing to analyze 

different varying speech attributes. However, 

not much work has been done on language dis-

tance measures, and even less work has been 

done involving South African languages. This 

study explores two methods for measuring the 

linguistic distance of six South African lan-

guages. It concerns a text based method, (the 

Levenshtein Distance), and an acoustic ap-

proach using extracted mean pitch values. The 

Levenshtein distance uses parallel word tran-

scriptions from all six languages with as little 

as 144 words, whereas the pitch method is 

text-independent and compares mean language 

pitch differences. Cluster analysis resulting 

from the distance matrices from both methods 

correlates closely with human perceptual dis-

tances and existing literature about the six lan-

guages.     

1 Introduction 

The development of objective metrics to assess the 

distances between different languages is of great 

theoretical and practical importance. Currently, 

subjective measures have generally been employed 

to assess the degree of similarity or dissimilarity 

between different languages (Gooskens & 

Heeringa, 2004; Van-Bezooijen & Heeringa, 2006; 

Van-Hout & Münstermann, 1981), and those sub-

jective decisions are, for example, the basis for 

classifying separate languages, and certain groups 

of language variants as dialects of one another. It is 

well known that languages are complex; they differ 

in vocabulary, grammar, writing format, syntax 

and many other characteristics. This presents levels 

of difficulty in the construction of objective com-

parative measures between languages. Even if one 

intuitively knows, for example, that English is 

closer to French than it is to Chinese, what are the 

objective factors that allow one to assess the levels 

of distance? 

     This bears substantial similarities to the analo-

gous questions that have been asked about the rela-

tionships between different species in the science 

of cladistics. As in cladistics, the most satisfactory 

answer would be a direct measure of the amount of 

time that has elapsed since the languages’ first split 

from their most recent common ancestor. Also, as 

in cladistics, it is hard to measure this from the 

available evidence, and various approximate 

measures have to be employed instead. In the bio-

logical case, recent decades have seen tremendous 

improvements in the accuracy of biological meas-

urements as it has become possible to measure dif-

ferences between DNA sequences. In linguistics, 

the analogue of DNA measurements is historical 

information on the evolution of languages, and the 

more easily measured—though indirect measure-

ments (akin to the biological phenotype)—are ei-

ther the textual or acoustic representations of the 

languages in question. 
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     In the current article, we focus on language dis-

tance measures derived from both text and acoustic 

formats; we apply two different techniques, name-

ly Levenshtein distance between orthographic 

word transcriptions, and distances between lan-

guage pitch means in order to obtain measures of 

dissimilarity amongst a set of languages. These 

methods are used to obtain language groupings 

which are represented graphically using multidi-

mensional scaling and dendrograms—two standard 

statistical techniques. This allows us to visualize 

and assess the methods relative to known linguistic 

facts in order to judge their relative 

reliability(Zulu, Botha, & Barnard, 2008). 

     Our evaluation is based on six of the eleven 

official languages of South Africa.
1
 The eleven 

official languages fall into two distinct groups, 

namely the Germanic group (represented by Eng-

lish and Afrikaans) and the South African Bantu 

languages, which belong to the South Eastern Ban-

tu group. The South African Bantu languages can 

further be classified in terms of different sub-

groupings: Nguni (consisting of Zulu, Xhosa, Nde-

bele and Swati), Sotho (consisting of Southern So-

tho, Northern Sotho and Tswana), and a pair that 

falls outside these sub-families (Tsonga and Ven-

da). The six languages chosen for our evaluation 

are English, Afrikaans, Zulu, Xhosa, Northern So-

tho (also known as Sepedi) and Tswana, which 

equally represent the three groups; Germanic, 

Nguni and Sotho.  

     We believe that an understanding of these lan-

guage distances is not only of inherent interest, but 

also of great practical importance. For purposes 

such as language learning, the selection of target 

languages for various resources and the develop-

ment of Human Language Technologies, reliable 

knowledge of language distances would be of great 

value. Consider, for example, the common situa-

tion of an organization that wishes to publish in-

formation relevant to all languages in a particular 

multi-lingual community, but has insufficient fund-

ing to do so. Such an organization can be guided 

by knowledge of language distances and mutual 

intelligibility between languages to make an ap-

propriate choice of publication languages. 

     The following sections describe the Levenshtein 

distance and pitch characteristics in detail. There-

                                                           
1 Data for all eleven languages is available on the Lwazi web-

site: (http://www.meraka.org.za/lwazi/index.php).  

after, the paper will present an evaluation on the 

six languages of South Africa, highlighting lan-

guage groupings and proximity patterns. In conclu-

sion, the paper discusses the results.   

2 Theoretical Background 

Orthographic transcriptions are one of the most 

basic types of annotation used for speech transcrip-

tion, and are particularly important in most fields 

of research concerned with spoken language. The 

orthography of a language refers to the set symbols 

used to write a language and includes its writing 

system. English, for example, has an alphabet of 

26 letters which includes both consonants and 

vowels. However, each English letter may repre-

sent more than one phoneme, and each phoneme 

may be represented by more than one letter. In the 

current research, we investigate the use of Le-

venshtein distance on orthographic transcriptions 

for the assessment of language similarities. 

     On the other hand, speech has been and still 

very much is the most natural form of communica-

tion. Prosodic characteristics such as rhythm, stress 

and intonation in speech convey important infor-

mation regarding the identity of a spoken language. 

Results of perception studies on spoken language 

identification confirm that prosodic information, 

specifically pitch and intensity—which represent 

intonation and stress respectively—are useful for 

language identification (Kometsu, Mori, Arai, & 

Murahara, 2001; Mori et al., 1999). This paper pre-

sents a preliminary investigation of pitch and its 

role in determining acoustic based language dis-

tances.    

2.1 Levenshtein Distance 

There are several ways in which phoneticians have 

tried to measure the distance between two linguis-

tic entities, most of which are based on the descrip-

tion of sounds via various representations. This 

section introduces the Levenshtein Distance Meas-

ure, one of the more popular sequence-based dis-

tance measures. In 1995 Kessler introduced the use 

of the Levenshtein Distance as a tool for measuring 

linguistic distances between dialects (Kessler, 

1995). The basic idea behind the Levenshtein Dis-

tance is to imagine that one is rewriting or trans-

forming one string into another. Kessler 

successfully applied the Levenshtein Distance 
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measure to the comparison of Irish dialects. In his 

work, the strings were transcriptions of word pro-

nunciations. In general, rewriting is effected by 

basic operations, each of which is associated with a 

cost, as illustrated in Table 1 in the transformation 

of the string “mošemane” to the string “umfana”, 

which are both orthographic translations of the 

word boy in Northern Sotho and Zulu respectively. 
 

 Operation Cost 

mošemane 

ošemane 

oemane 

omane 

omfane 

umfane 

umfana 

delete m 

delete š 

delete e 

insert f 

substitute o/u 

substitute e/a 

1 

1 

1 

1 

2 

2 

 Total cost 8 

 

Table 1. Levenshtein Distance between two strings. 

 

The Levenshtein Distance between two strings can 

be defined as the least costly sum of costs needed 

to transform one string into another. In Table 1, the 

transformations shown are associated with costs 

derived from operations performed on the strings.  

The operations used are: (i) the deletion of a single 

symbol, (ii) the insertion of a single symbol, and 

(iii) the substitution of one symbol for another 

(Kruskal, 1999). The edit distance method was also 

taken up by (Nerbonne et al., 1996) who applied it 

to Dutch dialects. Whereas Kruskal (1999) and 

Nerbonne et al. (1996) applied this method to pho-

netic transcriptions in which the symbols repre-

sented sounds, here the symbols were associated 

with alphabetic letters. 

     Similarly, Gooskens and Heeringa (2004) cal-

culated Levenshtein Distances between 15 Norwe-

gian dialects and compared them to the distances 

as perceived by Norwegian listeners. This compar-

ison showed a high correlation between the Le-

venshtein distances and the perceptual distances.  

2.2 Language pitch distance 

Speech is primarily intended to convey some mes-

sage through a sequence of legal sound units in a 

language. However, speech cannot merely be char-

acterized as a sequence of sound units. There are 

some characteristics that lend naturalness to 

speech, such as the variation of pitch, which pro-

vides some recognizable melodic properties to 

spoken language. This controlled modulation of 

pitch is referred to as intonation. The sound units 

are shortened or lengthened in accordance to some 

underlying pattern giving rhythmic properties to 

speech. The information attained from these 

rhythmic patterns increases the intelligibility of 

spoken languages, enabling the listener to segment 

continuous speech into phrases and words with 

ease (Shriberg, Stolcke, Hakkani-Tur, & Tur, 

2000). The characteristics that make us perceive 

this and other information such as stress, accent 

and emotion are collectively referred to as prosody. 

Comparisons have shown that languages differ 

greatly in their prosodic features (Hirst & Cristo, 

1998), therefore providing a basis for objective 

comparison between languages. Further, pitch is a 

perceptual attribute of sound, the physical correlate 

of which is fundamental frequency (F0), which rep-

resents vibration of the vocal folds.  

     This paper extracts pitch contours from six dif-

ferent languages, and uses the mean fundamental 

frequency values for each language to calculate the 

differences in pitch amongst them. From this we 

derive a distance matrix of F0 dissimilarities (dif-

ferences) which in turn is used to obtain language 

groupings.     

2.3 Language Clustering 

In using the Levenshtein Distance measure, the 

distance between two languages is equal to the av-

erage of a sample of Levenshtein Distances of cor-

responding word pairs. With pitch, the distance 

between two languages is merely the difference 

between the mean fundamental frequencies of the 

two languages. When we have n languages, then 

these distances are calculated for each possible pair 

of languages. For n languages n x n distances can 

be calculated. The corresponding distances are ar-

ranged in an n x n matrix. The distance of each 

language with respect to itself is found in the dis-

tance matrix on the diagonal from the upper left to 

the lower right. As this is a dissimilarity matrix, 

these values are always zero and therefore give no 

real information, so that only n x (n - 1) distances 

are relevant. Furthermore, both the Levenshtein 

and pitch distances are symmetric, implying that 

the distance between language X and Y is equal to 

the distance between language Y and X. Therefore, 

the distance matrix is symmetric. We need to use 

only one half which contains (n x (n - 1))/2 dis-
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tances. Given the distance matrix, groups of larger 

sizes are investigated. Hierarchical clustering 

methods are employed to classify the languages 

into related language groups using the distance 

matrix. 

     Data clustering is a common technique for sta-

tistical data analysis, which is used in many fields 

including machine learning, bioinformatics, image 

analysis, data mining and pattern recognition. 

Clustering is the classification of similar objects 

into different groups, or more precisely, the parti-

tioning of a data set into subsets, so that the data in 

each subset share some common trait according to 

a defined distance measure. The result of this 

grouping is usually illustrated as a dendrogram; a 

tree diagram used to illustrate the arrangement of 

the groups produced by a clustering algorithm 

(Heeringa & Gooskens, 2003), whereas multidi-

mensional scaling adds to illustrate the visualiza-

tion of the language proximities in a 2-dimensional 

space. 

3 Evaluation 

This evaluation aims to present language groups of 

the six chosen languages of South Africa generated 

from dissimilarity matrices of the languages. These 

matrices are the results of Levenshtein distance 

and average pitch distance measurements. The dia-

grams provide visual representations of the pattern 

of similarities and dissimilarities between the lan-

guages.  

3.1 Language grouping using Levenshtein 

distance 

Levenshtein distances were calculated using exist-

ing parallel orthographic word transcriptions of 

144 words from each of the six languages. The 

data was manually collected from various multilin-

gual dictionaries and online resources.  Initially, 

200 common English words, mostly common 

nouns easily translated into the other five lan-

guages, were chosen. From this set, those words 

having unique translations into each of the other 

five languages were selected, resulting in 144 

words that were used in the evaluations. Examples 

of four word translations in all six languages are 

shown in Table 2. 

 
 

Eng Afr Xho Zul N.Sot Tsw 

fish vis intlanzi inhlanzi hlapi tlhapi 

house huis indlu indlu ntlo ntlo 

mother ma uma umama mma mme 

school skool isikolo isikole sekolo sekole 

 

Table 2. Example translations of four common words.  

Distance matrix 

Table 3 represents the distance matrix, containing 

the distances, taken pair-wise, between the differ-

ent languages as calculated from the summed Le-

venshtein Distances between the 144 target words. 

The zero values along the diagonal axis of the ma-

trix indicate no dissimilarity, making it clear that 

higher values reveal high levels of dissimilarity 

between the paired languages. The distance matrix 

contains n x (n – 1)/2 independent elements in light 

of the symmetry of the distance measure.  
 

 Afr Eng Xho Zul N. Sot Tsw 

Afr 0 443 984 1014 829 887 

Eng 443 0 981 1002 820 881 

Xho 984 981 0 502 867 922 

Zul 1014 1002 502 0 881 945 

N. Sot 829 820 867 881 0 315 

Tsw 887 881 922 945 315 0 

 

Table 3. Distance matrices calculated from Levenshtein  

Distance between 144 words. 

 

Graphical representation  

The confusion matrices provide a clear indication 

of the ways the languages group into families. 

These relationships can be represented visually 

using graphical techniques. Multidimensional scal-

ing (MDS) is a technique used in data visualization 

for exploring the properties of data in high-

dimensional spaces. The algorithm uses a matrix of 

dissimilarities between items and then assigns each 

item a location in a low dimensional space to 

match those distances as closely as possible. The 

study used the dissimilarity matrix to serve as a 

measure between languages, and used the statisti-

cal package XLSTAT (XLSTAT, 2012). The dis-

similarity matrix was input into the 

multidimensional scaling algorithm which mapped 

the language dissimilarities in a 2-dimensional 

space. 
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     Figure 1 shows the mapping that was created 

using the dissimilarity matrix in Table 3; we can 

see that the languages from the same subfamilies 

group together. The mapping using just 144 words 

shows a definite grouping of the families. In the 

mapping the Sotho languages are more closely re-

lated internally than both the Nguni and Germanic 

languages as expected — from the historical record 

(Heine & Nurse, 2000), it is clear that a tighter in-

ternal grouping of the Sotho and Nguni languages 

is accurate. 
 

 

Figure 1. Multidimensional scale to represent dissimi-

larities between languages calculated from the dissimi-

larity matrix in Table 3. 

 

In conjunction with multidimensional scaling, den-

drograms also provide a visual representation of 

the pattern of similarities or dissimilarities among 

a set of objects. We again used the dissimilarity 

matrix in Table 3 with the statistical package 

XLSTAT. 

     Figure 2 illustrates the dendrogram derived 

from clustering the dissimilarities between the lan-

guages as depicted by the dissimilarity matrix in 

Table 3. The dendrogram shows three classes rep-

resenting the previously defined language group-

ings, Nguni, Sotho and Germanic. This 

dendrogram closely relates to the language group-

ings described in (Heine & Nurse, 2000). 
 

 
 

Figure 2. Dendrogram calculated from the dissimilarity 

matrix of Table 3. 

 

3.2 Pitch Extraction and language grouping 

The extraction of pitch contours was carried out 

with Praat (Boersma & Weenink, 2011), a free 

scientific software program for the analysis of 

speech and phonetics. The use of Praat is advanta-

geous in that it is fairly easy to use, has high pro-

cessing speed, is accurate and allows scripting, 

which is very useful in processing large numbers 

of files (in our case, speech recordings).  

     A Praat script was written specifying two main 

parameters; the expected minimum and maximum 

pitch values in Hertz, which were selected to be 

75Hz and 600Hz respectively. The extraction of 

pitch contours is based on the detection of perio-

dicities. The Praat command To PointProcess (pe-

riodic, peaks)… analyses the selected speech file 

and creates a sequence of points in time. The 

acoustic periodicity detection is performed on the 

basis of an accurate short-term analysis of the fun-

damental frequency and the harmonics-to-noise 

ratio working in the autocorrelation domain as de-

scribed by Boersma (Boersma, 1993). This method 

was able to achieve more accurate and noise-

resistant results when compared to combs or 

cepstrum based methods (Pokorny, 2011). The ex-

tracted acoustic periodicity contour is interpreted 

as being the frequency of an underlying sequence 

of glottal closures in vocal fold vibrations. For 

each speech file—for every voiced interval—a 
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number of points representing glottal pulses are 

found and their points in time are saved, forming 

the pitch contour for that particular speech file 

(Pokorny, 2011). Pitch contours were extracted 

from 5000 speech files per language for each of the 

six languages, with each language having approx-

imately 200 different speakers (25 recordings per 

speaker) with a relatively equal distribution of 

males and females, all aged between 18 and 65 

years.  

     The extracted pitch frequency points for all 

5000 files were collected and placed in a single 

array for each language. Each array represents the 

pitch distribution for the specific language, and the 

mean frequency for each language was used to 

model the respective language. The dissimilarity 

matrix was then derived from the differences of 

these means for each pair of languages. Figure 3 

illustrates the distribution of pitch frequencies for 

the selected languages. It clearly shows the relative 

pitch content variations of the different languages, 

which is key to determining the dissimilarity 

amongst the languages. Also of note in Figure 3 

are the peak positions representing approximate 

positions of male and female fundamental frequen-

cies—in the range of 85 to 180Hz for males and 

165 to 255 Hz for females.   
 

 

Figure 3. Distribution of pitch frequencies extracted 

from 6 South African languages. 

Distance matrix 

Table 4 represents the distance matrix—containing 

the distances taken pair-wise—between the differ-

ent languages as calculated from the mean pitch 

frequencies of the six languages. Again, higher 

numbers in the matrix reflect high dissimilarity 

between the selected pair of languages.  
 

  Afr Eng Xho Zul N. Sot Tsw 

Afr 0 5.1 16.09 17.11 9.66 12.61 

Eng 5.1 0 10.99 12.01 4.56 7.51 

Xho 16.09 10.99 0 1.02 6.43 3.48 

Zul 17.11 12.01 1.02 0 7.45 4.5 

N. Sot 9.66 4.56 6.43 7.45 0 2.95 

Tsw 12.61 7.51 3.48 4.5 2.95 0 

 

Table 4. Distance matrix calculated from mean pitch 

frequencies of six South African languages. 

 

Graphical representation 

As with the Levenshtein Distance, the relationships 

between the languages are represented visually in 

Figures 4 and 5 using graphical techniques and 

multidimensional scaling. The language dissimilar-

ities are mapped on to a 2-dimensional space 

shown in Figure 4. Here also, the languages from 

the same sub-families are grouped together. The 

relative closeness within the three sub-families is 

not as clearly indicated in Figure 4 as in Figure 1, 

but the distinction is clearly visible.  
 

 
 

Figure 4. Multi-dimensional scale calculated from the 

pitch-based matrix of Table 4. 

 

Figure 5 shows the dendrogram generated from the 

dissimilarities matrix of Table 4. As in Figure 2, 

the dendrogram shows three classes representing 

Afr

Eng

Xho

Zul

N. Sot

Tsw

-8

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6 8 10

D
im

2

Dim1

Multidimensional Scaling

285



the previously defined language sub-families. Fig-

ure 5 differs from Figure 2 in the branching of the 

three sub-families, where Figure 2 shows the Ger-

manic languages branching from the same parent 

as the Sotho sub-family. Figure 5 offers a more 

accurate account by separating the Germanic sub-

group from the Bantu languages. Thus, Figure 5 

depicts a more refined grouping of the languages 

than Figure 2. 
 

 
 

Figure 5. Dendrogram calculated from the pitch-based 

distance matrix of Table 4. 

 

 

Conclusion 

 
Both dissimilarity matrices resulting from the text-

based Levenshtein Distance and the acoustic mean 

pitch frequency differences can effectively be 

combined with multidimensional scaling and den-

drograms to epitomize language relationships. 

Both methods reflect the known family relation-

ships between the languages being studied. The 

main conclusion of this research is therefore that 

statistical methods, used with both text-based and 

acoustic-based methods and data, are able to pro-

vide useful objective measures of language similar-

ities or dissimilarities. It is clear that these methods 

can be refined further using other inputs such as 

phonetic transcriptions or further acoustic meas-

urements; such refinements are likely to be im-

portant when, for example, fine distinctions 

between dialects are required. 

     However, each approach has its advantages and 

disadvantages. Levenshtein Distance measures do 

not require much data to perform a reasonable 

classification of the data. With as few as 50 words 

per language, reasonable classification is possible. 

Also, the process of generating the distance matrix 

is not computationally taxing. However, this meth-

od is less discriminating in assessing languages 

with different writing styles, for example Chinese 

and English. Using pitch bares the advantage of 

using language data in its most natural form, but 

has its disadvantages in being computationally tax-

ing when dealing with large amounts of data—

which is generally required in order to produce 

good results.  

     It would be most interesting to see whether 

closer agreement between these methods can be 

achieved by measuring Levenshtein Distances be-

tween larger text collections—perhaps even paral-

lel corpora rather than translations of word lists. 

Comparing these distance measures with measures 

derived from different acoustic parameters, or a 

combination of parameters, is another pressing 

concern. Finally, it would be valuable to compare 

various distance measures against other criteria for 

language similarity (e.g. historical separation or 

mutual intelligibility) in a rigorous fashion. 
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Abstract

We present a new variant of the Syntax-
Augmented Machine Translation (SAMT) for-
malism with a category-coarsening algorithm
originally developed for tree-to-tree gram-
mars. We induce bilingual labels into the
SAMT grammar, use them for category coars-
ening, then project back to monolingual la-
beling as in standard SAMT. The result is a
“collapsed” grammar with the same expres-
sive power and format as the original, but
many fewer nonterminal labels. We show that
the smaller label set provides improved trans-
lation scores by 1.14 BLEU on two Chinese–
English test sets while reducing the occur-
rence of sparsity and ambiguity problems
common to large label sets.

1 Introduction

The formulation of statistical machine translation in
terms of synchronous parsing has become both the-
oretically and practically successful. In a parsing-
based MT formalism, synchronous context-free
grammar rules that match a source-language input
can be hierarchically composed to produce a corre-
sponding target-language output. SCFG translation
grammars can be extracted automatically from data.
While formally syntactic approaches with a single
grammar nonterminal have often worked well (Chi-
ang, 2007), the desire to exploit linguistic knowl-
edge has motivated the use of translation grammars
with richer, linguistically syntactic nonterminal in-
ventories (Galley et al., 2004; Liu et al., 2006; Lavie
et al., 2008; Liu et al., 2009).

Linguistically syntactic MT systems can derive
their label sets, either monolingually or bilingually,
from parallel corpora that have been annotated with
source- and/or target-side parse trees provided by
a statistical parser. The MT system may exactly
adopt the parser’s label set or modify it in some way.
Larger label sets are able to represent more precise,
fine-grained categories. On the other hand, they also
exacerbate a number of computational and modeling
problems by increasing grammar size, derivational
ambiguity, and data sparsity.

In this paper, we focus on the Syntax-Augmented
MT formalism (Zollmann and Venugopal, 2006), a
monolingually labeled version of Hiero that can cre-
ate up to 4000 “extended” category labels based on
pairs of parse nodes. We take a standard SAMT
grammar with target-side labels and extend its label-
ing to a bilingual format (Zollmann, 2011). We then
coarsen the bilingual labels following the “label col-
lapsing” algorithm of Hanneman and Lavie (2011).
This represents a novel extension of the tree-to-tree
collapsing algorithm to the SAMT formalism. Af-
ter removing the source-side labels, we obtain a new
SAMT grammar with coarser target-side labels than
the original.

Coarsened grammars provide improvement of up
to 1.14 BLEU points over the baseline SAMT results
on two Chinese–English test sets; they also outper-
form a Hiero baseline by up to 0.60 BLEU on one
of the sets. Aside from improved translation quality,
in analysis we find significant reductions in deriva-
tional ambiguity and rule sparsity, two problems that
make large nonterminal sets difficult to work with.

Section 2 provides a survey of large syntax-based
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MT label sets, their associated problems of deriva-
tional ambiguity and rule sparsity, and previous at-
tempts at addressing those problems. The section
also summarizes the tree-to-tree label collapsing al-
gorithm and the process of SAMT rule extraction.
We then describe our method of label collapsing in
SAMT grammars in Section 3. Experimental results
are presented in Section 4 and analyzed in Section
5. Finally, Section 6 offers some conclusions and
avenues for future work.

2 Background

2.1 Working with Large Label Sets

Aside from the SAMT method of grammar extrac-
tion, which we treat more fully in Section 2.3, sev-
eral other lines of work have explored increasing
the nonterminal set for syntax-based MT. Huang and
Knight (2006), for example, augmented the standard
Penn Treebank labels for English by adding lexi-
calization to certain types of nodes. Chiang (2010)
and Zollmann (2011) worked with a bilingual exten-
sion of SAMT that used its notion of “extended cat-
egories” on both the source and target sides. Taking
standard monolingual SAMT as a baseline, Baker et
al. (2012) developed a tagger to augment syntactic
labels with some semantically derived information.
Ambati et al. (2009) extracted tree-to-tree rules with
similar extensions for sibling nodes, resulting again
in a large number of labels.

Extended categories allow for the extraction of
a larger number of rules, increasing coverage and
translation performance over systems that are lim-
ited to exact constituent matches only. However,
the gains in coverage come with a corresponding
increase in computational and modeling complexity
due to the larger label set involved.

Derivational ambiguity — the condition of hav-
ing multiple derivations for the same output string
— is a particular problem for parsing-based MT sys-
tems. The same phrase pair may be represented with
a large number of different syntactic labels. Fur-
ther, new hierarchical rules are created by abstract-
ing smaller phrase pairs out of larger ones; each of
these substitutions must also be marked by a label
of some kind. Keeping variantly labeled copies of
the same rules fragments probabilities during gram-
mar scoring and creates redundant hypotheses in the

decoder at run time.
A complementary problem — when a desired rule

application is impossible because its labels do not
match — has been variously identified as “data spar-
sity,” the “matching constraint,” and “rule sparsity”
in the grammar. It arises from the definition of
SCFG rule application: in order to compose two
rules, the left-hand-side label of the smaller rule
must match a right-hand-side label in the larger rule
it is being plugged in to. With large label sets, it
becomes less likely that two arbitrarily chosen rules
can compose, making the grammar less flexible for
representing new sentences.

Previous research has attempted to address both
of these problems in different ways. Preference
grammars (Venugopal et al., 2009) are a technique
for reducing derivational ambiguity by summing
scores over labeled variants of the same deriva-
tion during decoding. Chiang (2010) addressed rule
sparsity by introducing a soft matching constraint:
the decoder may pay a learned label-pair-specific
penalty for substituting a rule headed by one label
into a substitution slot marked for another. Combin-
ing properties of both of the above methods, Huang
et al. (2010) modeled monolingual labels as distribu-
tions over latent syntactic categories and calculated
similarity scores between them for rule composition.

2.2 Label Collapsing in Tree-to-Tree Rules
Aiming to reduce both derivational ambiguity and
rule sparsity, we previously presented a “label col-
lapsing” algorithm for systems in which bilingual
labels are used (Hanneman and Lavie, 2011). It
coarsens the overall label set by clustering monolin-
gual labels based on which labels they appear joined
with in the other language.

The label collapsing algorithm takes as its input
a set of SCFG rule instances extracted from a par-
allel corpus. Each time a tree-to-tree rule is ex-
tracted, its left-hand side is a label of the form s::t,
where s is a label from the source-language cate-
gory set S and t is a label from the target-language
category set T . Operationally, the joint label means
that a source-side subtree rooted at s was the trans-
lational equivalent of a target-side subtree rooted at
t in a parallel sentence. Figure 1 shows several such
subtrees, highlighted in grey and numbered. Joint
left-hand-side labels for the collapsing algorithm,

289



Figure 1: Sample extraction of bilingual nonterminals for
label collapsing. Labels extracted from this tree pair in-
clude VBD::VV and NP::AD.

such as VBD::VV and NP::AD, can be assembled
by matching co-numbered nodes.

From the counts of the extracted rules, it is thus
straightforward to compute for all values of s and
t the observed P (s | t) and P (t | s), the probability
of one half of a joint nonterminal label appearing
in the grammar given the other half. In the figure,
for example, P (JJ |NN) = 0.5. The conditional
probabilities accumulated over the whole grammar
give rise to a simple L1 distance metric over any pair
of monolingual labels:

d(s1, s2) =
∑
t∈T

|P (t | s1)− P (t | s2)| (1)

d(t1, t2) =
∑
s∈S

|P (s | t1)− P (s | t2)| (2)

An agglomerative clustering algorithm then com-
bines labels in a series of greedy iterations. At each
step, the algorithm finds the pair of labels that is cur-
rently the closest together according to the distance
metrics of Equations (1) and (2), combines those two
labels into a new one, and updates the set of P (s | t)

and P (t | s) values appropriately. The choice of la-
bel pair to collapse in each iteration can be expressed
formally as

arg min
(si,sj)∈S2,(tk,t`)∈T 2

{d(si, sj), d(tk, t`)} (3)

That is, either a source label pair or a target label pair
may be chosen by the algorithm in each iteration.

2.3 SAMT Rule Extraction

SAMT grammars pose a challenge to the label col-
lapsing algorithm described above because their la-
bel sets are usually monolingual. The classic SAMT
formulation (Zollmann and Venugopal, 2006) pro-
duces a grammar labeled on the target side only.
Nonterminal instances that exactly match a target-
language syntactic constituent in a parallel sentence
are given labels of the form t. Labels of the form
t1+t2 are assigned to nonterminals that span exactly
two contiguous parse nodes. Categorial grammar la-
bels such as t1/t2 and t1\t2 are given to nontermi-
nals that span an incomplete t1 constituent missing
a t2 node to its right or left, respectively. Any non-
terminal that cannot be labeled by one of the above
three schemes is assigned the default label X.

Figure 2(a) shows the extraction of a VP-level
SAMT grammar rule from part of a parallel sen-
tence. At the word level, the smaller English phrase
supported each other (and its Chinese equivalent) is
being abstracted as a nonterminal within the larger
phrase supported each other in international affairs.
The larger phrase corresponds to a parsed VP node
on the target side; this will become the label of
the extracted rule’s left-hand side. Since the ab-
stracted sub-phrase does not correspond to a single
constituent, the SAMT labeling conventions assign
it the label VBD+NP. We can thus write the ex-
tracted rule as:

(4)

While the SAMT label formats can be trivially
converted into joint labels X::t, X::t1+t2, X::t1/t2,
X::t1\t2, and X::X, they cannot be usefully fed into
the label collapsing algorithm because the necessary
conditional label probabilities are meaningless. To
acquire meaningful source-side labels, we turn to a
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(a) (b)

Figure 2: Sample extraction of an SAMT grammar rule: (a) with monolingual syntax and (b) with bilingual syntax.

bilingual SAMT extension used by Chiang (2010)
and Zollmann (2011). Both a source- and a target-
side parse tree are used to extract rules from a par-
allel sentence; two SAMT-style labels are worked
out independently on each side for each nonterminal
instance, then packed into a joint label. It is there-
fore possible for a nonterminal instance to be labeled
s::t, s1\s2::t, s1+s2::t1/t2, or various other combi-
nations depending on what parse nodes the nonter-
minal spans in each tree.

Such a bilingually labeled rule is extracted in Fig-
ure 2(b). The target-side labels from Figure 2(a) are
now paired with source-side labels extracted from an
added Chinese parse tree. In this case, the abstracted
sub-phrase supported each other is given the joint
label VP::VBD+NP, while the rule’s left-hand side
becomes LCP+VP::VP.

We implement bilingual SAMT grammar extrac-
tion by modifying Thrax (Weese et al., 2011), an
open-source, Hadoop-based framework for extract-
ing standard SAMT grammars. By default, Thrax
can produce grammars labeled either on the source
or target side, but not both. It also outputs rules
that are already scored according to a user-specified

set of translation model features, meaning that the
raw rule counts needed to compute the label condi-
tional probabilities P (s | t) and P (t | s) are not di-
rectly available. We implement a new subclass of
grammar extractor with logic for independently la-
beling both sides of an SAMT rule in order to get the
necessary bilingual labels; an adaptation to the exist-
ing Thrax “rarity” feature provides the rule counts.

3 Label Collapsing in SAMT Rules

Our method of producing label-collapsed SAMT
grammars is shown graphically in Figure 3.

We first obtain an SAMT grammar with bilingual
labels, together with the frequency count for each
rule, using the modified version of Thrax described
in Section 2.3. The rules can be grouped according
to the target-side label of their left-hand sides (Fig-
ure 3(a)).

The rule counts are then used to compute label-
ing probabilities P (s | t) and P (t | s) over left-hand-
side usages of each source label s and each target
label t. These are simple maximum-likelihood es-
timates: if #(si, tj) represents the combined fre-
quency counts of all rules with si::tj on the left-hand
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Figure 3: Stages of preparing label-collapsed rules for SAMT grammars. (a) SAMT rules with bilingual nonterminals
are extracted and collected based on their target left-hand sides. (b) Probabiliites P (t | s) and P (s | s) are computed. (c)
Nonterminals are clustered according to the label collapsing algorithm. (d) Source sides of nonterminals are removed
to create a standard SAMT grammar.

side, the source-given-target labeling probability is:

P (si | tj) =
#(si::tj)∑
t∈T #(si::t)

(5)

The computation for target given source is analo-
gous. Each monolingual label can thus be repre-
sented as a distribution over the labels it is aligned
to in the opposite language (Figure 3(b)).

Such distributions over labels are the input to the
label-collapsing algorithm, as described in Section
2.2. As shown in Figure 3(c), the algorithm results
in the original target-side labels being combined into
different groups, denoted in this case as new labels
CA and CB. We run label collapsing for varying
numbers of iterations to produce varying degrees of
coarsened label sets.

Given a mapping from original target-side labels
to collapsed groups, all nonterminals in the original
SAMT grammar are overwritten accordingly. The
source-side labels are dropped at this point: we use
them only for the purpose of label collapsing, but not
in assembling or scoring the final grammar. The re-
sulting monolingual SAMT-style grammar with col-
lapsed labels (Figure 3(d)) can now be scored and
used for decoding in the usual way.

For constructing a baseline SAMT grammar with-
out label collapsing, we merely extract a bilingual

grammar as in the first step of Figure 3, immediately
remove the source-side labels from it, and proceed
to grammar scoring.

All grammars are scored according to a set of
eight features. For an SCFG rule with left-hand-side
label t, source right-hand side f , and target right-
hand side e, they are:

• Standard maximum-likelihood phrasal transla-
tion probabilities P (f | e) and P (e | f)

• Maximum-likelihood labeling probability
P (t | f, e)

• Lexical translation probabilities Plex(f | e) and
Plex(e | f), as calculated by Thrax

• Rarity score exp( 1
c
)−1

exp(1)−1 for a rule with extracted
count c

• Binary indicator features that mark phrase pair
(as opposed to hierarchical) rules and glue rules

Scored grammars are filtered down to the sen-
tence level, retaining only those rules whose source-
side terminals match an individual tuning or testing
sentence. In addition to losslessly filtering gram-
mars in this way, we also carry out two types of
lossy pruning in order to reduce overall grammar
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System Labels Rules Per Sent.
SAMT 4181 69,401,006 48,444
Collapse 1 913 64,596,618 35,004
Collapse 2 131 60,526,479 24,510
Collapse 3 72 58,483,310 20,445
Hiero 1 36,538,657 7,738

Table 1: Grammar statistics for different degrees of label
collapsing: number of target-side labels, unique rules in
the whole grammar, and average number of pruned rules
after filtering to individual sentences.

size. One pruning pass keeps only the 80 most fre-
quently observed target right-hand sides for each
source right-hand side. A second pass globally re-
moves hierarchical rules that were extracted fewer
than six times in the training data.

4 Experiments

We conduct experiments on Chinese-to-English MT,
using systems trained from the FBIS corpus of ap-
proximately 302,000 parallel sentence pairs. We
parse both sides of the training data with the Berke-
ley parsers (Petrov and Klein, 2007) for Chinese
and English. The English side is lowercased after
parsing; the Chinese side is segmented beforehand.
Unidirectional word alignments are obtained with
GIZA++ (Och and Ney, 2003) and symmetrized, re-
sulting in a parallel parsed corpus with Viterbi word
alignments for each sentence pair. Our modified ver-
sion of Thrax takes the parsed and aligned corpus as
input and returns a list of rules, which can then be
label-collapsed and scored as previously described.

In Thrax, we retain most of the default settings for
Hiero- and SAMT-style grammars as specified in the
extractor’s configuration file. Inheriting from Hiero,
we require the right-hand side of all rules to con-
tain at least one pair of aligned terminals, no more
than two nonterminals, and no more than five termi-
nals and nonterminal elements combined. Nonter-
minals are not allowed to be adjacent on the source
side, and they may not contain unaligned boundary
words. Rules themselves are not extracted from any
span in the training data longer than 10 tokens.

Our initial bilingual SAMT grammar uses 2699
unique source-side labels and 4181 unique target-
side labels, leading to the appearance of 29,088 joint

bilingual labels in the rule set. We provide the joint
labels (along with their counts) to the label collaps-
ing algorithm, while we strip out the source-side
labels to create the baseline SAMT grammar with
4181 unique target-side labels. Table 1 summarizes
how the number of target labels, unique extracted
rules, and the average number of pruned rules avail-
able per sentence change as the initial grammar is
label-collapsed to three progressively coarser de-
grees. Once the collapsing process has occurred ex-
haustively, the original SAMT grammar becomes a
Hiero-format grammar with a single nonterminal.

Each of the five grammars in Table 1 is used to
build an MT system. All systems are tuned and de-
coded with cdec (Dyer et al., 2010), an open-source
decoder for SCFG-based MT with arbitrary rule for-
mats and nonterminal labels. We tune the systems
on the 1664-sentence NIST Open MT 2006 data set,
optimizing towards the BLEU metric. Our test sets
are the NIST 2003 data set of 919 sentences and the
NIST 2008 data set of 1357 sentences. The tun-
ing set and both test sets all have four English ref-
erences.

We evaluate systems on BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2011), and
TER (Snover et al., 2006), as calculated in all three
cases by MultEval version 0.5.0.1 These scores for
the MT ’03 test set are shown in Table 2, and those
for the MT ’08 test set in Table 3, combined by Mult-
Eval over three optimization runs on the tuning set.

MultEval also implements statistical significance
testing between systems based on multiple optimizer
runs and approximate randomization. This process
(Clark et al., 2011) randomly swaps outputs between
systems and estimates the probability that the ob-
served score difference arose by chance. We report
these results in the tables as well for three MERT
runs and a p-value of 0.05. Systems that were judged
statistically different from the SAMT baseline have
triangles in the appropriate “Sig. SAMT?” columns;
systems judged different from the Hiero baseline
have triangles under the “Sig. Hiero?” columns. An
up-triangle (N) indicates that the system was better,
while a down-triangle (O) means that the baseline
was better.

1https://github.com/jhclark/multeval
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Metric Scores Sig. SAMT? Sig. Hiero?
System BLEU MET TER B M T B M T
SAMT 31.18 30.64 61.02 O O O
Collapse 1 31.42 31.31 60.95 N O O
Collapse 2 31.90 31.73 60.98 N N O N O
Collapse 3 32.32 31.75 60.54 N N N N O
Hiero 32.30 31.42 60.10 N N N

Table 2: MT ’03 test set results. The first section gives automatic metric scores; the remaining sections indicate
whether each system is statistically significantly better (N) or worse (O) than the SAMT and Hiero baselines.

Metric Scores Sig. SAMT? Sig. Hiero?
System BLEU MET TER B M T B M T
SAMT 22.10 24.94 63.78 O O O
Collapse 1 23.01 26.03 63.35 N N N N
Collapse 2 23.53 26.50 63.29 N N N N N
Collapse 3 23.61 26.37 63.07 N N N N N N
Hiero 23.01 25.72 63.53 N N N

Table 3: MT ’08 test set results. The first section gives automatic metric scores; the remaining sections indicate
whether each system is statistically significantly better (N) or worse (O) than the SAMT and Hiero baselines.

Figure 4: Extracted frequency of each target-side label, with labels arranged in order of decreasing frequency count.
Note the log–log scale of the plot.
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5 Analysis

Tables 2 and 3 show that the coarsened grammars
significantly improve translation performance over
the SAMT baseline. This is especially true for the
“Collapse 3” setting of 72 labels, which scores 1.14
BLEU higher on MT ’03 and 1.51 BLEU higher on
MT ’08 than the uncollapsed system.

On the easier MT ’03 set, label-collapsed systems
do not generally outperform Hiero, although Col-
lapse 3 achieves a statistical tie according to BLEU
(+0.02) and a statistical improvement over Hiero ac-
cording to METEOR (+0.33). MT ’08 appears as
a significantly harder test set: metric scores for all
systems are drastically lower, and we find approxi-
mately 7% to 8% fewer phrase pair matches per sen-
tence. In this case the label-collapsed systems per-
form better, with all three of them achieving statisti-
cal significance over Hiero in at least one metric and
statistical ties in the other. The coarsened systems’
comparatively better performance on the harder test
set suggests that the linguistic information encoded
in multiple-nonterminal grammars helps the systems
more accurately parse new types of input.

Table 1 already showed at a global scale the strong
effect of label collapsing on reducing derivational
ambiguity, as labeled variants of the same basic
structural rule were progressively combined. Since
category coarsening is purely a relabeling operation,
any reordering pattern implemented in the original
SAMT grammar still exists in the collapsed ver-
sions; therefore, any reduction in the size of the
grammar is a reduction in variant labelings. Figure
4 shows this process in more detail for the baseline
SAMT grammar and the three collapsed grammars.
For each grammar, labels are arranged in decreas-
ing order of extracted frequency, and the frequency
count of each label is plotted. The long tail of rare
categories in the SAMT grammar (1950 labels seen
fewer than 100 times each) is combined into a pro-
gressively sharper distribution at each step. Not only
are there fewer rare labels, but these hard-to-model
categories consume a proportionally smaller fraction
of the total label set: from 47% in the baseline gram-
mar down to 26% in Collapse 3.

We find that label collapsing disproportionately
affects frequently extracted and hierarchical rules
over rarer rules and phrase pairs. The 15.7% re-

duction in total grammar size between the SAMT
baseline and the Collapse 3 system affects 18.0% of
the hierarchical rules, but only 1.6% of the phrase
pairs. If rules are counted separately each time they
match another source sentence, the average reduc-
tion in size of a sentence-filtered grammar is 57.8%.

Intuitively, hierarchical rules are more affected by
label collapsing because phrase pairs do not have
many variant left-hand-side labels to begin with,
while the same hierarchical rule pattern may be in-
stantiated in the grammar by a large number of vari-
ant labelings. We can see this situation in more de-
tail by counting variants of a particular set of rules.
Labeled forms of the Hiero-style rule

X → [X1 X2] :: [the X2 of X1] (6)

are among the most frequently used rules in all five
of our systems. The way they are treated by label
collapsing thus has a strong impact on the results of
runtime decoding.

In the SAMT baseline, Rule (6) appears in the
grammar with 221 different labels in the X1 nonter-
minal slot, 53 labels for the X2 slot, and 90 choices
of left-hand side — a total of 1330 different label-
ings all together. More than three-fourths of these
variants were extracted three times or fewer from the
training data; even if they can be used in a test sen-
tence, statistical features for such low-count rules
are poorly estimated. During label collapsing, the
number of labeled variations of Rule (6) drops from
1330 to 325, to 96, and finally to 63 in the Collapse
3 grammar. There, the pattern is instantiated with 14
possible X1 labels, five X2 labels, and three different
left-hand sides.

It is difficult to measure rule sparsity directly (i.e.
to count the number of rules that are missing during
decoding), but a reduction in rule sparsity between
systems should be manifested as an increased num-
ber of hierarchical rule applications. Figure 5 shows
the average number of hierarchical rules applied per
sentence, distinguishing syntactic rules from glue
rules, on both test sets. The collapsed grammars al-
low for approximately one additional syntactic rule
application per sentence compared to the SAMT
baseline, or three additional applications compared
to Hiero. This shows an implicit reduction in miss-
ing syntactic rules in the collapsed grammars. In the
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Figure 5: Average number of hierarchical rules (both syntactic and glue rules) applied per sentence on each test set.

glue rule columns, we note that label collapsing also
promotes a shift away from generic glue rules, pos-
sibly via the creation of more permissive — but still
meaningfully labeled — syntactic rules.

6 Conclusion

We demonstrated a viable technique for reducing the
label set size in SAMT grammars by temporarily in-
ducing bilingual syntax and using it in an existing
tree-to-tree category coarsening algorithm. In col-
lapsing SAMT category labels, we were able to sig-
nificantly improve translation quality while using a
grammar less than half the size of the original. We
believe it is also more robust to test-set or domain
variation than a single-nonterminal Hiero grammar.
Collapsed grammars confer practical benefits during
both model estimation and runtime decoding. We
showed that, in particular, they suffer less from rule
sparsity and derivational ambiguity problems that
are common to larger label sets.

We can highlight two areas for potential improve-
ments in future work. In our current implementation
of label collapsing, we indiscriminately allow either
source labels or target labels to be collapsed at each
iteration of the algorithm (see Equation 3). This is
an intuitively sensible setting when collapsing bilin-
gual labels, but it is perhaps less obviously so for a
monolingually labeled system such as SAMT. An al-
ternative would be to collapse target-side labels only,
leaving the source-side labels alone since they do not
appear in the final grammar anyway. In this case, the
target labels would be represented and clustered as

distributions over a static set of latent categories.
A larger area of future concern is the stopping

point of the collapsing algorithm. In our previ-
ous work (Hanneman and Lavie, 2011), we manu-
ally identified iterations in our run of the algorithm
where the L1 distance between the most recently
collapsed label pair was markedly lower than the
L1 difference of the pair in the previous iteration.
Such an approach is more feasible in our previous
runs of 120 iterations than in ours here of nearly
2100, where it is not likely that three manually cho-
sen stopping points represent the optimal collapsing
results. In future work, we plan to work towards the
development of an automatic stopping criterion, a
more principled test for whether each successive it-
eration of label collapsing provides some useful ben-
efit to the underlying grammar.
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Abstract
Multi-Sentence Compression (MSC) is the
task of generating a short single sentence sum-
mary from a cluster of related sentences. This
paper presents an N-best reranking method
based on keyphrase extraction. Compression
candidates generated by a word graph-based
MSC approach are reranked according to the
number and relevance of keyphrases they con-
tain. Both manual and automatic evaluations
were performed using a dataset made of clus-
ters of newswire sentences. Results show that
the proposed method significantly improves
the informativity of the generated compres-
sions.

1 Introduction

Multi-Sentence Compression (MSC) can be broadly
described as the task of generating a short single sen-
tence summary from a cluster of related sentences.
It has recently attracted much attention, mostly be-
cause of its relevance to single or multi-document
extractive summarization. A standard way to gen-
erate summaries consists in ranking sentences by
importance, cluster them by similarity and select a
sentence from the top ranked clusters (Wang et al.,
2008). One difficulty is then to generate concise,
non-redundant summaries. Selected sentences al-
most always contain additional information specific
to the documents from which they came, leading to
readability issues in the summary.

Sentence Compression (SC), i.e. the task of
summarizing a sentence while retaining most of
the informational content and remaining grammat-
ical (Jing, 2000), is a straightforward solution to this

problem. Another solution would be to create, for
each cluster of related sentences, a concise and flu-
ent fusion of information, reflecting facts common
to all sentences. Originally defined as sentence fu-
sion (Barzilay and McKeown, 2005), MSC is a text-
to-text generation process in which a novel sentence
is produced as a result of summarizing common in-
formation across a set of similar sentences.

Most of the previous MSC approaches rely on
syntactic parsers for producing grammatical com-
pressions, e.g. (Filippova and Strube, 2008; El-
sner and Santhanam, 2011). Recently, (Filippova,
2010) proposed a word graph-based approach which
only requires a Part-Of-Speech (POS) tagger and a
list of stopwords. The key assumption behind her
approach is that redundancy within the set of related
sentences provides a reliable way of generating in-
formative and grammatical sentences. Although this
approach seemingly works well, 48% to 60% of the
generated sentences are missing important informa-
tion about the set of related sentences. In this study,
we aim at producing more informative sentences by
maximizing the range of topics they cover.

Keyphrases are words that capture the main top-
ics of a document. Extracting keyphrases can benefit
various Natural Language Processing tasks such as
summarization, information retrieval and question-
answering (Kim et al., 2010). In summarization,
keyphrases provide semantic metadata that represent
the content of a document. Sentences containing the
most relevant keyphrases are used to generate the
summary (D’Avanzo and Magnini, 2005). In the
same way, we hypothesize that keyphrases can be
used to better generate sentences that convey the gist
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of the set of related sentences.
In this paper, we present a reranking method

of N-best multi-sentence compressions based on
keyphrase extraction and describe a series of experi-
ments conducted on a manually constructed evalua-
tion corpus. More precisely, the main contributions
of our work are as follows:

• We extend Filippova (2010)’s word graph-
based MSC approach to produce well-
punctuated and more informative compres-
sions.

• We investigate the use of automatic Machine
Translation (MT) and summarization evalua-
tion metrics to evaluate MSC performance.

• We introduce a French evaluation dataset made
of 40 sets of related sentences along with refer-
ence compressions composed by humans.

The rest of this paper is organized as follows. We
first briefly review the previous work, followed by
a description of the method we propose. Next, we
give the details of the evaluation dataset we have
constructed and present our experiments and results.
Lastly, we conclude with a discussion and directions
for further work.

2 Related work

2.1 Multi-sentence compression
MSC have received much attention recently and
many different approaches have been proposed. The
pioneering work of (Barzilay and McKeown, 2005)
introduced the framework used by many subsequent
works: input sentences are represented by depen-
dency trees, some words are aligned to merge the
trees into a lattice, and the lattice is linearized using
tree traversal to produce fusion sentences. (Filip-
pova and Strube, 2008) cast MSC as an integer linear
program, and show promising results for German.
Later, (Elsner and Santhanam, 2011) proposed a su-
pervised approach trained on examples of manually
fused sentences.

Previously described approaches require the use
of a syntactic parser to control the grammatical-
ity of the output. As an alternative, several word
graph-based approaches that only require a POS
tagger were proposed. The key assumption is

that redundancy provides a reliable way of gen-
erating grammatical sentences. First, a directed
word graph is constructed from the set of input sen-
tences in which nodes represent unique words, de-
fined as word and POS tuples, and edges express
the original structure of sentences (i.e. word order-
ing). Sentence compressions are obtained by find-
ing commonly used paths in the graph. Word graph-
based MSC approaches were used in different tasks,
such as guided microblog summarization (Sharifi
et al., 2010), opinion summarization (Ganesan et
al., 2010) and newswire summarization (Filippova,
2010).

2.2 Keyphrase extraction
Keyphrases are words that are representative of the
main content of documents. Extracting keyphrases
can benefit various Natural Language Processing
tasks such as summarization, information retrieval
and question-answering (Kim et al., 2010). Previ-
ous works fall into two categories: supervised and
unsupervised methods. The idea behind supervised
methods is to recast keyphrase extraction as a binary
classification task. A model is trained using anno-
tated data to determine whether a given phrase is a
keyphrase or not (Frank et al., 1999; Turney, 2000).

Unsupervised approaches proposed so far have in-
volved a number of techniques, including language
modeling (Tomokiyo and Hurst, 2003), graph-based
ranking (Mihalcea and Tarau, 2004; Wan and Xiao,
2008) and clustering (Liu et al., 2009). While super-
vised approaches have generally proven more suc-
cessful, the need for training data and the bias to-
wards the domain on which they are trained remain
two critical issues.

3 Method

In this section, we first describe Filippova (2010)’s
word graph-based MSC approach. Then, we present
the keyphrase extraction approach we use and our
method for reranking generated compressions.

3.1 Description of Filippova’s approach
Let G = (V, E) be a directed graph with the set
of vertices (nodes) V and a set of directed edges E,
where E is a subset of V × V . Given a set of re-
lated sentences S = {s1, s2, ..., sn}, a word graph
is constructed by iteratively adding sentences to it.
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Figure 1: Word graph constructed from the set of related sentences, a possible compression path is also given.

Figure 1 is an illustration of the word graph con-
structed from the following sentences. For clarity,
edge weights are omitted and italicized fragments
from the sentences are replaced with dots.

1. Lonesome George, the world’s last Pinta Island
giant tortoise, has passed away.

2. The giant tortoise known as Lonesome George
died Sunday at the Galapagos National Park in
Ecuador.

3. He was only about a hundred years old, but
the last known giant Pinta tortoise, Lonesome
George, has passed away.

4. Lonesome George, a giant tortoise believed to
be the last of his kind, has died.

At the first step, the graph simply represents one
sentence plus the start and end symbols (–start– and
–end– in Figure 1). A node is added to G for each
word in the sentence, and words adjacent in the sen-
tence are connected with directed edges. A word
from the following sentences is mapped onto an ex-
isting node in the graph if they have the same lower-
cased word form and POS and that no word from this
sentence has already been mapped onto this node. A
new node is created if there is no suitable candidate
in the graph.

Words are added to the graph in the following or-
der:

i. non-stopwords for which no candidate exists in
the graph or for which an unambiguous map-
ping is possible;

ii. non-stopwords for which there are either sev-
eral possible candidates in the graph or which
occur more than once in the sentence;

iii. stopwords.

For the last two groups of words where mapping
is ambiguous (i.e. there are two or more nodes in
the graph that refer to the same word/POS tuple),
the immediate context (the preceding and following
words in the sentence and the neighboring nodes in
the graph) or the frequency (i.e. the node which has
words mapped onto it) are used to select the candi-
date node. We use the stopword list included in nltk1

extended with temporal nouns (e.g. monday, yester-
day).

In Filippova’s approach, punctuation marks are
excluded. To generate well-punctuated compres-
sions, we simply added a fourth step for adding
punctuation marks in the graph. When mapping is
ambiguous, we select the candidate which has the
same immediate context.

Once the words from a sentence are added to the
graph, words adjacent in the sentence are connected
with directed edges. Edge weights are calculated us-
ing the weighting function defined in Equation 1.

1http://nltk.org/
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w(i, j) =
cohesion(i, j)

freq(i)× freq(j)
(1)

cohesion(i, j) =
freq(i) + freq(j)∑

s∈S d(s, i, j)
−1

(2)

where freq(i) is the number of words mapped to the
node i. The function d(s, i, j) refers to the distance
between the offset positions of words i and j in sen-
tence s.

The purpose of this function is two fold: i. to
generate a grammatical compression, links between
words which appear often in this order are favored
(see Equation 2); ii. to generate an informative com-
pression, the weight of edges connecting salient
nodes is decreased.

A K-shortest paths algorithm is then used to find
the 50 shortest paths from start to end nodes in the
graph. Paths shorter than eight words or that do not
contain a verb are filtered. The remaining paths are
reranked by normalizing the total path weight over
its length. The path which has the lightest average
edge weight is then considered as the best compres-
sion.

3.2 Reranking paths using keyphrases
The main difficulty of MSC is to generate sentences
that are both informative and grammatically correct.
Here, redundancy within the set of input sentences
is used to identify important words and salient links
between words. Although this approach seemingly
works well, important information is missing in 48%
to 60% of the generated sentences (Filippova, 2010).
One of the reasons for this is that node salience
is estimated only with the frequency measure. To
tackle this issue, we propose to rerank the N-best list
of compressions using keyphrases extracted from
the set of related sentences. Intuitively, an infor-
mative sentence should contain the most relevant
keyphrases. We propose to rerank generated com-
pressions according to the number and relevance of
keyphrases they contain.

An unsupervised method based on (Wan and
Xiao, 2008) is used to extract keyphrases from each
set of related sentences. This method is based on
the assumption that a word recommends other co-
occurring words, and the strength of the recommen-

dation is recursively computed based on the im-
portance of the words making the recommendation.
Keyphrase extraction can be divided into two steps.
First, a weighted graph is constructed from the set
of related sentences, in which nodes represent words
defined as word and POS tuples. Two nodes (words)
are connected if their corresponding lexical units co-
occur within a sentence. Edge weights are the num-
ber of times two words co-occur. TextRank (Mihal-
cea and Tarau, 2004), a graph-based ranking algo-
rithm that takes into account edge weights, is ap-
plied for computing a salience score for each node.
The score for node Vi is initialized with a default
value and is computed in an iterative manner until
convergence using this equation:

S(Vi) = (1−d)+d×
∑

Vj∈adj(Vi)

wji∑
Vk∈adj(Vi)

wjk
S(Vi)

where adj(Vi) denotes the neighbors of Vi and d is
the damping factor set to 0.85.

The second step consists in generating and scor-
ing keyphrase candidates. Sequences of adja-
cent words satisfying a specific syntactic pattern
are collapsed into multi-word phrases. We use
(ADJ)*(NPP|NC)+(ADJ)* for French, in which
ADJ are adjectives, NPP are proper nouns and NC
are common nouns.

The score of a candidate keyphrase k is computed
by summing the salience scores of the words it con-
tains normalized by its length + 1 to favor longer
n-grams (see equation 3).

score(k) =

∑
w∈k TextRank(w)

length(k) + 1
(3)

The small vocabulary size as well as the high
redundancy within the set of related sentences are
two factors that make keyphrase extraction easier
to achieve. On the other hand, a large number
of the generated keyphrases are redundant. Some
keyphrases may be contained within larger ones,
e.g. giant tortoise and Pinta Island giant tortoise. To
solve this problem, generated keyphrases are clus-
tered using word overlap. For each cluster, we then
select the keyphrase with the highest score. This fil-
tering process enables the generation of a smaller
subset of keyphrases while having a better coverage
of the cluster content.
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Reranking techniques can suffer from the limited
scope of the N-best list, which may rule out many
potentially good candidates. For this reason, we use
a larger number of paths than the one in (Filippova,
2010). Accordingly, the K-shortest paths algorithm
is used to find the 200 shortest paths. We rerank the
paths by normalizing the total path weight over its
length multiplied by the sum of keyphrase scores it
contains. The score of a sentence compression c is
given by:

score(c) =

∑
i,j∈path(c)w(i,j)

length(c)×
∑
k∈c score(k)

(4)

4 Experimental settings

4.1 Construction of the evaluation dataset
To our knowledge, there is no dataset available to
evaluate MSC in an automatic way. The perfor-
mance of the previously described approaches was
assessed by human judges. In this work, we intro-
duce a new evaluation dataset made of 40 sets of re-
lated sentences along with reference compressions
composed by human assessors. The purpose of this
dataset is to investigate the use of existing automatic
evaluation metrics for the MSC task.

Similar to (Filippova, 2010), we collected news
articles presented in clusters on the French edition of
Google News2 over a period of three months. Clus-
ters composed of at least 20 news articles and con-
taining one single prevailing event were manually
selected. To obtain the sets of related sentences, we
extracted the first sentences from each article in the
cluster, removing duplicates. Leading sentences in
news articles are known to provide a good summary
of the article content and are used as a baseline in
summarization (Dang, 2005).

The resulting dataset contains 618 sentences (33
tokens on average) spread over 40 clusters. The
number of sentences within each cluster is on av-
erage 15, with a minimum of 7 and a maximum of
36. The word redundancy rate within the dataset,
computed as the number of unique words over the
number of words for each cluster, is 38.8%.

Three reference compressions were manually
composed for each set of sentences. Human an-
notators, all native French speakers, were asked to

2http://news.google.fr

carefully read the set of sentences, extract the most
salient facts and generate a sentence (compression)
that summarize the set of sentences. Annotators
were also told to introduce as little new vocabu-
lary as possible in their compressions. The purpose
of this guideline is to reduce the number of possi-
ble mismatches, as existing evaluation metrics are
based on n-gram comparison. Reference compres-
sions have a compression rate of 60%.

4.2 Automatic evaluation

The use of automatic methods for evaluating
machine-generated text has gradually become the
mainstream in Computational Linguistics. Well
known examples are the ROUGE (Lin, 2004) and
BLEU (Papineni et al., 2002) evaluation metrics used
in the summarization and MT communities. These
metrics assess the quality of a system output by com-
puting its similarity to one or more human-generated
references.

Prior work in sentence compression use the F1
measure over grammatical relations to evaluate can-
didate compressions (Riezler et al., 2003). It was
shown to correlate significantly with human judg-
ments (Clarke and Lapata, 2006) and behave sim-
ilarly to BLEU (Unno et al., 2006). However,
this metric is not entirely reliable as it depends on
parser accuracy and the type of dependency relations
used (Napoles et al., 2011). In this work, the fol-
lowing evaluation measures are considered relevant:
BLEU3, ROUGE-1 (unigrams), ROUGE-2 (bigrams)
and ROUGE-SU4 (bigrams with skip distance up to
4 words)4. ROUGE measures are computed using
stopword removal and French stemming 5.

4.3 Manual evaluation

The quality of the generated compressions was as-
sessed in an experiment with human raters. Two as-
pects were considered: grammaticality and informa-
tivity. Following previous work (Barzilay and McK-
eown, 2005), we asked raters to assess grammati-
cality on a 3-points scale: perfect (2 pts), if the com-
pression is a complete grammatical sentence; almost

3ftp://jaguar.ncsl.nist.gov/mt/
resources/mteval-v13a.pl

4We use the version 1.5.5 of the ROUGE package available
from http://www.berouge.com

5http://snowball.tartarus.org/
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(1 pt), if it requires minor editing, e.g. one mistake
in articles, agreement or punctuation; ungrammati-
cal (0 pts), if it is none of the above. Raters were ex-
plicitly asked to ignore lack of capitalization while
evaluating grammaticality.

Informativity is evaluated according to the 3-
points scale defined in (Filippova, 2010): perfect (2
pts), if the compression conveys the gist of the main
event and is more or less like the summary the per-
son would produce himself; related (1 pt), if it is
related to the the main theme but misses something
important; unrelated (0 pts), if the compression is
not related to the main theme.

Three raters, all native French speakers, were
hired to assess the generated compressions.

5 Results

To evaluate the effectiveness of our method, we
compare the compressions generated with Filip-
pova’s approach (denoted as baseline) against the
ones obtained by reranking paths using keyphrases
(denoted as KeyRank). We evaluated the agreement
between the three raters using Fleiss’s kappa (Art-
stein and Poesio, 2008). The κ value is 0.56 which
denotes a moderate agreement.

Table 1 presents the average grammaticality and
informativity scores. Results achieved by the base-
line are consistent with the ones presented in (Fil-
ippova, 2010). We observe a significant improve-
ment in informativity for KeyRank. Grammaticality
scores are, however, slightly decreased. One reason
for that is the reranking we added to the shortest path
method that outputs longer compressions. The aver-
age length for our method is nevertheless drastically
shorter than the average length of the input sentences
(19 vs. 33 tokens). This corresponds to a compres-
sion rate (58%) that is close to the one observed on
reference compressions (60%).

Table 2 shows the distributions over the three
scores for both grammaticality and informativity.
We observe that 97.5% of the compressions gener-
ated with KeyRank are related to the main theme
of the cluster, and 62.5% convey the very gist of
it without missing any important information. This
represents an absolute increase of 19.2% over the
baseline. Although our reranking method has lower
grammaticality scores, 65% of the generated sen-

Method Gram. Info. Length CompR
Avg. Std.Dev.

Baseline 1.63 1.33 16.3 4.8 50%
KeyRank 1.53 1.60† 19 6.1 58%

Table 1: Average ratings over all clusters and raters along
with average compression length (in tokens), standard de-
viation and corresponding compression rate († indicates
significance at the 0.01 level using Student’s t-test).

tences are perfectly grammatical.

Method Gram. Info.

0 1 2 0 1 2

Baseline 9.2% 18.3% 72.5% 10.0% 46.7% 43.3%
KeyRank 11.7% 23.3% 65.0% 2.5% 35.0% 62.5%

Table 2: Distribution over possible manual ratings for
grammaticality and informativity. Ratings are expressed
on a scale of 0 to 2.

Table 3 shows the performance of the baseline
and our reranking method in terms of ROUGE and
BLEU scores. KeyRank significantly outperforms
the baseline according to the different ROUGE met-
rics. This indicates an improvement in informativity
for the compressions generated using our method.
We observe a large but not significant increase in
BLEU scores. The slightly decreased grammatical-
ity scores could be a reason for this. BLEU is essen-
tially a precision metric, and it measures how well a
compression candidate overlaps with multiple refer-
ences. Longer n-grams used by BLEU6 tend to score
for grammaticality rather than content.

Metric Baseline KeyRank

ROUGE-1 0.57441 0.65677‡

ROUGE-2 0.39212 0.44140†

ROUGE-SU4 0.37004 0.43443‡

BLEU 0.61560 0.65770

Table 3: Automatic evaluation scores († and ‡ indicate
significance at the 0.01 and 0.001 levels respectively us-
ing Student’s t-test)

To assess the effectiveness of automatic evalua-
6BLEU measures are computed using 4-grams.
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tion metrics, we compute the Pearson’s correlation
coefficient between ROUGE and BLEU scores and
averaged manual ratings. According to Table 4, re-
sults show medium to strong correlation between
ROUGE scores and informativity ratings. On the
other hand, BLEU scores better correlate with gram-
maticality ratings. Overall, automatic evaluation
metrics are not highly correlated with manual rat-
ings. One reason for that may be that the manual
score assignments are arbitrary (i.e. 0, 1, 2), and that
a score of one is in fact closer to two than to zero.
Results suggest that automatic metrics do give an in-
dication of the compression quality, but can not re-
place manual evaluation.

Metric Gram. Info.

ROUGE-1 0.402 0.591
ROUGE-2 0.432 0.494
ROUGE-SU4 0.386 0.542
BLEU 0.444 0.401

Table 4: Pearson correlation coefficients for automatic
metrics vs. average human ratings.

6 Conclusion

This paper presented a multi-sentence compres-
sion approach that uses keyphrases to generate
more informative compressions. We extended Fil-
ippova (2010)’s word graph-based MSC approach
by adding a re-reranking step that favors compres-
sions that contain the most relevant keyphrases of
the input sentence set. An implementation of the
proposed multi-sentence compression approach is
available for download7. We constructed an eval-
uation dataset made of 40 sets of related sentences
along with reference compressions composed by hu-
mans. This dataset is freely available for download8.
We performed both manual and automatic evalua-
tions and showed that our method significantly im-
proves the informativity of the generated compres-
sions. We also investigated the correlation between
manual and automatic evaluation metrics and found
that ROUGE and BLEU have a medium correlation
with manual ratings.

7https://github.com/boudinfl/takahe
8https://github.com/boudinfl/lina-msc

In future work, we intend to examine how gram-
maticality of the generated compressions can be en-
hanced. Similar to the work of Hasan et al. (2006) in
the Machine Translation field, we plan to experiment
with high order POS language models reranking.
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Abstract

This paper describes the annotation process
and linguistic properties of the Persian syn-
tactic dependency treebank. The treebank
consists of approximately 30,000 sentences
annotated with syntactic roles in addition to
morpho-syntactic features. One of the unique
features of this treebank is that there are al-
most 4800 distinct verb lemmas in its sen-
tences making it a valuable resource for ed-
ucational goals. The treebank is constructed
with a bootstrapping approach by means of
available tagging and parsing tools and man-
ually correcting the annotations. The data is
splitted into standard train, development and
test set in the CoNLL dependency format and
is freely available to researchers.

1 Introduction1

The process of manually annotating linguistic data
from a huge amount of naturally occuring texts is a
very expensive and time consuming task. Due to the
recent success of machine learning methods and the
rapid growth of available electronic texts, language
processing tasks have been facilitated greatly. Con-
sidering the value of annotated data, a great deal of
budget has been allotted to creating such data.

Among all linguistic datasets, treebanks play an
important role in the natural language processing
tasks especially in parsing because of its applica-

1This research is done while working in Dadegan Research
Group, Supreme Council of Information and Communications
Technology (SCICT), Tehran, Iran. The project is fully funded
by SCICT.

tions in tasks such as machine translation. Depen-
dency treebanks are collections of sentences with
their corresponding dependency trees. In the last
decade, many dependency treebanks have been de-
veloped for a large number of languages. There are
at least 29 languages for which at least one depen-
dency treebank is available (Zeman et al., 2012).
Dependency trees are much more similar to the hu-
man understanding of language and can easily rep-
resent the free word-order nature of syntactic roles
in sentences (Kübler et al., 2009).

Persian is a language with about 110 million
speakers all over the world (Windfuhr, 2009), yet in
terms of the availability of teaching materials and
annotated data for text processing, it is undoubt-
edly a low-resourced language. The need for more
language teaching materials together with an ever-
increasing need for Persian-language data process-
ing has been the incentive for the inception of our
project which has defined the development of the
syntactic treebank of Persian as its ultimate aim. In
this paper, we review the process of creating the Per-
sian syntactic treebank based on dependency gram-
mar. In this treebank, approximately 30,000 sen-
tences from contemporary Persian-language texts
are manually tokenized and annotated at morpholog-
ical and syntactic levels. One valuable aspect of the
treebank is its containment of near 5000 distinct verb
lemmas in its sentences making it a good resource
for educational goals. The dataset is developed af-
ter the creation of the syntactic valency lexicon of
Persian verbs (Rasooli et al., 2011c). This treebank
is developed with a bootstrapping approach by au-
tomatically building dependency trees based on the
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(a) A simple projective dependency
tree for a Persian sentence: “It is based
on that”’.
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JJ.Ó

	áK
@ root

PAn bær Pæst mobtæni Pin
that on is based it
PR PP V ADJ PR

root
SBJ

MOS
AJPP

POSDEP

(b) A simple non-projective depen-
dency tree for a Persian sentence: “It
is based on that”.

Figure 1: Examples of Persian sentences with the
dependency-based syntactic trees. 1(a) and 1(b) are ex-
amples of a projective and a non-projective dependency
tree, respectively. The first lines show the original words
in Persian. The pronunciation and their meanings are
shown in the second line and the third line respectively. In
the fourth line, the part of speech (POS) tags of the words
are presented. Note that the words are written from right
to left (the direction of Perso-Arabic script). The depen-
dency relations are described in Table 2. The relation is
shown with an arc pointing from the head to the depen-
dent.

previous annotated trees. In the next step, automatic
annotation is corrected manually.

The remainder of this paper is as follows. In Sec-
tion 2, we briefly review the challenges in Persian
language processing. In Sections 3 and 4, the de-
tails about the annotation process, linguistic and sta-
tistical information about the data and the annotator
agreement are reported. In Section 5, the conclusion
and suggestions for future research are presented.

2 Persian Language Processing Challenges

Persian is an Indo-European language that is writ-
ten in Arabic script. There are lots of problems
in its orthography such as encoding problems, hid-
den diacritics and writing standards (Kashefi et al.,
2010). A number of challenges such as the free or-

Raw Sentence

Encoding and
Spell Correction

Tokenization and
POS Tagging

Verb Analysis

Dependency
Parsing

Parsing Model

Manual Error
Correction
(Treebank

Annotation)

Dependency
Treebank

Need to
Update the

Parsing
Model?

Retrain the
Parser

Insert

Add to the Treebank
Yes

Update Model

Figure 2: Diagram of bootstrapping approach in the de-
velopment of the dependency treebank.

der of words, the existence of colloquial texts, the
pro-drop nature of the Persian language and its com-
plex inflections (Shamsfard, 2011) in addition to the
lack of efficient annotated linguistic data have made
the processing of Persian texts very difficult; e.g.
there are more than 100 conjugates and 2800 de-
clensions for some word forms in Persian (Rasooli
et al., 2011b), some words in the Persian language
do not have a clear word category (i.e. the lexical
category “mismatch”) (Karimi-Doostan, 2011a) and
many compound verbs (complex predicates) can be
separable (i.e. the non-verbal element may be sepa-
rated from the verbal element by one or more other
words) (Karimi-Doostan, 2011b).

After the development of the Bijankhan corpus
(Bijankhan, 2004) with the annotation of word cat-
egories, other kinds of datasets have been created
to address the need for Persian language process-
ing. Among them, a Persian parser based on link
grammar (Dehdari and Lonsdale, 2008), a compu-
tational grammar based on GPSG (Bahrani et al.,
2011), syntactic treebank based on HPSG (Ghay-
oomi, 2012) and Uppsala dependency treebank (Ser-
aji et al., 2012) are the efforts to satisfy the need for
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syntactic processing in the Persian language.

ÐXQ» ñ
�
K AK. øXAK


	P øAë
�

IJ. m
�� root

kærdæm to bA zijAdi sohbæthAje
did (1st, sing) you with a lot speaking(s)

V PR PP ADJ N

root

NVE

NPOSTMOD
NPP

POSDEP

(a) A simple dependency tree with compound verb
for a Persian sentence: “I spoke with you a lot”.
The NVE is a relation between a light verb and its
nonverbal element. As shown in the tree, not only
the nonverbal element is not near the light verb, but
also it is inflected for plurality (i.e. speakings).

ÐðPú× é
	
KA

	
g 	áK
@ 	P@ ÐP@X root

mirævæm xAne Pin Pæz dAræm
go (pres.cont., 1st sing.) house this from have (pres., 1st sing.)

V N PREM PP V

root

PROG

VPP

POSDEP
NPREMOD

(b) A simple dependency tree for a Persian sentence with a pro-
gressive auxiliary: “I am going from this house”. The PROG is a
relation between a verb and its progressive auxiliary.

�
I

�
�ÃÑë@ñ

	
m�

	
'QK. é

	
K A

	
g 	áK
@ éK. root

barnæxAhæm gæSt xAne Pin be
return (future, neg., 1st sing.) house this to

V N PREM PP

root
VPP

POSDEP
NPREMOD

(c) A simple dependency tree for a Persian sen-
tence with a an inflected form of a prefixed verb
“I will not return to this house.”. The word QK. is
the prefix, the word Ñë@ñ

	
m�

	
' is the auxiliary for the

future and the word �
I

�
�Ã is the main verb. Notice

that the prefix is attached to the auxiliary without
any space and the remaining part of the verb is sep-
arated by a space.

Figure 3: Examples of Persian sentences with the
dependency-based syntactic trees. The format of the rep-
resentation is the same as Figure 1.

3 Persian Dependency Treebank

3.1 Motivation

With the creation of the Virastyar spell checker soft-
ware (Kashefi et al., 2010), many open-source li-
braries were released for Persian word processing
such as POS tagging, encoding refinement, tok-
enization, etc. Regarding the need for syntactic anal-
ysis of Persian texts, we decided to prepare a valu-
able linguistic data infrastructure for Persian syn-
tax. In the first step, there was a need for choosing
from the existing theories of grammar that best suits
Persian. Among grammatical theories, we decided
to choose the dependency grammar. In dependency
grammar, syntactic relations are shown with depen-
dencies between the words. In computational de-
pendency grammar, each word has one head and the
head of the sentence is the dependent of an artificial
root word (Kübler et al., 2009). A sample depen-
dency tree is shown in Figure 1(a) for a Persian sen-
tence. Note that Persian sentences are written from
right to left.

There are several reasons for the preference of
dependency grammar to grammars such as phrase-
based structure grammars. Although in both of the
representations, one can show the syntactic analy-
sis of a sentence, dependency representation has the
power to account for the free word order of many
languages such as Turkish (Oflazer et al., 2003) and
Czech (Hajic, 1998) and also Persian. As an exam-
ple, a sample non-projective dependency tree for the
Persian language is shown in Figure 1(b). The re-
cent advances in very fast dependency parsing mod-
els (e.g. (Nivre, 2009; Bohnet and Nivre, 2012)),
has made the syntactic processing task very popular
in the recent decade.

In the Persian language, in addition to the abun-
dance of crossings of the arcs, another problem oc-
curs with compound verbs and verbs in the progres-
sive aspect: compound and progressive verbs are
multi-word expressions that may be separated de-
pending on the context. Persian compound verbs
consist of a light verb and a non-verbal element and
the non-verbal element can be a noun, an adjective
(in rare cases) or a sequence of a preposition and
a noun (Dabir-Moghaddam, 1997). In addition, the
nonverbal elements can also be inflected. The dis-
tance between the nonverbal element and the light
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verb on the one hand and the possibility of the non-
verbal element being inflected on the other hand
have made the task of compound verb identification
very difficult. For example, in Bijankhan (Peykare)
corpus (Bijankhan et al., 2011), approximately 9%
of nonverbal elements of compound verbs are placed
away from the light verb for the compound verbs
with the light verb 	

àXQ» /kærdæn/ (to do) (Rasooli
et al., 2011a). A group of Persian progressive verbs
are composed of two words, the first being the sim-
ple past or the simple present form derived from
the infinitive 	á�

�
�

�@X /dAStæn/ (to have) and the sec-
ond being the past continuous or the present contin-
uous form of the main verb. The first verb (an auxil-
iary) agrees with the second in number and person.
The problem is that the progressive auxiliary can be
away from the main verb. The sample trees with
compound verbs and progressive auxiliary verbs are
shown in Figures 3(a) and 3(b) respectively.

3.2 Representation and Dependency Relation

In this treebank, we followed the format of the
CoNLL tab-separated format for dependency pars-
ing (Buchholz and Marsi, 2006). In addition to
the lemma, we annotated part of speech tags (both
coarse and fine grained) and person, number and
tense-mood-aspect (only for verbs) of words in sen-
tences. The details of the part of speech tags and
other morphosyntactic features and dependency re-
lations are shown in Tables 1 and 2, respectively.
The part of speech tag set in this treebank is not
the same as that of Bijankhan (Peykare) corpus (Bi-
jankhan et al., 2011) and it is essential to convert the
tagset in Peykare corpus to the tagset in this tree-
bank, in order to use both datasets2. We also tried
to use the writing standard of the Academy of Per-
sian Language and Literature except for the cases
where for a word there were several standards all of
which were used in Persian written texts (e.g. ém�

�
	
'
�
@

and ék�
	
à

�
@ /PAntSe/ (whatever)).

We also prepared two representations for objects
accompanied by the accusative case marker. In the
first representation (done manually), we assume the
accusative case marker @P /rA/ as the head of the two-

2It is important to note that the conversion between the
coarse-grained POS tags is straightforward and does not need
any special effort.

ÐY
	
K @ñ

	
k ú

�
æ

	
®Ã é» @P úG

.
A
�
J» root

xAndæm gofti ke rA ketAbi
read (past, 1st, sing.) said (2nd, sing.) that acc. the book

V V SUBR POSTP N

root

OBJ

PREDEP
NCL

POSDEP

(a) “I read the book that you mentioned.”.

ÐY
	
K @ñ

	
k ú

�
æ

	
®Ã é» @P úG

.
A
�
J» root

xAndæm gofti ke rA ketAbi
read (past, 1st, sing.) said (2nd, sing.) that acc. the book

V V SUBR POSTP N

root
OBJ

ACC-CASE
NCL

POSDEP

(b) “I read the book that you mentioned.”

Figure 4: A sample sentence with two kinds of repre-
sentations of object-verb relation. The first one is done
manually and the second automatically by converting the
dependencies in the first representation.

word sequence object plus rA. The second represen-
tation, that is the automatic conversion of the first,
is the reverse order of the first one in which the ac-
cusative case marker is the dependent of the direct
object and the direct object is considered as the head
of the aforementioned sequence. In the first rep-
resentation, objects are much easier to find by the
parser (because of the uniqueness of the accusative
case marker in Persian and less distance of it from
the verb as its head) but it may increase the num-
ber of non-projective arcs to the syntactic tree. We
prepared both of the representations in two separate
data packs. A sample comparison between the two
structures is shown in Figure 4.

In the treebank, all words are single word forms
(without spaces). There is only one exception for
simple verb inflections where even multi-word to-
kens of simple verbs are shown as only one unit. The
reason is that for many cases such as the case of in-
flections for prefixed verbs it is more straightforward
to analyze the whole part instead of analyzing each
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Morphosyntactic features in the Persian dependency treebank
CPOS FPOS Person Number TMA

ADJ (adjective)
AJP (positive)

AJCM (comparitive)
AJSUP (superlative)

ADR (address term) PRADR (pre-noun)
POSADR (post-noun)

ADV (adverb) SADV (genuine)
CONJ (coordinating conjunction) CONJ (conjunction)

IDEN (title) IDEN (title)

N (noun) ANM (animate) SING (singular)
IANM (inanimate) PLUR (plural)

PART (particle) PART (particle)
POSNUM (post-noun modifier) POSNUM (post-noun modifier)

POSTP (postposition) POSTP (postposition)

PR (pronoun)

SEPER (separate personal)
JOPER (enclitic personal)
DEMON (demonstrative) 1 SING (singular)

INTG (interogative) 2 PLUR (plural)
CREFX (common reflexive) 3

UCREFX (noncommon reflexive)
RECPR (reciprocal)

PREM (pre-modifier)

EXAJ (exclamatory)
QUAJ (interrogative)

DEMAJ (demonstrative)
AMBAJ (ambiguous)

PRENUM (pre-noun numeral) PRENUM (pre-noun numeral)
PREP (preposition) PREP (preposition)

PSUS (pseudo-sentence) PSUS (pseudo-sentence)
PUNC (punctuation) PUNC (punctuation)

V (verb)
ACT (active) 1 SING (singular) See Table 3
PAS (passive) 2 PLUR (plural)
MOD (modal) 3

SUBR (subordinating clause) SUBR (subordinating clause)

Table 1: Morphosyntactic features in the Persian dependency treebank. Empty cells indicate that the mentioned
feature is not present for the POS. TMA stands for Tense/Mood/Aspect, CPOS for Coarse grained POS and FPOS for
Fine grained POS. There is also another feature for representing the typographical connectedness of words that are
separated into two or more tokens with the values ISO (isolated word), NXT (attached to the next token) and PRV
(attached to the previous token).

part separately3. In Table 3, possible types of the
Persian verb inflections are shown. As seen in Table
3, 6 forms of 14 inflection types of Persian verbs are
multi-word tokens and for passive verbs they may
be composed of more words than their active coun-
terparts (since for passive verbs an auxiliary form
derived from the infinitive 	

àY
�

� /Sodæn/ is used). In
Figure 3(c), a sample tree with a multi-token pre-

3In (Seraji et al., 2012), multi-token verbs are considered as
separate words.

fixed verb is shown. As shown in the case of col-
ored tokens, it seems more beneficial to put all mor-
phemes of the word together before parsing. Fur-
thermore, with the available Persian verb analyzer it
is very easy to first preprocess the verbs4.

4If it is needed to respect the exact format of CoNLL, spaces
between the verb tokes should be replaced by a character such as
underscore. Regarding the special fine-grained morphological
tags for the verb such as tense-mood-aspect, it is also straight-
forward to separate all of the multi-word verbs and add new
dependency relations between their words.
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Abbreviation Description Abbreviation Description
ACL Complement Clause of Adjective ADV Adverb

ADVC Adverbial Complement of Verb AJCONJ Conjunction of Adjective
AJPP Prepositional Complement of Adjective AJUCL Adjunct Clause

APOSTMOD Adjective Post-Modifer APP Apposition
APREMOD Adjective Pre-Modifier AVCONJ Conjunction of Adverb
COMPPP Comparative Preposition ENC Enclitic Non-Verbal Element

LVP Light Verb Particle MESU Measure
MOS Mosnad MOZ Ezafe Dependent

NADV Adverb of Noun NCL Clause of Noun
NCONJ Conjunction of Noun NE Non-Verbal Element of Infinitive

NEZ Ezafe Complement of Adjective NPOSTMOD Post-Modifer of Noun
NPP Preposition of Noun NPREMOD Pre-Modifier of Noun

NPRT Particle of Infinitive NVE Non-Verbal Element
OBJ Object OBJ2 Second Object

PARCL Participle Clause PART Interrogative Particle
PCONJ Conjunction of Preposition POSDEP Post-Dependent

PRD Predicate PREDEP Pre-Dependent
PROG Progressive Auxiliary PUNC Punctuation Mark
ROOT Sentence Root SBJ Subject
TAM Tamiz VCL Complement Clause of Verb

VCONJ Conjunction of Verb VPP Prepositional Complement of Verb
VPRT Verb Particle ACC-CASE Accusative Case Marker (2nd. Rep.)

Table 2: Dependency relations in the Persian dependency treebank

Tense/Aspect/Mood Abbreviation Examples 	
àXPñ

	
k xordæn: to eat, 1st, sing.

Imperative HA Pñ
	
m�'

. /boxor/
Indicative Future AY XPñ

	
k Ñë@ñ

	
k /xAhæm xord/

Indicative Imperfective Perfect GNES Ð@ èXPñ
	

kú× /mixordePæm/
Indicative Imperfective Pluperfect GBES ÐXñK. èXPñ

	
kú× /mixorde budæm/

Indicative Imperfective Preterite GES ÐXPñ
	

kú× /mixordæm/
Indicative Perfect GN Ð@ èXPñ

	
k /xordePæm/

Indicative Pluperfect GB ÐXñK. èXPñ
	

k /xorde budæm/
Indicative Present H ÐPñ

	
kú× /mixoræm /

Indicative Preterite GS ÐXPñ
	

k /xordæm/
Subjunctive Imperfective Pluperfect GBESE Õæ

�
�AK. èXñK. èXPñ

	
kú× /mixorde bude bASæm/

Subjunctive Imperfective Preterite GESEL Õæ
�
�AK. èXPñ

	
kú× /mixorde bASæm/

Subjunctive Pluperfect GBEL Õæ
�
�AK. èXñK. èXPñ

	
k /xorde bude bASæm/

Subjunctive Present HEL ÐPñ
	
m�'

. /boxoræm/
Subjunctive Preterite GEL Õæ

�
�AK. èXPñ

	
k /xorde bASæm/

Table 3: Tense/Mood/Aspect Types in Persian verbs

3.3 Annotation Process

The annotation process consists of several consecu-
tive steps. In Figure 2, a summary of the bootstrap-
ping approach in the annotation process is shown.
At first, a collection of independent sentences have

been collected randomly from the web. For the first
5000 sentences, we crawled Persian news texts and
randomly sampled the sentences. For the remain-
ing sentences, we first listed the absent verb lem-
mas in the 5000 sentences based on the verb list ex-
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tracted from the valency lexicon of Persian verbs
(Rasooli et al., 2011c) and collected random sen-
tences that included the absent verb lemmas in their
words. We listed all possible inflections and per each
verb lemma, sampled at most 8 sentences from the
web. These sentences had to contain at least one
present tense, one past tense, one passive voice and
one future tense inflection unless we could not find
them and were obliged to reduce the number. The
sentences were not shortened and were kept with
their original length and words. Finally, we manu-
ally removed sentences containing colloquial words.
However, we did not remove loan words or cases of
code-switching between latin-script words and Per-
sian words in the sentences. The raw sentences were
fed to the encoding and spell checking module. Af-
ter spell correction, all sentences were tokenized and
tagged with part of speech tags. All of the word
processing steps were done using Virastyar library
(Kashefi et al., 2010). After tokenization and POS
tagging, the tokenized sentences were fed to the Per-
sian verb analyzing tool (Rasooli et al., 2011a). In
the next step, the preprocessed sentences were given
to the dependency parser. We used MST parser (Mc-
Donald et al., 2005) for parsing the sentences.

In the final step, annotators corrected the errors
of tokenization, POS tagging and parsing. In about
every one to two weeks, the parser model was up-
dated by training on the new version of the treebank.
This process lasted 9 months and the number of an-
notators increased by time to speed up the process.
In the first 6 months, we used 8 annotators and for
the next 5 months, we hired 6 more annotators to
speed up the process. The annotators and linguistic
experts consisted of 1 PhD graduate (linguistics), 4
PhD candidates (linguistics), and 9 MA graduates or
graduate students (7 linguistics, 1 Persian language
and literature and 1 computational linguistics). All
of the annotators were native Persian speakers.

After finalizing the annotation of all raw sen-
tences, we applied a rule-based potential error finder
to find the potentially erroneous sentences. The rules
were gradually collected in the process of the an-
notation by the annotators. All the potentially er-
roneous sentences were given to the annotators to
be checked for potential errors. In Section 4.1, the
statistics about the changes after the correction is
reported. One of the main reasons for the double

checking phase in the process is that based on our
manual investigations of the annotations, we found
some inevitable mistakes by annotators that could be
solved by manual rules. Mistakes such as scrolling
the drop-down list unintentionally and changing the
part of speech tag or dependency relation and mis-
takes caused by tiredness and lack of concentration
in addition to some of the changes of the linguistic
conventions in the annotation. Since all cases of de-
pendency relations in this treebank may be usually
either a left-branching relation or a right-branching
one and most of the relations are restricted to cer-
tain types of parts of speech, it is easy to capture
the potential errors in the annotations based on the
rules mentioned and to keep track of the changes
in the linguistic conventions by searching the cues
for those conventions (most of the changed conven-
tions were made to very rare relations in the syntac-
tic structure).

In (Dligach and Palmer, 2011), it is concluded
that although doubly annotated corpora are more re-
liable, annotating more sentences only once is more
beneficial; i.e. annotating each sentence only once
is less time-consuming and more cost-effective. We
annotated all the sentences only once (with an ad-
ditional checking phase) except for the 5% of the
sentences in order to estimate the quality of our lin-
guistic conventions and agreement among the anno-
tators. The statistics about the annotators agreement
is reported in Section 4.1.

4 Statistics of the Treebank

Finally, 29,982 sentences were manually annotated.
The details about the statistics is shown in Ta-
ble 4. It is worth mentioning that 39.24% of the
words in the treebank are tagged as noun, 12.62%
as verb, 11.64% as preposition and 7.39% as adjec-
tive. The most frequent dependency relations are
post-dependent (15.08%) and Ezafeh construction
(10.17%). As shown in Table 5, the number of non-
projective arcs in the second representation is a little
bit less than the first. As mentioned earlier, the main
reason is the dependencies between the direct object
and words after the accusative case marker such as
the example in Figure 4. The change percentage af-
ter the correction of the potential errors is shown in
Table 6. It seems that the rules for finding the poten-
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Number of Sentences 29,982
Number of Words 498,081
Average Sentence Length 16.61
Number of Distinct Words 37,618
Number of Distinct Lemmas 22,064
Number of Verbs 60,579
Number of Verb Lemmas 4,782
Average Frequency of Verb Lemmas 12.67

Table 4: Statistics about the frequency of words in the
Persian dependency treebank.

# Non-Projective 1st Rep. 2nd Rep.
Number of Arcs 9639 9091
Percent of Arcs 0.019 0.018
Number of Sentences 5540 5095
Percent of Sentences 1.85 1.70

Table 5: Statistics about non-projective relations in the
Persian dependency treebank for both of the representa-
tions.

tial errors were useful for correcting the errors.

4.1 Annotators Agreement

The statistics about the agreement among the an-
notators is shown in Table 7. We can also use the
Kappa (Cohen, 1960) to measure the quality of the
annotation based on the agreement among the anno-
tators (pr(a) in Eq. 1) and the expected agreement or
probability of chance (pr(e) in Eq. 1). If we consider
the accuracy of the parser on the raw text without
gold POS tags (approximately 75% labeled and 80%
unlabeled accuracy based on our experience during
the bootstrapping) and the POS tagger that we used
during the annotation process (approximately 94%)
as the probability of chance, we see that for all of
the tasks in Table 7, the quality of the annotaion is
more than 0.81 and is considered as almost perfect
according to (Landis and Koch, 1977).

k =
pr(a)− pr(e)

1− pr(e)
(1)

5 Conclusion

As mentioned earlier, Persian is a language with
its own challenges. We tried to overcome some
of those challenges by preparing valuable linguistic

Changes to Unlabeled Relations 4.91%
Changes to Labeled Relations 6.29%
Changes to POS Tags 4.23%

Table 6: Statistics about changes in the treebank after the
manual correction of the potential errors.

Unlabeled Relations 97.06%
Labeled Relations 95.32%
POS Tags 98.93%

Table 7: Statistics about agreements among the annota-
tors.

datasets5. In addition to the preparation of the tree-
bank, we prepared some useful desktop and web-
based tools for searching in the dataset, obtaining
statistics and viewing syntactic structures graphi-
cally. We hope to report more details about the lin-
guistic aspects and the findings of the project in ad-
dition to our detailed experiments on the parsing task
in future publications. We believe that this treebank
is just the very first step to satisfy the need for Per-
sian language processing. Our future aim is to add a
semantic level to the annotation.
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Abstract

Recent work has shown that word aligned data
can be used to learn a model for reordering
source sentences to match the target order.
This model learns the cost of putting a word
immediately before another word and finds the
best reordering by solving an instance of the
Traveling Salesman Problem (TSP). However,
for efficiently solving the TSP, the model is
restricted to pairwise features which examine
only a pair of words and their neighborhood.
In this work, we go beyond these pairwise fea-
tures and learn a model to rerank the n-best
reorderings produced by the TSP model us-
ing higher order and structural features which
help in capturing longer range dependencies.
In addition to using a more informative set
of source side features, we also capture target
side features indirectly by using the transla-
tion score assigned to a reordering. Our exper-
iments, involving Urdu-English, show that the
proposed approach outperforms a state-of-the-
art PBSMT system which uses the TSP model
for reordering by 1.3 BLEU points, and a pub-
licly available state-of-the-art MT system, Hi-
ero, by 3 BLEU points.

1 Introduction

Handling the differences in word orders between
pairs of languages is crucial in producing good ma-
chine translation. This is especially true for lan-
guage pairs such as Urdu-English which have sig-
nificantly different sentence structures. For exam-
ple, the typical word order in Urdu is Subject Object
Verb whereas the typical word order in English is
Subject Verb Object. Phrase based systems (Koehn
et al., 2003) rely on a lexicalized distortion model

(Al-Onaizan and Papineni, 2006; Tillman, 2004)
and the target language model to produce output
words in the correct order. This is known to be in-
adequate when the languages are very different in
terms of word order (refer to Table 3 in Section 3).

Pre-ordering source sentences while training and
testing has become a popular approach in overcom-
ing the word ordering challenge. Most techniques
for pre-ordering (Collins et al., 2005; Wang et al.,
2007; Ramanathan et al., 2009) depend on a high
quality source language parser, which means these
methods work only if the source language has a
parser (this rules out many languages). Recent work
(Visweswariah et al., 2011) has shown that it is pos-
sible to learn a reordering model from a relatively
small number of hand aligned sentences . This elim-
inates the need of a source or target parser.

In this work, we build upon the work of
Visweswariah et al. (2011) which solves the reorder-
ing problem by treating it as an instance of the
Traveling Salesman Problem (TSP). They learn a
model which assigns costs to all pairs of words in
a sentence, where the cost represents the penalty of
putting a word immediately preceding another word.
The best permutation is found via the chained Lin-
Kernighan heuristic for solving a TSP. Since this
model relies on solving a TSP efficiently, it cannot
capture features other than pairwise features that ex-
amine the words and neighborhood for each pair of
words in the source sentence. In the remainder of
this paper we refer to this model as the TSP model.

Our aim is to go beyond this limitation of the TSP
model and use a richer set of features instead of us-
ing pairwise features only. In particular, we are in-
terested in features that allow us to examine triples
of words/POS tags in the candidate reordering per-
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mutation (this is akin to going from bigram to tri-
gram language models), and also structural features
that allow us to examine the properties of the seg-
mentation induced by the candidate permutation. To
go beyond the set of features incorporated by the
TSP model, we do not solve the search problem
which would be NP-hard. Instead, we restrict our-
selves to an n-best list produced by the base TSP
model and then search in that list. Using a richer
set of features, we learn a model to rerank these n-
best reorderings. The parameters of the model are
learned using the averaged perceptron algorithm. In
addition to using a richer set of source side features
we also indirectly capture target side features by in-
terpolating the score assigned by our model with the
score assigned by the decoder of a MT system.

To justify the use of these informative features,
we point to the example in Table 1. Here, the head
(driver) of the underlined English Noun Phrase (The
driver of the car) appears to the left of the Noun
Phrase whereas the head (chaalak {driver}) of the
corresponding Urdu Noun Phrase (gaadi {car} ka
{of} chaalak {driver}) appears to the right of the
Noun Phrase. To produce the correct reordering of
the source Urdu sentence the model has to make an
unusual choice of putting gaadi {car} before bola
{said}. We say this is an unusual choice because the
model examines only pairwise features and it is un-
likely that it would have seen sentences having the
bigram “car said”. If the exact segmentation of the
source sentence was known, then the model could
have used the information that the word gaadi {car}
appears in a segment whose head is the noun chaalak
{driver} and hence its not unusual to put gaadi {car}
before bola {said} (because the construct “NP said”
is not unusual). However, since the segmentation
of the source sentence is not known in advance, we
use a heuristic (explained later) to find the segmen-
tation induced by a reordering. We then extract
features (such as first word current segment,
end word current segment) to approximate these
long range dependencies.

Using this richer set of features with Urdu-
English as the source language pair, our approach
outperforms the following state of the art systems:
(i) a PBSMT system which uses TSP model for re-
ordering (by 1.3 BLEU points), (ii) a hierarchical
PBSMT system (by 3 BLEU points). The overall

Input Urdu: fir gaadi ka chaalak kuch bola

Gloss: then car of driver said something
English: Then the driver of the car said something.
Ref. reordering: fir chaalak ka gaadi bola kuch

Table 1: Example motivating the use of structural features

gain is 6.3 BLEU points when compared to a stan-
dard PBSMT system which uses a lexicalized distor-
tion model (Al-Onaizan and Papineni, 2006).

The rest of this paper is organized as follows. In
Section 2 we discuss our approach of re-ranking the
n-best reorderings produced by the TSP model. This
includes a discussion of the model used, the features
used and the algorithm used for learning the parame-
ters of the model. It also includes a discussion on the
modification to the Chained Lin-Kernighan heuris-
tic to produce n-best reorderings. Next, in Section
3 we describe our experimental setup and report the
results of our experiments. In Section 4 we present
some discussions based on our study. In section 5 we
briefly describe some prior related work. Finally, in
Section 6, we present some concluding remarks and
highlight possible directions for future work.

2 Re-ranking using higher order and
structural features

As mentioned earlier, the TSP model (Visweswariah
et al., 2011) looks only at local features for a word
pair (wi, wj). We believe that for better reorder-
ing it is essential to look at higher order and struc-
tural features (i.e., features which look at the overall
structure of a sentence). The primary reason why
Visweswariah et al. (2011) consider only pairwise
bigram features is that with higher order features the
reordering problem can no longer be cast as a TSP
and hence cannot be solved using existing efficient
heuristic solvers. However, we do not have to deal
with an NP-Hard search problem because instead of
considering all possible reorderings we restrict our
search space to only the n-best reorderings produced
by the base TSP model. Formally, given a set of
reorderings, Π = [π1, π2, π3, ...., πn], for a source
sentence s, we are interesting in assigning a score,
score(π), to each of these reorderings and pick the
reordering which has the highest score. In this paper,
we parametrize this score as:

score(π) = θTφ(π) (1)
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where, θ is the weight vector and φ(π) is a vector
of features extracted from the reordering π. The aim
then is to find,

π∗ = arg max
π∈Π

score(π) (2)

In the following sub-sections, we first briefly
describe our overall approach towards finding π∗.
Next, we describe our modification to the Lin-
Kernighan heuristic for producing n-best outputs
for TSP instead of the 1-best output used by
(Visweswariah et al., 2011). We then discuss the fea-
tures used for re-ranking these n-best outputs, fol-
lowed by a discussion on the learning algorithm used
for estimating the parameters of the model. Finally,
we describe how we interpolate the score assigned
by our model with the score assigned by the decoder
of a SMT engine to indirectly capture target side fea-
tures.

2.1 Overall approach
The training stage of our approach involves two
phases : (i) Training a TSP model which will be
used to generate n-best reorderings and (ii) Training
a re-ranking model using these n-best reorderings.
For training both the models we need a collection
of sentences where the desired reordering π∗(x) for
each input sentence x is known. These reference or-
derings are derived from word aligned source-target
sentence pairs (see first 4 rows of Figure 1). We first
divide this word aligned data into N parts and use
A−i to denote the alignments leaving out the i-th
part. We then train a TSP model M−i using refer-
ence reorderings derived from A−i as described in
(Visweswariah et al., 2011). Next, we produce n-
best reorderings for the source sentences using the
algorithm getNBestReorderings(sentence) de-
scribed later. Dividing the data into N parts is nec-
essary to ensure that the re-ranking model is trained
using a realistic n-best list rather than a very opti-
mistic n-best list (which would be the case if part i
is reordered using a model which has already seen
part i during training).

Each of the n-best reorderings is then repre-
sented as a feature vector comprising of higher
order and structural features. The weights
of these features are then estimated using the
averaged perceptron method. At test time,

getNBestReorderings(sentence) is used to gen-
erate the n-best reorderings for the test sentence us-
ing the trained TSP model. These reorderings are
then represented using higher order and structural
features and re-ranked using the weights learned ear-
lier. We now describe the different stages of our al-
gorithm.

2.2 Generating n-best reorderings for the TSP
model

The first stage of our approach is to train a TSP
model and generate n-best reorderings using it. The
decoder used by Visweswariah et al. (2011) relies
on the Chained Lin-Kernighan heuristic (Lin and
Kernighan, 1973) to produce the 1-best permutation
for the TSP problem. Since our algorithm aims at
re-ranking an n-best list of permutations (reorder-
ings), we made a modification to the Chained Lin-
Kernighan heuristic to produce this n-best list as
shown in Algorithm 1 .

Algorithm 1 getNBestReorderings(sentence)
NbestSet = φ
π∗ = Identity permutation
π∗ = linkernighan(π∗)
insert(NbestSet, π∗)
for i = 1→ nIter do
π

′
= perturb(π∗)

π
′

= linkernighan(π
′
)

if C(π
′
) < maxπ∈NbestSetC(π) then

InsertOrReplace(NbestSet, π
′
)

end if
if C(π

′
) < C(π∗) then

π∗ = π
′

end if
end for

In Algorithm 1 perturb() is a four-edge pertur-
bation described in (Applegate et al., 2003), and
linkernighan() is the Lin-Kernighan heuristic that
applies a sequence of flips that potentially returns
a lower cost permutation as described in (Lin and
Kernighan, 1973). The cost C(π) is calculated us-
ing a trained TSP model.

2.3 Features

We represent each of the n-best reorderings obtained
above as a vector of features which can be divided
into two sets : (i) higher order features and (ii) struc-
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Segmentation Based Features
(extracted for every segment in
the induced segmentation)

Features fired for the seg-
ment [mere(PRP) ghar(NN)]
in Figure1

end lex current segment ghar
end lex prev segment Shyam
end pos current segment NN
end pos prev segment NN
length of current segment 2
first lex current segment mere
first lex next segment aaye
first pos current segment PRP
first pos next segment V RB
Higher order features Features fired for the triplet

Shyam(NN) the(Vaux)
aaye(VRB) in Figure1

lex triplet jumps lex triplet = “Shyam the
aaye” && jumps = [4,−1]

pos triplet jumps pos triplet = “NN Vaux
VRB” && jumps = [4,−1]

Table 2: Features used in our model.

tural features. The higher order features are es-
sentially trigram lexical and pos features whereas
the structural features are derived from the sentence
structure induced by a reordering (explained later).

2.3.1 Higher Order Features

Since deriving a good reordering would essen-
tially require analyzing the syntactic structure of the
source sentence, the tasks of reordering and parsing
are often considered to be related. The main motiva-
tion for using higher order features thus comes from
a related work on parsing (Koo and Collins, 2010)
where the performance of a state of the art parser
was improved by considering higher order depen-
dencies. In our model we use trigram features (see
Table 2) of the following form:

φ(rui, rui+1, rui+2, J(rui, rui+1), J(rui+1, rui+2))
where rui =word at position i in the reordered
source sentence and J(x, y) = difference between
the positions of x and y in the original source
sentence.

Figure 1 shows an example of jumps between dif-
ferent word pairs in an Urdu sentence. Since such
higher order features will typically be sparse, we
also use some back-off features. For example, in-
stead of using the absolute values of jumps we di-
vide the jumps into 3 buckets, viz., high, low and
medium and use these buckets in conjunction with
the triplets as back-off features.

Figure 1: Segmentation induced on the Urdu sentence
when it is reordered according to its English translation.
Note that the words Shyam and mere are adjacent to each
other in the original Urdu sentence but not in the re-
ordered Urdu sentence. Hence, the word mere marks the
beginning of a new segment.

2.3.2 Structural Features

The second set of features is based on the hy-
pothesis that any reordering of the source sentence
induces a segmentation on the sentence. This seg-
mentation is based on the following heuristic: if wi
and wi+1 appear next to each other in the original
sentence but do not appear next to each other in the
reordered sentence then wi marks the end of a seg-
ment and wi+1 marks the beginning of the next seg-
ment. To understand this better please refer to Fig-
ure 1 which shows the correct reordering of an Urdu
sentence based on its English translation and the cor-
responding segmentation induced on the Urdu sen-
tence. If the correct segmentation of a sentence is
known in advance then one could use a hierarchical
model where the goal would be to reorder segments
instead of reordering words individually (basically,
instead of words, treat segments as units of reorder-
ing. In principle, this is similar to what is done by
parser based reordering methods). Since the TSP
model does not explicitly use segmentation based
features it often produces wrong reorderings (refer
to the motivating example in Section 1).

Reordering such sentences correctly requires
some knowledge about the hierarchical structure of
the sentence. To capture such hierarchical informa-
tion, we use features which look at the elements
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(words, pos tags) of a segment and its neighboring
segments. These features along with examples are
listed in Table 2. These features should help us in
selecting a reordering which induces a segmentation
which is closest to the correct segmentation induced
by the reference reordering. Note that every feature
listed in Table 2 is a binary feature which takes on
the value 1 if it fires for the given reordering and
value 0 if it does not fire for the given reordering. In
addition to the features listed in Table 2 we also use
the score assigned by the TSP model as a feature.

2.4 Estimating model parameters

We use perceptron as the learning algorithm for es-
timating the parameters of our model described in
Equation 1. To begin with, all parameters are ini-
tialized to 0 and the learning algorithm is run for N
iterations. During each iteration the parameters are
updated after every training instance is seen. For ex-
ample, during the i-th iteration, after seeing the j-th
training sentence, we update the k-th parameter θk
using the following update rule:

θ
(i,j)
k = θ

(i,j−1)
k + φk(π

gold
j )− φk(π∗j ) (3)

where, θ(i,j)
k = value of the k-th parameter after

seeing sentence j in iteration i

φk = k-th feature

πgoldj = gold reordering for the j-th sentence

π∗j = arg max
π∈Πj

θ(i,j−1)T

φ(π)

where Πj is the set of n-best reorderings for the j-
th sentence. π∗j is thus the highest-scoring reorder-
ing for the j-th sentence under the current parame-
ter vector. Since the averaged perceptron method is
known to perform better than the perceptron method,
we used the averaged values of the parameters at the
end of N iterations, calculated as:

θavgk =
1

N · t

N∑
i=1

t∑
j=1

θ
(i,j)
k (4)

where, N = Number of iterations

t = Number of training instances

We observed that in most cases the reference re-
ordering in not a part of the n-best list produced
by the TSP model. In such cases instead of using

φk(π
gold
j ) for updating the weights in Equation 3 we

use φk(π
closest to gold
j ) as this is known to be a better

strategy for learning a re-ranking model (Arun and
Koehn, 2007). πclosest to goldj is given by:

arg max
πi

j∈Πj

# of common bigram pairs in πij and πgoldj

len(πgoldj )

where, Πj = set of n-best reorderings for jth sentence

πclosest to goldj is thus the reordering which has the

maximum overlap with πgoldj in terms of the number
of word pairs (wm, wn) where wn is put next to wm.

2.5 Interpolating with MT score
The approach described above aims at producing a
better reordering by extracting richer features from
the source sentence. Since the final aim is to im-
prove the performance of an MT system, it would
potentially be beneficial to interpolate the scores as-
signed by Equation 1 to a given reordering with the
score assigned by the decoder of an MT system to
the translation of the source sentence under this re-
ordering. Intuitively, the MT score would allow us
to capture features from the target sentence which
are obviously not available to our model. With this
motivation, we use the following interpolated score
(scoreI ) to select the best translation.

scoreI(ti) = λ·scoreθ(πi) + (1− λ) · scoreMT (ti)

where, ti =translation produced under the i-th

reordering of the source sentence

scoreθ(πi) =score assigned by our model to the

i-th reordering

scoreMT (ti) =score assigned by the MT system to ti

The weight λ is used to ensure that scoreθ(πi) and
scoreMT (πi) are in the same range (it just serves as
a normalization constant). We acknowledge that the
above process is expensive because it requires the
MT system to decode n reorderings for every source
sentence. However, the aim of this work is to show
that interpolating with the MT score which implic-
itly captures features from the target sentence helps
in improving the performance. Ideally, this interpo-
lation should (and can) be done at decode time with-
out having to decode n reorderings for every source
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sentence (for example by expressing the n reorder-
ings as a lattice), but, we leave this as future work.

3 Empirical evaluation

We evaluated our reordering approach on Urdu-
English. We use two types of evaluation, one in-
trinsic and one extrinsic. For intrinsic evaluation,
we compare the reordered source sentence in Urdu
with a reference reordering obtained from the hand
alignments using BLEU (referred to as monolingual
BLEU or mBLEU by (Visweswariah et al., 2011) ).
Additionally, we evaluate the effect of reordering on
MT performance using BLEU (extrinsic evaluation).

As mentioned earlier, our training process in-
volves two phases : (i) Generating n-best reorder-
ings for the training data and (ii) using these n-best
reorderings to train a perceptron model. We use the
same data for training the reordering model as well
as our perceptron model. This data contains 180K
words of manual alignments (part of the NIST MT-
08 training data) and 3.9M words of automatically
generated machine alignments (1.7M words from
the NIST MT-08 training data1 and 2.2M words ex-
tracted from sources on the web2). The machine
alignments were generated using a supervised maxi-
mum entropy model (Ittycheriah and Roukos, 2005)
and then corrected using an improved correction
model (McCarley et al., 2011). We first divide the
training data into 10 folds. The n-best reorder-
ings for each fold are then generated using a model
trained on the remaining 9 folds. This division into
10 folds is done for reasons explained earlier in Sec-
tion 2.1. These n-best reorderings are then used to
train the perceptron model as described in Section
2.4. Note that Visweswariah et al. (2011) used only
manually aligned data for training the TSP model.
However, we use machine aligned data in addition
to manually aligned data for training the TSP model
as it leads to better performance. We used this im-
provised TSP model as the state of the art baseline
(rows 2 and 3 in Tables 3 and 4 respectively) for
comparing with our approach.

We observed that the perceptron algorithm con-
verges after 5 iterations beyond which there is very
little (<1%) improvement in the bigram precision on

1http://www.ldc.upenn.edu
2http://centralasiaonline.com

the training data itself (bigram precision is the frac-
tion of word pairs which are correctly put next to
each other). Hence, for all the numbers reported in
this paper, we used 5 iterations of perceptron train-
ing. Similarly, while generating the n-best reorder-
ings, we experimented with following values of n :
10, 25, 50, 100 and 200. We observed that, by re-
stricting the search space to the top-50 reorderings
we get the best reordering performance (mBLEU)
on a development set. Hence, we used n=50 for our
MT experiments.

For intrinsic evaluation we use a development set
of 8017 Urdu tokens reordered manually. Table 3
compares the performance of the top-1 reordering
output by our algorithm with the top-1 reordering
generated by the improved TSP model in terms of
mBLEU. We see a gain of 1.8 mBLEU points with
our approach.

Next, we see the impact of the better reorderings
produced by our system on the performance of
a state-of-the-art MT system. For this, we used
a standard phrase based system (Al-Onaizan and
Papineni, 2006) with a lexicalized distortion model
with a window size of +/-4 words (Tillmann and
Ney, 2003). As mentioned earlier, our training data
consisted of 3.9M words including the NIST MT-08
training data. We use HMM alignments along with
higher quality alignments from a supervised aligner
(McCarley et al., 2011). The Gigaword English
corpus was used for building the English language
model. We report results on the NIST MT-08
evaluation set, averaging BLEU scores from the
News and Web conditions to provide a single BLEU
score. Table 4 compares the MT performance
obtained by reordering the training and test data
using the following approaches:

1. No pre-ordering: A baseline system which
does not use any source side reordering as a pre-
processing step

2. HIERO : A state of the art hierarchical phrase
based translation system (Chiang, 2007)

3. TSP: A system which uses the 1-best reordering
produced by the TSP model

4. Higher order & structural features: A system
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Approach mBLEU
Unreordered 31.2

TSP 56.6
Higher order & structural features 58.4

Table 3: mBLEU scores for Urdu to English reordering
using different models.

Approach BLEU
No pre-ordering 21.9

HIERO 25.2
TSP 26.9

Higher order & structural features 27.5
Interpolating with MT score 28.2

Table 4: MT performance for Urdu to English without re-
ordering and with reordering using different approaches.

which reranks n-best reorderings produced by TSP
using higher order and structural features

5. Interpolating with MT score : A system which
interpolates the score assigned to a reordering by
our model with the score assigned by a MT system

We used Joshua 4.0 (Ganitkevitch et al., 2012)
which provides an open source implementation of
HIERO. For training, tuning and testing HIERO
we used the same experimental setup as described
above. As seen in Table 4, we get an overall gain of
6.2 BLEU points with our approach as compared to
a baseline system which does not use any reordering.
More importantly, we outperform (i) a PBSMT sys-
tem which uses the TSP model by 1.3 BLEU points
and (ii) a state of the art hierarchical phrase based
translation system by 3 points.

4 Discussions

We now discuss some error corrections and ablation
tests.

4.1 Example of error correction

We first give an example where the proposed ap-
proach performed better than the TSP model. In the
example below, I = input sentence, E= gold English
translation, T = incorrect reordering produced by
TSP and O = correct reordering produced by our
approach. Note that the words roman catholic aur
protestant in the input sentence get translated as

Sentence length mBLEU
Unreordered TSP Our

approach
1-14 words (small) 29.7 58.7 57.8
15-22 words (med.) 28.2 56.8 59.2
23+ words (long) 33.4 55.8 58.2
All 31.2 56.6 58.4

Table 5: mBLEU improvements on sentences of different
lengths

a continuous phrase in English (Roman Catholic
and Protestant) and hence should be treated as a
single unit by the reordering model. The TSP model
fails to keep this segment intact whereas our model
(which uses segmentation based features) does so
and matches the reference reordering.

I: ab roman catholic aur protestant ke darmiyaan
ikhtilafat khatam ho chuke hai

E: The differences between Roman Catholics and
Protestants have now ended

T: ab roman ikhtilafat ke darmiyaan catholic aur
protestant hai khatam ho chuke

O: ab ikhtilafat ke darmiyaan roman catholic aur
protestant hai khatam ho chuke

4.2 Performance based on sentence length

We split the test data into roughly three equal parts
based on length, and calculated the mBLEU im-
provements on each of these parts as reported in
Table 5. These results show that the model works
much better for medium-to-long sentences. In fact,
we see a drop in performance for small sentences. A
possible reason for this could be that the structural
features that we use are derived through a heuristic
that is error-prone, and in shorter sentences, where
there would be fewer reordering problems, these er-
rors hurt more than they help. While this needs to be
analyzed further, we could meanwhile combine the
two models fruitfully by using the base TSP model
for small sentences and the new model for longer
sentences.
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Disabled feature mBLEU
end lex current segment 57.6
end lex prev segment 57.6
end pos current segment 57.8
end pos prev segment 57.4
length 57.6
lex triplet jumps 58.0
pos triplet jumps 56.1
first lex current segment 58.2
first lex next segment 58.2
first pos current segment 57.6
first pos next segment 57.6
NONE 58.4

Table 6: Ablation test indicating the contribution of each
feature to the reordering performance.

4.3 Ablation test
To study the contribution of each feature to the
reordering performance, we did an ablation test
wherein we disabled one feature at a time and mea-
sured the change in the mBLEU scores. Table 6
summarizes the results of our ablation test. The
maximum drop in performance is obtained when the
pos triplet jumps feature is disabled. This obser-
vation supports our claim that higher order features
(more than bigrams) are essential for better reorder-
ing. The lex triplet jumps feature has the least
impact on the performance mainly because it is a
lexicalized feature and hence very sparse. Also note
that there is a high correlation between the perfor-
mances obtained by dropping one feature from each
of the following pairs :
i) first lex current segment, first lex next segment
ii) first pos current segment, first pos next segment
iii) end lex current segment, end lex next segment.
This is because these pairs of features are
highly dependent features. Note that similar to
the pos triplet jumps feature we also tried a
pos quadruplet jumps feature but it did not help
(mainly due to overfitting and sparsity).

5 Related Work

There are several studies which have shown that re-
ordering the source side sentence to match the target
side order leads to improvements in Machine Trans-
lation. These approaches can be broadly classified
into three types. First, approaches which reorder
source sentences by applying rules to the source side

parse; the rules are either hand-written (Collins et
al., 2005; Wang et al., 2007; Ramanathan et al.,
2009) or learned from data (Xia and McCord, 2004;
Genzel, 2010; Visweswariah et al., 2010). These
approaches require a source side parser which is
not available for many languages. The second type
of approaches treat machine translation decoding
as a parsing problem by using source and/or tar-
get side syntax in a Context Free Grammar frame-
work. These include Hierarchical models (Chi-
ang, 2007) and syntax based models (Yamada and
Knight, 2002; Galley et al., 2006; Liu et al., 2006;
Zollmann and Venugopal, 2006). The third type of
approaches, avoid the use of a parser (as required
by syntax based models) and instead train a reorder-
ing model using reference reorderings derived from
aligned data. These approaches (Tromble and Eis-
ner, 2009; Visweswariah et al., 2011; DeNero and
Uszkoreit, 2011; Neubig et al., 2012) have a low de-
code time complexity as reordering is done as a pre-
processing step and not integrated with the decoder.

Our work falls under the third category, as it im-
proves upon the work of (Visweswariah et al., 2011)
which is closely related to the work of (Tromble
and Eisner, 2009) but performs better. The focus
of our work is to use higher order and structural
features (based on segmentation of the source sen-
tence) which are not captured by their model. Some
other works have used collocation based segmenta-
tion (Henrı́quez Q. et al., 2010) and Multiword Ex-
pressions as segments (Bouamor et al., 2012) to im-
prove the performance of SMT but without much
success. The idea of improving performance by re-
ranking a n-best list of outputs has been used re-
cently for the related task of parsing (Katz-Brown et
al., 2011) using targeted self-training for improving
the performance of reordering. However, in contrast,
in our work we directly aim at improving the perfor-
mance of a reordering model.

6 Conclusion

In this work, we proposed a model for re-ranking
the n-best reorderings produced by a state of the
art reordering model (TSP model) which is limited
to pair wise features. Our model uses a more in-
formative set of features consisting of higher order
features, structural features and target side features
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(captured indirectly using translation scores). The
problem of intractability is solved by restricting the
search space to the n-best reorderings produced by
the TSP model. A detailed ablation test shows that
of all the features used, the pos triplet features are
most informative for reordering. A gain of 1.3 and 3
BLEU points over a state of the art phrase based and
hierarchical machine translation system respectively
provides good extrinsic validation of our claim that
such long range features are useful.

As future work, we would like to evaluate our al-
gorithm on other language pairs. We also plan to
integrate the score assigned by our model into the
decoder to avoid having to do n decodings for ev-
ery source sentence. Also, it would be interesting
to model the segmentation explicitly, where the aim
would be to first segment the sentence and then use
a two level hierarchical reordering model which first
reorders these segments and then reorders the words
within the segment.
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Abstract

Translation models in statistical machine
translation can be scaled to large corpora
and arbitrarily-long phrases by looking up
translations of source phrases “on the fly”
in an indexed parallel corpus using suffix
arrays. However, this can be slow because
on-demand extraction of phrase tables is
computationally expensive. We address this
problem by developing novel algorithms for
general purpose graphics processing units
(GPUs), which enable suffix array queries
for phrase lookup and phrase extraction to
be massively parallelized. Compared to
a highly-optimized, state-of-the-art serial
CPU-based implementation, our techniques
achieve at least an order of magnitude
improvement in terms of throughput. This
work demonstrates the promise of massively
parallel architectures and the potential
of GPUs for tackling computationally-
demanding problems in statistical machine
translation and language processing.

1 Introduction

Efficiently handling large translation models is a
perennial problem in statistical machine translation.
One particularly promising solution (§2) is to use
the parallel text itself as an implicit representation
of the translation model and extract translation units
“on the fly” when they are needed to decode new
input (Brown, 2004). This idea has been applied
to phrase-based (Callison-Burch et al., 2005; Zhang
and Vogel, 2005), hierarchical (Lopez, 2007; Lopez,
2008b; Lopez, 2008a), and syntax-based (Cromieres

and Kurohashi, 2011) models. A benefit of this
technique is that it scales to arbitrarily large models
with very little pre-processing. For instance, Lopez
(2008b) showed that a translation model trained on
a large corpus with sparse word alignments and
loose extraction heuristics substantially improved
Chinese-English translation. An explicit represen-
tation of the model would have required nearly a
terabyte of memory, but its implicit representation
using the parallel text required only a few gigabytes.

Unfortunately, there is substantial computational
cost in searching a parallel corpus for source
phrases, extracting their translations, and scoring
them on the fly. Since the number of possible
translation units may be quite large (for example,
all substrings of a source sentence) and their
translations are numerous, both phrase lookup and
extraction are performance bottlenecks. Despite
considerable research and the use of efficient
indexes like suffix arrays (Manber and Myers,
1990), this problem remains not fully solved.

We show how to exploit the massive parallelism
offered by modern general purpose graphics pro-
cessing units (GPUs) to eliminate the computational
bottlenecks associated with “on the fly” phrase ex-
traction. GPUs have previously been applied to
DNA sequence matching using suffix trees (Schatz
et al., 2007) and suffix arrays (Gharaibeh and Ri-
peanu, 2010). Building on this work, we present
two novel contributions: First, we describe improved
GPU algorithms for suffix array queries that achieve
greater parallelism (§3). Second, we propose novel
data structures and algorithms for phrase extraction
(§4) and scoring (§5) that are amenable to GPU par-
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allelization. The resulting implementation achieves
at least an order of magnitude higher throughput
than a state-of-the-art single-threaded CPU imple-
mentation (§6). Since our experiments verify that
the GPU implementation produces exactly the same
results as a CPU reference implementation on a full
extraction, we can simply replace that component
and reap significant performance advantages with no
impact on translation quality. To the best of our
knowledge, this is the first reported application of
GPU acceleration techniques for statistical machine
translation. We believe these results reveal a promis-
ing yet unexplored future direction in exploiting par-
allelism to tackle perennial performance bottlenecks
in state-of-the-art translation models.

2 Phrase Extraction On Demand

Lopez (2008b) provides the following recipe for
“translation by pattern matching”, which we use as
a guide for the remainder of this paper:

Algorithm 1 Translation by pattern matching
1: for each input sentence do
2: for each possible phrase in the sentence do
3: Find its occurrences in the source text
4: for each occurrence do
5: Extract its aligned target phrase (if any)
6: for each extracted phrase pair do
7: Compute feature values
8: Decode as usual using the scored rules

The computational bottleneck occurs in lines 2–7:
there are vast numbers of query phrases, matching
occurrences, and extracted phrase pairs to process in
the loops. In the next three sections, we attack each
problem in turn.

3 Finding Every Phrase

First, we must find all occurrences of each source
phrase in the input (line 3, Algorithm 1). This
is a classic application of string pattern matching:
given a short query pattern, the task is to find all
occurrences in a much larger text. Solving the
problem efficiently is crucial: for an input sentence
F of length |F |, each of its O(|F |2) substrings is a
potential query pattern.

3.1 Pattern Matching with Suffix Arrays

Although there are many algorithms for pattern
matching, all of the examples that we are aware
of for machine translation rely on suffix arrays.
We briefly review the classic algorithms of Manber
and Myers (1990) here since they form the basis
of our techniques and analysis, but readers who
are familiar with them can safely skip ahead to
additional optimizations (§3.2).

A suffix array represents all suffixes of a corpus
in lexicographical order. Formally, for a text T , the
ith suffix of T is the substring of the text beginning
at position i and continuing to the end of T . Each
suffix can therefore be uniquely identified by the
index i of its first word. A suffix array S(T )
of T is a permutation of these suffix identifiers
[1, |T |] arranged by the lexicographical order of the
corresponding suffixes—in other words, the suffix
array represents a sorted list of all suffixes in T .
With both T and S(T ) in memory, we can find any
query pattern Q in O(|Q| log |T |) time by compar-
ing pattern Q against the first |Q| characters of up to
log |T | different suffixes using binary search.

An inefficiency in this solution is that each com-
parison in the binary search algorithm requires com-
paring all |Q| characters of the query pattern against
some suffix of text T . We can improve on this using
an observation about the longest common prefix
(LCP) of the query pattern and the suffix against
which it is compared. Suppose we search for a query
pattern Q in the span of the suffix array beginning at
suffix L and ending at suffix R. For any suffix M
which falls lexicographically between those at L and
R, the LCP of Q and M will be at least as long as
the LCP of Q and L or Q and R. Hence if we know
the quantity h = MIN(LCP(Q, L), LCP(Q, R)) we
can skip comparisons of the first h symbols between
Q and the suffix M , since they must be the same.

The solution of Manber and Myers (1990) ex-
ploits this fact along with the observation that each
comparison in binary search is carried out accord-
ing to a fixed recursion scheme: a query is only
ever compared against a specific suffix M for a
single range of suffixes bounded by some fixed L
and R. Hence if we know the longest common
prefix between M and each of its corresponding
L and R according to the fixed recursions in the
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algorithm, we can maintain a bound on h and reduce
the aggregate number of symbol comparisons to
O(|Q| + log |T |). To accomplish this, in addition
to the suffix array, we pre-compute two other arrays
of size |T | for both left and right recursions (called
the LCP arrays).

Memory use is an important consideration, since
GPUs have less memory than CPUs. For the algo-
rithms described here, we require four arrays: the
original text T , the suffix array S(T ), and the two
LCP arrays. We use a representation of T in which
each word has been converted to a unique integer
identifier; with 32-bit integers the total number of
bytes is 16|T |. As we will show, this turns out to be
quite modest, even for large parallel corpora (§6).

3.2 Suffix Array Efficiency Tricks
Previous work on translation by pattern matching
using suffix arrays on serial architectures has pro-
duced a number of efficiency optimizations:

1. Binary search bounds for longer substrings are
initialized to the bounds of their longest prefix.
Substrings are queried only if their longest
prefix string was matched in the text.

2. In addition to conditioning on the longest pre-
fix, Zhang and Vogel (2005) and Lopez (2007)
condition on a successful query for the longest
proper suffix.

3. Lopez (2007) queries each unique substring
of a sentence exactly once, regardless of how
many times it appears in an input sentence.

4. Lopez (2007) directly indexes one-word sub-
strings with a small auxiliary array, so that
their positions in the suffix array can be found
in constant time. For longer substrings, this
optimization reduces the log |T | term of query
complexity to log(count(a)), where a is the
first word of the query string.

Although these efficiency tricks are important in the
serial algorithms that serve as our baseline, not all
of them are applicable to parallel architectures. In
particular, optimizations (1), (2), and (3) introduce
order dependencies between queries; they are disre-
garded in our GPU implementation so that we can
fully exploit parallelization opportunities. We have
not yet fully implemented (4), which is orthogonal
to parallelization: this is left for future work.

3.3 Finding Every Phrase on a GPU

Recent work in computational biology has shown
that suffix arrays are particularly amenable to GPU
acceleration: the suffix-array-based DNA sequence
matching system MummurGPU++ (Gharaibeh and
Ripeanu, 2010) has been reported to outperform the
already fast MummurGPU 2 (Trapnell and Schatz,
2009), based on suffix trees (an alternative indexing
structure). Here, we apply the same ideas to ma-
chine translation, introducing some novel improve-
ments to their algorithms in the process.

A natural approach to parallelism is to perform
all substring queries in parallel (Gharaibeh and Ri-
peanu, 2010). There are no dependencies between
iterations of the loop beginning on line 2 of Algo-
rithm 1, so for input sentence F , we can parallelize
by searching for all O(|F |2) substrings concurrently.
We adopt this approach here.

However, naı̈ve application of query-level paral-
lelism leads to a large number of wasted threads,
since most long substrings of an input sentence will
not be found in the text. Therefore, we employ
a novel two-pass strategy: in the first pass, we
simply compute, for each position i in the input
sentence, the length j of the longest substring in F
that appears in T . These computations are carried
out concurrently for every position i. During this
pass, we also compute the suffix array bounds of the
one-word substring F [i], to be used as input to the
second pass—a variant of optimizations (1) and (4)
discussed in §3.2. On the second pass, we search
for all substrings F [i, k] for all k ∈ [i + 1, i + j].
These computations are carried out concurrently for
all substrings longer than one word.

Even more parallelization is possible. As we saw
in §3.1, each query in a suffix array actually requires
two binary searches: one each for the first and last
match in S(T ). The abundance of inexpensive
threads on a GPU permits us to perform both queries
concurrently on separate threads. By doing this in
both passes we utilize more of the GPU’s processing
power and obtain further speedups.

As a simple example, consider an input sentence
“The government puts more tax on its citizens”, and
suppose that substrings “The government”, “gov-
ernment puts”, and “puts more tax” are found in
the training text, while none of the words in “on
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Initial Word Longest Match Substrings Threads
1st pass 2nd pass

The 2 The, The government 2 2
government 2 government, government puts 2 2

puts 3 puts, puts more, puts more tax 2 4
more 2 more, more tax 2 2
tax 1 tax 2 0
on 0 – 2 0
its 0 – 2 0

citizens 0 – 2 0
Total Threads: 16 10

Table 1: Example of how large numbers of suffix array queries can be factored across two highly parallel passes on a
GPU with a total of 26 threads to perform all queries for this sample input sentence.

its citizens” are found. The number of threads
spawned is shown in Table 1: all threads during a
pass execute in parallel, and each thread performs a
binary search which takes no more than O(|Q| +
log |T |) time. While spawning so many threads
may seem wasteful, this degree of parallelization
still under-utilizes the GPU; the hardware we use
(§6) can manage up to 21,504 concurrent threads
in its resident occupancy. To fully take advantage
of the processing power, we process multiple input
sentences in parallel. Compared with previous
algorithms, our two-pass approach and our strategy
of thread assignment to increase the amount of
parallelism represent novel contributions.

4 Extracting Aligned Target Phrases

The problem at line 5 of Algorithm 1 is to extract the
target phrase aligned to each matching source phrase
instance. Efficiency is crucial since some source
phrases occur hundreds of thousands of times.

Phrase extraction from word alignments typically
uses the consistency check of Och et al. (1999). A
consistent phrase is one for which no words inside
the phrase pair are aligned to words outside the
phrase pair. Usually, consistent pairs are computed
offline via dynamic programming over the align-
ment grid, from which we extract all consistent
phrase pairs up to a heuristic bound on phrase length.

The online extraction algorithm of Lopez (2008a)
checks for consistent phrases in a different manner.
Rather than finding all consistent phrase pairs in
a sentence, the algorithm asks: given a specific
source phrase, is there a consistent phrase pair

Figure 1: Source phrase f2f3f4 and target phrase
e2e3e4 are extracted as a consistent pair, since the back-
projection is contained within the original source span.

Figure 2: Source phrase f2f3f4 and target phrase e2e3e4

should not be extracted, since the back-projection is not
contained within the original source span.

of which it is one side? To answer this, it first
computes the projection of the source phrase in the
target sentence: the minimum span containing all
words that are aligned to any word of the source
span. It then computes the projection of the target
span back into the source; if this back-projection
is contained within the original source span, the
phrase pair is consistent, and the target span is
extracted as the translation of the source. Figure 1
shows a “good” pair for source phrase f2f3f4, since
the back-projection is contained within the original
source span, whereas Figure 2 shows a “bad” pair
for source phrase f2f3f4 since the back-projection
is not contained within the original source span.
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4.1 Sampling Consistent Phrases
Regardless of how efficient the extraction of a single
target phrase is made, the fact remains that there
are many phrases to extract. For example, in our
Chinese Xinhua dataset (see §6), from 8,000 input
query sentences, about 20 million source substrings
can be extracted. The standard solution to this
problem is to sample a set of occurrences of each
source phrase, and only extract translations for those
occurrences (Callison-Burch et al., 2005; Zhang and
Vogel, 2005). As a practical matter, this can be done
by sampling at uniform intervals from the matching
span of a suffix array. Lopez (2008a) reports a
sample size of 300; for phrases occurring fewer than
300 times, all translations are extracted.

4.2 GPU Implementation
We present novel data structures and an algorithm
for efficient phrase extraction, which together are
amenable to massive parallelization on GPUs. The
basic insight is to pre-compute data structures for
the source-to-target alignment projection and back-
projection procedure described by Lopez (2008a)
for checking consistent alignments.

Let us consider a single matching substring (from
the output of the suffix array queries), span [i, j] in
the source text T . For each k, we need to know the
leftmost and rightmost positions that it aligns to in
the target T ′. For this purpose we can define the
target span [i′, j′], along with leftmost and rightmost
arrays L and R as follows:

i′ := min
k∈[i,j]

L(k)

j′ := max
k∈[i,j]

R(k)

The arrays L and R are each of length |T |, in-
dexed by absolute corpus position. Each array
element contains the leftmost and rightmost extents
of the source-to-target alignments (in the target),
respectively. Note that in order to save space,
the values stored in the arrays are sentence-relative
positions (e.g., token count from the beginning of
each sentence), so that we only need one byte per
array entry. Thus, i′ and j′ are sentence-relative
positions (in the target).

Similarly, for the back-projection, we use two
arrays L′ and R′ on the target side (length |T ′|) to

keep track of the leftmost and rightmost positions
that k′ in the target training text align to, as below:

i′′ := min
k′∈[s′+i′,s′+j′]

L′(k′)

j′′ := max
k′∈[s′+i′,s′+j′]

R′(k′)

The arrays L′ and R′ are indexed by absolute corpus
positions, but their contents are sentence relative
positions (on the source side). To index the arrays
L′ and R′, we also need to obtain the corresponding
target sentence start position s′. Note that the back-
projected span [i′′, j′′] may or may not be the same
as the original span [i, j]. In fact, this is exactly what
we must check for to ensure a consistent alignment.

The suffix array gives us i, which is an ab-
solute corpus position, but we need to know the
sentence-relative position, since the spans computed
by R,L, R′, L′ are all sentence relative. To solve
this, we introduce an array P (length |T |) that gives
the relative sentence position of each source word.

We then pack the three source side arrays (R, L,
and P ) into a single RLP array of 32-bit integers
(note that we are actually wasting one byte per array
element). Finally, since the end-of-sentence special
token is not used in any of R, L, or P , its position
in RLP can be used to store an index to the start
of the corresponding target sentence in the target
array T ′. Now, given a source phrase spanning
[i, j] (recall, these are absolute corpus positions), our
phrase extraction algorithm is as follows:

Algorithm 2 Efficient Phrase Extraction Algorithm
1: for each source span [i, j] do
2: Compute [i′, j′]
3: s := i− P [i]− 1
4: s′ := RLP [s]
5: i′′ := mink′∈[s′+i′,s′+j′] L

′(k′)
6: j′′ := maxk′∈[s′+i′,s′+j′] R

′(k′)
7: If i− s = i′′ and j − s = j′′ then
8: Extract T [i, j] with T ′[s′ + i′, s′ + j′]

where s is the source sentence start position of a
given source phrase and s′ is the target sentence
start position. If the back-projected spans match the
original spans, the phrase pair T [i, j] and T ′[s′ +
i′, s′ + j′] is extracted.

In total, the data structures RLP , R′, and L′

require 4|T | + 2|T ′| bytes. Not only is this phrase
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extraction algorithm fast—requiring only a few in-
direct array references—the space requirements for
the auxiliary data structures are quite modest.

Given sufficient resources, we would ideally par-
allelize the phrase table creation process for each
occurrence of the matched source substring. How-
ever, the typical number of source substring matches
for an input sentence is even larger than the number
of threads available on GPUs, so this strategy does
not make sense due to context switching overhead.
Instead, GPU thread blocks (groups of 512 threads)
are used to process each source substring. This
means that for substrings with large numbers of
matches, one thread in the GPU block would process
multiple occurrences. This strategy is widely used,
and according to GPU programming best practices
from NVIDIA, allocating more work to a single
thread maintains high GPU utilization and reduces
the cost of context switches.

5 Computing Every Feature

Finally, we arrive at line 7 in Algorithm 3, where
we must compute feature values for each extracted
phrase pair. Following the implementation of gram-
mar extraction used in cdec (Lopez, 2008a), we
compute several widely-used features:

1. Pair count feature, c(e, f).
2. The joint probability of all target-to-source

phrase translation probabilities, p(e|f)
= c(e, f)/c(f), where e is target phrase, f is
the source phrase.

3. The logarithm of the target-to-source lexical
weighting feature.

4. The logarithm of the source-to-target lexical
weighting feature.

5. The coherence probability, defined as the ratio
between the number of successful extractions
of a source phrase to the total count of the
source phrase in the suffix array.

The output of our phrase extraction is a large
collection of phrase pairs. To extract the above fea-
tures, aggregate statistics need to be computed over
phrase pairs. To make the solution both compact
and efficient, we first sort the unordered collection
of phrases from the GPU into an array, then the
aggregate statistics can be obtained in a single pass

over the array, since identical phrase pairs are now
grouped together.

6 Experimental Setup

We tested our GPU-based grammar extraction im-
plementation under the conditions in which it would
be used for a Chinese-to-English machine transla-
tion task, in particular, replicating the data condi-
tions of Lopez (2008b). Experiments were per-
formed on two data sets. First, we used the source
(Chinese) side of news articles collected from the
Xinhua Agency, with around 27 million words of
Chinese in around one million sentences (totaling
137 MB). Second, we added source-side parallel text
from the United Nations, with around 81 million
words of Chinese in around four million sentences
(totaling 561 MB). In a pre-processing phase, we
mapped every word to a unique integer, with two
special integers representing end-of-sentence and
end-of-corpus, respectively.

Input query data consisted of all sentences from
the NIST 2002–2006 translation campaigns, tok-
enized and integerized identically to the training
data. On average, sentences contained around 29
words. In order to fully stress our GPU algorithms,
we ran tests on batches of 2,000, 4,000, 6,000,
8,000, and 16,000 sentences. Since there are only
around 8,000 test sentences in the NIST data, we
simply duplicated the test data as necessary.

Our experiments used NVIDIA’s Tesla C2050
GPU (Fermi Generation), which has 448 CUDA
cores with a peak memory bandwidth 144 GB/s.
Note that the GPU was released in early 2010
and represents previous generation technology.
NVIDIA’s current GPUs (Kepler) boasts raw
processing power in the 1.3 TFlops (double
precision) range, which is approximately three
times the GPU we used. Our CPU is a 3.33 GHz
Intel Xeon X5260 processor, which has two cores.

As a baseline, we compared against the publicly
available implementation of the CPU-based algo-
rithms described by Lopez (2008a) found in the
pycdec (Chahuneau et al., 2012) extension of the
cdec machine translation system (Dyer et al., 2010).
Note that we only tested grammar extraction for
continuous pairs of phrases, and we did not test the
slower and more complex queries for hierarchical
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Input Sentences 2,000 4,000 6,000 8,000 16,000
Number of Words 57,868 117,854 161,883 214,246 428,492

Xinhua

With Sampling (s300)
GPU (words/second)

3811
(21.9)

4723
(20.4)

5496
(32.1)

6391
(29.7)

12405
(36.0)

CPU (words/second) 200 (1.5)
Speedup 19× 24× 27× 32× 62×

No Sampling (s∞)
GPU (words/second)

1917
(8.5)

2859
(11.1)

3496
(19.9)

4171
(23.2)

8186
(27.6)

CPU (words/second) 1.13 (0.02)
Speedup 1690× 2520× 3082× 3677× 7217×

Xinhua + UN

With Sampling (s300)
GPU (words/second)

2021
(5.3)

2558
(10.7)

2933
(13.9)

3439
(15.2)

6737
(29.0)

CPU (words/second) 157 (1.8)
Speedup 13× 16× 19× 22× 43×

No Sampling (s∞)
GPU (words/second)

500.5
(2.5)

770.1
(3.9)

984.6
(5.8)

1243.8
(5.4)

2472.3
(12.0)

CPU (words/second) 0.23 (0.002)
Speedup 2194× 3375× 4315× 5451× 10836×

Table 2: Comparing the GPU and CPU implementations for phrase extraction on two different corpora. Throughput
is measured in words per second under different test set sizes; the 95% confidence intervals across five trials are given
in parentheses, along with relative speedups comparing the two implementations.

(gappy) patterns described by Lopez (2007). Both
our implementation and the baseline are written
primarily in C/C++.1

Our source corpora and test data are the same
as that presented in Lopez (2008b), and using the
CPU implementation as a reference enabled us to
confirm that our extracted grammars and features
are identical (modulo sampling). We timed our
GPU implementation as follows: from the loading
of query sentences, extractions of substrings and
grammar rules, until all grammars for all sentences
are generated in memory. Timing does not include
offline preparations such as the construction of the
suffix array on source texts and the I/O costs for
writing the per-sentence grammar files to disk. This
timing procedure is exactly the same for the CPU

1The Chahuneau et al. (2012) implementation is in Cython,
a language for building Python applications with performance-
critical components in C. In particular, all of the suffix array
code that we instrumented for these experiments are compiled
to C/C++. The implementation is a port of the original code
written by Lopez (2008a) in Pyrex, a precursor to Cython.
Much of the code is unchanged from the original version.

baseline. We are confident that our results represent
a fair comparison between the GPU and CPU, and
are not attributed to misconfigurations or other flaws
in experimental procedures. Note that the CPU
implementation runs in a single thread, on the same
machine that hosts the GPU (described above).

7 Results

Table 2 shows performance results comparing our
GPU implementation against the reference CPU
implementation for phrase extraction. In one ex-
perimental condition, the sampling parameter for
frequently-matching phrases is set to 300, per Lopez
(2008a), denoted s300. The experimental condition
without sampling is denoted s∞. Following stan-
dard settings, the maximum length of the source
phrase is set to 5 and the maximum length of the
target phrase is set to 15 (same for both GPU
and CPU implementations). The table is divided
into two sections: the top shows results on the
Xinhua data, and the bottom on Xinhua + UN
data. Columns report results for different numbers
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# Sent. 2000 4000 6000 8000 16000
Speedup 9.6× 14.3× 17.5× 20.9× 40.9×
Phrases 2.1× 1.8× 1.7× 1.6× 1.6×

Table 3: Comparing no sampling on the GPU with sam-
pling on the CPU in terms of performance improvements
(GPU over CPU) and increases in the number of phrase
pairs extracted (GPU over CPU).

of input sentences. Performance is reported in terms
of throughput: the number of processed words per
second on average (i.e., total time divided by the
batch size in words). The results are averaged over
five trials, with 95% confidence intervals shown in
parentheses. Note that as the batch size increases,
we achieve higher throughput on the GPU since
we are better saturating its full processing power.
In contrast, performance is constant on the CPU
regardless of the number of sentences processed.

The CPU throughput on the Xinhua data is 1.13
words per second without sampling and 200 words
per second with sampling. On 16,000 test sentences,
we have mostly saturated the GPU’s processing
power, and observe a 7217× speedup over the CPU
implementation without sampling and 62× speedup
with sampling. On the larger (Xinhua + UN)
corpus, we observe 43× and 10836× speedup with
sampling and no sampling, respectively.

Interestingly, a run without sampling on the GPU
is still substantially faster than a run with sampling
on the CPU. On the Xinhua corpus, we observe
speedups ranging from nine times to forty times, as
shown in Table 3. Without sampling, we are able to
extract up to twice as many phrases.

In previous CPU implementations of on-the-fly
phrase extraction, restrictions were placed on the
maximum length of the source and target phrases
due to computational constraints (in addition to sam-
pling). Given the massive parallelism afforded by
the GPU, might we be able to lift these restrictions
and construct the complete phrase table? To answer
this question, we performed an experiment without
sampling and without any restrictions on the length
of the extracted phrases. The complete phrase
table contained about 0.5% more distinct pairs, with
negligible impact on performance.

When considering these results, an astute reader
might note that we are comparing performance

of a single-threaded implementation with a fully-
saturated GPU. To address this concern, we
conducted an experiment using a multi-threaded
version of the CPU reference implementation to
take full advantage of multiple cores on the CPU (by
specifying the -j option in cdec); we experimented
with up to four threads to fully saturate the
dual-core CPU. In terms of throughput, the CPU
implementation scales linearly, i.e., running on four
threads achieves roughly 4× throughput. Note that
the CPU and GPU implementations take advantage
of parallelism in completely different ways: cdec
can be characterized as embarrassingly parallel, with
different threads processing each complete sentence
in isolation, whereas our GPU implementation
achieves intra-sentential parallelism by exploiting
many threads to concurrently process each sentence.
In terms of absolute performance figures, even
with the 4× throughput improvement from fully
saturating the CPU, our GPU implementation
remains faster by a wide margin. Note that neither
our GPU nor CPU represents state-of-the-art
hardware, and we would expect the performance
advantage of GPUs to be even greater with latest
generation hardware, since the number of available
threads on a GPU is increasing faster than the
number of threads available on a CPU.

Since phrase extraction is only one part of an
end-to-end machine translation system, it makes
sense to examine the overall performance of the
entire translation pipeline. For this experiment, we
used our GPU implementation for phrase extrac-
tion, serialized the grammar files to disk, and used
cdec for decoding (on the CPU). The comparison
condition used cdec for all three stages. We used
standard phrase length constraints (5 on source side,
15 on target side) with sampling of frequent phrases.
Finally, we replicated the data conditions in Lopez
(2008a), where our source corpora was the Xinhua
data set and our development/test sets were the
NIST03/NIST05 data; the NIST05 test set contains
1,082 sentences.

Performance results for end-to-end translation are
shown in Table 4, broken down in terms of total
amount of time for each of the processing stages
for the entire test set under different conditions.
In the decoding stage, we varied the number of
CPU threads (note here we do not observe linear
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Phrase Extraction I/O Decoding

GPU: 11.0
3.7

1 thread 55.7
2 threads 35.3

CPU: 166.5
3 threads 31.5
4 threads 26.2

Table 4: End-to-end machine translation performance:
time to process the NIST05 test set in seconds, broken
down in terms of the three processing stages.

speedup). In terms of end-to-end results, complete
translation of the test set takes 41 seconds with the
GPU for phrase extraction and CPU for decoding,
compared to 196 seconds using the CPU for both
(with four decoding threads in both cases). This rep-
resents a speedup of 4.8×, which suggests that even
selective optimizations of individual components in
the MT pipeline using GPUs can make a substantial
difference in overall performance.

8 Future Work

There are a number of directions that we have
identified for future work. For computational ef-
ficiency reasons, previous implementations of the
“translation by pattern matching” approach have
had to introduce approximations, e.g., sampling and
constraints on phrase lengths. Our results show that
the massive amounts of parallelism available in the
GPU make these approximations unnecessary, but
it is unclear to what extent they impact translation
quality. For example, Table 3 shows that we extract
up to twice as many phrase pairs without sampling,
but do these pairs actually matter? We have begun to
examine the impact of various settings on translation
quality and have observed small improvements in
some cases (which, note, come for “free”), but so
far the results have not been conclusive.

The experiments in this paper focus primarily
on throughput, but for large classes of applications
latency is also important. One current limitation of
our work is that large batch sizes are necessary to
fully utilize the available processing power of the
GPU. This and other properties of the GPU, such as
the high latency involved in transferring data from
main memory to GPU memory, make low-latency
processing a challenge, which we hope to address.

Another broad future direction is to “GPU-ify”
other machine translation models and other com-

ponents in the machine translation pipeline. An
obvious next step is to extend our work to the
hierarchical phrase-based translation model (Chi-
ang, 2007), which would involve extracting “gappy”
phrases. Lopez (2008a) has tackled this problem
on the CPU, but it is unclear to what extent the
same types of algorithms he proposed can execute
efficiently in the GPU environment. Beyond phrase
extraction, it might be possible to perform decoding
itself in the GPU—not only will this exploit massive
amounts of parallelism, but also reduce costs in
moving data to and from the GPU memory.

9 Conclusion

GPU parallelism offers many promises for practical
and efficient implementations of language process-
ing systems. This promise has been demonstrated
for speech recognition (Chong et al., 2008; Chong
et al., 2009) and parsing (Yi et al., 2011), and we
have demonstrated here that it extends to machine
translation as well. We believe that explorations of
modern parallel hardware architectures is a fertile
area of research: the field has only begun to exam-
ine the possibilities and there remain many more
interesting questions to tackle. Parallelism is critical
not only from the perspective of building real-world
applications, but for overcoming fundamental com-
putational bottlenecks associated with models that
researchers are developing today.
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Abstract

Until recently, the application of discrimina-
tive training to log linear-based statistical ma-
chine translation has been limited to tuning
the weights of a limited number of features or
training features with a limited number of pa-
rameters. In this paper, we propose to scale
up discriminative training of (He and Deng,
2012) to train features with 150 million pa-
rameters, which is one order of magnitude
higher than previously published effort, and
to apply discriminative training to redistribute
probability mass that is lost due to model
pruning. The experimental results confirm the
effectiveness of our proposals on NIST MT06
set over a strong baseline.

1 Introduction

State-of-the-art statistical machine translation sys-
tems based on a log-linear framework are parame-
terized by {λ,Φ}, where the feature weights λ are
discriminatively trained (Och and Ney, 2002; Chi-
ang et al., 2008b; Simianer et al., 2012) by directly
optimizing them against a translation-oriented met-
ric such as BLEU. The feature parameters Φ can
be roughly divided into two categories: dense fea-
ture that measures the plausibility of each translation
rule from a particular aspect, e.g., the rule transla-
tion probabilities p(f |e) and p(e|f); and sparse fea-
ture that fires when certain phenomena is observed,
e.g., when a frequent word pair co-occured in a rule.
In contrast to λ, feature parameters in Φ are usually
modeled by generative models for dense features, or
by indicator functions for sparse ones. It is therefore
desirable to train the dense features for each rule in a
discriminative fashion to maximize some translation
criterion. The maximum expected BLEU training of
(He and Deng, 2012) is a recent effort towards this

direction, and in this paper, we extend their work
to a scaled-up task of discriminative training of the
features of a strong hierarchical phrase-based model
and confirm its effectiveness empirically.

In this work, we further consider the application
of discriminative training to pruned model. Various
pruning techniques (Johnson et al., 2007; Zens et al.,
2012; Eck et al., 2007; Lee et al., 2012; Tomeh et al.,
2011) have been proposed recently to filter transla-
tion rules. One common consequence of pruning is
that the probability distribution of many surviving
rules become deficient, i.e.

∑
f p(f |e) < 1. In prac-

tice, others have chosen either to leave the pruned
rules as it-is, or simply to re-normalize the proba-
bility mass by distributing the pruned mass to sur-
viving rules proportionally. We argue that both ap-
proaches are suboptimal, and propose a more prin-
cipled method to re-distribute the probability mass,
i.e. using discriminative training with some trans-
lation criterion. Our experimental results demon-
strate that at various pruning levels, our approach
improves performance consistently. Particularly at
the level of 50% of rules being pruned, the discrimi-
natively trained models performs better than the un-
pruned baseline grammar. This shows that discrim-
inative training makes it possible to achieve smaller
models that perform comparably or even better than
the baseline model.

Our contributions in this paper are two-folded:
First of all, we scale up the maximum expected
BLEU training proposed in (He and Deng, 2012) in
a number of ways including using 1) a hierarchical
phrase-based model, 2) a richer feature set, and 3) a
larger training set with a much larger parameter set,
resulting in more than 150 million parameters in the
model being updated, which is one order magnitude
higher than the phrase-based model reported in (He
and Deng, 2012). We are able to show a reasonable
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improvement over this strong baseline. Secondly,
we combine discriminative training with pruning
techniques to reestimate parameters of pruned gram-
mar. Our approach is shown to alleviate the loss due
to pruning, and sometimes can even outperform the
baseline unpruned grammar.

2 Discriminative Training of Φ

Given the entire training data {Fn, En}Nn=1, and cur-
rent parameterization {λ,Φ}, we decode the source
side of training data Fn to produce hypothesis
{Ên}Nn=1. Our goal is to update Φ towards Φ′ that
maximizes the expected BLEU scores of the entire
training data given the current λ:

U(Φ)=
∑

∀Ê1...ÊN

P̃Φ(Ê1..ÊN |F1..FN )B(Ê1..ÊN ) (1)

where B(Ê1...ÊN ) is the BLEU score of the con-
catenated hypothesis of the entire training data, fol-
lowing (He and Deng, 2012).

Eq. 1 summarizes over all possible combina-
tions of Ê1...ÊN , which is intractable. Hence we
make two simplifying approximations as follows.
First, let the k-best hypotheses of the n-th sen-
tence, Ên =

{
Ê1
n, ..., Ê

K
n

}
, approximate all its

possible translation. In other words, we assume
that

∑K
k=1 P̃ (Êkn|Fn) = 1, ∀n. Second, let the

sum of sentence-level BLEU approximate the cor-
pus BLEU. We note that corpus BLEU is not strictly
decomposable (Chiang et al., 2008a), however, as
the training data’s size N gets big as in our case, we
expect them to become more positively correlated.

Under these assumptions and the fact that each
sentence is decoded independently, Eq. 1 can be al-
gebraically simplified into:

U(Φ) =
N∑
n=1

K∑
k=1

PΦ(Êkn|Fn)B(Êkn) (2)

where PΦ(Êkn|Fn)=P̃Φ(Êkn|Fn)/
∑
∀k P̃Φ(Êkn|Fn).

We detail the process in the Appendix.
To further simplify the problem and relate it with

model pruning, we consider to update a subset of
θ ⊂ Φ while keeping other parameterization of Φ
unchanged, where θ = {θij = p(ej |fi)} denotes our
parameter set that satisfies

∑
j θij = 1 and θij ≥ 0.

In experiments, we also consider {θji = p(fi|ej)}.

To alleviate overfitting, we introduce KL-distance
based reguralization as in (He and Deng, 2012). We
thus arrive at the following objective function:

O(θ) = log(U(θ))− τ ·KL(θ||θ0)/N (3)

where τ controls the regularization term’s contribu-
tion, and θ0 represents a prior parameter set, e.g.,
from the conventional maximum likelihood training.

The optimization algorithm is based on the Ex-
tended Baum Welch (EBW) (Gopalakrishnan et al.,
1991) as derived by (He and Deng, 2012). The final
update rule is as follow:

θ′ij =

∑
n

∑
k γ(n, k, i, j) + U(θ)τθ0

ij/λ+Diθij∑
n

∑
k

∑
j γ(n, k, i, j) + U(θ)τ/λ+Di

(4)

where θ′ij is the updated parameter, γ(n, k, i, j) =

Pθ(Ê
k
n|Fn){B(Êkn) − Un(θ)}

∑
l 1(fn,k,l =

fi, en,k,l = ej); Un(θ) =
∑K

k=1 Pθ(Ê
k
n|Fn)B(Êkn);

Di =
∑

n,k,j max(0,−γ(n, k, i, j)) and λ is the
current feature’s weight.

3 DT is Beneficial for Pruning

Pruning is often a key part in deploying large-scale
SMT systems for many reasons, such as for reduc-
ing runtime memory footprint and for efficiency.
Many pruning techniques have been proposed to as-
sess translation rules and filter rules out if they are
less plausible than others. While different pruning
techniques may use different criterion, they all as-
sume that pruning does not affect the feature func-
tion values of the surviving rules. This assumption
may be suboptimal for some feature functions that
have probabilistic sense since pruning will remove
a portion of the probability mass that is previously
assigned to the pruned rules. To be concrete, for the
rule translation probabilities θij under consideration,
the constraint

∑
j θij = 1 will not hold for all source

rules i after pruning. Previous works typically left
the probability mass as it-is, or simply renormalize
the pruned mass, i.e. θ̄ij = θij/

∑
j θij .

We argue that applying the DT techniques to a
pruned grammar, as described in Sec. 2, provides
a more principled method to redistribute the mass,
i.e. by quantizing how each rule contributes to the
expected BLEU score in comparison to other com-
peting rules. To empirically verify this, we consider
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the significance test based pruning (Johnson et al.,
2007), though our general idea can be appllied to
any pruning techniques. For our experiments, we
use the significance pruning tool that is available as
part of Moses decoder package (Koehn et al., 2007).

4 Experiments

Our experiments are designed to serve two goals:
1) to show the performance of discriminative train-
ing of feature parameters θ in a large-scale task;
and 2) to show the effectiveness of DT when ap-
plied to pruned grammar. Our baseline system is a
state-of-the-art hierarchical phrase-based system as
described in (Zhou et al., 2008), trained on six mil-
lion parallel sentences corpora that are available to
the DARPA BOLT Chinese-English task. The train-
ing corpora includes a mixed genre of news wire,
broadcast news, web-blog and comes from various
sources such as LDC, HK Hansard and UN data.

In total, there are 50 dense features in our trans-
lation system. In addition to the standard features
which include the rule translation probabilities, we
incorporate features that are found useful for devel-
oping a state-of-the-art baseline, e.g. provenance-
based lexical features (Chiang et al., 2011). We use
a large 6-gram language model, which we train on a
10 billion words monolingual corpus, including the
English side of our parallel corpora plus other cor-
pora such as Gigaword (LDC2011T07) and Google
News. To prevent possible over-fitting, we only kept
the rules that have at most three terminal words (plus
up to two nonterminals) on the source side, resulting
in a grammar with 167 million rules.

Our discriminative training procedure includes
updating both λ and θ, and we follow (He and Deng,
2012) to optimize them in an alternate manner. That
is, when we optimize θ via EBW, we keep λ fixed
and when we optimize λ, we keep λ fixed. We use
PRO (Hopkins and May, 2011) to tune λ.

For discriminative training of θ, we use a subset
of 550 thousands of parallel sentences selected from
the entire training data, mainly to allow for faster ex-
perimental cycle; they mainly come from news and
web-blog domains. For each sentence of this subset,
we generate 500-best of unique hypotheses using the
baseline model. The 1-best and the oracle BLEU
scores for this subset are 40.19 and 47.06 respec-

tively. Following (He and Deng, 2012), we focus on
discriminative training of p(f |e) and p(e|f), which
in practice affects around 150 million of parameters;
hence the title.

For the tuning and development sets, we set
aside 1275 and 1239 sentences respectively from
LDC2010E30 corpus. The tune set is used by PRO
for tuning λ while the dev set is used to decide the
best DT model. As for the blind test set, we re-
port the performance on the NIST MT06 evaluation
set, which consists of 1644 sentences from news and
web-blog domains. Our baseline system’s perfor-
mance on MT06 is 39.91 which is among the best
number ever published so far in the community.

Table 1 compares the key components of our
baseline system with that of (He and Deng, 2012).
As shown, we are working with a stronger system
than (He and Deng, 2012), especially in terms of the
number of parameters under consideration |θ|.

He&Deng(2012) This paper
Model phrase-based hierarchical
n-gram lm 3-gram 6-gram
# features 10 50
Max terminal 4 3
|θ| 9.2 M 150M
# training data 750K 6M
N for DT 750K 550K
max K-best 100 500

Table 1: Our system compares to He&Deng’s (2012).

4.1 DT of 150 Million Parameters
To ensure the correctness of our implementation,
we show in Fig 2, the first five EBW updates with
τ = 0.10. As shown, the utility function log(U(θ))
increases monotonically but is countered by the KL
term, resulting in a smaller but consistent increase
of the objective function O(θ). This monotonically-
increasing trend of the objective function confirms
the correctness of our implementation since EBW
algorithm is a bound-based technique that ensures
growth transformations between updates.

We then explore the optimal setting for τ which
controls the contribution of the regularization term.
Specifically, we perform grid search, exploring val-
ues of τ from 0.1 to 0.75. For each τ , we run several
iterations of discriminative training where each it-
eration involves one simultaneous update of p(f |e)
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and p(e|f) according to Eq. 4, followed by one up-
date of λ via PRO (as in (He and Deng, 2012)). In
total, we run 10 such iterations for each τ .

tau=0.01N tau=0.05N tau=0.10N tau=0.25N tau=0.50N tau=0.75N tau=0.10
0 32.22 32.22 32.22 32.22 32.22 32.22 0 32.22
1 32.33 32.24 32.39 32.42 32.5 32.34 1 32.39
2 32.39 32.34 32.63 32.45 32.41 32.33 2 32.63
3 32.37 32.29 32.54 32.32 32.24 32.45 3 32.54
4 32.35 32.18 32.41 32.45 32.41 32.38 4 32.41
5 32.38 32.21 32.45 32.62 32.31 32.08 5 32.45
6 32.26 32.27 32.68 32.45 32.26 32.28 6 32.68
7 32.17 32.15 32.45 32.54 32.37 32.15 7 32.45
8 31.93 32.26 32.29 32.56 32.25 32.31 8 32.29
9 32.1 32.36 32.25 32.33 32.23 32.54 9 32.25

10 32.1 32.29 32.2 32.42 32.29 32.31 10 32.2
32.39 32.36 32.68 32.62 32.5 32.54

33.09
0.01 0.05 0.1 0.25 0.5 0.75

0.01 (2) 0.05 (9) 0.10 (6) 0.25 (5) 0.50 (1) 0.75 (9)
32.39 32.36 32.68 32.62 32.5 32.54
32.22 32.22 32.22 32.22 32.22 32.22
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Figure 1: The dev set’s BLEU score (y-axis) on different
setting of τ (x-axis). The grey line indicates the baseline
performance on dev set. The number in bracket on the x-
axis indicates the iteration at which the score is obtained.

Across different τ , we find that the first iteration
provides most of the gain while the subsequent iter-
ations provide additional, smaller gain with occas-
sional performance degradation; thus the translation
performance is not always monotonically increasing
over iteration. We report the best score of each τ in
Fig. 1 and at which iteration that score is produced.
As shown in Fig. 1, all settings of τ improve over the
baseline and τ = 0.10 gives the highest gain of 0.45
BLEU score. This improvement is in the same ball-
park as in (He and Deng, 2012) though on a scaled-
up task. We next decode the MT06 using the best
model (i.e. τ = 0.10 at 6-th iteration) observed on
the dev set, and obtained 40.33 BLEU with an im-
provement of around 0.4 BLEU point. We see this
result as confirming the effectiveness of discrimi-
native training but on a larger-scale task, adding to
what was reported by (He and Deng, 2012).

4.2 DT for Significance Pruning

Next, we show the contribution of discriminative
training for model pruning. To do so, we prune the
translation grammar so that its size becomes 50%,
25%, 10% of the original grammar. Respectively,
we delete rules whose significance value below 15,
50 and 500. Table 2 compares the statistics of the
pruned grammars and the unpruned one. In particu-
lar, columns 4 and 5 show the total averaged prob-
ability mass of the remaining rules. This statistics
provides some indication of how deficient the fea-

Figure 2: Objective function (O(θ′)), the regularization
term (KL(θ′)) and the unregularized objective function
(log(U(θ′))) for five EBW updates of updating p(ej |fi)

tures are after pruning. As shown, the total averaged
probability mass after pruning is below 100% and
even lower for the more aggressive pruning.

To show that the deficiency is suboptimal, we con-
siders two baseline systems: models with/without
mass renormalization. We tune a new λ for each
model and use the new λ to decode the dev and test
sets. The results are shown in columns 6 and 9 of
Table 2 where we show the results for the unnor-
malized model in the brackets following the results
for the re-normalized model. The results show that
pruning degrades the performances and that naively
re-normalizing the model provides no significant
changes in performance. Subsequently, we will fo-
cus on the normalized models as the baseline as they
represents the starting points of our EBW iteration.

Next, we run discriminative training that would
reassign the probability mass to the surviving rules.
First, we normalize p(f |e) and p(e|f), so that they
satisfy the sum to one constraint required by the al-
gorithm. Then, we run discriminative training on
these pruned grammars using τ = 0.10 (i.e. the
setting that gives the best performance for the un-
pruned grammar as discussed in Section 4.1). We
report the results in columns 7 and 9 for the dev and
test sets respectively, as well as the gain over the
baseline system in columns 8 and 10.

As shown in Table 2, DT provides a nice im-
provement over the baseline model of no mass re-
assignment. For all pruning levels, DT can compen-
sate the loss associated with pruning. In particular,
at 50% level of pruning, there is a loss about 0.4
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size |f | |e| p(∗|e) p(∗|f) dev-set test-set (MT06)
(%) (M) (M) baseline (un) DT (iter) gain baseline (un) DT gain
100 59 50 1.00 1.00 32.22(32.08) 32.68 (6) +0.44 39.91 (39.71) 40.33 +0.42
50 38 35 0.92 0.94 31.84 (32.02) 32.31 (6) +0.57 39.61(39.72) 40.08 +0.47
25 14 14 0.87 0.91 31.39 (31.43) 31.68 (2) +0.29 39.23 (39.17) 39.43 +0.20
10 4 3 0.77 0.84 27.27 (27.10) 27.82 (2) +0.55 36.01 (36.04) 36.43 +0.42

Table 2: The statistics of grammars pruned at various level (column 1), including the number of unique source and
target phrases (columns 2 & 3), total probability mass of the remaining rules for p(f |e) and p(e|f) (columns 4 & 5),
the performance of the pruned model before and after discriminative training as well as the gain on the dev and the
test sets (columns 6 to 11). The iteration at which DT gives the best dev set is indicated by the number enclosed by
bracket in column 7. The baseline performance is in italics, followed by a number in the bracket which refers to the
performance of using unnormalized model. The above-the-baseline performances are in bold.

BLEU point after pruning. With the DT on pruned
model, all pruning losses are reclaimed and the new
pruned model is even better than the unpruned orig-
inal model. This empirical result shows that leaving
probability mass unassigned after pruning is sub-
optimal and that discriminative training provides a
principled way to redistribute the mass.

5 Conclusion

In this paper, we first extend the maximum expected
BLEU training of (He and Deng, 2012) to train
two features of a state-of-the-art hierarchical phrase-
based system, namely: p(f |e) and p(e|f). Com-
pared to (He and Deng, 2012), we apply the algo-
rithm to a strong baseline that is trained on a big-
ger parallel corpora and comes with a richer feature
set. The number of parameters under consideration
amounts to 150 million. Our experiments show that
discriminative training these two features (out of 50)
gives around 0.40 BLEU point improvement, which
is consistent with the conclusion of (He and Deng,
2012) but in a much larger-scale system.

Furthermore, we apply the algorithm to redis-
tribute the probability mass of p(f |e) and p(e|f) that
is commonly lost due to conventional model prun-
ing. Previous techniques either leave the probability
mass as it is or distribute it proportionally among the
surviving rules. We show that our proposal of us-
ing discriminative training to redistribute the mass
empirically performs better, demonstrating the ef-
fectiveness of our proposal.

Appendix

We describe the process to simplify Eq. 1 to Eq. 2,
which is omitted in (He and Deng, 2012). For con-
ciseness, we drop the conditions and write P (Êi|Fi)
as P (Êi). We write Eq. 1 again below as Eq. 5 .

∑
∀Ê1...ÊN

N∏
i=1

P (Êi|Fi) ·
N∑
i=1

B(Êi) (5)

We first focus on the first sentence E1/F1 and ex-
pand the related terms from the equation as follow:∑
∀Ê1

∑
∀Ê2...ÊN

P (Ê1)
N∏
i=2

P (Êi).

[
B(Ê1)+

N∑
i=2

B(Êi)

]

Expanding the inner summation, we arrive at:∑
∀Ê1

P (Ê1)B(Ê1)
∑

∀Ê2...ÊN

N∏
i=2

P (Êi) +

∑
∀Ê1

P (Ê1)
∑

∀Ê2...ÊN

N∏
i=2

P (Êi)

N∑
i=2

B(Êi)

Due to the that
∑K

k=1 P̃ (ÊKn |Fn) = 1, we can
equate

∑
∀Ê2...ÊN

∏N
i=2 P (Êi) and

∑
∀Ê1

P (Ê1) to
1. Thus, we arrive at:

∑
∀Ê1

P (Ê1)B(Ê1) +
∑

∀Ê2...ÊN

N∏
i=2

P (Êi)
N∑
i=2

B(Êi)

Notice that the second term has the same form
as Eq. 5 except that the starting index starts from
the second sentence. The same process can be per-
formed and at the end, thus we can arrive at Eq. 2.
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Abstract

In Statistical Machine Translation we often
have to combine different sources of parallel
training data to build a good system. One way
of doing this is to build separate translation
models from each data set and linearly inter-
polate them, and to date the main method for
optimising the interpolation weights is to min-
imise the model perplexity on a heldout set. In
this work, rather than optimising for this indi-
rect measure, we directly optimise for BLEU
on the tuning set and show improvements in
average performance over two data sets and 8
language pairs.

1 Introduction

Statistical Machine Translation (SMT) requires
large quantities of parallel training data in order to
produce high quality translation systems. This train-
ing data, however, is often scarce and must be drawn
from whatever sources are available. If these data
sources differ systematically from each other, and/or
from the test data, then the problem of combining
these disparate data sets to create the best possible
translation system is known as domain adaptation.

One approach to domain adaptation is to build
separate models for each training domain, then
weight them to create a system tuned to the test do-
main. In SMT, a successful approach to building do-
main specific language models is to build one from
each corpus, then linearly interpolate them, choos-
ing weights that minimise the perplexity on a suit-
able heldout set of in-domain data. This method
has been applied by many authors (e.g. (Koehn and

Schroeder, 2007)), and is implemented in popular
language modelling tools like IRSTLM (Federico et
al., 2008) and SRILM (Stolcke, 2002).

Similar interpolation techniques have been devel-
oped for translation model interpolation (Foster et
al., 2010; Sennrich, 2012) for phrase-based systems
but have not been as widely adopted, perhaps be-
cause the efficacy of the methods is not as clear-
cut. In this previous work, the authors used stan-
dard phrase extraction heuristics to extract phrases
from a heldout set of parallel sentences, then tuned
the translation model (i.e. the phrase table) inter-
polation weights to minimise the perplexity of the
interpolated model on this set of extracted phrases.

In this paper, we try to improve on this perplexity
optimisation of phrase table interpolation weights by
addressing two of its shortcomings. The first prob-
lem is that the perplexity is not well defined because
of the differing coverage of the phrase tables, and
their partial coverage of the phrases extracted from
the heldout set. Secondly, perplexity may not corre-
late with the performance of the final SMT system.

So, instead of optimising the interpolation
weights for the indirect goal of translation model
perplexity, we optimise them directly for transla-
tion performance. We do this by incorporating these
weights into SMT tuning using a modified version of
Pairwise Ranked Optimisation (PRO) (Hopkins and
May, 2011).

In experiments on two different domain adapta-
tion problems and 8 language pairs, we show that
our method achieves comparable or improved per-
formance, when compared to the perplexity minimi-
sation method. This is an encouraging result as it
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shows that PRO can be adapted to optimise transla-
tion parameters other than those in the standard lin-
ear model.

2 Optimising Phrase Table Interpolation
Weights

2.1 Previous Approaches
In the work of Foster and Kuhn (2007), linear inter-
polation weights were derived from different mea-
sures of distance between the training corpora, but
this was not found to be successful. Optimising the
weights to minimise perplexity, as described in the
introduction, was found by later authors to be more
useful (Foster et al., 2010; Sennrich, 2012), gener-
ally showing small improvements over the default
approach of concatenating all training data.

An alternative approach is to use log-linear inter-
polation, so that the interpolation weights can be
easily optimised in tuning (Koehn and Schroeder,
2007; Bertoldi and Federico, 2009; Banerjee et al.,
2011). However, this effectively multiplies the prob-
abilities across phrase tables, which does not seem
appropriate, especially for phrases absent from 1 ta-
ble.

2.2 Tuning SMT Systems
The standard SMT model scores translation hy-
potheses as a linear combination of features. The
model score of a hypothesis e is then defined to
be w · h(e, f, a) where w is a weight vector, and
h(e, f, a) a vector of feature functions defined over
source sentences (f ), hypotheses, and their align-
ments (a). The weights are normally optimised
(tuned) to maximise BLEU on a heldout set (the tun-
ing set).

The most popular algorithm for this weight op-
timisation is the line-search based MERT (Och,
2003), but recently other algorithms that support
more features, such as PRO (Hopkins and May,
2011) or MIRA-based algorithms (Watanabe et al.,
2007; Chiang et al., 2008; Cherry and Foster, 2012),
have been introduced. All these algorithms assume
that the model score is a linear function of the pa-
rameters w. However since the phrase table prob-
abilities enter the score function in log form, if
these probabilities are a linear interpolation, then the
model score is not a linear function of the interpola-
tion weights. We will show that PRO can be used

to simultaneously optimise such non-linear parame-
ters.

2.3 Pairwise Ranked Optimisation
PRO is a batch tuning algorithm in the sense that
there is an outer loop which repeatedly decodes a
small (1000-2000 sentence) tuning set and passes
the n-best lists from this tuning set to the core al-
gorithm (also known as the inner loop). The core
algorithm samples pairs of hypotheses from the n-
best lists (according to a specific procedure), and
uses these samples to optimise the weight vector w.

The core algorithm in PRO will now be explained
in more detail. Suppose that the N sampled hypoth-
esis pairs (xαi , x

β
i ) are indexed by i and have corre-

sponding feature vectors pairs (hαi ,h
β
i ). If the gain

of a given hypothesis (we use smoothed sentence
BLEU) is given by the function g(x), then we define
yi by

yi ≡ sgn(g(xαi )− g(xβi )) (1)

For weights w, and hypothesis pair (xαi , x
β
i ), the

(model) score difference ∆swi is given by:

∆swi ≡ sw(xαi )− sw(xβi ) ≡ w ·
(
hαi − hβi

)
(2)

Then the core PRO algorithm updates the weight
vector to w∗ by solving the following optimisation
problem:

w∗ = arg max
w

N∑
i=1

log (σ (yi∆swi )) (3)

where σ(x) is the standard sigmoid function. The
derivative of the function can be computed easily,
and the optimisation problem can be solved with
standard numerical optimisation algorithms such as
L-BFGS (Byrd et al., 1995). PRO is normally im-
plemented by converting each sample to a training
example for a 2 class maximum entropy classifier,
with the feature values set to ∆hi and the responses
set to the yi, whereupon the log-likelihood is the ob-
jective given in Equation (3). As in maximum en-
tropy modeling, it is usual to add a Gaussian prior to
the objective (3) in PRO training.

2.4 Extending PRO for Mixture Models
We now show how to apply the PRO tuning algo-
rithm of the previous subsection to simultaneously
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optimise the weights of the translation system, and
the interpolation weights.

In the standard phrase-based model, some of the
features are derived from logs of phrase translation
probabilities. If the phrase table is actually a linear
interpolation of two (or more) phrase tables, then
we can consider these features as also being func-
tions of the interpolation weights. The interpola-
tion weights then enter the score differences {∆swi }
via the phrase features, and we can jointly optimise
the objective in Equation (3) for translation model
weights and interpolation weights.

To make this more concrete, suppose that the fea-
ture vector consists of m phrase table features and
n−m other features1

h ≡ (log(p1), . . . , log(pm), hm+1, . . . hn) (4)

where each pj is an interpolation of two probability
distributions pjA and pjB . So, pj ≡ λjpjA+(1−λj)pjB
with 0 ≤ λj ≤ 1. Defining λ ≡ (λ1 . . . λm), the
optimisation problem is then:

(w∗,λ∗) = arg max(w,λ)

∑N
i=1 log

(
σ
(
yi∆s

(w,λ)
i

))
(5)

where the sum is over the sampled hypothesis pairs
and the ∆ indicates the difference between the
model scores of the two hypotheses in the pair, as
before. The model score s(w,λ)

i is given by

m∑
j=1

(
wj · log

(
λjpjAi + (1− λj)pjBi)

))
+

n∑
j=m+1

wjhji (6)

where w ≡ (wi . . . wn). A Gaussian regularisa-
tion term is added to the objective, as it was for
PRO. By replacing the core algorithm of PRO with
the optimisation above, the interpolation weights
can be trained simultaneously with the other model
weights.

Actually, the above explanation contains a simpli-
fication, in that it shows the phrase features interpo-
lated at sentence level. In reality the phrase features

1Since the phrase penalty feature is a constant across phrase
pairs it is not interpolated, and so is classed with the the “other”
features. The lexical scores, although not actually probabilities,
are interpolated.

are interpolated at the phrase level, then combined to
give the sentence level feature value. This makes the
definition of the objective more complex than that
shown above, but still optimisable using bounded L-
BFGS.

3 Experiments

3.1 Corpus and Baselines
We ran experiments with data from the WMT shared
tasks (Callison-Burch et al., 2007; Callison-Burch et
al., 2012), as well as OpenSubtitles data2 released by
the OPUS project (Tiedemann, 2009).

The experiments targeted both the news-
commentary (nc) and OpenSubtitles (st) domains,
with nc-devtest2007 and nc-test2007
for tuning and testing in the nc domain, respec-
tively, and corresponding 2000 sentence tuning
and test sets selected from the st data. The news-
commentary v7 corpus and a 200k sentence corpus
selected from the remaining st data were used as
in-domain training data for the respective domains,
with europarl v7 (ep) used as out-of-domain train-
ing data in both cases. The language pairs we tested
were the WMT language pairs for nc (English (en)
to and from Spanish (es), German (de), French (fr)
and Czech (cs)), with Dutch (nl) substituted for de
in the st experiments.

To build phrase-based translation systems, we
used the standard Moses (Koehn et al., 2007) train-
ing pipeline, in particular employing the usual 5
phrase features – forward and backward phrase
probabilities, forward and backward lexical scores
and a phrase penalty. The 5-gram Kneser-Ney
smoothed language models were trained by SRILM
(Stolcke, 2002), with KenLM (Heafield, 2011) used
at runtime. The language model is always a linear
interpolation of models estimated on the in- and out-
of-domain corpora, with weights tuned by SRILM’s
perplexity minimisation3. All experiments were run
three times with BLEU scores averaged, as recom-
mended by Clark et al. (2011). Performance was
evaluated using case-insensitive BLEU (Papineni et
al., 2002), as implemented in Moses.

The baseline systems were tuned using the Moses
version of PRO, a reimplementation of the original

2www.opensubtitles.org
3Our method could also be applied to language model inter-

polation but we chose to focus on phrase tables in this paper.
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algorithm using the sampling scheme recommended
by Hopkins and May. We ran 15 iterations of PRO,
choosing the weights that maximised BLEU on the
tuning set. For the PRO training of the interpo-
lated models, we used the same sampling scheme,
with optimisation of the model weights and interpo-
lation weights implemented in Python using scipy4.
The implementation is available in Moses, in the
contrib/promix directory.

The phrase table interpolation and perplexity-
based minimisation of interpolation weights used
the code accompanying Sennrich (2012), also avail-
able in Moses.

3.2 Results
For each of the two test sets (nc and st), we com-
pare four different translation systems (three base-
line systems, and our new interpolation method):
in Phrase and reordering tables were built from just

the in-domain data.
joint Phrase and reordering tables were built from

the in- and out-of-domain data, concatenated.
perp Separate phrase tables built on in- and out-of-

domain data, interpolated using perplexity min-
imisation. The reordering table is as for joint.

pro-mix As perp, but interpolation weights opti-
mised using our modified PRO algorithm.

So the two interpolated models (perp and pro-mix)
are the same as joint except that their 4 non-constant
phrase features are interpolated across the two sep-
arate phrase tables. Note that the language models
are the same across all four systems.

The results of this comparison over the 8 language
pairs are shown in Figure 1, and summarised in Ta-
ble 1, which shows the mean BLEU change relative
to the in system. It can be seen that the pro-mix
method presented here is out-performing the per-
plexity optimisation on the nc data set, and perform-
ing similarly on the st data set.

joint perp pro-mix
nc +0.18 +0.44 +0.91
st -0.04 +0.55 +0.48

Table 1: Mean BLEU relative to in system for each
data set. System names as in Figure 1.

4www.scipy.org

4 Discussion and Conclusions

The results show that the pro-mix method is a vi-
able way of tuning systems built with interpolated
phrase tables, and performs better than the current
perplexity minimisation method on one of two data
sets used in experiments. On the other data set (st),
the out-of-domain data makes much less difference
to the system performance in general, most proba-
bly because the difference between the in and out-
of-domain data sets in much larger (Haddow and
Koehn, 2012). Whilst the differences between pro-
mix and perplexity minimisation are not large on the
nc test set (about +0.5 BLEU) the results have been
demonstrated to apply across many language pairs.

The advantage of the pro-mix method over other
approaches is that it directly optimises the mea-
sure that we are interested in, rather than optimising
an intermediate measure and hoping that translation
performance improves. In this work we optimise for
BLEU, but the same method could easily be used to
optimise for any sentence-level translation metric.
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51, Montréal, Canada, June. Association for Compu-
tational Linguistics.

Colin Cherry and George Foster. 2012. Batch Tuning
Strategies for Statistical Machine Translation. In Pro-
ceedings of NAACL.

David Chiang, Yuval Marton, and Philip Resnik. 2008.
Online Large-Margin Training of Syntactic and Struc-
tural Translation Features. In Proceedings of EMNLP.

Jonathan Clark, Chris Dyer, Alon Lavie, and Noah Smith.
2011. Better hypothesis testing for statistical machine
translation: Controlling for optimizer instability. In
Proceedings of ACL.

Marcello Federico, Nicola Bertoldi, and Mauro Cettolo.
2008. IRSTLM: an Open Source Toolkit for Handling
Large Scale Language Models. In Proceedings of In-
terspeech, Brisbane, Australie.

George Foster and Roland Kuhn. 2007. Mixture-model
adaptation for SMT. In Proceedings of the Second
Workshop on Statistical Machine Translation, pages
128–135, Prague, Czech Republic, June. Association
for Computational Linguistics.

George Foster, Cyril Goutte, and Roland Kuhn. 2010.
Discriminative Instance Weighting for Domain Adap-
tation in Statistical Machine Translation. In Proceed-
ings of the 2010 Conference on Empirical Methods in
Natural Language Processing, pages 451–459, Cam-
bridge, MA, October. Association for Computational
Linguistics.

Barry Haddow and Philipp Koehn. 2012. Analysing
the Effect of Out-of-Domain Data on SMT Systems.
In Proceedings of the Seventh Workshop on Statisti-
cal Machine Translation, pages 422–432, Montréal,
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Figure 1: Comparison of the performance (BLEU) on in-domain data, of our pro-mix interpolation weight
tuning method with three baselines: in using just in-domain parallel training data training; joint also using
europarl data; and perp using perplexity minimisation to interpolate in-domain and europarl data.
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Abstract

Modern Standard Arabic (MSA) has a wealth
of natural language processing (NLP) tools
and resources. In comparison, resources for
dialectal Arabic (DA), the unstandardized spo-
ken varieties of Arabic, are still lacking. We
present ELISSA, a machine translation (MT)
system for DA to MSA. ELISSA employs a
rule-based approach that relies on morpho-
logical analysis, transfer rules and dictionar-
ies in addition to language models to produce
MSA paraphrases of DA sentences. ELISSA
can be employed as a general preprocessor for
DA when using MSA NLP tools. A man-
ual error analysis of ELISSA’s output shows
that it produces correct MSA translations over
93% of the time. Using ELISSA to produce
MSA versions of DA sentences as part of
an MSA-pivoting DA-to-English MT solution,
improves BLEU scores on multiple blind test
sets between 0.6% and 1.4%.

1 Introduction

Much work has been done on Modern Standard Ara-
bic (MSA) natural language processing (NLP) and
machine translation (MT), especially Statistical MT
(SMT). MSA has a wealth of resources in terms of
morphological analyzers, disambiguation systems,
and parallel corpora. In comparison, research on di-
alectal Arabic (DA), the unstandardized spoken vari-
eties of Arabic, is still lacking in NLP in general and
MT in particular. In this paper we present ELISSA,
our DA-to-MSA MT system, and show how it can
help improve the translation of highly dialectal Ara-
bic text into English by pivoting on MSA.

The ELISSA approach can be summarized as fol-
lows. First, ELISSA uses different techniques to
identify dialectal words and multi-word construc-
tions (phrases) in a source sentence. Then, ELISSA

produces MSA paraphrases for the selected words

and phrase using a rule-based component that de-
pends on the existence of a dialectal morphologi-
cal analyzer, a list of morphosyntactic transfer rules,
and DA-MSA dictionaries. The resulting MSA is in
a lattice form that we pass to a language model for n-
best decoding. The output of ELISSA, whether a top-
1 choice sentence or n-best sentences, is passed to an
MSA-English SMT system to produce the English
translation sentence. ELISSA-based MSA-pivoting
for DA-to-English SMT improves BLEU scores (Pa-
pineni et al., 2002) on three blind test sets between
0.6% and 1.4%. A manual error analysis of trans-
lated words shows that ELISSA produces correct
MSA translations over 93% of the time.

The rest of this paper is structured as follows:
Section 2 motivates the use of ELISSA to improve
DA-English SMT with an example. Section 3 dis-
cusses some of the challenges associated with pro-
cessing Arabic and its dialects. Section 4 presents
related work. Section 5 details ELISSA and its
approach and Section 6 presents results evaluating
ELISSA under a variety of conditions.

2 Motivating Example

Table 1 shows a motivating example of how pivot-
ing on MSA can dramatically improve the transla-
tion quality of a statistical MT system that is trained
on mostly MSA-to-English parallel corpora. In this
example, we use Google Translate’s online Arabic-
English SMT system.1 The table is divided into two
parts. The top part shows a dialectal (Levantine)
sentence, its reference translation to English, and
its Google Translate translation. The Google Trans-
late translation clearly struggles with most of the DA
words, which were probably unseen in the training
data (i.e., out-of-vocabulary – OOV) and were con-

1The system was used on February 21, 2013.
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fy hðh AlHAlh̄ ln yktbwA lh ςlý HAŷT SfHth AlšxSyh̄ wlA yrydwnh Ân yrsl lhm tςlyqAt lÂnh lm yxbrhm mtý syðhb
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Google
Translate

In this case it would not write to him on the wall of his own and do not want to send their comments because he
did not tell them when going to the country.

Table 1: A motivating example for DA-to-English MT by pivoting (bridging) on MSA. The top half of the table
displays a DA sentence, its human reference translation and the output of Google Translate. The bottom half of the
table shows the result of human translation into MSA of the DA sentence before sending it to Google Translate.

sidered proper nouns (transliterated and capitalized).
The lack of DA-English parallel corpora suggests
pivoting on MSA can improve the translation qual-
ity. In the bottom part of the table, we show a hu-
man MSA translation of the DA sentence above and
its Google translation. We see that the results are
quite promising. The goal of ELISSA is to model this
DA-MSA translation automatically. In Section 5.4,
we revisit this example to discuss ELISSA’s perfor-
mance on it. We show its output and its correspond-
ing Google translation in Table 3.

3 Challenges for Processing Arabic and its
Dialects

Contemporary Arabic is in fact a collection of vari-
eties: MSA, the official language of the Arab World,
which has a standard orthography and is used in
formal settings; and DAs, the commonly used in-
formal native varieties, which have no standard or-
thographies but have an increasing presence on the
web. Arabic, in general, is a morphologically com-
plex language which has rich inflectional morphol-
ogy, expressed both templatically and affixationally,
and several classes of attachable clitics. For exam-
ple, the Arabic word Aî

	
EñJ.

�
JºJ
�ð w+s+y-ktb-wn+hA2

‘and they will write it’ has two proclitics (+ð w+
‘and’ and +� s+ ‘will’), one prefix -ø



y- ‘3rd

2Arabic transliteration throughout the paper is presented in
the Habash-Soudi-Buckwalter scheme (Habash et al., 2007): (in
alphabetical order) AbtθjHxdðrzsšSDTĎςγfqklmnhwy and the
additional symbols: ’ Z, Â


@, Ǎ @


, Ā

�
@, ŵ 

ð', ŷ Zø', h̄ �
è, ý ø.

person’, one suffix 	
àð- -wn ‘masculine plural’ and

one pronominal enclitic Aë+ +hA ‘it/her’. DAs dif-
fer from MSA phonologically, morphologically and
to a lesser degree syntactically. The morpholog-
ical differences are most noticeably expressed in
the use of clitics and affixes that do not exist in
MSA. For instance, the Levantine Arabic equivalent
of the MSA example above is AëñJ.

�
JºJ
kð w+H+y-

ktb-w+hA ‘and they will write it’. The optionality
of vocalic diacritics helps hide some of the differ-
ences resulting from vowel changes; compare the
diacritized forms: Levantine wHayikitbuwhA and
MSA wasayaktubuwnahA.

All of the NLP challenges of MSA (e.g., optional
diacritics and spelling inconsistency) are shared by
DA. However, the lack of standard orthographies for
the dialects and their numerous varieties pose new
challenges. Additionally, DAs are rather impover-
ished in terms of available tools and resources com-
pared to MSA, e.g., there is very little parallel DA-
English corpora and almost no MSA-DA parallel
corpora. The number and sophistication of morpho-
logical analysis and disambiguation tools in DA is
very limited in comparison to MSA (Duh and Kirch-
hoff, 2005; Habash and Rambow, 2006; Abo Bakr et
al., 2008; Habash, 2010; Salloum and Habash, 2011;
Habash et al., 2012; Habash et al., 2013). MSA
tools cannot be effectively used to handle DA, e.g.,
Habash and Rambow (2006) report that over one-
third of Levantine verbs cannot be analyzed using
an MSA morphological analyzer.
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4 Related Work

Dialectal Arabic NLP. Several researchers have
explored the idea of exploiting existing MSA rich
resources to build tools for DA NLP (Chiang et al.,
2006). Such approaches typically expect the pres-
ence of tools/resources to relate DA words to their
MSA variants or translations. Given that DA and
MSA do not have much in terms of parallel cor-
pora, rule-based methods to translate DA-to-MSA
or other methods to collect word-pair lists have been
explored. For example, Abo Bakr et al. (2008) intro-
duced a hybrid approach to transfer a sentence from
Egyptian Arabic into MSA. This hybrid system con-
sisted of a statistical system for tokenizing and tag-
ging, and a rule-based system for constructing dia-
critized MSA sentences. Moreover, Al-Sabbagh and
Girju (2010) described an approach of mining the
web to build a DA-to-MSA lexicon. In the context
of DA-to-English SMT, Riesa and Yarowsky (2006)
presented a supervised algorithm for online mor-
pheme segmentation on DA that cut the OOV words
by half.

Machine Translation for Closely Related Lan-
guages. Using closely related languages has been
shown to improve MT quality when resources are
limited. Hajič et al. (2000) argued that for very
close languages, e.g., Czech and Slovak, it is pos-
sible to obtain a better translation quality by using
simple methods such as morphological disambigua-
tion, transfer-based MT and word-for-word MT.
Zhang (1998) introduced a Cantonese-Mandarin MT
that uses transformational grammar rules. In the
context of Arabic dialect translation, Sawaf (2010)
built a hybrid MT system that uses both statistical
and rule-based approaches for DA-to-English MT.
In his approach, DA is normalized into MSA us-
ing a dialectal morphological analyzer. In previ-
ous work, we presented a rule-based DA-MSA sys-
tem to improve DA-to-English MT (Salloum and
Habash, 2011; Salloum and Habash, 2012). Our ap-
proach used a DA morphological analyzer (ADAM)
and a list of hand-written morphosyntactic transfer
rules. This use of “resource-rich” related languages
is a specific variant of the more general approach
of using pivot/bridge languages (Utiyama and Isa-
hara, 2007; Kumar et al., 2007). In the case of
MSA and DA variants, it is plausible to consider
the MSA variants of a DA phrase as monolingual

paraphrases (Callison-Burch et al., 2006; Du et al.,
2010). Also related is the work by Nakov and Ng
(2011), who use morphological knowledge to gener-
ate paraphrases for a morphologically rich language,
Malay, to extend the phrase table in a Malay-to-
English SMT system.

Pivoting on MSA or acquiring more DA-English
data? Zbib et al. (2012) demonstrated an approach
to cheaply obtaining DA-English data. They used
Amazon’s Mechanical Turk (MTurk) to create a DA-
English parallel corpus of 1.5M words and added it
to a 150M MSA-English parallel corpus to create the
training corpus of their SMT system. They also used
MTurk to translate their dialectal test set to MSA
in order to compare the MSA-pivoting approach to
the direct translation from DA to English approach.
They showed that even though pivoting on MSA
(produced by Human translators in an oracle experi-
ment) can reduce OOV rate to 0.98% from 2.27% for
direct translation (without pivoting), it improves by
4.91% BLEU while direct translation improves by
6.81% BLEU over their 12.29% BLEU baseline (di-
rect translation using the 150M MSA system). They
concluded that simple vocabulary coverage is not
sufficient and the domain mismatch is a more im-
portant problem. The approach we take in this paper
is orthogonal to such efforts to build parallel data.
We plan to study interactions between the two types
of solutions in the future.

Our work is most similar to Sawaf (2010)’s MSA-
pivoting approach. In his approach, DA is normal-
ized into MSA using character-based DA normal-
ization rules, a DA morphological analyzer, a DA
normalization decoder that relies on language mod-
els, and a lexicon. Similarly, we use some char-
acter normalization rules, a DA morphological an-
alyzer, and DA-MSA dictionaries. In contrast, we
use hand-written morphosyntactic transfer rules that
focus on translating DA morphemes and lemmas to
their MSA equivalents.

In our previous work (Salloum and Habash, 2011;
Salloum and Habash, 2012), we applied our ap-
proach to tokenized Arabic and our DA-MSA trans-
fer component used feature transfer rules only. We
did not use a language model to pick the best path;
instead we kept the ambiguity in the lattice and
passed it to our SMT system. In contrast, in this pa-
per, we run ELISSA on untokenized Arabic, we use
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feature, lemma, and surface form transfer rules, and
we pick the best path of the generated MSA lattice
through a language model.

Certain aspects of our approach are similar to
Riesa and Yarowsky (2006)’s, in that we use mor-
phological analysis for DA to help DA-English MT;
but unlike them, we use a rule-based approach to
model DA morphology.

5 ELISSA

ELISSA is a DA-to-MSA MT System. ELISSA uses
a rule-based approach (with some statistical compo-
nents) that relies on the existence of a DA morpho-
logical analyzer, a list of hand-written transfer rules,
and DA-MSA dictionaries to create a mapping of
DA to MSA words and construct a lattice of pos-
sible sentences. ELISSA uses a language model to
rank and select the generated sentences.

ELISSA supports untokenized (raw) input only.
ELISSA supports three types of output: top-1 choice,
an n-best list or a map file that maps source
words/phrases to target phrases. The top-1 and n-
best lists are determined using an untokenized MSA
language model to rank the paths in the MSA trans-
lation output lattice. This variety of output types
makes it easy to plug ELISSA with other systems and
to use it as a DA preprocessing tool for other MSA
systems, e.g., MADA (Habash and Rambow, 2005)
or AMIRA (Diab et al., 2007).

ELISSA’s approach consists of three major steps
preceded by a preprocessing and normalization step,
that prepares the input text to be handled (e.g., UTF-
8 cleaning, Alif/Ya normalization, word-lengthening
normalization), and followed by a post-processing
step, that produces the output in the desired form
(e.g., encoding choice). The three major steps are
Selection, Translation, and Language Modeling.

5.1 Selection
In the first step, ELISSA identifies which words or
phrases to paraphrase and which words or phrases
to leave as is. ELISSA provides different methods
(techniques) for selection, and can be configured to
use different subsets of them. In Section 6 we use the
term "selection mode" to denote a subset of selec-
tion methods. Selection methods are classified into
Word-based selection and Phrase-based selection.

Word-based selection. Methods of this type fall
in the following categories:

a. User token-based selection: The user can mark
specific words for selection using the tag ‘/DIA’
(stands for ‘dialect’) after each word to select.

b. User type-based selection: The user can specify
a list of words to select from, e.g., OOVs. Also
the user can provide a list of words and their
frequencies and specify a cut-off threshold to
prevent selecting a frequent word.

c. Morphology-based word selection: ELISSA

uses ADAM (Salloum and Habash, 2011)
to select words that have DA analyses only
(DIAONLY) or DA/MSA analyses (DIAMSA).

d. Dictionary-based selection: ELISSA selects
words based on their existence in the DA side
of our DA-MSA dictionaries.

e. All: ELISSA selects every word in an input sen-
tence.

Phrase-based selection. This selection type uses
hand-written rules to identify dialectal multi-word
constructions that are mappable to single or multi-
word MSA constructions. The current count of these
rules is 25. Table 2 presents some rule categories
and related examples.

In the current version of ELISSA, words can
be selected using either the phrase-based selection
method or a word-based selection method, but not
both. Phrase-based selection has precedence. We
evaluate different settings for selection step in Sec-
tion 6.

5.2 Translation
In this step, ELISSA translates the selected words
and phrases to their MSA equivalent paraphrases.
The specific type of selection determines the type of
the translation, e.g., phrase-based selected words are
translated using phrase-based translation rules. The
MSA paraphrases are then used to form an MSA lat-
tice.

Word-based translation. This category has two
types of translation techniques: surface transla-
tion that uses DA-to-MSA surface-to-surface (S2S)
transfer rules (TRs) and deep (morphological) trans-
lation that uses the classic rule-based machine trans-
lation flow: analysis, transfer and generation. The
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Rule Category Selection Examples Translation Examples
Dialectal Idafa A

	
J«A

�
JK. ú




	
æ£ñË@

�
��
m.

Ì'@ Aljyš AlwTny btAςnA ú



	
æ£ñË@ A

	
J

�
��
k. jyšnA AlwTny

‘the-army the-national ours’ ‘our-army the-national’
Verb + 	áëAK
 AêËQå

	
�k HDrlhA yAhn AêË ÑëQå

	
�k HDrhm lhA

flipped direct and indirect objects ‘he-prepared-for-her them’ ‘he-prepared-them for-her’
Special dialectal expressions AëAK
 @ ðYK. bdw AyAhA AëYK
QK
 yrydhA

‘his-desire her’ ‘he-desires-her’
Negation + verb ñËñJ.

�
JºJ
k AÓð wmA Hyktbwlw éË @ñJ.

�
JºK


	áËð wln yktbwA lh
‘and-not they-will-write-to-him’ ‘and-will-not they-write to-him’

Negation + agent noun �
éJ


�
¯B

�
�Ô

	
¯ fmš lAqyh̄ Ym.

�
�
' C

	
¯ flA tjd

‘so-not finding’ ‘so-not she-finds’
Negation + closed-class words Õ»Y« AÓ mA ςdkm ÕºK
YË ��
Ë lys ldykm

‘not with-you’ ‘not with-you’

Table 2: Examples of some types of phrase-based selection and translation rules.

DA Phrase Bñk@P AÓð wmA rAHwlA ‘And they did not go to her’

Analysis Word 1 Word 2
Proclitics [Lemma & Features] [Lemma & Features] [Lemma & Features] Enclitic

w+ mA rAHw +l +A
conj+ [neg] [rAH PV subj:3MP] +prep +pron3FS

and+ not they go +to +her
Transfer Word 1 Word 2 Word 3

Proclitics [Lemma & Features] [Lemma & Features] [Lemma & Features] Enclitic
conj+ [ lam ] [ðahab IV subj:3MP] [ Ǎlý ] +pron3FS

and+ did not they go to +her

Generation w+ lm yðhbwA Ǎly +hA

MSA Phrase AîD
Ë @
@ñJ.ë

	
YK
 ÕËð wlm yðhbwA ǍlyhA ‘And they did not go to her’

Figure 1: An example illustrating the analysis-transfer-generation steps to translate a dialectal multi-word expression
into its MSA equivalent phrase.

dialectal morphological analysis step uses ADAM
(Salloum and Habash, 2011) to get a list of di-
alectal analyses. The morphosyntactic transfer
step uses lemma-to-lemma (L2L) and features-to-
features (F2F) transfer rules to change lemmas, cl-
itics or features, and even split up the dialectal word
into multiple MSA word analyses (such as splitting
negation words and indirect objects). The MSA
morphological generation step uses the general to-
kenizer/generator TOKAN (Habash, 2007) to gen-
erate untokenized surface form words. For more de-
tails, see Salloum and Habash (2011).

Phrase-based translation. Unlike the word-
based translation techniques which map single DA
words to single or multi-word MSA sequences, this
technique uses hand-written multi-word transfer
rules that map multi-word DA constructions to

single or multi-word MSA constructions. In the
current system, there are 47 phrase-based transfer
rules. Many of the word-based morphosyntactic
transfer rules are re-used for phrase-based transla-
tion. Figure 1 shows an example of a phrase-based
morphological translation of the two-word DA
sequence Bñk@P AÓð wmA rAHwlA ‘And they did
not go to her’. If these two words were spelled as a
single word, Bñk@PAÓð wmArAHwlA, we would still
get the same result using the word-based translation
technique only. Table 2 shows some rule categories
along with selection and translation examples.

5.3 Language Modeling
The language model (LM) component uses the
SRILM lattice-tool for weight assignment and n-
best decoding (Stolcke, 2002). ELISSA comes with
a default 5-gram LM file trained on ∼200M unto-
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mAxbrhwn9 AymtA10 (rH yrwH)11 ςAlbld12.
Human Ref-
erence

In this case, they will not write on his profile wall and they do not want him to send them comments because he did
not tell them when he will go to the country.

Google
Translate

Bhalhalh Hi Hictpoulo Ahat Profile Tbau not hull Weah Abatln Comintat Anu Mabarhun Oamta welcomed calls
them Aalbuld.

ELISSA 6
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(lm yxbrhm)9 mty10 syðhb11 (Aly Albld)12.
Google
Translate

In this case it would not write to him on the wall of his own and do not want to send them comments that he did not
tell them when going to the country.

Table 3: Revisiting our motivating example, but with ELISSA-based DA-to-MSA middle step. ELISSA’s output is
Alif/Ya normalized. Parentheses are added for illustrative reasons to highlight how multi-word DA constructions are
selected and translated. Superscript indices link the selected words and phrases with their MSA translations.

kenized Arabic words of Arabic Gigaword (Parker
et al., 2009). Users can specify their own LM file
and/or interpolate it with our default LM. This is
useful for adapting ELISSA’s output to the Arabic
side of the training data.

5.4 Revisiting our Motivating Example
We revisit our motivating example in Section 2 and
show automatic MSA-pivoting through ELISSA. Ta-
ble 3 is divided into two parts. The first part is
copied from Table 1 for convenience. The second
part shows ELISSA’s output on the dialectal sentence
and its Google Translate translation. The produced
MSA is not perfect, but is clearly an improvement
over doing nothing as far as usability for MT into
English.

6 Evaluation

In this section, we present two evaluations of
ELISSA. The first is an extrinsic evaluation of
ELISSA as part of MSA-pivoting for DA-to-English
SMT. And the second is an intrinsic evaluation of
the quality of ELISSA’s MSA output.

6.1 DA-English MT Evaluation
6.1.1 Experimental Setup

We use the open-source Moses toolkit (Koehn
et al., 2007) to build a phrase-based SMT system
trained on mostly MSA data (64M words on the
Arabic side) obtained from several LDC corpora in-
cluding some limited DA data. Our system uses

a standard phrase-based architecture. The paral-
lel corpus is word-aligned using GIZA++ (Och and
Ney, 2003). Phrase translations of up to 10 words
are extracted in the Moses phrase table. The lan-
guage model for our system is trained on the En-
glish side of the bitext augmented with English Gi-
gaword (Graff and Cieri, 2003). We use a 5-gram
language model with modified Kneser-Ney smooth-
ing. Feature weights are tuned to maximize BLEU
on the NIST MTEval 2006 test set using Minimum
Error Rate Training (Och, 2003). This is only done
on the baseline systems. The English data is tok-
enized using simple punctuation-based rules. The
Arabic side is segmented according to the Arabic
Treebank (ATB) tokenization scheme (Maamouri et
al., 2004) using the MADA+TOKAN morphologi-
cal analyzer and tokenizer v3.1 (Habash and Ram-
bow, 2005; Roth et al., 2008). The Arabic text is
also Alif/Ya normalized. MADA-produced Arabic
lemmas are used for word alignment.

We use the same development (dev) and test sets
used by Salloum and Habash (2011) (we will call
them speech-dev and speech-test, respectively) and
we compare to them in the next sections. We also
evaluate on two web-crawled blind test sets: the
Levantine test set presented in Zbib et al. (2012) (we
will call it web-lev-test) and the Egyptian Dev-MT-
v2 development data of the DARPA BOLT program
(we will call it web-egy-test). The speech-dev set
has 1,496 sentences with 32,047 untokenized Arabic
words. The speech-test set has 1,568 sentences with
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32,492 untokenized Arabic words. The web-lev-
test set has 2,728 sentences with 21,179 untokenized
Arabic words. The web-egy-test set has 1,553 sen-
tences with 21,495 untokenized Arabic words. The
two speech test sets contain multi-dialect (e.g., Iraqi,
Levantine, Gulf, and Egyptian) broadcast conver-
sational (BC) segments (with three reference trans-
lations), and broadcast news (BN) segments (with
only one reference, replicated three times). The
web-egy-test has two references while the web-lev-
test has only one reference. Results are presented in
terms of BLEU (Papineni et al., 2002). All evalua-
tion results are case insensitive.

6.1.2 Results on the Development Set
We experimented with different method combi-

nations in the selection and translation components
in ELISSA. We use the term selection mode and
translation mode to denote a certain combination
of methods in selection or translation, respectively.
Due to limited space, we only present the best se-
lection mode variation experiments. Other selection
modes were tried but they proved to be consistently
lower than the rest. The ‘F2F+L2L; S2S’ word-
based translation mode (using morphological trans-
fer of features and lemmas along with surface form
transfer) showed to be consistently better than other
method combinations across all selection modes. In
this paper we only use ‘F2F+L2L; S2S’ word-based
translation mode. Phrase-based translation mode is
used when phrase-based selection mode is used.

To rank paraphrases in the generated MSA lattice,
we combine two 5-gram untokenized Arabic lan-
guage models: one is trained on Arabic Gigaword
data and the other is trained the Arabic side of our
SMT training data. The use of the latter LM gave
frequent dialectal phrases a higher chance to appear
in ELISSA’s output; thus, making the output "more
dialectal" but adapting it to our SMT input. Exper-
iments showed that using both LMs is better than
using each one alone.

In all the experiments, we run the DA sentence
through ELISSA to generate a top-1 MSA transla-
tion, which we then tokenize through MADA be-
fore sending to the MSA-English SMT system. Our
baseline is to not run ELISSA at all; instead, we send
the DA sentence through MADA before applying
the MSA-English MT system.

Table 4 summarizes the experiments and results

on the dev set. The rows of the table are the dif-
ferent systems (baseline and ELISSA’s experiments).
All differences in BLEU scores from the baseline
are statistically significant above the 95% level. Sta-
tistical significance is computed using paired boot-
strap re-sampling (Koehn, 2004). The name of the
system in ELISSA’s experiments denotes the com-
bination of selection method. ELISSA’s experi-
ments are grouped into three groups: simple selec-
tion, frequency-based selection, and phrase-based
selection. Simple selection group consists of five
systems: OOV, ADAM, OOV U ADAM, DICT,
and OOV U ADAM U DICT. The OOV selection
mode identifies the untokenized OOV words. In
the ADAM selection mode, or the morphological
selection mode, we use ADAM to identify dialec-
tal words. Experiments showed that ADAM’s DI-
AMSA mode (selecting words that have at least one
dialectal analysis) is slightly better than ADAM’s
DIAONLY mode (selecting words that have only di-
alectal analyses and no MSA ones). The OOV U
ADAM selection mode is the union of the OOVs
and ADAM selection modes. In DICT selection
mode, we select dialectal words that exist in our DA-
MSA dictionaries. The OOV U ADAM U DICT
selection mode is the union of the OOVs, ADAM,
and DICT selection modes. The results show that
combining the output of OOV selection method and
ADAM selection method is the best. DICT selec-
tion method hurts the performance of the system
when used because dictionaries usually have fre-
quent dialectal words that the SMT system already
knows how to handle.

In the frequency-based selection group, we ex-
clude from word selection all words with number of
occurrences in the training data that is above a cer-
tain threshold. This threshold was determined em-
pirically to be 50. The string ‘- (Freq >= 50)’ means
that all words with frequencies of 50 or more should
not be selected. The results show that excluding fre-
quent dialectal words improves the best simple se-
lection system. It also shows that using DICT selec-
tion improves the best system if frequent words are
excluded.

In the last system group, phrase+word-based se-
lection, phrase-based selection is used to select
phrases and add them on top of the best perform-
ers of the previous two groups. Phrase-based trans-
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Test Set speech-dev
BLEU Diff.

Baseline 37.20 0.00
Select: OOV 37.75 0.55
Select: ADAM 37.88 0.68
Select: OOV U ADAM 37.89 0.69
Select: DICT 37.06 -0.14
Select: OOV U ADAM U DICT 37.53 0.33
Select: (OOV U ADAM) - (Freq >= 50) 37.96 0.76
Select: (OOV U ADAM U DICT) - (Freq >= 50) 38.00 0.80
Select: Phrase; (OOV U ADAM) 37.99 0.79
Select: Phrase; ((OOV U ADAM) - (Freq >= 50)) 38.05 0.85
Select: Phrase; ((OOV U ADAM U DICT) - (Freq >= 50)) 38.10 0.90

Table 4: Results for the speech-dev set in terms of BLEU. The ‘Diff.’ column shows result differences from the
baseline. The rows of the table are the different systems (baseline and ELISSA’s experiments). The name of the
system in ELISSA’s experiments denotes the combination of selection method. In all ELISSA’s experiments, all word-
based translation methods are tried. Phrase-based translation methods are used when phrase-based selection is used
(i.e., the last three rows). The best system is in bold.

lation is also added to word-based translation. Re-
sults show that selecting and translating phrases im-
prove the three best performers of word-based se-
lection. The best performer, shown in the last raw,
suggests using phrase-based selection and restricted
word-based selection. The restriction is to include
OOV words and selected low frequency words that
have at least one dialectal analysis or appear in our
dialectal dictionaries. Comparing the best performer
to the OOV selection mode system shows that trans-
lating low frequency in-vocabulary dialectal words
and phrases to their MSA paraphrases can improve
the English translation. This is a similar conclusion
to our previous work in Salloum and Habash (2011).

6.1.3 Results on the Blind Test Sets
We run the system settings that performed best on

the dev set along with the OOV selection mode sys-
tem on the three blind test set. Results and their dif-
ferences from the baseline are reported in Table 5.
We see that OOV selection mode system always im-
proves over the baseline for all test sets. Also, the
best performer on the dev is the best performer for
all test sets. The improvements of the best per-
former over the OOV selection mode system on all
test sets confirm that translating low frequency in-
vocabulary dialectal words and phrases to their MSA
paraphrases can improve the English translation. Its
improvements over the baseline for the three test sets
are: 0.95% absolute BLEU (or 2.5% relative) for the
speech-test, 1.41% absolute BLEU (or 15.4% rela-

tive) for the web-lev-test, and 0.61% absolute BLEU
(or 3.2% relative) for the web-egy-test.

6.1.4 A Case Study
We next examine an example in some detail.

Table 6 shows a dialectal sentence along with its
ELISSA’s translation, English references, the output
of the baseline system and the output of our best
system. The example shows a dialectal word 	

©ÊJ. ÖÏ Aë

hAlmblγ ‘this-amount/sum’, which is not translated
by the baseline (although it appears in the training
data, but quite infrequently such that all of its phrase
table occurrences have restricted contexts, mak-
ing it effectively an OOV). The dialectal proclitic
+ÈAë hAl+ ‘this-’ comes sometimes in the dialec-
tal construction: ‘hAl+NOUN DEM’ (as in this ex-
ample: @

	
Yë

	
©ÊJ. ÖÏ Aë hAlmblγ hðA ‘this-amount/sum

this’). ELISSA’s selection component captures this
multi-word expression and its translation component
produces the following paraphrases: 	

©ÊJ. ÖÏ @ @
	
Yë hðA

Almblγ ‘this amount/sum’ (hðA is used with mas-
culine singular nouns), 	

©ÊJ. ÖÏ @ è
	
Yë hðh Almblγ ‘this

amount/sum’ (hðh is used with feminine singular
or irrational plural nouns), and 	

©ÊJ. ÖÏ @ ZB


ñë hŵlA’
Almblγ ‘these amount/sum’ (hŵlA’ is used with
rational plural nouns). ELISSA’s language mod-
eling component picks the first MSA paraphrase,
which perfectly fits the context and satisfies the
gender/number/rationality agreement (note that the
word Almblγ is an irrational masculine singular
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Test Set speech-test web-lev-test web-egy-test
BLEU Diff. BLEU Diff. BLEU Diff.

Baseline 38.18 0.00 9.13 0.00 18.98 0.00
Select: OOV 38.76 0.58 9.65 0.62 19.19 0.21
Select: Phrase; ((OOV U ADAM U DICT) - (Freq >= 50)) 39.13 0.95 10.54 1.41 19.59 0.61

Table 5: Results for the three blind test sets (table columns) in terms of BLEU. The ‘Diff.’ columns show result
differences from the baselines. The rows of the table are the different systems (baselines and ELISSA’s experiments).
The best systems are in bold.

noun). For more on Arabic morpho-syntactic agree-
ment patterns, see Alkuhlani and Habash (2011).
Finally, the best system translation for the selected
phrase is ‘this sum’. We can see how both the accu-
racy and fluency of the sentence have improved.

DA sentence fmA mA AtSwr hAlmblγ hðA yςny.
ELISSA’s output fmA mA AtSwr hðA Almblγ yςny.
References I don’t think this amount is I mean.

So I do not I do not think this cost I mean.
So I do not imagine this sum I mean

Baseline So i don’t think hAlmblg this means.
Best system So i don’t think this sum i mean.

Table 6: An example of handling dialectal words/phrases
using ELISSA and its effect on the accuracy and fluency
of the English translation. Words of interest are bolded.

6.2 DA-to-MSA Translation Quality
We conducted a manual error analysis comparing
ELISSA’s input (the original dev set) to its output
using our best system settings from the experiments
above. Out of 708 affected sentences, we randomly
selected 300 sentences (42%). Out of the 482 han-
dled tokens, 449 (93.15%) tokens have good MSA
translations, and 33 (6.85%) tokens have wrong
MSA translations. Most of the wrong translations
are due to spelling errors, proper nouns, and weak
input sentence fluency (especially due to speech ef-
fect). This analysis clearly validates ELISSA’s MSA
output. Of course, a correct MSA output can still be
mistranslated by the MT system we used above if it
is not in the vocabulary of the MT system.

7 Conclusion and Future Work

We presented ELISSA, a tool for DA-MSA transla-
tion. ELISSA employs a rule-based MT approach
that relies on morphological analysis, transfer rules
and dictionaries in addition to language models to
produce MSA paraphrases of dialectal sentences.

Using ELISSA to produce MSA versions of dialec-
tal sentences as part of an MSA-pivoting DA-to-
English MT solution, improves BLEU scores on
three blind test sets by: 0.95% absolute BLEU
(or 2.5% relative) for a speech multi-dialect (Iraqi,
Levantine, Gulf, Egyptian) test set, 1.41% absolute
BLEU (or 15.4% relative) for a web-crawled Levan-
tine test set, and 0.61% absolute BLEU (or 3.2% rel-
ative) for a web-crawled Egyptian test set. A man-
ual error analysis of translated selected words shows
that our system produces correct MSA translations
over 93% of the time.

In the future, we plan to extend ELISSA’s cover-
age of phenomena in the handled dialects and to new
dialects. We also plan to automatically learn addi-
tional rules from limited available data (DA-MSA
or DA-English). We also would like to do additional
MT experiments where we use ELISSA to prepro-
cess the training data, comparable to experiments
done by Sawaf (2010). We are interested in studying
how our approach can be combined with solutions
that simply add more dialectal training data since
the two directions are complementary in that they
address linguistic normalization and domain cov-
erage. Finally, we look forward to experimenting
with ELISSA as a preprocessing system for a variety
of dialect NLP applications similar to Chiang et al.
(2006)’s work on dialect parsing, for example.

ELISSA will be publicly available. Please contact
the authors for more information.
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Abstract

The rise of social media has brought compu-
tational linguistics in ever-closer contact with
bad language: text that defies our expecta-
tions about vocabulary, spelling, and syntax.
This paper surveys the landscape of bad lan-
guage, and offers a critical review of the NLP
community’s response, which has largely fol-
lowed two paths: normalization and domain
adaptation. Each approach is evaluated in the
context of theoretical and empirical work on
computer-mediated communication. In addi-
tion, the paper presents a quantitative analy-
sis of the lexical diversity of social media text,
and its relationship to other corpora.

1 Introduction

As social media becomes an increasingly important
application domain for natural language processing,
we encounter language that is substantially different
from many benchmark corpora. The following ex-
amples are all from the social media service Twitter:

• Work on farm Fri. Burning piles of brush
WindyFire got out of control. Thank God for
good naber He help get undr control Pants-
BurnLegWound. (Senator Charles Grassley)

• Boom! Ya ur website suxx bro
(Sarah Silverman)

• ...dats why pluto is pluto it can neva b a star
(Shaquille O’Neil)

• michelle obama great. job. and. whit all my.
respect she. look. great. congrats. to. her.
(Ozzie Guillen)

These examples are selected from celebrities (for
privacy reasons), but they contain linguistic chal-
lenges that are endemic to the medium, including
non-standard punctuation, capitalization, spelling,
vocabulary, and syntax. The consequences for lan-
guage technology are dire: a series of papers has
detailed how state-of-the-art natural language pro-
cessing (NLP) systems perform significantly worse
on social media text. In part-of-speech tagging, the
accuracy of the Stanford tagger (Toutanova et al.,
2003) falls from 97% on Wall Street Journal text to
85% accuracy on Twitter (Gimpel et al., 2011). In
named entity recognition, the CoNLL-trained Stan-
ford recognizer achieves 44% F-measure (Ritter et
al., 2011), down from 86% on the CoNLL test
set (Finkel et al., 2005). In parsing, Foster et al.
(2011) report double-digit decreases in accuracy for
four different state-of-the-art parsers when applied
to social media text.

The application of language technology to so-
cial media is potentially transformative, leveraging
the knowledge and perspectives of millions of peo-
ple. But to deliver on this potential, the problems
at the core of the NLP pipeline must be addressed.
A growing thread of research takes up this chal-
lenge, including a shared task and workshop on
“parsing the web,” with new corpora which appear
to sit somewhere between the Wall Street Journal
and Twitter on the spectrum of bad language (Petrov
and McDonald, 2012). But perhaps surprisingly,
very little of this research has considered why social
media language is so different. This review paper
attempts to shed some light on this question, sur-
veying a strong tradition of empirical and theoreti-
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cal research on computer-mediated communication
(CMC). I argue that the two main computational ap-
proaches to dealing with bad language — normaliza-
tion and domain adaptation — are based on theories
of social media language that are not descriptively
accurate. I have worked and continue to work in
both of these areas, so I make this argument not as
a criticism of others, but in a spirit of self-reflection.
It is hoped that a greater engagement with sociolin-
guistic and CMC research will lead to new, nuanced
approaches to the challenge of bad language.

Why so much Twitter? Most of the examples
in this paper will focus on Twitter, a microblog-
ging service. Munro and Manning (2012) argue
that Twitter has unfairly dominated recent research,
at the expense of email and SMS text messages,
which they found to be both linguistically distinct
from Twitter and significantly more prevalent (in
2010). This matches earlier research arguing that
email contained relatively little “neography,” com-
pared with text messages and chat (Anis, 2007).

A crucial advantage for Twitter is that it is public
by default, while SMS and email are private. This
makes Twitter data less problematic from a privacy
standpoint,1 far easier to obtain, and more amenable
to target applications such as large-scale mining of
events (Sakaki et al., 2010; Benson et al., 2011) and
opinions (Sauper et al., 2011). Similar argument
could be made on behalf of other public social me-
dia, such as blog comments (Ali-Hasan and Adamic,
2007), forums, and chatrooms (Paolillo, 2001). The
main advantage of Twitter over these media is con-
venience in gathering large datasets through a sin-
gle streaming interface. More comparative evalu-
ation is needed to determine linguistic similarities
and differences between Twitter and these other me-
dia; Section 4 presents an evaluation of the lexical
similarity between Twitter and political blogs.

2 A tour of bad language

While many NLP researchers and engineers have
wrestled with the difficulties imposed by bad lan-
guage, there has been relatively little considera-
tion of why language in social media is so differ-
ent from our other corpora. A survey of laypeo-

1boyd and Crawford (2012) note that “public by default”
data still raises important ethical considerations.

ple found that more than half of the respondents
agreed with the following partial explanations for
non-standard spelling on the internet: “people are
unsure of the correct spellings,” “it’s faster,” “it’s be-
come the norm,” and “people want to represent their
own dialects and/or accents” (Jones, 2010). Let us
now consider the evidence for these and other poten-
tial explanations.

2.1 Illiteracy

Some commentators have fixated on the proposal
that the authors of non-standard language in social
media are simply unaware or incapable of using
more standard language (Thurlow, 2006). But em-
pirical research suggests that many users of bad lan-
guage are capable of using more traditional forms.
Drouin and Davis (2009) find no significant differ-
ences in the literacy scores of individuals who do
or do not use non-standard vocabulary in text mes-
sages. Tagliamonte and Denis (2008) review traces
of instant messaging conversations among students,
arguing that they “pick and choose ... from the en-
tire stylistic repertoire of the language” in a way that
would be impossible without skilled command of
both formal and informal registers. While news text
is usually more carefully composed and edited than
much of the language in social media, there is little
evidence that bad language results from an inability
to speak anything else.

2.2 Length limits

In the case of Twitter, the limit of 140 characters for
each message is frequently cited as an explanation
for bad language (Finin et al., 2010). Does Twitter’s
character limit cause users to prefer shorter words,
such as u instead of you? If so, one might expect
shortening to be used most frequently in messages
that are near the 140-character limit. Using a dataset
of one million English-language tweets (Bamman et
al., 2012), I have computed the average length of
messages containing both standard words and their
non-standard alternatives, focusing on the top five
non-standard shortenings identified by the automatic
method of Gouws et al. (2011a). The shortening ur
can substitute for both your and you’re. While wit
and bout are also spellings for standard words, man-
ual examination of one hundred randomly selected
examples for each surface form revealed only one
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standard length alternative length
your 85.1± 0.4

ur 81.9± 0.6
you’re 90.0± 0.1
with 87.9± 0.3 wit 78.8± 0.7

going 82.7± 0.5 goin 72.2± 1.0
know 86.1± 0.4 kno 78.4± 1.0
about 88.9± 0.4 bout 74.5± 0.7

Table 1: Average length of messages containing standard
forms and their shortenings

case in which the standard meaning was intended for
wit, and none for bout.

The average message lengths are shown in Ta-
ble 1. In all five cases, the non-standard form tends
to be used in shorter messages — not in long mes-
sages near the 140 character limit. Moreover, this
difference is substantially greater than the saving of
one or two characters offered by shortened form.
This is not consistent with the explanation that Twit-
ter’s character limit is the primary factor driving the
use of shortened forms. It is still possible that Twit-
ter’s length limitations might indirectly cause word
shortenings: for example, by legitimizing shortened
forms or causing authors to develop a habit of pre-
ferring them. But factors other than the length limit
must be recruited to explain why such conventions
or habits apply only to some messages and not oth-
ers.

2.3 Text input affordances

Text input affordances — whether standard key-
boards or predictive entry on mobile devices — play
a role in computer-mediated communication that is
perhaps under-appreciated. Gouws et al. (2011b) in-
vestigate orthographic variation on Twitter, and find
differences across devices: for example, that mes-
sages from iPhones include more contractions than
messages from Blackberries, and that tweets sent
from the web browser are more likely to drop vow-
els. While each affordance facilitates some writ-
ing styles and inhibits others, the affordances them-
selves are unevenly distributed across users. For ex-
ample, older people may prefer standard keyboards,
and wealthier people may be more likely to own
iPhones. Affordances are a moving target: new de-
vices and software are constantly becoming avail-
able, the software itself may adapt to the user’s in-

put, and the user may adapt to the software and de-
vice.

2.4 Pragmatics

Emoticons are frequently thought of as introduc-
ing an expressive, non-verbal component into writ-
ten language, mirroring the role played by facial ex-
pressions in speech (Walther and D’Addario, 2001),
but they can also be seen as playing a pragmatic
function: marking an utterance as facetious, or
demonstrating a non-confrontational, less invested
stance (Dresner and Herring, 2010). In many cases,
phrasal abbreviations like lol (laugh out loud),
lmao (laughing my ass off ), smh (shake my head),
and ikr (i know, right?) play a similar role: yea she
dnt like me lol; lmao I’m playin son. A key differ-
ence from emoticons is that abbreviations can act
as constituents, as in smh at your ignorance. An-
other form of non-standard language is expressive
lengthening (e.g., coooolllllll), found by Brody and
Diakopoulos (2011) to indicate subjectivity and sen-
timent. In running dialogues — such as in online
multiplayer games — the symbols * and ˆ can play
an explicit pragmatic function (Collister, 2011; Col-
lister, 2012).

2.5 Social variables

A series of papers has documented the interac-
tions between social media text and social vari-
ables such as age (Burger and Henderson, 2006;
Argamon et al., 2007; Rosenthal and McKeown,
2011), gender (Burger et al., 2011; Rao et al., 2010),
race (Eisenstein et al., 2011), and location (Eisen-
stein et al., 2010; Wing and Baldridge, 2011). From
this literature, it is clear that many of the features
that characterize bad language have strong associa-
tions with specific social variables. In some cases,
these associations mirror linguistic variables known
from speech — such as geographically-associated
lexical items like hella, or transcriptions of phono-
logical variables like “g-dropping” (Eisenstein et al.,
2010). But in other cases, apparently new lexical
items, such as the abbreviations ctfu, lls, and af,
acquire surprisingly strong associations with geo-
graphical areas and demographic groups (Eisenstein
et al., 2011).

A robust finding from the sociolinguistics litera-
ture is that non-standard forms that mark social vari-
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ables, such as regional dialects, are often inhibited in
formal registers (Labov, 1972). For example, while
the Pittsburgh spoken dialect sometimes features the
address term yinz (Johnstone et al., 2006), one would
not expect to find many examples in financial re-
ports. Other investigators have found that much of
the content in Twitter concerns social events and self
presentation (Ramage et al., 2010), which may en-
courage the use of less formal registers in which
socially-marketed language is uninhibited.

The use of non-standard language is often seen
as a form of identity work, signaling authentic-
ity, solidarity, or resistance to norms imposed from
above (Bucholtz and Hall, 2005). In spoken lan-
guage, many of the linguistic variables that perform
identity work are phonological — for example, Eck-
ert (2000) showed how the northern cities vowel
shift was used by a subset of suburban teenagers to
index affiliation with Detroit. The emergence of new
linguistic variables in social media suggests that this
identity work is as necessary in social media as it
is in spoken language. Some of these new variables
are transcriptions of existing spoken language vari-
ables: like finna, which transcribes fixing to. Oth-
ers — abbreviations like ctfu and emoticons — seem
to be linguistic inventions created to meet the needs
of social communication in a new medium. In an
early study of variation in social media, Paolillo
(1999) notes that code-switching between English
and Hindi also performs this type of identity work.

Finally, it is an uncomfortable fact that the text
in many of our most frequently-used corpora was
written and edited predominantly by working-age
white men. The Penn Treebank is composed of
professionally-written news text from 1989, when
minorities comprised 7.5% of the print journalism
workforce; the proportion of women in the journal-
ism workforce was first recorded in 1999, when it
was 37% (American Society of Newspaper Editors,
1999). In contrast, Twitter users in the USA con-
tain an equal proportion of men and women, and
a higher proportion of young adults and minorities
than in the population as a whole (Smith and Brewer,
2012). Such demographic differences are very likely
to lead to differences in language (Green, 2002;
Labov, 2001; Eckert and McConnell-Ginet, 2003).

Overall, the reasons for language diversity in so-
cial media are manifold, though some of the most

frequently cited explanations (illiteracy and length
restrictions) do not hold up to scrutiny. The in-
creasing prevalence of emoticons, phrasal abbrevi-
ations (lol, ctfu), and expressive lengthening may
reflect the increasing use of written language for
ephemeral social interaction, with the concomitant
need for multiple channels through which to express
multiple types of meaning. The fact many such neol-
ogisms are closely circumscribed in geography and
demographics may reflect diffusion through social
networks that are assortative on exactly these dimen-
sions (Backstrom et al., 2010; Thelwall, 2009). But
an additional consideration is that non-standard lan-
guage is deliberately deployed in the performance of
identity work and stancetaking. This seems a partic-
ularly salient explanation for the use of lexical vari-
ables that originate in spoken language (jawn, hella),
and for the orthographic transcription of phonolog-
ical variation (Eisenstein, 2013). Determining the
role and relative importance of social network diffu-
sion and identity work as factors in the diversifica-
tion of social media language is an exciting direction
for future research.

3 What can we do about it?

Having surveyed the landscape of bad language and
its possible causes, let us now turn to the responses
offered by the language technology research com-
munity.

3.1 Normalization

One approach to dealing with bad language is to
turn it good: “normalizing” social media or SMS
messages to better conform to the sort of language
that our technology expects. Approaches to normal-
ization include the noisy-channel model (Cook and
Stevenson, 2009), string and distributional similar-
ity (Han and Baldwin, 2011; Han et al., 2012), se-
quence labeling (Choudhury et al., 2007; Liu et al.,
2011a), and machine translation (Aw et al., 2006).
As this task has been the focus of substantial atten-
tion in recent years, labeled datasets have become
available and accuracies have climbed.

That said, it is surprisingly difficult to find a
precise definition of the normalization task. Writ-
ing before social media was a significant focus for
NLP, Sproat et al. (2001) proposed to replace non-
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standard words with “the contextually appropriate
word or sequence of words.” In some cases, this
seems clear enough: we can rewrite dats why pluto
is pluto with that’s why... But it is not difficult to find
cases that are less clear, putting would-be normaliz-
ers in a difficult position. The labeled dataset of Han
and Baldwin (2011) addresses a more tractable sub-
set of the normalization problem, annotating only
token-to-token normalizations. Thus, imma — a
transcription of I’m gonna, which in turn transcribes
I’m going to — is not normalized in this dataset. Ab-
breviations like LOL and WTF are also not normal-
ized, even when they are used to abbreviate syntac-
tic constituents, as in wtf is the matter with you? Nor
are words like hella and jawn normalized, since they
have no obvious one-word transcription in standard
English. These decisions no doubt help to solidify
the reliability of the annotations, but they provide an
overly optimistic impression of the ability of string
edit distance and related similarity-based techniques
to normalize bad language. The resulting gold stan-
dard annotations seem little more amenable to au-
tomated parsing and information extraction than the
original text.

But if we critique normalization for not going
far enough, we must also ask whether it goes too
far. The logic of normalization presupposes that the
“norm” can be identified unambiguously, and that
there is a direct mapping from non-standard words
to the elements in this normal set. On closer exami-
nation, the norm reveals itself to be slippery. Whose
norm are we targeting? Should we normalize flvr to
flavor or flavour? Where does the normal end and
the abnormal begin? For example, Han and Baldwin
normalize ain to ain’t, but not all the way to isn’t.
While ain’t is certainly well-known to speakers of
Standard American English, it does not appear in the
Penn Treebank and probably could not be used in the
Wall Street Journal, except in quotation.

Normalization is often impossible without chang-
ing the meaning of the text. Should we normalize the
final word of ya ur website suxx bro to brother? At
the very least, this adds semantic ambiguity where
there was none before (is she talking to her biolog-
ical brother? or possibly to a monk?). Language
variation does not arise from passing standard text
through a noisy channel; it often serves a pragmatic
and/or stancetaking (Du Bois, 2007) function. Elim-

inating variation would strip those additional lay-
ers of meaning from whatever propositional content
might survive the normalization process. Sarah Sil-
verman’s ya ur website suxx bro can only be under-
stood as a critique from a caricatured persona — the
type of person who ends sentences with bro. Sim-
ilarly, we can assume that Shaquille O’Neil is ca-
pable of writing that’s why Pluto is Pluto, but that
to do so would convey an undesirably didactic and
authoritative stance towards the audience and topic.

This is not to deny that there is great poten-
tial value in research aimed at understanding or-
thographic variation through a combination of lo-
cal context, string similarity, and related finite-state
machinery. Given the productivity of orthographic
substitutions in social media text, it is clear that lan-
guage technology must be made more robust. Nor-
malization may point the way towards such robust-
ness, even if we do not build an explicit normaliza-
tion component directly into the language process-
ing pipeline. Another potential benefit of this re-
search is to better understand the underlying ortho-
graphic processes that lead to the diversity of lan-
guage in social media, how these processes diffuse
over social networks, and how they impact compre-
hensibility for both the target and non-target audi-
ences.

3.2 Domain adaptation
Rather than adapting text to fit our tools, we may
instead adapt our tools to fit the text. A series of
papers has followed the mold of “NLP for Twit-
ter,” including part-of-speech tagging (Gimpel et al.,
2011; Owoputi et al., 2013), named entity recogni-
tion (Finin et al., 2010; Ritter et al., 2011; Liu et al.,
2011b), parsing (Foster et al., 2011), dialogue mod-
eling (Ritter et al., 2010) and summarization (Sharifi
et al., 2010). These papers adapt various parts of the
natural language processing pipeline for social me-
dia text, and make use of a range of techniques:

• preprocessing to normalize expressive length-
ening, and eliminate or group all hashtags,
usernames, and URLs (Gimpel et al., 2011;
Foster et al., 2011)

• new labeled data, enabling the application of
semi-supervised learning (Finin et al., 2010;
Gimpel et al., 2011; Ritter et al., 2011)
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• new annotation schemes specifically cus-
tomized for social media text (Gimpel et al.,
2011)

• self-training on unlabeled social media
text (Foster et al., 2011)

• distributional features to address the sparsity
of bag-of-words features (Gimpel et al., 2011;
Owoputi et al., 2013; Ritter et al., 2011)

• joint normalization, incorporated directly into
downstream application (Liu et al., 2012)

• distant supervision, using named entity on-
tologies and topic models (Ritter et al., 2011)

Only a few of these techniques (normalization and
new annotation systems) are specific to social me-
dia; the rest can found in other domain adaptation
settings. Is domain adaptation appropriate for social
media? Darling et al. (2012) argue that social me-
dia is not a coherent domain at all, and that a POS
tagger for Twitter will not necessarily generalize to
other social media. One can go further: Twitter it-
self is not a unified genre, it is composed of many
different styles and registers, with widely varying
expectations for the degree of standardness and di-
mensions of variation (Androutsopoulos, 2011). I
am the co-author on a paper entitled “Part-of-speech
tagging for Twitter,” but if we take this title literally,
it is impossible on a trivial level: Twitter contains
text in dozens or hundreds of languages, including
many for which no POS tagger exists. Even within
a single language — setting aside issues of code-
switching (Paolillo, 1996) — Twitter and other so-
cial media can contain registers ranging from hash-
tag wordplay (Naaman et al., 2011) to the official
pronouncements of the British Monarchy. And even
if all good language is alike, bad language can be
bad in many different ways — as Androutsopoulos
(2011) notes when contrasting the types of variation
encountered when “visiting a gamer forum” versus
“joining the Twitter profile of a rap star.”

4 The lexical coherence of social media

The internal coherence of social media — and its
relationship to other types of text — can be quan-
tified in terms of the similarity of distributions over

bigrams. While there are many techniques for com-
paring word distributions, I apply the relatively sim-
ple method of counting out-of-vocabulary (OOV) bi-
grams. The relationship between OOV rate and do-
main adaptation has been explored by McClosky et
al. (2010), who use it as a feature to predict how well
a parser will perform when applied across domains.2

Specifically, the datasets A and B are compared
by counting the number of bigram tokens in A that
are unseen in B. The following corpora are com-
pared:

• Twitter-month: randomly selected tweets
from each month between January 2010 to Oc-
tober 2012 (Eisenstein et al., 2012).

• Twitter-hour: randomly selected tweets from
each hour of the day, randomly sampled during
the period from January 2010 to October 2012.

• Twitter-#: tweets in which the first token is a
hashtag. The hashtag itself is not included in
the bigram counts; see below for more details
on which bigrams are included.

• Twitter-@: tweets in which the first token is a
username. The username itself is not included
in the bigram counts.

• Penn Treebank: sections 2-21

• Infinite Jest: the text of the 1996 novel by
David Foster Wallace (Wallace, 2012). Con-
sists of only 482,558 tokens.

• Blog articles: A randomly-sampled subset
of the American political blog posts gathered
by Yano et al. (2009).

• Blog comments: A randomly-selected subset
of comments associated with the blog posts de-
scribed above.

In all corpora, only fully alphabetic tokens are
counted; thus, all hashtags and usernames are dis-
carded. The Twitter text is tokenized using Tweet-

2A very recent study compares Twitter with other corpora,
using a number of alternative metrics, such as the use of high
and low frequency words, pronouns, and intensifiers (Hu et al.,
2013). This is complementary to the present study, which fo-
cuses on the degree of difference in the lexical distributions of
corpora gathered from various media.
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Figure 1: Lexical mismatch increases over time, as social
media language evolves.

motif;3 the Penn Treebank data uses the gold stan-
dard tokenization; Infinite Jest and the blog data are
tokenized using NLTK (Bird et al., 2009). All to-
kens are downcased, and sequences of three or more
consecutive identical characters are reduced to three
characters (e.g., coooool→ coool). All Twitter cor-
pora are subject to the following filters: messages
must be from the United States and should be written
in English,4 they may not include hyperlinks (elim-
inating most marketing messages), they may not be
retweets, and the author must not have more than
1,000 followers or follow more than 1,000 people.
These criteria serve to eliminate text from celebri-
ties, businesses, or automated bots.

Twitter over time Figure 1 shows how the pro-
portion of out-of-vocabulary bigrams increases over
time. It is possible that the core features of language
are constant but the set of named entities that are
mentioned changes over time. To control for this,
the CMU Twitter Part-of-Speech tagger (Owoputi et
al., 2013) was used to identify named entity men-
tions, and they were replaced with a special token.

3https://github.com/brendano/tweetmotif
4Approximate language detection was performed as follows.

We first identify the 1000 most common words, then sort all au-
thors by the proportion of these types that they used, and elim-
inate the bottom 10%. This filtering mechanism eliminates in-
dividuals who never write in English, but a small amount of
foreign language still enters the dataset via code-switching au-
thors. The effect of more advanced language detection meth-
ods (Bergsma et al., 2012) on these results may be considered
in future work.
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Figure 2: Different times of day have unique lexical sig-
natures, reflecting differing topics and authors.

The OOV rate is standardized with respect to a one-
month time gap, where it is 24.4% when named en-
tities are included, and 21.3% when they are not.
These rates reach maxima at 25.2% and 22.0% re-
spectively, with dips at 12 and 24 months indicat-
ing cyclic yearly effects. While the proportion of
OOV tokens is smaller when named entities are not
included, the rate of growth is similar in each case.
The steadily increasingly rate of OOV bigrams sug-
gests that we cannot annotate our way out of the bad
language problem. An NLP system trained from
data gathered in January 2010 will be increasingly
outdated as time passes and social media language
continues to evolve.

One need not wait months to see language change
on Twitter: marked changes can be observed over
the course of a single day (Golder and Macy, 2011).
A quantitative comparison is shown in Figure 2.
Here the OOV rate is standardized with respect to
a one-hour gap, where it is 24.2% when named en-
tities are included, and 21.1% when they are not.
These rates rise monotonically as the time gap in-
creases, peaking at 25.1% and 21.9% respectively.
Such diurnal changes may reflect the diverse lan-
guage of the different types of authors who post
throughout the day.

Types of usage The Twitter-# and Twitter-@ cor-
pora are designed to capture the diversity of ways
in which social media is used to communicate.
Twitter-# contains tweets that begin with hashtags,
and are thus more likely to be part of running jokes
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or trending topics (Naaman et al., 2011). Twitter-
@ contains tweets that begin with usernames — an
addressing mechanism that is used to maintain dia-
logue threads on the site. These datasets are com-
pared with a set of randomly selected tweets from
June 2011, and with several other corpora: Penn
Treebank, the novel Infinite Jest, and text and com-
ments from political blogs. There was no attempt to
remove named entities from any of these corpora, as
such a comparison would merely reflect the different
accuracy levels of NER in each corpus.

The results are shown in Table 2. A few observa-
tions stand out. First, the Penn Treebank is the clear
outlier: a PTB dictionary has by far the most OOV
tokens for all three Twitter domains and Infinite Jest,
although it is a better match for the blog corpora
than Infinite Jest is. Second, the social media are
fairly internally coherent: the Twitter datasets bet-
ter match each other than any other corpus, with a
maximum OOV rate of 33.4 for Twitter-# against
Twitter-@, though this is significantly higher than
the OOV rate of 27.8 between two separate generic
Twitter samples drawn from the same month. Fi-
nally, the OOV rate increase between Twitter and
blogs — also social media — is substantial. Con-
trary to expectations, the Blog-body corpus was no
closer to the PTB standard than Blog-comment.

These results suggest that the Penn Treebank cor-
pus is so distant from social media that there are in-
deed substantial gains to be reaped by adapting from
news text towards generic Twitter or Blog target do-
mains. The internal differences within these social
media — at least as measured by the distinctions
drawn in Table 2 — are much smaller than the dif-
ferences between these corpora and the PTB stan-
dard. However, in the long run, the effectiveness
of this approach will be limited, as it is clear from
Figure 1 that social media is a moving target. Any
static system that we build today, whether by man-
ual annotation or automated adaptation, will see its
performance decay over time.

5 What to do next

Language is shaped by a constant negotiation be-
tween processes that encourage change and linguis-
tic diversity, and countervailing processes that en-
force existing norms. The decision of the NLP com-

munity to focus so much effort on news text is em-
inently justified on practical grounds, but has unin-
tended consequences not just for technology but for
language itself. By developing software that works
best for standard linguistic forms, we throw the
weight of language technology behind those forms,
and against variants that are preferred by disempow-
ered groups. By adopting a model of “normaliza-
tion,” we declare one version of language to be the
norm, and all others to be outside that norm. By
adopting a model of “domain adaptation,” we con-
fuse a medium with a coherent domain. Adapting
language technology towards the median Tweet can
improve accuracy on average, but it is certain to
leave many forms of language out.

Much of the current research on the relationship
between social media language and metadata has the
goal of using language to predict the metadata —
revealing who is a woman or a man, who is from
Oklahoma or New Jersey, and so on. This perspec-
tive on social variables and personal identity ignores
the local categories that are often more linguisti-
cally salient (Eckert, 2008); worse, it strips individ-
uals of any agency in using language as a resource
to create and shape their identity (Coupland, 2007),
and conceals the role that language plays in creating
and perpetuating categories like gender (Bucholtz
and Hall, 2005). An alternative possibility is to re-
verse the relationship between language and meta-
data, using metadata to achieve a more flexible and
heterogeneous domain adaptation that is sensitive to
the social factors that shape variation. Such a re-
versal would help language technology to move be-
yond false dichotomies between normal and abnor-
mal text, source and target domains, and good and
bad language.
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Tw-June Tw-@ Tw-# Blog-body Blog-comment Infinite-Jest PTB
Tw-June 28.7 29.3 47.1 48.6 54.0 63.9
Tw-@ 25.9 29.7 47.8 49.9 56.3 66.4
Tw-# 29.8 33.4 49.6 51.0 54.7 66.2
Blog-body 41.9 44.1 43.8 27.2 49.1 48.0
Blog-comment 47.4 49.6 49.2 30.2 53.0 48.4
Infinite-Jest 49.4 51.1 49.9 48.3 47.4 55.5
PTB 72.2 73.1 72.7 64.5 61.9 71.9

Table 2: Percent OOV bigram tokens across corpora. Rows are the dataset providing the tokens, columns are the
dataset providing the dictionary.
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Abstract

Online learning algorithms such as perceptron
and MIRA have become popular for many
NLP tasks thanks to their simpler architec-
ture and faster convergence over batch learn-
ing methods. However, while batch learning
such as CRF is easily parallelizable, online
learning is much harder to parallelize: previ-
ous efforts often witness a decrease in the con-
verged accuracy, and the speedup is typically
very small (∼3) even with many (10+) pro-
cessors. We instead present a much simpler
architecture based on “mini-batches”, which
is trivially parallelizable. We show that, un-
like previous methods, minibatch learning (in
serial mode) actually improves the converged
accuracy for both perceptron and MIRA learn-
ing, and when combined with simple paral-
lelization, minibatch leads to very significant
speedups (up to 9x on 12 processors) on state-
of-the-art parsing and tagging systems.

1 Introduction

Online structured learning algorithms such as the
structured perceptron (Collins, 2002) and k-best
MIRA (McDonald et al., 2005) have become more
and more popular for many NLP tasks such as de-
pendency parsing and part-of-speech tagging. This
is because, compared to their batch learning counter-
parts, online learning methods offer faster conver-
gence rates and better scalability to large datasets,
while using much less memory and a much simpler
architecture which only needs 1-best or k-best de-
coding. However, online learning for NLP typically
involves expensive inference on each example for 10
or more passes over millions of examples, which of-
ten makes training too slow in practice; for example
systems such as the popular (2nd-order) MST parser

(McDonald and Pereira, 2006) usually require the
order of days to train on the Treebank on a com-
modity machine (McDonald et al., 2010).

There are mainly two ways to address this scala-
bility problem. On one hand, researchers have been
developing modified learning algorithms that allow
inexact search (Collins and Roark, 2004; Huang et
al., 2012). However, the learner still needs to loop
over the whole training data (on the order of mil-
lions of sentences) many times. For example the
best-performing method in Huang et al. (2012) still
requires 5-6 hours to train a very fast parser.

On the other hand, with the increasing popularity
of multicore and cluster computers, there is a grow-
ing interest in speeding up training via paralleliza-
tion. While batch learning such as CRF (Lafferty
et al., 2001) is often trivially parallelizable (Chu et
al., 2007) since each update is a batch-aggregate of
the update from each (independent) example, online
learning is much harder to parallelize due to the de-
pendency between examples, i.e., the update on the
first example should in principle influence the de-
coding of all remaining examples. Thus if we de-
code and update the first and the 1000th examples
in parallel, we lose their interactions which is one
of the reasons for online learners’ fast convergence.
This explains why previous work such as the itera-
tive parameter mixing (IPM) method of McDonald
et al. (2010) witnesses a decrease in the accuracies
of parallelly-learned models, and the speedup is typ-
ically very small (about 3 in their experiments) even
with 10+ processors.

We instead explore the idea of “minibatch” for on-
line large-margin structured learning such as percep-
tron and MIRA. We argue that minibatch is advan-
tageous in both serial and parallel settings.

First, for minibatch perceptron in the serial set-
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ting, our intuition is that, although decoding is done
independently within one minibatch, updates are
done by averaging update vectors in batch, provid-
ing a “mixing effect” similar to “averaged parame-
ters” of Collins (2002) which is also found in IPM
(McDonald et al., 2010), and online EM (Liang and
Klein, 2009).

Secondly, minibatch MIRA in the serial setting
has an advantage that, different from previous meth-
ods such as SGD which simply sum up the up-
dates from all examples in a minibatch, a minibatch
MIRA update tries to simultaneously satisfy an ag-
gregated set of constraints that are collected from
multiple examples in the minibatch. Thus each mini-
batch MIRA update involves an optimization over
many more constraints than in pure online MIRA,
which could potentially lead to a better margin. In
other words we can view MIRA as an online version
or stepwise approximation of SVM, and minibatch
MIRA can be seen as a better approximation as well
as a middleground between pure MIRA and SVM.1

More interestingly, the minibatch architecture is
trivially parallelizable since the examples within
each minibatch could be decoded in parallel on mul-
tiple processors (while the update is still done in se-
rial). This is known as “synchronous minibatch”
and has been explored by many researchers (Gim-
pel et al., 2010; Finkel et al., 2008), but all previ-
ous works focus on probabilistic models along with
SGD or EM learning methods while our work is the
first effort on large-margin methods.

We make the following contributions:

• Theoretically, we present a serial minibatch
framework (Section 3) for online large-margin
learning and prove the convergence theorems
for minibatch perceptron and minibatch MIRA.

• Empirically, we show that serial minibatch
could speed up convergence and improve the
converged accuracy for both MIRA and percep-
tron on state-of-the-art dependency parsing and
part-of-speech tagging systems.

• In addition, when combined with simple (syn-
chronous) parallelization, minibatch MIRA

1This is similar to Pegasos (Shalev-Shwartz et al., 2007) that
applies subgradient descent over a minibatch. Pegasos becomes
pure online when the minibatch size is 1.

Algorithm 1 Generic Online Learning.
Input: dataD = {(x(t), y(t))}nt=1 and feature map Φ
Output: weight vector w

1: repeat
2: for each example (x, y) in D do
3: C ← FINDCONSTRAINTS(x, y,w) . decoding
4: if C 6= ∅ then UPDATE(w, C)
5: until converged

leads to very significant speedups (up to 9x on
12 processors) that are much higher than that of
IPM (McDonald et al., 2010) on state-of-the-art
parsing and tagging systems.

2 Online Learning: Perceptron and MIRA

We first present a unified framework for online
large-margin learning, where perceptron and MIRA
are two special cases. Shown in Algorithm 1, the
online learner considers each input example (x, y)
sequentially and performs two steps:

1. find the set C of violating constraints, and

2. update the weight vector w according to C.

Here a triple 〈x, y, z〉 is said to be a “violating con-
straint” with respect to model w if the incorrect la-
bel z scores higher than (or equal to) the correct
label y in w, i.e., w · ∆Φ(〈x, y, z〉) ≤ 0, where
∆Φ(〈x, y, z〉) is a short-hand notation for the up-
date vector Φ(x, y) − Φ(x, z) and Φ is the feature
map (see Huang et al. (2012) for details). The sub-
routines FINDCONSTRAINTS and UPDATE are anal-
ogous to “APIs”, to be specified by specific instances
of this online learning framework. For example, the
structured perceptron algorithm of Collins (2002)
is implemented in Algorithm 2 where FINDCON-
STRAINTS returns a singleton constraint if the 1-best
decoding result z (the highest scoring label accord-
ing to the current model) is different from the true
label y. Note that in the UPDATE function, C is al-
ways a singleton constraint for the perceptron, but
we make it more general (as a set) to handle the
batch update in the minibatch version in Section 3.

On the other hand, Algorith 3 presents the k-best
MIRA Algorithm of McDonald et al. (2005) which
generalizes multiclass MIRA (Crammer and Singer,
2003) for structured prediction. The decoder now
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Algorithm 2 Perceptron (Collins, 2002).
1: function FINDCONSTRAINTS(x, y,w)
2: z ← argmaxs∈Y(x) w ·Φ(x, s) . decoding
3: if z 6= y then return {〈x, y, z〉}
4: else return ∅
5: procedure UPDATE(w, C)
6: w← w + 1

|C|
∑

c∈C ∆Φ(c) . (batch) update

Algorithm 3 k-best MIRA (McDonald et al., 2005).
1: function FINDCONSTRAINTS(x, y,w)
2: Z ← k-bestz∈Y(x)w ·Φ(x, z)
3: Z ← {z ∈ Z | z 6= y,w ·∆Φ(〈x, y, z〉) ≤ 0}
4: return {(〈x, y, z〉, `(y, z)) | z ∈ Z}
5: procedure UPDATE(w, C)
6: w← argmin

w′:∀(c,`)∈C, w′·∆Φ(c)≥`

‖w′ −w‖2

finds the k-best solutions Z first, and returns a set
of violating constraints in Z, The update in MIRA
is more interesting: it searches for the new model
w′ with minimum change from the current model
w so that w′ corrects each violating constraint by
a margin at least as large as the loss `(y, z) of the
incorrect label z.

Although not mentioned in the pseudocode, we
also employ “averaged parameters” (Collins, 2002)
for both perceptron and MIRA in all experiments.

3 Serial Minibatch

The idea of serial minibatch learning is extremely
simple: divide the data into dn/me minibatches
of size m, and do batch updates after decoding
each minibatch (see Algorithm 4). The FIND-
CONSTRAINTS and UPDATE subroutines remain un-
changed for both perceptron and MIRA, although
it is important to note that a perceptron batch up-
date uses the average of update vectors, not the sum,
which simplifies the proof. This architecture is of-
ten called “synchronous minibatch” in the literature
(Gimpel et al., 2010; Liang and Klein, 2009; Finkel
et al., 2008). It could be viewed as a middleground
between pure online learning and batch learning.

3.1 Convergence of Minibatch Perceptron
We denote C(D) to be the set of all possible violat-
ing constraints in data D (cf. Huang et al. (2012)):

C(D) = {〈x, y, z〉 | (x, y) ∈ D, z ∈ Y(x)− {y}}.

Algorithm 4 Serial Minibatch Online Learning.
Input: data D, feature map Φ, and minibatch size m
Output: weight vector w

1: Split D into dn/me minibatches D1 . . . Ddn/me
2: repeat
3: for i← 1 . . . dn/me do . for each minibatch
4: C ← ∪(x,y)∈Di

FINDCONSTRAINTS(x, y,w)
5: if C 6= ∅ then UPDATE(w, C) . batch update
6: until converged

A training set D is separable by feature map Φ
with margin δ > 0 if there exists a unit oracle vec-
tor u with ‖u‖ = 1 such that u ·∆Φ(〈x, y, z〉) ≥ δ,
for all 〈x, y, z〉 ∈ C(D). Furthermore, let radius
R ≥ ‖∆Φ(〈x, y, z〉)‖ for all 〈x, y, z〉 ∈ C(D).

Theorem 1. For a separable dataset D with margin
δ and radius R, the minibatch perceptron algorithm
(Algorithms 4 and 2) will terminate after tminibatch
updates where t ≤ R2/δ2.

Proof. Let wt be the weight vector before the tth

update; w0 = 0. Suppose the tth update happens
on the constraint set Ct = {c1, c2, . . . , ca} where
a = |Ct|, and each ci = 〈xi, yi, zi〉. We convert
them to the set of update vectors vi = ∆Φ(ci) =
∆Φ(〈xi, yi, zi〉) for all i. We know that:

1. u · vi ≥ δ (margin on unit oracle vector)

2. wt · vi ≤ 0 (violation: zi dominates yi)

3. ‖vi‖2 ≤ R2 (radius)

Now the update looks like

wt+1 = wt +
1

|Ct|
∑
c∈Ct

∆Φ(c) = wt +
1

a

∑
i vi.

(1)
We will bound ‖wt+1‖ from two directions:

1. Dot product both sides of the update equa-
tion (1) with the unit oracle vector u, we have

u ·wt+1 = u ·wt +
1

a

∑
i u · vi

≥ u ·wt +
1

a

∑
i δ (margin)

= u ·wt + δ (
∑

i = a)

≥ tδ (by induction)
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Since for any two vectors a and b we have
‖a‖‖b‖ ≥ a·b, thus ‖u‖‖wt+1‖ ≥ u·wt+1 ≥
tδ. As u is a unit vector, we have ‖wt+1‖ ≥ tδ.

2. On the other hand, take the norm of both sides
of Eq. (1):

‖wt+1‖2 = ‖wt +
1

a

∑
i vi‖2

=‖wt‖2 + ‖
∑

i
1
avi‖2 +

2

a
wt ·

∑
i vi

≤‖wt‖2 + ‖
∑

i
1
avi‖2 + 0 (violation)

≤‖wt‖2 +
∑

i
1
a‖vi‖2 (Jensen’s)

≤‖wt‖2 +
∑

i
1
aR

2 (radius)

=‖wt‖2 +R2 (
∑

i = a)

≤tR2 (by induction)

Combining the two bounds, we have

t2δ2 ≤ ‖wt+1‖2 ≤ tR2

thus the number of minibatch updates t ≤ R2/δ2.

Note that this bound is identical to that of pure
online perceptron (Collins, 2002, Theorem 1) and is
irrelevant to minibatch size m. The use of Jensen’s
inequality is inspired by McDonald et al. (2010).

3.2 Convergence of Minibatch MIRA
We also give a proof of convergence for MIRA with
relaxation.2 We present the optimization problem in
the UPDATE function of Algorithm 3 as a quadratic
program (QP) with slack variable ξ:

wt+1 ←argmin
wt+1

‖wt+1 −wt‖2 + ξ

s.t. wt+1 · vi ≥ `i − ξ, for all(ci, `i) ∈ Ct

where vi = ∆Φ(ci) is the update vector for con-
straint ci. Consider the Lagrangian:

L =‖wt+1 −wt‖2 + ξ +

|Ct|∑
i=1

ηi(`i −w′ · vi − ξ)

ηi ≥ 0, for 1 ≤ i ≤ |Ct|.
2Actually this relaxation is not necessary for the conver-

gence proof. We employ it here solely to make the proof shorter.
It is not used in the experiments either.

Set the partial derivatives to 0 with respect to w′ and
ξ we have:

w′ = w +
∑

i ηivi (2)∑
i ηi = 1 (3)

This result suggests that the weight change can al-
ways be represnted by a linear combination of the
update vectors (i.e. normal vectors of the constraint
hyperplanes), with the linear coefficencies sum to 1.

Theorem 2 (convergence of minibatch MIRA). For
a separable dataset D with margin δ and radius R,
the minibatch MIRA algorithm (Algorithm 4 and 3)
will make t updates where t ≤ R2/δ2.

Proof. 1. Dot product both sides of Equation 2
with unit oracle vector u:

u ·wt+1 = u ·wt +
∑

i ηiu · vi

≥u ·wt +
∑

i ηiδ (margin)

=u ·wt + δ (Eq. 3)

=tδ (by induction)

2. On the other hand

‖wt+1‖2 = ‖wt +
∑

i ηivi‖2

=‖wt‖2 + ‖
∑

i ηivi‖2 + 2 wt ·
∑

i ηivi

≤‖wt‖2 + ‖
∑

i ηivi‖2 + 0 (violation)

≤‖wt‖2 +
∑

i ηiv
2
i (Jensen’s)

≤‖wt‖2 +
∑

i ηiR
2 (radius)

=‖wt‖2 +R2 (Eq. 3)

≤tR2 (by induction)

From the two bounds we have:

t2δ2 ≤ ‖wt+1‖2 ≤ tR2

thus within at most t ≤ R2/δ2 minibatch up-
dates MIRA will converge.

4 Parallelized Minibatch

The key insight into parallelization is that the calcu-
lation of constraints (i.e. decoding) for each exam-
ple within a minibatch is completely independent of
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Figure 1: Comparison of various methods for parallelizing online learning (number of processors p = 4). (a) iterative
parameter mixing (McDonald et al., 2010). (b) unbalanced minibatch parallelization (minibatch size m = 8). (c)
minibatch parallelization after load-balancing (within each minibatch). (d) asynchronous minibatch parallelization
(Gimpel et al., 2010) (not implemented here). Each numbered box denotes the decoding of one example, and ⊕
denotes an aggregate operation, i.e., the merging of constraints after each minibatch or the mixing of weights after
each iteration in IPM. Each gray shaded box denotes time wasted due to synchronization in (a)-(c) or blocking in (d).
Note that in (d) at most one update can happen concurrently, making it substantially harder to implement than (a)-(c).

Algorithm 5 Parallized Minibatch Online Learning.
Input: D, Φ, minibatch sizem, and # of processors p
Output: weight vector w
Split D into dn/me minibatches D1 . . . Ddn/me
Split each Di into m/p groups Di,1 . . . Di,m/p

repeat
for i← 1 . . . dn/me do . for each minibatch

for j ← 1 . . .m/p in parallel do
Cj ← ∪(x,y)∈Di,j

FINDCONSTRAINTS(x, y,w)

C ← ∪jCj . in serial
if C 6= ∅ then UPDATE(w, C) . in serial

until converged

other examples in the same batch. Thus we can eas-
ily distribute decoding for different examples in the
same minibatch to different processors.

Shown in Algorithm 5, for each minibatchDi, we
split Di into groups of equal size, and assign each
group to a processor to decode. After all processors
finish, we collect all constraints and do an update
based on the union of all constraints. Figure 1 (b) il-
lustrates minibatch parallelization, with comparison
to iterative parameter mixing (IPM) of McDonald et
al. (2010) (see Figure 1 (a)).

This synchronous parallelization framework
should provide significant speedups over the serial

mode. However, in each minibatch, inevitably,
some processors will end up waiting for others to
finish, especially when the lengths of sentences vary
substantially (see the shaded area in Figure 1 (b)).

To alleviate this problem, we propose “per-
minibatch load-balancing”, which rearranges the
sentences within each minibatch based on their
lengths (which correlate with their decoding times)
so that the total workload on each processor is bal-
anced (Figure 1c). It is important to note that this
shuffling does not affect learning at all thanks to the
independence of each example within a minibatch.
Basically, we put the shortest and longest sentences
into the first thread, the second shortest and second
longest into the second thread, etc. Although this is
not necessary optimal scheduling, it works well in
practice. As long as decoding time is linear in the
length of sentence (as in incremental parsing or tag-
ging), we expect a much smaller variance in process-
ing time on each processor in one minibatch, which
is confirmed in the experiments (see Figure 8).3

3In IPM, however, the waiting time is negligible, since the
workload on each processor is almost balanced, analogous to
a huge minibatch (Fig. 1a). Furthermore, shuffling does affect
learning here since each thread in IPM is a pure online learner.
So our IPM implementation does not use load-balancing.
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5 Experiments

We conduct experiments on two typical structured
prediction problems: incremental dependency pars-
ing and part-of-speech tagging; both are done on
state-of-the-art baseline. We also compare our
parallelized minibatch algorithm with the iterative
parameter mixing (IPM) method of McDonald et
al. (2010). We perform our experiments on a
commodity 64-bit Dell Precision T7600 worksta-
tion with two 3.1GHz 8-core CPUs (16 processors
in total) and 64GB RAM. We use Python 2.7’s
multiprocessing module in all experiments.4

5.1 Dependency Parsing with MIRA

We base our experiments on our dynamic program-
ming incremental dependency parser (Huang and
Sagae, 2010).5 Following Huang et al. (2012), we
use max-violation update and beam size b = 8. We
evaluate on the standard Penn Treebank (PTB) us-
ing the standard split: Sections 02-21 for training,
and Section 22 as the held-out set (which is indeed
the test-set in this setting, following McDonald et
al. (2010) and Gimpel et al. (2010)). We then ex-
tend it to employ 1-best MIRA learning. As stated
in Section 2, MIRA separates the gold label y from
the incorrect label z with a margin at least as large
as the loss `(y, z). Here in incremental dependency
parsing we define the loss function between a gold
tree y and an incorrect partial tree z as the number
of incorrect edges in z, plus the number of correct
edges in y which are already ruled out by z. This
MIRA extension results in slightly higher accuracy
of 92.36, which we will use as the pure online learn-
ing baseline in the comparisons below.

5.1.1 Serial Minibatch
We first run minibatch in the serial mode with

varying minibatch size of 4, 16, 24, 32, and 48 (see
Figure 2). We can make the following observations.
First, except for the largest minibatch size of 48,
minibatch learning generally improves the accuracy

4We turn off garbage-collection in worker processes oth-
erwise their running times will be highly unbalanced. We also
admit that Python is not the best choice for parallelization, e.g.,
asychronous minibatch (Gimpel et al., 2010) requires “shared
memory” not found in the current Python (see also Sec. 6).

5Available at http://acl.cs.qc.edu/. The version
with minibatch parallelization will be available there soon.
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Figure 2: Minibatch with various minibatch sizes (m =
4, 16, 24, 32, 48) for parsing with MIRA, compared to
pure MIRA (m = 1). All curves are on a single CPU.

of the converged model, which is explained by our
intuition that optimization with a larger constraint
set could improve the margin. In particular, m = 16
achieves the highest accuracy of 92.53, which is a
0.27 improvement over the baseline.

Secondly, minibatch learning can reach high lev-
els of accuracy faster than the baseline can. For ex-
ample, minibatch of size 4 can reach 92.35 in 3.5
hours, and minibatch of size 24 in 3.7 hours, while
the pure online baseline needs 6.9 hours. In other
words, just minibatch alone in serial mode can al-
ready speed up learning. This is also explained by
the intuition of better optimization above, and con-
tributes significantly to the final speedup of paral-
lelized minibatch.

Lastly, larger minibatch sizes slow down the con-
vergence, with m = 4 converging the fastest and
m = 48 the slowest. This can be explained by the
trade-off between the relative strengths from online
learning and batch update: with larger batch sizes,
we lose the dependencies between examples within
the same minibatch.

Although larger minibatches slow down conver-
gence, they actually offer better potential for paral-
lelization since the number of processors p has to be
smaller than minibatch size m (in fact, p should di-
vide m). For example, m = 24 can work with 2, 3,
4, 6, 8, or 12 processors while m = 4 can only work
with 2 or 4 and the speed up of 12 processors could
easily make up for the slightly slower convergence
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Figure 3: Parallelized minibatch is much faster than iter-
ative parameter mixing. Top: minibatch of size 24 using
4 and 12 processors offers significant speedups over the
serial minibatch and pure online baselines. Bottom: IPM
with the same processors offers very small speedups.

rate. So there seems to be a “sweetspot” of mini-
batch sizes, similar to the tipping point observed in
McDonald et al. (2010) when adding more proces-
sors starts to hurt convergence.

5.1.2 Parallelized Minibatch vs. IPM

In the following experiments we use minibatch
size of m = 24 and run it in parallel mode on vari-
ous numbers of processors (p = 2 ∼ 12). Figure 3
(top) shows that 4 and 12 processors lead to very
significant speedups over the serial minibatch and
pure online baselines. For example, it takes the 12
processors only 0.66 hours to reach an accuracy of
92.35, which takes the pure online MIRA 6.9 hours,
amounting to an impressive speedup of 10.5.

We compare our minibatch parallelization with
the iterative parameter mixing (IPM) of McDonald
et al. (2010). Figure 3 (bottom) shows that IPM not
only offers much smaller speedups, but also con-
verges lower, and this drop in accuracy worsens with
more processors.

Figure 4 gives a detailed analysis of speedups.
Here we perform both extrinsic and intrinsic com-
parisons. In the former, we care about the time to
reach a given accuracy; in this plot we use 92.27
which is the converged accuracy of IPM on 12 pro-
cessors. We choose it since it is the lowest accu-
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Figure 4: Speedups of minibatch parallelization vs. IPM
on 1 to 12 processors (parsing with MIRA). Extrinsic
comparisons use “the time to reach an accuracy of 92.27”
for speed calculations, 92.27 being the converged accu-
racy of IPM using 12 processors. Intrinsic comparisons
use average time per iteration regardless of accuracy.

racy among all converged models; choosing a higher
accuracy would reveal even larger speedups for our
methods. This figure shows that our method offers
superlinear speedups with small number of proces-
sors (1 to 6), and almost linear speedups with large
number of processors (8 and 12). Note that even
p = 1 offers a speedup of 1.5 thanks to serial mini-
batch’s faster convergence; in other words, within
the 9 fold speed-up at p = 12, parallelization con-
tributes about 6 and minibatch about 1.5. By con-
trast, IPM only offers an almost constant speedup of
around 3, which is consistent with the findings of
McDonald et al. (2010) (both of their experiments
show a speedup of around 3).

We also try to understand where the speedup
comes from. For that purpose we study intrinsic
speedup, which is about the speed regardless of ac-
curacy (see Figure 4). For our minibatch method,
intrinsic speedup is the average time per iteration
of a parallel run over the serial minibatch base-
line. This answers the questions such as “how CPU-
efficient is our parallelization” or “how much CPU
time is wasted”. We can see that with small num-
ber of processors (2 to 4), the efficiency, defined as
Sp/p where Sp is the intrinsic speedup for p pro-
cessors, is almost 100% (ideal linear speedup), but
with more processors it decreases to around 50%
with p = 12, meaning about half of CPU time is

376



 96.8

 96.85

 96.9

 96.95

 97

 97.05

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

a
c
c
u

ra
c
y
 o

n
 h

e
ld

-o
u

t

wall-clock time (hours)

m=1

m=16

m=24

m=48

Figure 5: Minibatch learning for tagging with perceptron
(m = 16, 24, 32) compared with baseline (m = 1) for
tagging with perceptron. All curves are on single CPU.

wasted. This wasting is due to two sources: first, the
load-balancing problem worsens with more proces-
sors, and secondly, the update procedure still runs in
serial mode with p− 1 processors sleeping.

5.2 Part-of-Speech Tagging with Perceptron
Part-of-speech tagging is usually considered as a
simpler task compared to dependency parsing. Here
we show that using minibatch can also bring better
accuracies and speedups for part-of-speech tagging.

We implement a part-of-speech tagger with aver-
aged perceptron. Following the standard splitting of
Penn Treebank (Collins, 2002), we use Sections 00-
18 for training and Sections 19-21 as held-out. Our
implementation provides an accuracy of 96.98 with
beam size 8.

First we run the tagger on a single processor with
minibatch sizes 8, 16, 24, and 32. As in Figure 5, we
observe similar convergence acceleration and higher
accuracies with minibatch. In particular, minibatch
of size m = 16 provides the highest accuracy of
97.04, giving an improvement of 0.06. This im-
provement is smaller than what we observe in MIRA
learning for dependency parsing experiments, which
can be partly explained by the fast convergence of
the tagger, and that perceptron does not involve op-
timization in the updates.

Then we choose minibatch of size 24 to investi-
gate the parallelization performance. As Figure 6
(top) shows, with 12 processors our method takes
only 0.10 hours to converge to an accuracy of 97.00,
compared to the baseline of 96.98 with 0.45 hours.
We also compare our method with IPM as in Fig-
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Figure 6: Parallelized minibatch is faster than iterative
parameter mixing (on tagging with perceptron). Top:
minibatch of size 24 using 4 and 12 processors offers
significant speedups over the baselines. Bottom: IPM
with the same 4 and 12 processors offers slightly smaller
speedups. Note that IPM with 4 processors converges
lower than other parallelization curves.

ure 6 (bottom). Again, our method converges faster
and better than IPM, but this time the differences are
much smaller than those in parsing.

Figure 7 uses 96.97 as a criteria to evaluate the
extrinsic speedups given by our method and IPM.
Again we choose this number because it is the lowest
accuracy all learners can reach. As the figure sug-
gests, although our method does not have a higher
pure parallelization speedup (intrinsic speedup), it
still outperforms IPM.

We are interested in the reason why tagging ben-
efits less from minibatch and parallelization com-
pared to parsing. Further investigation reveals that
in tagging the working load of different processors
are more unbalanced than in parsing. Figure 8 shows
that, when p is small, waiting time is negligible, but
when p = 12, tagging wastes about 40% of CPU
cycles and parser about 30%. By contrast, there
is almost no waiting time in IPM and the intrinsic
speedup for IPM is almost linear. The communica-
tion overhead is not included in this figure, but by
comparing it to the speedups (Figures 4 and 7), we
conclude that the communication overhead is about
10% for both parsing and tagging at p = 12.
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6 Related Work and Discussions

Besides synchronous minibatch and iterative param-
eter mixing (IPM) discussed above, there is another
method of asychronous minibatch parallelization
(Zinkevich et al., 2009; Gimpel et al., 2010; Chiang,
2012), as in Figure 1. The key advantage of asyn-
chronous over synchronous minibatch is that the for-
mer allows processors to remain near-constant use,

while the latter wastes a significant amount of time
when some processors finish earlier than others in a
minibatch, as found in our experiments. Gimpel et
al. (2010) show significant speedups of asychronous
parallelization over synchronous minibatch on SGD
and EM methods, and Chiang (2012) finds asyn-
chronous parallelization to be much faster than IPM
on MIRA for machine translation. However, asyn-
chronous is significantly more complicated to imple-
ment, which involves locking when one processor
makes an update (see Fig. 1 (d)), and (in languages
like Python) message-passing to other processors af-
ter update. Whether this added complexity is worth-
while on large-margin learning is an open question.

7 Conclusions and Future Work

We have presented a simple minibatch paralleliza-
tion paradigm to speed up large-margin structured
learning algorithms such as (averaged) perceptron
and MIRA. Minibatch has an advantage in both se-
rial and parallel settings, and our experiments con-
firmed that a minibatch size of around 16 or 24 leads
to a significant speedups over the pure online base-
line, and when combined with parallelization, leads
to almost linear speedups for MIRA, and very signif-
icant speedups for perceptron. These speedups are
significantly higher than those of iterative parame-
ter mixing of McDonald et al. (2010) which were
almost constant (3∼4) in both our and their own ex-
periments regardless of the number of processors.

One of the limitations of this work is that although
decoding is done in parallel, update is still done in
serial and in MIRA the quadratic optimization step
(Hildreth algorithm (Hildreth, 1957)) scales super-
linearly with the number of constraints. This pre-
vents us from using very large minibatches. For
future work, we would like to explore parallelized
quadratic optimization and larger minibatch sizes,
and eventually apply it to machine translation.
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Abstract

We consider the problem of part-of-speech
tagging for informal, online conversational
text. We systematically evaluate the use of
large-scale unsupervised word clustering
and new lexical features to improve tagging
accuracy. With these features, our system
achieves state-of-the-art tagging results on
both Twitter and IRC POS tagging tasks;
Twitter tagging is improved from 90% to 93%
accuracy (more than 3% absolute). Quali-
tative analysis of these word clusters yields
insights about NLP and linguistic phenomena
in this genre. Additionally, we contribute the
first POS annotation guidelines for such text
and release a new dataset of English language
tweets annotated using these guidelines.
Tagging software, annotation guidelines, and
large-scale word clusters are available at:
http://www.ark.cs.cmu.edu/TweetNLP
This paper describes release 0.3 of the “CMU
Twitter Part-of-Speech Tagger” and annotated
data.

1 Introduction

Online conversational text, typified by microblogs,
chat, and text messages,1 is a challenge for natu-
ral language processing. Unlike the highly edited
genres that conventional NLP tools have been de-
veloped for, conversational text contains many non-
standard lexical items and syntactic patterns. These
are the result of unintentional errors, dialectal varia-
tion, conversational ellipsis, topic diversity, and cre-
ative use of language and orthography (Eisenstein,
2013). An example is shown in Fig. 1. As a re-
sult of this widespread variation, standard model-
ing assumptions that depend on lexical, syntactic,
and orthographic regularity are inappropriate. There

1Also referred to as computer-mediated communication.

ikr
!

smh
G

he
O

asked
V

fir
P

yo
D

last
A

name
N

so
P

he
O

can
V

add
V

u
O

on
P

fb
∧

lololol
!

Figure 1: Automatically tagged tweet showing nonstan-
dard orthography, capitalization, and abbreviation. Ignor-
ing the interjections and abbreviations, it glosses as He
asked for your last name so he can add you on Facebook.
The tagset is defined in Appendix A. Refer to Fig. 2 for
word clusters corresponding to some of these words.

is preliminary work on social media part-of-speech
(POS) tagging (Gimpel et al., 2011), named entity
recognition (Ritter et al., 2011; Liu et al., 2011), and
parsing (Foster et al., 2011), but accuracy rates are
still significantly lower than traditional well-edited
genres like newswire. Even web text parsing, which
is a comparatively easier genre than social media,
lags behind newspaper text (Petrov and McDonald,
2012), as does speech transcript parsing (McClosky
et al., 2010).

To tackle the challenge of novel words and con-
structions, we create a new Twitter part-of-speech
tagger—building on previous work by Gimpel et
al. (2011)—that includes new large-scale distribu-
tional features. This leads to state-of-the-art results
in POS tagging for both Twitter and Internet Relay
Chat (IRC) text. We also annotated a new dataset of
tweets with POS tags, improved the annotations in
the previous dataset from Gimpel et al., and devel-
oped annotation guidelines for manual POS tagging
of tweets. We release all of these resources to the
research community:
• an open-source part-of-speech tagger for online

conversational text (§2);
• unsupervised Twitter word clusters (§3);
• an improved emoticon detector for conversational

text (§4);
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• POS annotation guidelines (§5.1); and
• a new dataset of 547 manually POS-annotated

tweets (§5).

2 MEMM Tagger

Our tagging model is a first-order maximum en-
tropy Markov model (MEMM), a discriminative se-
quence model for which training and decoding are
extremely efficient (Ratnaparkhi, 1996; McCallum
et al., 2000).2 The probability of a tag yt is condi-
tioned on the input sequence x and the tag to its left
yt−1, and is parameterized by a multiclass logistic
regression:

p(yt = k | yt−1,x, t;β) ∝

exp
(
β

(trans)
yt−1,k +

∑
j β

(obs)
j,k fj(x, t)

)
We use transition features for every pair of labels,
and extract base observation features from token t
and neighboring tokens, and conjoin them against
all K = 25 possible outputs in our coarse tagset
(Appendix A). Our feature sets will be discussed
below in detail.

Decoding. For experiments reported in this paper,
we use the O(|x|K2) Viterbi algorithm for predic-
tion; K is the number of tags. This exactly max-
imizes p(y | x), but the MEMM also naturally al-
lows a fasterO(|x|K) left-to-right greedy decoding:

for t = 1 . . . |x|:
ŷt ← arg maxk p(yt = k | ŷt−1,x, t;β)

which we find is 3 times faster and yields similar ac-
curacy as Viterbi (an insignificant accuracy decrease
of less than 0.1% absolute on the DAILY547 test set
discussed below). Speed is paramount for social me-
dia analysis applications—which often require the
processing of millions to billions of messages—so
we make greedy decoding the default in the released
software.

2Although when compared to CRFs, MEMMs theoretically
suffer from the “label bias” problem (Lafferty et al., 2001), our
system substantially outperforms the CRF-based taggers of pre-
vious work; and when comparing to Gimpel et al. system with
similar feature sets, we observed little difference in accuracy.
This is consistent with conventional wisdom that the quality
of lexical features is much more important than the paramet-
ric form of the sequence model, at least in our setting: part-of-
speech tagging with a small labeled training set.

This greedy tagger runs at 800 tweets/sec. (10,000
tokens/sec.) on a single CPU core, about 40 times
faster than Gimpel et al.’s system. The tokenizer by
itself (§4) runs at 3,500 tweets/sec.3

Training and regularization. During training,
the MEMM log-likelihood for a tagged tweet 〈x,y〉
is the sum over the observed token tags yt, each con-
ditional on the tweet being tagged and the observed
previous tag (with a start symbol before the first to-
ken in x),

`(x,y,β) =
∑|x|

t=1 log p(yt | yt−1,x, t;β).

We optimize the parameters β with OWL-QN, an
L1-capable variant of L-BFGS (Andrew and Gao,
2007; Liu and Nocedal, 1989) to minimize the regu-
larized objective

arg min
β
− 1

N

∑
〈x,y〉 `(x,y,β) +R(β)

where N is the number of tokens in the corpus and
the sum ranges over all tagged tweets 〈x,y〉 in the
training data. We use elastic net regularization (Zou
and Hastie, 2005), which is a linear combination of
L1 and L2 penalties; here j indexes over all features:

R(β) = λ1
∑

j |βj |+ 1
2λ2

∑
j β

2
j

Using even a very small L1 penalty eliminates many
irrelevant or noisy features.

3 Unsupervised Word Clusters

Our POS tagger can make use of any number of pos-
sibly overlapping features. While we have only a
small amount of hand-labeled data for training, we
also have access to billions of tokens of unlabeled
conversational text from the web. Previous work has
shown that unlabeled text can be used to induce un-
supervised word clusters which can improve the per-
formance of many supervised NLP tasks (Koo et al.,
2008; Turian et al., 2010; Täckström et al., 2012, in-
ter alia). We use a similar approach here to improve
tagging performance for online conversational text.
We also make our induced clusters publicly avail-
able in the hope that they will be useful for other
NLP tasks in this genre.

3Runtimes observed on an Intel Core i5 2.4 GHz laptop.
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Binary path Top words (by frequency)
A1 111010100010 lmao lmfao lmaoo lmaooo hahahahaha lool ctfu rofl loool lmfaoo lmfaooo lmaoooo lmbo lololol
A2 111010100011 haha hahaha hehe hahahaha hahah aha hehehe ahaha hah hahahah kk hahaa ahah
A3 111010100100 yes yep yup nope yess yesss yessss ofcourse yeap likewise yepp yesh yw yuup yus
A4 111010100101 yeah yea nah naw yeahh nooo yeh noo noooo yeaa ikr nvm yeahhh nahh nooooo
A5 11101011011100 smh jk #fail #random #fact smfh #smh #winning #realtalk smdh #dead #justsaying

B 011101011 u yu yuh yhu uu yuu yew y0u yuhh youh yhuu iget yoy yooh yuo yue juu dya youz yyou

C 11100101111001 w fo fa fr fro ov fer fir whit abou aft serie fore fah fuh w/her w/that fron isn agains

D 111101011000 facebook fb itunes myspace skype ebay tumblr bbm flickr aim msn netflix pandora

E1 0011001 tryna gon finna bouta trynna boutta gne fina gonn tryina fenna qone trynaa qon
E2 0011000 gonna gunna gona gna guna gnna ganna qonna gonnna gana qunna gonne goona

F 0110110111 soo sooo soooo sooooo soooooo sooooooo soooooooo sooooooooo soooooooooo

G1 11101011001010 ;) :p :-) xd ;-) ;d (; :3 ;p =p :-p =)) ;] xdd #gno xddd >:) ;-p >:d 8-) ;-d
G2 11101011001011 :) (: =) :)) :] :’) =] ^_^ :))) ^.^ [: ;)) ((: ^__^ (= ^-^ :))))
G3 1110101100111 :( :/ -_- -.- :-( :’( d: :| :s -__- =( =/ >.< -___- :-/ </3 :\ -____- ;( /: :(( >_< =[ :[ #fml
G4 111010110001 <3 xoxo <33 xo <333 #love s2 <URL-twitition.com> #neversaynever <3333

Figure 2: Example word clusters (HMM classes): we list the most probable words, starting with the most probable, in
descending order. Boldfaced words appear in the example tweet (Figure 1). The binary strings are root-to-leaf paths
through the binary cluster tree. For example usage, see e.g. search.twitter.com, bing.com/social and
urbandictionary.com.

3.1 Clustering Method

We obtained hierarchical word clusters via Brown
clustering (Brown et al., 1992) on a large set of
unlabeled tweets.4 The algorithm partitions words
into a base set of 1,000 clusters, and induces a hi-
erarchy among those 1,000 clusters with a series of
greedy agglomerative merges that heuristically opti-
mize the likelihood of a hidden Markov model with a
one-class-per-lexical-type constraint. Not only does
Brown clustering produce effective features for dis-
criminative models, but its variants are better unsu-
pervised POS taggers than some models developed
nearly 20 years later; see comparisons in Blunsom
and Cohn (2011). The algorithm is attractive for our
purposes since it scales to large amounts of data.

When training on tweets drawn from a single
day, we observed time-specific biases (e.g., nu-
merical dates appearing in the same cluster as the
word tonight), so we assembled our unlabeled data
from a random sample of 100,000 tweets per day
from September 10, 2008 to August 14, 2012,
and filtered out non-English tweets (about 60% of
the sample) using langid.py (Lui and Baldwin,
2012).5 Each tweet was processed with our to-

4As implemented by Liang (2005), v. 1.3: https://
github.com/percyliang/brown-cluster

5https://github.com/saffsd/langid.py

kenizer and lowercased. We normalized all at-
mentions to 〈@MENTION〉 and URLs/email ad-
dresses to their domains (e.g. http://bit.ly/
dP8rR8 ⇒ 〈URL-bit.ly〉). In an effort to reduce
spam, we removed duplicated tweet texts (this also
removes retweets) before word clustering. This
normalization and cleaning resulted in 56 million
unique tweets (847 million tokens). We set the
clustering software’s count threshold to only cluster
words appearing 40 or more times, yielding 216,856
word types, which took 42 hours to cluster on a sin-
gle CPU.

3.2 Cluster Examples

Fig. 2 shows example clusters. Some of the chal-
lenging words in the example tweet (Fig. 1) are high-
lighted. The term lololol (an extension of lol for
“laughing out loud”) is grouped with a large number
of laughter acronyms (A1: “laughing my (fucking)
ass off,” “cracking the fuck up”). Since expressions
of laughter are so prevalent on Twitter, the algorithm
creates another laughter cluster (A1’s sibling A2),
that tends to have onomatopoeic, non-acronym vari-
ants (e.g., haha). The acronym ikr (“I know, right?”)
is grouped with expressive variations of “yes” and
“no” (A4). Note that A1–A4 are grouped in a fairly
specific subtree; and indeed, in this message ikr and
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lololol are both tagged as interjections.
smh (“shaking my head,” indicating disapproval)

seems related, though is always tagged in the an-
notated data as a miscellaneous abbreviation (G);
the difference between acronyms that are interjec-
tions versus other acronyms may be complicated.
Here, smh is in a related but distinct subtree from the
above expressions (A5); its usage in this example
is slightly different from its more common usage,
which it shares with the other words in its cluster:
message-ending expressions of commentary or emo-
tional reaction, sometimes as a metacomment on the
author’s message; e.g., Maybe you could get a guy
to date you if you actually respected yourself #smh
or There is really NO reason why other girls should
send my boyfriend a goodmorning text #justsaying.

We observe many variants of categories tradition-
ally considered closed-class, including pronouns (B:
u = “you”) and prepositions (C: fir = “for”).

There is also evidence of grammatical categories
specific to conversational genres of English; clusters
E1–E2 demonstrate variations of single-word con-
tractions for “going to” and “trying to,” some of
which have more complicated semantics.6

Finally, the HMM learns about orthographic vari-
ants, even though it treats all words as opaque sym-
bols; cluster F consists almost entirely of variants
of “so,” their frequencies monotonically decreasing
in the number of vowel repetitions—a phenomenon
called “expressive lengthening” or “affective length-
ening” (Brody and Diakopoulos, 2011; Schnoebe-
len, 2012). This suggests a future direction to jointly
model class sequence and orthographic informa-
tion (Clark, 2003; Smith and Eisner, 2005; Blunsom
and Cohn, 2011).

We have built an HTML viewer to browse these
and numerous other interesting examples.7

3.3 Emoticons and Emoji
We use the term emoticon to mean a face or icon
constructed with traditional alphabetic or punctua-

6One coauthor, a native speaker of the Texan English dialect,
notes “finna” (short for “fixing to”, cluster E1) may be an im-
mediate future auxiliary, indicating an immediate future tense
that is present in many languages (though not in standard En-
glish). To illustrate: “She finna go” approximately means “She
will go,” but sooner, in the sense of “She is about to go.”

7http://www.ark.cs.cmu.edu/TweetNLP/
cluster_viewer.html

tion symbols, and emoji to mean symbols rendered
in software as small pictures, in line with the text.

Since our tokenizer is careful to preserve emoti-
cons and other symbols (see §4), they are clustered
just like other words. Similar emoticons are clus-
tered together (G1–G4), including separate clusters
of happy [[ :) =) ∧_∧ ]], sad/disappointed [[ :/ :(
-_- </3 ]], love [[ �xoxo �.� ]] and winking [[
;) (∧_-) ]] emoticons. The clusters are not per-
fectly aligned with our POS annotation guidelines;
for example, the “sad” emoticon cluster included
emotion-bearing terms that our guidelines define as
non-emoticons, such as #ugh, #tear, and #fml (“fuck
my life”), though these seem potentially useful for
sentiment analysis.

One difficult task is classifying different types
of symbols in tweets: our annotation guidelines
differentiate between emoticons, punctuation, and
garbage (apparently non-meaningful symbols or to-
kenization errors). Several Unicode character ranges
are reserved for emoji-style symbols (including the
three Unicode hearts in G4); however, depending
on the user’s software, characters in these ranges
might be rendered differently or not at all. We
have found instances where the clustering algo-
rithm groups proprietary iOS emoji symbols along
with normal emoticons; for example, the character
U+E056, which is interpreted on iOS as a smiling
face, is in the same G2 cluster as smiley face emoti-
cons. The symbol U+E12F, which represents a pic-
ture of a bag of money, is grouped with the words
cash and money.

3.4 Cluster-Based Features
Since Brown clusters are hierarchical in a binary
tree, each word is associated with a tree path rep-
resented as a bitstring with length ≤ 16; we use pre-
fixes of the bitstring as features (for all prefix lengths
∈ {2, 4, 6, . . . , 16}). This allows sharing of statisti-
cal strength between similar clusters. Using prefix
features of hierarchical clusters in this way was sim-
ilarly found to be effective for named-entity recog-
nition (Turian et al., 2010) and Twitter POS tag-
ging (Ritter et al., 2011).

When checking to see if a word is associated with
a cluster, the tagger first normalizes the word using
the same techniques as described in §3.1, then cre-
ates a priority list of fuzzy match transformations
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of the word by removing repeated punctuation and
repeated characters. If the normalized word is not
in a cluster, the tagger considers the fuzzy matches.
Although only about 3% of the tokens in the devel-
opment set (§6) did not appear in a clustering, this
method resulted in a relative error decrease of 18%
among such word tokens.

3.5 Other Lexical Features

Besides unsupervised word clusters, there are two
other sets of features that contain generalized lexi-
cal class information. We use the tag dictionary fea-
ture from Gimpel et al., which adds a feature for
a word’s most frequent part-of-speech tag.8 This
can be viewed as a feature-based domain adaptation
method, since it gives lexical type-level information
for standard English words, which the model learns
to map between PTB tags to the desired output tags.
Second, since the lack of consistent capitalization
conventions on Twitter makes it especially difficult
to recognize names—Gimpel et al. and Foster et
al. (2011) found relatively low accuracy on proper
nouns—we added a token-level name list feature,
which fires on (non-function) words from names
from several sources: Freebase lists of celebrities
and video games (Google, 2012), the Moby Words
list of US Locations,9 and lists of male, female, fam-
ily, and proper names from Mark Kantrowitz’s name
corpus.10

4 Tokenization and Emoticon Detection

Word segmentation on Twitter is challenging due
to the lack of orthographic conventions; in partic-
ular, punctuation, emoticons, URLs, and other sym-
bols may have no whitespace separation from textual

8Frequencies came from the Wall Street Journal and Brown
corpus sections of the Penn Treebank. If a word has multiple
PTB tags, each tag is a feature with value for the frequency rank;
e.g. for three different tags in the PTB, this feature gives a value
of 1 for the most frequent tag, 2/3 for the second, etc. Coarse
versions of the PTB tags are used (Petrov et al., 2011). While
88% of words in the dictionary have only one tag, using rank
information seemed to give a small but consistent gain over only
using the most common tag, or using binary features conjoined
with rank as in Gimpel et al.

9http://icon.shef.ac.uk/Moby/mwords.html
10http://www.cs.cmu.edu/afs/cs/project/

ai-repository/ai/areas/nlp/corpora/names/
0.html

words (e.g. no:-d,yes should parse as four tokens),
and internally may contain alphanumeric symbols
that could be mistaken for words: a naive split(/[^a-
zA-Z0-9]+/) tokenizer thinks the words “p” and “d”
are among the top 100 most common words on Twit-
ter, due to misanalysis of :p and :d. Traditional Penn
Treebank–style tokenizers are hardly better, often
breaking a string of punctuation characters into a
single token per character.

We rewrote twokenize (O’Connor et al.,
2010), a rule-based tokenizer, emoticon, and URL
detector, for use in the tagger. Emoticons are es-
pecially challenging, since they are open-class and
productive. We revise O’Connor et al.’s regular ex-
pression grammar that describes possible emoticons,
adding a grammar of horizontal emoticons (e.g. -_-),
known as “Eastern-style,”11 though we observe high
usage in English-speaking Twitter (Fig. 2, G2–G3).
We also add a number of other improvements to the
patterns. Because this system was used as prepro-
cessing for the word clustering experiment in §3, we
were able to infer the emoticon clusters in Fig. 2.
Furthermore, whether a token matches the emoticon
pattern is also used as a feature in the tagger (§2).

URL recognition is also difficult, since the http://
is often dropped, resulting in protocol-less URLs
like about.me. We add recognition patterns for these
by using a list of top-level and country domains.

5 Annotated Dataset

Gimpel et al. (2011) provided a dataset of POS-
tagged tweets consisting almost entirely of tweets
sampled from one particular day (October 27,
2010). We were concerned about overfitting to time-
specific phenomena; for example, a substantial frac-
tion of the messages are about a basketball game
happening that day.

We created a new test set of 547 tweets for eval-
uation. The test set consists of one random English
tweet from every day between January 1, 2011 and
June 30, 2012. In order for a tweet to be considered
English, it had to contain at least one English word
other than a URL, emoticon, or at-mention. We no-
ticed biases in the outputs of langid.py, so we
instead selected these messages completely manu-

11http://en.wikipedia.org/wiki/List_of_
emoticons
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ally (going through a random sample of one day’s
messages until an English message was found).

5.1 Annotation Methodology

Gimpel et al. provided a tagset for Twitter (shown in
Appendix A), which we used unmodified. The orig-
inal annotation guidelines were not published, but in
this work we recorded the rules governing tagging
decisions and made further revisions while annotat-
ing the new data.12 Some of our guidelines reiter-
ate or modify rules made by Penn Treebank annota-
tors, while others treat specific phenomena found on
Twitter (refer to the next section).

Our tweets were annotated by two annotators who
attempted to match the choices made in Gimpel et
al.’s dataset. The annotators also consulted the POS
annotations in the Penn Treebank (Marcus et al.,
1993) as an additional reference. Differences were
reconciled by a third annotator in discussion with all
annotators.13 During this process, an inconsistency
was found in Gimpel et al.’s data, which we cor-
rected (concerning the tagging of this/that, a change
to 100 labels, 0.4%). The new version of Gimpel et
al.’s data (called OCT27), as well as the newer mes-
sages (called DAILY547), are both included in our
data release.

5.2 Compounds in Penn Treebank vs. Twitter

Ritter et al. (2011) annotated tweets using an aug-
mented version of the PTB tagset and presumably
followed the PTB annotation guidelines. We wrote
new guidelines because the PTB conventions are in-
appropriate for Twitter in several ways, as shown in
the design of Gimpel et al.’s tagset. Importantly,
“compound” tags (e.g., nominal+verbal and nomi-
nal+possessive) are used because tokenization is dif-
ficult or seemingly impossible for the nonstandard
word forms that are commonplace in conversational
text.

For example, the PTB tokenization splits contrac-
tions containing apostrophes: I’m⇒ I/PRP ’m/VBP.
But conversational text often contains variants that
resist a single PTB tag (like im), or even chal-
lenge traditional English grammatical categories

12The annotation guidelines are available online at
http://www.ark.cs.cmu.edu/TweetNLP/

13Annotators are coauthors of this paper.

(like imma or umma, which both mean “I am go-
ing to”). One strategy would be to analyze these
forms into a PTB-style tokenization, as discussed in
Forsyth (2007), who proposes to analyze doncha as
do/VBP ncha/PRP, but notes it would be difficult.
We think this is impossible to handle in the rule-
based framework used by English tokenizers, given
the huge (and possibly growing) number of large
compounds like imma, gonna, w/that, etc. These
are not rare: the word clustering algorithm discov-
ers hundreds of such words as statistically coherent
classes (e.g. clusters E1 and E2 in Fig. 2); and the
word imma is the 962nd most common word in our
unlabeled corpus, more frequent than cat or near.

We do not attempt to do Twitter “normalization”
into traditional written English (Han and Baldwin,
2011), which we view as a lossy translation task. In
fact, many of Twitter’s unique linguistic phenomena
are due not only to its informal nature, but also a set
of authors that heavily skews towards younger ages
and minorities, with heavy usage of dialects that are
different than the standard American English most
often seen in NLP datasets (Eisenstein, 2013; Eisen-
stein et al., 2011). For example, we suspect that
imma may implicate tense and aspect markers from
African-American Vernacular English.14 Trying to
impose PTB-style tokenization on Twitter is linguis-
tically inappropriate: should the lexico-syntactic be-
havior of casual conversational chatter by young mi-
norities be straightjacketed into the stylistic conven-
tions of the 1980s Wall Street Journal? Instead, we
would like to directly analyze the syntax of online
conversational text on its own terms.

Thus, we choose to leave these word forms un-
tokenized and use compound tags, viewing com-
positional multiword analysis as challenging fu-
ture work.15 We believe that our strategy is suf-
ficient for many applications, such as chunking or
named entity recognition; many applications such
as sentiment analysis (Turney, 2002; Pang and Lee,
2008, §4.2.3), open information extraction (Carl-
son et al., 2010; Fader et al., 2011), and informa-
tion retrieval (Allan and Raghavan, 2002) use POS

14See “Tense and aspect” examples in http:
//en.wikipedia.org/wiki/African_American_
Vernacular_English

15For example, wtf has compositional behavior in “Wtf just
happened??”, but only debatably so in “Huh wtf”.
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#Msg. #Tok. Tagset Dates
OCT27 1,827 26,594 App. A Oct 27-28, 2010
DAILY547 547 7,707 App. A Jan 2011–Jun 2012
NPSCHAT 10,578 44,997 PTB-like Oct–Nov 2006
(w/o sys. msg.) 7,935 37,081
RITTERTW 789 15,185 PTB-like unknown

Table 1: Annotated datasets: number of messages, to-
kens, tagset, and date range. More information in §5,
§6.3, and §6.2.

patterns that seem quite compatible with our ap-
proach. More complex downstream processing like
parsing is an interesting challenge, since contraction
parsing on traditional text is probably a benefit to
current parsers. We believe that any PTB-trained
tool requires substantial retraining and adaptation
for Twitter due to the huge genre and stylistic differ-
ences (Foster et al., 2011); thus tokenization conven-
tions are a relatively minor concern. Our simple-to-
annotate conventions make it easier to produce new
training data.

6 Experiments

We are primarily concerned with performance on
our annotated datasets described in §5 (OCT27,
DAILY547), though for comparison to previous
work we also test on other corpora (RITTERTW in
§6.2, NPSCHAT in §6.3). The annotated datasets
are listed in Table 1.

6.1 Main Experiments

We use OCT27 to refer to the entire dataset de-
scribed in Gimpel et al.; it is split into train-
ing, development, and test portions (OCT27TRAIN,
OCT27DEV, OCT27TEST). We use DAILY547 as
an additional test set. Neither OCT27TEST nor
DAILY547 were extensively evaluated against until
final ablation testing when writing this paper.

The total number of features is 3.7 million, all
of which are used under pure L2 regularization; but
only 60,000 are selected by elastic net regularization
with (λ1, λ2) = (0.25, 2), which achieves nearly the
same (but no better) accuracy as pure L2,16 and we
use it for all experiments. We observed that it was

16We conducted a grid search for the regularizer values on
part of DAILY547, and many regularizer values give the best or
nearly the best results. We suspect a different setup would have
yielded similar results.
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Figure 3: OCT27 development set accuracy using only
clusters as features.

Model In dict. Out of dict.
Full 93.4 85.0
No clusters 92.0 (−1.4) 79.3 (−5.7)
Total tokens 4,808 1,394

Table 3: DAILY547 accuracies (%) for tokens in and out
of a traditional dictionary, for models reported in rows 1
and 3 of Table 2.

possible to get radically smaller models with only
a slight degradation in performance: (4, 0.06) has
0.5% worse accuracy but uses only 1,632 features, a
small enough number to browse through manually.

First, we evaluate on the new test set, training on
all of OCT27. Due to DAILY547’s statistical repre-
sentativeness, we believe this gives the best view of
the tagger’s accuracy on English Twitter text. The
full tagger attains 93.2% accuracy (final row of Ta-
ble 2).

To facilitate comparisons with previous work, we
ran a series of experiments training only on OCT27’s
training and development sets, then report test re-
sults on both OCT27TEST and all of DAILY547,
shown in Table 2. Our tagger achieves substantially
higher accuracy than Gimpel et al. (2011).17

Feature ablation. A number of ablation tests in-
dicate the word clusters are a very strong source of
lexical knowledge. When dropping the tag dictio-
naries and name lists, the word clusters maintain
most of the accuracy (row 2). If we drop the clus-
ters and rely only on tag dictionaries and namelists,
accuracy decreases significantly (row 3). In fact,
we can remove all observation features except for
word clusters—no word features, orthographic fea-

17These numbers differ slightly from those reported by Gim-
pel et al., due to the corrections we made to the OCT27 data,
noted in Section 5.1. We retrained and evaluated their tagger
(version 0.2) on our corrected dataset.
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Feature set OCT27TEST DAILY547 NPSCHATTEST
All features 91.60 92.80 91.19 1

with clusters; without tagdicts, namelists 91.15 92.38 90.66 2
without clusters; with tagdicts, namelists 89.81 90.81 90.00 3
only clusters (and transitions) 89.50 90.54 89.55 4
without clusters, tagdicts, namelists 86.86 88.30 88.26 5

Gimpel et al. (2011) version 0.2 88.89 89.17 6
Inter-annotator agreement (Gimpel et al., 2011) 92.2 7
Model trained on all OCT27 93.2 8

Table 2: Tagging accuracies (%) in ablation experiments. OCT27TEST and DAILY547 95% confidence intervals are
roughly ±0.7%. Our final tagger uses all features and also trains on OCT27TEST, achieving 93.2% on DAILY547.

tures, affix n-grams, capitalization, emoticon pat-
terns, etc.—and the accuracy is in fact still better
than the previous work (row 4).18

We also wanted to know whether to keep the tag
dictionary and name list features, but the splits re-
ported in Fig. 2 did not show statistically signifi-
cant differences; so to better discriminate between
ablations, we created a lopsided train/test split of
all data with a much larger test portion (26,974 to-
kens), having greater statistical power (tighter con-
fidence intervals of ± 0.3%).19 The full system got
90.8% while the no–tag dictionary, no-namelists ab-
lation had 90.0%, a statistically significant differ-
ence. Therefore we retain these features.

Compared to the tagger in Gimpel et al., most of
our feature changes are in the new lexical features
described in §3.5.20 We do not reuse the other lex-
ical features from the previous work, including a
phonetic normalizer (Metaphone), a name list con-
sisting of words that are frequently capitalized, and
distributional features trained on a much smaller un-
labeled corpus; they are all worse than our new
lexical features described here. (We did include,
however, a variant of the tag dictionary feature that
uses phonetic normalization for lookup; it seemed to
yield a small improvement.)

18Furthermore, when evaluating the clusters as unsupervised
(hard) POS tags, we obtain a many-to-one accuracy of 89.2%
on DAILY547. Before computing this, we lowercased the text
to match the clusters and removed tokens tagged as URLs and
at-mentions.

19Reported confidence intervals in this paper are 95% bino-
mial normal approximation intervals for the proportion of cor-
rectly tagged tokens: ±1.96

√
p(1− p)/ntokens . 1/

√
n.

20Details on the exact feature set are available in a technical
report (Owoputi et al., 2012), also available on the website.

Non-traditional words. The word clusters are es-
pecially helpful with words that do not appear in tra-
ditional dictionaries. We constructed a dictionary
by lowercasing the union of the ispell ‘American’,
‘British’, and ‘English’ dictionaries, plus the stan-
dard Unix words file from Webster’s Second Inter-
national dictionary, totalling 260,985 word types.
After excluding tokens defined by the gold stan-
dard as punctuation, URLs, at-mentions, or emoti-
cons,21 22% of DAILY547’s tokens do not appear in
this dictionary. Without clusters, they are very dif-
ficult to classify (only 79.2% accuracy), but adding
clusters generates a 5.7 point improvement—much
larger than the effect on in-dictionary tokens (Ta-
ble 3).

Varying the amount of unlabeled data. A tagger
that only uses word clusters achieves an accuracy of
88.6% on the OCT27 development set.22 We created
several clusterings with different numbers of unla-
beled tweets, keeping the number of clusters con-
stant at 800. As shown in Fig. 3, there was initially
a logarithmic relationship between number of tweets
and accuracy, but accuracy (and lexical coverage)
levels out after 750,000 tweets. We use the largest
clustering (56 million tweets and 1,000 clusters) as
the default for the released tagger.

6.2 Evaluation on RITTERTW

Ritter et al. (2011) annotated a corpus of 787
tweets23 with a single annotator, using the PTB

21We retain hashtags since by our guidelines a #-prefixed to-
ken is ambiguous between a hashtag and a normal word, e.g. #1
or going #home.

22The only observation features are the word clusters of a
token and its immediate neighbors.

23https://github.com/aritter/twitter_nlp/
blob/master/data/annotated/pos.txt
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Tagger Accuracy
This work 90.0 ± 0.5
Ritter et al. (2011), basic CRF tagger 85.3
Ritter et al. (2011), trained on more data 88.3

Table 4: Accuracy comparison on Ritter et al.’s Twitter
POS corpus (§6.2).

Tagger Accuracy
This work 93.4 ± 0.3
Forsyth (2007) 90.8

Table 5: Accuracy comparison on Forsyth’s NPSCHAT
IRC POS corpus (§6.3).

tagset plus several Twitter-specific tags, referred
to in Table 1 as RITTERTW. Linguistic concerns
notwithstanding (§5.2), for a controlled comparison,
we train and test our system on this data with the
same 4-fold cross-validation setup they used, attain-
ing 90.0% (±0.5%) accuracy. Ritter et al.’s CRF-
based tagger had 85.3% accuracy, and their best tag-
ger, trained on a concatenation of PTB, IRC, and
Twitter, achieved 88.3% (Table 4).

6.3 IRC: Evaluation on NPSCHAT

IRC is another medium of online conversational
text, with similar emoticons, misspellings, abbrevi-
ations and acronyms as Twitter data. We evaluate
our tagger on the NPS Chat Corpus (Forsyth and
Martell, 2007),24 a PTB-part-of-speech annotated
dataset of Internet Relay Chat (IRC) room messages
from 2006.

First, we compare to a tagger in the same setup as
experiments on this data in Forsyth (2007), training
on 90% of the data and testing on 10%; we average
results across 10-fold cross-validation.25 The full
tagger model achieved 93.4% (±0.3%) accuracy,
significantly improving over the best result they re-
port, 90.8% accuracy with a tagger trained on a mix
of several POS-annotated corpora.

We also perform the ablation experiments on this
corpus, with a slightly different experimental setup:
we first filter out system messages then split data

24Release 1.0: http://faculty.nps.edu/
cmartell/NPSChat.htm

25Forsyth actually used 30 different 90/10 random splits; we
prefer cross-validation because the same test data is never re-
peated, thus allowing straightforward confidence estimation of
accuracy from the number of tokens (via binomial sample vari-
ance, footnote 19). In all cases, the models are trained on the
same amount of data (90%).

into 5,067 training and 2,868 test messages. Results
show a similar pattern as the Twitter data (see final
column of Table 2). Thus the Twitter word clusters
are also useful for language in the medium of text
chat rooms; we suspect these clusters will be appli-
cable for deeper syntactic and semantic analysis in
other online conversational text mediums, such as
text messages and instant messages.

7 Conclusion

We have constructed a state-of-the-art part-of-
speech tagger for the online conversational text
genres of Twitter and IRC, and have publicly re-
leased our new evaluation data, annotation guide-
lines, open-source tagger, and word clusters at
http://www.ark.cs.cmu.edu/TweetNLP.
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A Part-of-Speech Tagset

N common noun
O pronoun (personal/WH; not possessive)
^ proper noun
S nominal + possessive
Z proper noun + possessive
V verb including copula, auxiliaries
L nominal + verbal (e.g. i’m), verbal + nominal (let’s)
M proper noun + verbal
A adjective
R adverb
! interjection
D determiner
P pre- or postposition, or subordinating conjunction
& coordinating conjunction
T verb particle
X existential there, predeterminers
Y X + verbal
# hashtag (indicates topic/category for tweet)
@ at-mention (indicates a user as a recipient of a tweet)
~ discourse marker, indications of continuation across

multiple tweets
U URL or email address
E emoticon
$ numeral
, punctuation
G other abbreviations, foreign words, possessive endings,

symbols, garbage

Table 6: POS tagset from Gimpel et al. (2011) used in this
paper, and described further in the released annotation
guidelines.
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Abstract

We describe a new self-learning framework
for parser lexicalisation that requires only a
plain-text corpus of in-domain text. The
method first creates augmented versions of de-
pendency graphs by applying a series of mod-
ifications designed to directly capture higher-
order lexical path dependencies. Scores are
assigned to each edge in the graph using statis-
tics from an automatically parsed background
corpus. As bilexical dependencies are sparse,
a novel directed distributional word similar-
ity measure is used to smooth edge score es-
timates. Edge scores are then combined into
graph scores and used for reranking the top-
n analyses found by the unlexicalised parser.
The approach achieves significant improve-
ments on WSJ and biomedical text over the
unlexicalised baseline parser, which is origi-
nally trained on a subset of the Brown corpus.

1 Introduction

Most parsers exploit supervised machine learning
methods and a syntactically annotated dataset (i.e.
treebank), incorporating a wide range of features in
the training process to deliver competitive perfor-
mance. The use of lexically-conditioned features,
such as relations between lemmas or word forms,
is often critical when choosing the correct syntac-
tic analysis in ambiguous contexts. However, util-
ising such features leads the parser to learn infor-
mation that is often specific to the domain and/or
genre of the training data. Several experiments have
demonstrated that many lexical features learnt in

one domain provide little if any benefit when pars-
ing text from different domains and genres (Sekine,
1997; Gildea, 2001). Furthermore, manual creation
of in-domain treebanks is an expensive and time-
consuming process, which can only be performed by
experts with sufficient linguistic and domain knowl-
edge.

In contrast, unlexicalised parsers avoid using lex-
ical information and select a syntactic analysis us-
ing only more general features, such as POS tags.
While they cannot be expected to achieve optimal
performance when trained and tested in a single do-
main, unlexicalised parsers can be surprisingly com-
petitive with their lexicalised counterparts (Klein
and Manning, 2003; Petrov et al., 2006). In this
work, instead of trying to adapt a lexicalised parser
to new domains, we explore how bilexical features
can be integrated effectively with any unlexicalised
parser. As our novel self-learning framework re-
quires only a large unannotated corpus, lexical fea-
tures can be easily tuned to a specific domain or
genre by selecting a suitable dataset. In addition,
we describe a graph expansion process that captures
selected bilexical relations which improve perfor-
mance but would otherwise require sparse higher-
order dependency path feature types in most ap-
proaches to dependency parsing. As many bilex-
ical features will still be sparse, we also develop
an approach to estimating confidence scores for de-
pendency relations using a directional distributional
word similarity measure. The final framework in-
tegrates easily with any unlexicalised (and therefore
potentially less domain/genre-biased) parser capable
of returning ranked dependency analyses.
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2 Background

We hypothesise that a large corpus will often contain
examples of dependency relations in non-ambiguous
contexts, and these will mostly be correctly parsed
by an unlexicalised parser. Lexical statistics derived
from the corpus can then be used to select the cor-
rect parse in a more difficult context. For example,
consider the following sentences:

(1) a. Government projects interest researchers

b. Government raises interest rates

c. Government projects receive funding

d. Interest rates are increasing

Noun-verb ambiguities over projects and interest
might erroneously result in the unlexicalised parser
returning similar dependency graphs for both a and
b. However, sentences c and d contain less ambigu-
ous instances of the same phrases and can provide
clues to correctly parsing the first two examples. In
a large in-domain corpus we are likely to find more
cases of researchers being the object for interest and
fewer cases where it is the object of project. In con-
trast, rates is more likely to have interest as a mod-
ifier than as a head in an object relation. Exploiting
this lexical information, we can assign the correct
derivation to each of the more ambiguous sentences.

Similar intuitions have been used to motivate the
acquisition of bilexical features from background
corpora for improving parser accuracy. However,
previous work has focused on including these statis-
tics as auxiliary features during supervised training.
For example, van Noord (2007) incorporated bilex-
ical preferences as features via self-training to im-
prove the Alpino parser for Dutch. Plank and van
Noord (2008) investigated the application of aux-
iliary distributions for domain adaptation. They
incorporated information from both in-domain and
out-of-domain sources into their maximum entropy
model and found that the out-of-domain auxiliary
distributions did not contribute to parsing accuracy
in the target domain. Zhou et al. (2011) extracted n-
gram counts from Google queries and a large corpus
to improve the MSTParser. In contrast to previous
work, we refer to our approach as self-learning be-
cause it differs from self-training by utilising statis-
tics found using an initial parse ranking model to

create a separate unsupervised reranking compo-
nent, without retraining the baseline unlexicalised
model.

We formulate our self-learning framework as a
reranking process that assigns new scores to the top-
n ranked analyses found by the original parser. Parse
reranking has been successfully used in previous
work as a method of including a wider range of fea-
tures to rescore a smaller selection of highly-ranked
candidate parses. Collins (2000) was one of the first
to propose supervised reranking as an additional step
to increase parser accuracy and achieved 1.55% ac-
curacy improvement for his parser. Charniak and
Johnson (2005) utilise a discriminative reranker and
show a 1.3% improvement for the Charniak parser.
McClosky et al. (2006) extend their work by adding
new features and further increase the performance
by 0.3%. Ng et al. (2010) implemented a dis-
criminative maximum entropy reranker for the C&C
parser and showed a 0.23% improvement over the
baseline. Bansal and Klein (2011) discriminatively
rerank derivations from the Berkeley unlexicalised
parser (Petrov et al., 2006) demonstrating that lex-
ical features derived from the Google n-gram cor-
pus improve accuracy even when used in conjunc-
tion with other reranking features. They have all
treated reranking as a supervised task and trained a
discriminative classifier using parse tree features and
annotated in-domain data. In contrast, our reranker
only uses statistics from an unlabelled source and
requires no manual annotation or training of the
reranking component. As we utilise an unlexicalised
parser, our baseline performance on WSJ text is
lower compared to some fully-lexicalised parsers.
However, an unlexicalised parser is also likely to be
less biased to domains or genres manifested in the
text used to train its original ranking model. This
may allow the reranker to adapt it to a new domain
and/or genre more effectively.

3 Reordering dependency graphs

For our experiments, we make use of the unlexi-
calised RASP parser (Briscoe et al., 2006) as the
baseline system. For every sentence s the parser
returns a list of dependency graphs Gs, ranked by
the log probability of the associated derivation in the
structural ranking model. Our goal is to reorder this
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list to improve ranking accuracy and, most impor-
tantly, to improve the quality of the highest-ranked
dependency graph. This is done by assigning a con-
fidence score to every graph gs,r ∈ Gs where r is the
rank of gs for sentence s. The method treats each
sentence independently, therefore we can omit the
sentence identifiers and refer to gs,r as gr.

We first calculate confidence scores for all the in-
dividual edges and then combine them into an over-
all score for the dependency graph. In the following
sections, we describe a series of graph modifications
that incorporates selected higher-order dependency
path relations, without introducing unwanted noise
or complexity into the reranker. Next, we outline
different approaches for calculating and smoothing
the confidence scores for bilexical relations. Finally,
we describe methods for combining together these
scores and calculating an overall score for a depen-
dency graph. We make publically available all the
code developed for performing these steps in the
parse reranking system.1

3.1 Graph modifications

For every dependency graph gr the graph expan-
sion procedure creates a modified representation g′

r

which contains a wider range of bilexical relations.
The motivation for this graph expansion step is sim-
ilar to that motivating the move from first-order to
higher-order dependency path feature types (e.g.,
Carreras (2007)). However, compared to using all
nth-order paths, these rules are chosen to maximise
the utility and minimise the sparsity of the result-
ing bilexical features. In addition, the cascading na-
ture of the expansion steps means in some cases the
expansion captures useful 3rd and 4th order depen-
dencies. Similar approaches to graph modifications
have been successfully used for several NLP tasks
(van Noord, 2007; Arora et al., 2010).

For any edge e we also use notation (rel, w1, w2),
referring to an edge from w1 to w2 with the label
rel. We perform the following modifications on ev-
ery dependency graph:

1. Normalising lemmas. All lemmas are converted
to lowercase. Numerical lemmas are replaced
with more generic tags to reduce sparsity.

1www.marekrei.com/projects/lexicalisation

2. Bypassing conjunctions. For every edge pair
(rel1, w1, w2) and (rel2, w2, w3) where w2 is
tagged as a conjunction, we create an additional
edge (rel1, w1, w3). This bypasses the conjunc-
tion node and creates direct edges between the
head and dependents of the conjunctive lemma.

3. Bypassing prepositions. For every edge pair
(rel1, w1, w2) and (rel2, w2, w3) where w2 is
tagged as a preposition, we create an additional
edge (rel3, w1, w3). rel3 = rel1 +‘ prep’, where
‘ prep’ is added as a marker to indicate that the
relation originally contained a preposition.

4. Bypassing verbs. For every edge pair
(rel1, w1, w2) and (rel2, w1, w3) where w1 is
tagged as a verb, w2 and w3 are both tagged
as open-class lemmas, rel1 starts with a subject
relation, and rel2 starts with an object relation,
we create an additional edge (rel3, w2, w3) where
rel3 = rel1 + ‘-’ + rel2. This creates an additional
edge between the subject and the object, with the
new edge label containing both of the original la-
bels.

5. Duplicating nodes. For every existing node in
the graph, containing the lemma and POS for
each token (lemma pos), we create a parallel node
without the POS information (lemma). Then, for
each existing edge, we create three correspond-
ing edges, interconnecting the parallel nodes to
each other and the original graph. This allows the
reranker to exploit both specific and more generic
instantiations of each lemma.

Figure 1 illustrates the graph modification pro-
cess. It is important to note that each of these mod-
ifications gets applied in the order that they are de-
scribed above. For example, when creating edges for
bypassing verbs, the new edges for prepositions and
conjunctions have already been created and also par-
ticipate in this step. We performed ablation tests on
the development data and verified that each of these
modifications contributes positively to the final per-
formance.

3.2 Edge scoring methods

We start the scoring process by assigning individual
confidence scores to every bilexical relation in the
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italian pm meet with cabinet member and senior official
JJ NP1 VVZ IW NN1 NN2 CC JJ NN2

ncmod ncsubj iobj

dobj

ncmod conj

conj

ncmod

ncsubj-iobj prepncsubj-iobj prep

iobj prep
iobj prepiobj prep

dobjdobj

Figure 1: Modified graph for the sentence ‘Italian PM meets with Cabinet members and senior officials’ after steps
1-4. Edges above the text are created by the parser, edges below the text are automatically created using the operations
described in Section 3.1. The 5th step will create 9 new nodes and 45 additional edges (not shown).

modified graph. In this section we give an overview
of some possible strategies for performing this task.

The parser returns a ranked list of graphs and this
can be used to derive an edge score without requir-
ing any additional information. We estimate that the
likelihood of a parse being the best possible parse for
a given sentence is roughly inversely proportional
to the rank that it is assigned by the parser. These
values can be summed for all graphs that contain a
specific edge, normalised to approximate a proba-
bility. We then calculate the score for edge e as the
Reciprocal Edge Score (RES) – the probability of e
belonging to the best possible parse:

RES(e) =

∑R
r=1[

1
r × contains(g′r, e)]∑R

r=1
1
r

whereR is the total number of parses for a sentence,
and contains(g′

r, e) returns 1 if graph g′
r contains

edge e, and 0 otherwise. The value is normalised,
so that an edge which is found in all parses will have
a score of 1.0, but occurrences at higher ranks will
have a considerably larger contribution.

The score of an edge can also be assigned by es-
timating the probability of that edge using a parsed
reference corpus. van Noord (2007) improved over-
all parsing performance in a supervised self-training
framework using feature weights based on pointwise
mutual information:

I(e) = log
P(rel, w1, w2)

P(rel, w1, ∗)× P(∗, ∗, w2)

where P(rel, w1, w2) is the probability of seeing an
edge from w1 to w2 with label rel, P(rel, w1, ∗) is

the probability of seeing an edge from w1 to any
node with label rel, and P(∗, ∗, w2) is the prob-
ability of seeing any type of edge linking to w2.
Plank and van Noord (2008) used the same approach
for semi-supervised domain adaptation but were not
able to achieve similar performance benefits. In our
implementation we omit the logarithm in the equa-
tion, as this improves performance and avoids prob-
lems with log(0) for unseen edges.

I(e) compares the probability of the complete
edge to the probabilities of partially specified edges,
but it assumes that w2 will have an incoming rela-
tion, and that w1 will have an outgoing relation of
type rel to some unknown node. These assumptions
may or may not be true – given the input sentence,
we have observed w1 and w2 but do not know what
relations they are involved in. Therefore, we create
a more general version of the measure that compares
the probability of the complete edge to the individual
probabilities of the two lemmas – the Conditional
Edge Score (CES1):

CES1(e) =
P(rel, w1, w2)

P(w1)× P(w2)

where P(w1) is the probability of seeing w1 in text,
estimated from a background corpus using maxi-
mum likelihood.

Finally, we know that w1 and w2 are in a sen-
tence together but cannot assume that there is a de-
pendency relation between them. However, we can
choose to think of each sentence as a fully connected
graph, with an edge going from every lemma to ev-
ery other lemma in the same sentence. If there exists

394



ECES1(rel, w1, w2) =
1

2
× (

∑
c1∈C1

sim(c1, w1)× P(rel,c1,w2)
P(c1)×P(w2)∑

c1∈C1
sim(c1, w1)

+

∑
c2∈C2

sim(c2, w2)× P(rel,w1,c2)
P(w1)×P(c2)∑

c2∈C2
sim(c2, w2)

)

ECES2(rel, w1, w2) =
1

2
× (

∑
c1∈C1

sim(c1, w1)× P(rel,c1,w2)
P(∗,c1,w2)∑

c1∈C1
sim(c1, w1)

+

∑
c2∈C2

sim(c2, w2)× P(rel,w1,c2)
P(∗,w1,c2)∑

c2∈C2
sim(c2, w2)

)

Figure 2: Expanded edge score calculation methods using the list of distributionally similar lemmas

no genuine relation between the lemmas, the edge is
simply considered a null edge. We can then find the
conditional probability of the relation type given the
two lemmas:

CES2(e) =
P(rel, w1, w2)

P(∗, w1, w2)

where P(rel, w1, w2) is the probability of the fully-
specified relation, and P(∗, w1, w2) is the probability
of there being an edge of any type fromw1 tow2, in-
cluding a null edge. Using fully connected graphs,
the latter is equivalent to the probability of w1 and
w2 appearing in a sentence together, which again can
be calculated from the background corpus.

3.3 Smoothing edge scores

Apart from RES, all the scoring methods from
the previous section rely on correctly estimat-
ing the probability of the fully-specified edge,
P(rel, w1, w2). Even in a large background corpus
these triples will be very sparse, and it can be useful
to find approximate methods for estimating the edge
scores.

Using smoothing techniques derived from work
on language modelling, we could back-off to a more
general version of the relation. For example, if
(dobj, read, publication) is not frequent enough, the
value could be approximated using the probabilities
of (dobj, read, *) and (dobj, *, publication). How-
ever, this can lead to unexpected results due to com-
positionality – while (dobj, read, *) and (dobj, *,
rugby) can be fairly common, (dobj, read, rugby) is
an unlikely relation.

Instead, we can consider looking at other lemmas
which are similar to the rare lemmas in the relation.
If (dobj, read, publication) is infrequent in the data,
the system might predict that book is a reasonable
substitute for publication and use (dobj, read, book)

to estimate the original probability.
Given that we have a reliable way of finding likely

substitutes for a given lemma, we can create ex-
panded versions of CES1 and CES2, as shown in
Figure 2. C1 is the list of substitute lemmas for w1,
and sim(c1, w1) is a measure showing how similar
c1 is to w1. The methods iterate over the list of sub-
stitutes and calculate the CES score for each of the
modified relations. The values are then combined by
using the similarity score as a weight – more similar
lemmas will have a higher contribution to the final
result. This is done for both the head and the depen-
dent in the original relation, and the scores are then
normalised and averaged.

Experiments with a wide variety of distributional
word similarity measures revealed that WeightedCo-
sine (Rei, 2013), a directional similarity measure
designed to better capture hyponymy relations, per-
formed best. Hyponyms are more specific versions
of a word and normally include the general proper-
ties of the hypernym, making them well-suited for
lexical substitution. The WeightedCosine measure
incorporates an additional directional weight into
the standard cosine similarity, assigning different
importance to individual features for the hyponymy
relation. We retain the 10 most distributionally simi-
lar putative hyponyms for each lemma and substitute
them in the relation. The original lemma is also in-
cluded with similarity 1.0, thereby assigning it the
highest weight. The lemma vectors are built from
the same vector space model that is used for cal-
culating edge probabilities, which includes all the
graph modifications described in Section 3.1.

3.4 Combining edge scores
While the CES and ECES measures calculate con-
fidence scores for bilexical relations using statistics
from a large background corpus, they do not include
any knowledge about grammar, syntax, or the con-
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CMB1(e) = 3
√

RES(e) ∗ CES1(e) ∗ CES2(e) CMB2(e) = 3
√

RES(e) ∗ ECES1(e) ∗ ECES2(e)

Figure 3: Edge score combination methods

text in a specific sentence. In contrast, the RES score
implicitly includes some of this information, as it is
calculated based on the original parser ranking. In
order to take advantage of both information sources,
we combine these scores into CMB1 and CMB2, as
shown in Figure 3.

3.5 Graph scoring
Every edge in graph g′

r is assigned a score indicat-
ing the reranker’s confidence in that edge belonging
to the best parse. We investigated different strate-
gies for combining these values together into a con-
fidence score for the whole graph. The simplest so-
lution is to sum together individual edge scores, but
this would lead to always preferring graphs that have
a larger number of edges. Interestingly, averaging
the edge scores does not produce good results either
because it is biased towards smaller graph fragments
containing only highly-confident edges.

We created a new scoring method which prefers
graphs that cover all the nodes, but does not create
bias for a higher number of edges. For every node
in the graph, it finds the average score of all edges
which have that node as a dependent. These scores
are then averaged again over all nodes:

NScore(n) =

∑
e∈Eg

EdgeScore(e)× isDep(e, n)∑
e∈Eg

isDep(e, n)

GraphScore(g) =

∑
n∈Ng

NScore(n)

|Ng|

where g is the graph being scored, n ∈ Ng is a
node in graph g, e ∈ Eg is an edge in graph g,
isDep(e, n) is a function returning 1.0 if n is the de-
pendent in edge e, and 0.0 otherwise. NScore(n) is
set to 0 if the node does not appear as a dependent in
any edges. We found this metric performs well, as
it prefers graphs that connect together many nodes
without simply rewarding a larger number of edges.

While the score calculation is done using the
modified graph g′

r, the resulting score is directly as-
signed to the corresponding original graph gr, and

the reordering of the original dependency graphs is
used for evaluation.

4 Experiments

4.1 Evaluation methods

In order to evaluate how much the reranker improves
the highest-ranked dependency graph, we calculate
the microaveraged precision, recall and F-score over
all dependencies from the top-ranking parses for
the test set. Following the official RASP evalua-
tion (Briscoe et al., 2006) we employ the hierarchi-
cal edge matching scheme which aggregates counts
up the dependency relation subsumption hierarchy
and thus rewards the parser for making more fine-
grained distinctions.2 Statistical significance of the
change in F-score is calculated by using the Approx-
imate Randomisation Test (Noreen, 1989; Cohen,
1995) with 106 iterations.

We also wish to measure how well the reranker
does at the overall task of ordering dependency
graphs. For this we make use of an oracle that cre-
ates the perfect ranking for a set of graphs by calcu-
lating their individual F-scores; this ideal ranking is
then compared to the output of our system. Spear-
man’s rank correlation coefficient between the two
rankings is calculated for each sentence and then av-
eraged over all sentences. If the scores for all of the
returned analyses are equal, this coefficient cannot
be calculated and is set to 0.

4.2 DepBank

We evaluated our self-learning framework using
the DepBank/GR reannotation (Briscoe and Carroll,
2006) of the PARC 700 Dependency Bank (King
et al., 2003). The dataset is provided with the
open-source RASP distribution3 and has been used
for evaluating different parsers, including RASP
(Briscoe and Carroll, 2006; Watson et al., 2007) and

2Slight changes in the performance of the baseline parser
compared to previous publications are due to using a more re-
cent version of the parser and minor corrections to the gold stan-
dard annotation.

3ilexir.co.uk/2012/open-source-rasp-3-1/
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C&C (Clark and Curran, 2007). It contains 700 sen-
tences, randomly chosen from section 23 of the WSJ
Penn Treebank (Marcus et al., 1993), divided into
development (140 sentences) and test data (560 sen-
tences). We made use of the development data to
experiment with a wider selection of edge and graph
scoring methods, and report the final results on the
test data.

For reranking we collect up to 1000 top-ranked
analyses for each sentence. The actual number of
analyses that the RASP parser outputs depends on
the sentence and can be smaller. As the parser first
constructs parse trees and converts them to depen-
dency graphs, several parse trees may result in iden-
tical graphs; we remove any duplicates to obtain a
ranking of unique dependency graphs.

Our approach relies on a large unannotated corpus
of in-domain text, and for this we used the BLLIP
corpus containing 50M words of in-domain WSJ ar-
ticles. Our version of this corpus excludes texts that
are found in the Penn Treebank, thereby also exclud-
ing the section that we use for evaluation.

The baseline system is the unlexicalised RASP
parser with default settings. In order to construct
the upper bound, we use an oracle to calculate the F-
score for each dependency graph individually, and
then create the best possible ranking using these
scores.

Table 1 contains evaluation results on the Dep-
Bank/GR test set. The baseline system achieves
76.41% F-score on the test data, with 32.70% av-
erage correlation. I and RES scoring methods give
comparable results, with RES improving correlation
by 9.56%. The CES and ECES scores all make use
of corpus-based statistics and all significantly im-
prove over the baseline system, with absolute in-
creases in F-score of more than 2% for the fully-
connected edge score variants.

Finally, we combine the RES score with the
corpus-based methods and the fully-connected
CMB2 variant again delivers the best overall results.
The final F-score is 79.21%, an absolute improve-
ment of 2.8%, corresponding to 33.65% relative er-
ror reduction with respect to the upper bound. Cor-
relation is also increased by 16.32%; this means the
methods not only improve the chances of finding the
best dependency graph, but also manage to create
a better overall ranking. The F-scores for all the

corpus-based scoring methods are statistically sig-
nificant when compared to the baseline (p < 0.05).

By using our self-learning framework, we were
able to significantly improve the original unlexi-
calised parser. To put the overall result in a wider
perspective, Clark and Curran (2007) achieve an
F-score of 81.86% on the DepBank/GR test sen-
tences using the C&C lexicalised parser, trained
on 40,000 manually-treebanked sentences from the
WSJ. The unlexicalised RASP parser, using a
manually-developed grammar and a parse ranking
component trained on 4,000 partially-bracketed un-
labelled sentences from a domain/genre balanced
subset of Brown (Watson et al., 2007), achieves an
F-score of 76.41% on the same test set. The method
introduced here improves this to 79.21% F-score
without using any further manually-annotated data,
closing more than half of the gap between the perfor-
mance of a fully-supervised in-domain parser and a
more weakly-supervised more domain-neutral one.

We also performed an additional detailed analysis
of the results and found that, with the exception of
the auxiliary dependency relation, the reranking pro-
cess was able to improve the F-score of all other in-
dividual dependency types. Complements and mod-
ifiers are attached with much higher accuracy, result-
ing in 3.34% and 3.15% increase in the correspond-
ing F-scores. The non-clausal modifier relation (nc-
mod), which is the most frequent label in the dataset,
increases by 3.16%.

4.3 Genia
One advantage of our reranking framework is that
it does not rely on any domain-dependent manually
annotated resources. Therefore, we are interested in
seeing how it performs on text from a completely
different domain and genre.

The GENIA-GR dataset (Tateisi et al., 2008) is
a collection of 492 sentences taken from biomedi-
cal research papers in the GENIA corpus (Kim et
al., 2003). The sentences have been manually anno-
tated with dependency-based grammatical relations
identical to those output by the RASP parser. How-
ever, it does not contain dependencies for all tokens
and many multi-word phrases are treated as single
units. For example, the tokens ‘intracellular redox
status’ are annotated as one node with label intra-
cellular redox status. We retain this annotation and
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DepBank/GR GENIA-GR
Prec Rec F ρ Prec Rec F ρ

Baseline 77.91 74.97 76.41 32.70 79.91 78.86 79.38 36.54
Upper Bound 86.74 82.82 84.73 75.36 86.33 84.71 85.51 78.66
I 77.77 75.00 76.36 33.32 77.18 76.21 76.69 30.23
RES 78.13 74.94 76.50 42.26 80.06 78.89 79.47 47.52
CES1 79.68 76.40 78.01 41.95 78.64 77.50 78.07 36.06
CES2 80.48 77.28 78.85 48.43 79.92 78.92 79.42 43.09
ECES1 79.96 76.68 78.29 42.41 79.09 78.11 78.60 38.02
ECES2 80.71 77.52 79.08 49.05 79.84 78.95 79.39 43.64
CMB1 80.64 77.31 78.94 48.25 80.60 79.51 80.05 44.96
CMB2 80.88 77.60 79.21 49.02 80.69 79.64 80.16 46.24

Table 1: Performance of different edge scoring methods on the test data. For each measure we report precision,
recall, F-score, and average Spearman’s correlation (ρ). The highest results for each measure are marked in bold. The
underlined F-scores are significantly better compared to the baseline.

allow the unlexicalised parser to treat these nodes as
atomic unseen words during POS tagging and pars-
ing. However, we use the last lemma in each multi-
word phrase for calculating the edge score statistics.

In order to initialise our parse reranking frame-
work, we also need a background corpus that closely
matches the evaluation domain. The annotated sen-
tences in GENIA-GR were chosen from abstracts
that are labelled with the MeSH term ‘NF-kappa B’.
Following this method, we created our background
corpus by extracting 7,100 full-text articles (1.6M
sentences) from the PubMed Central Open Access
collection, containing any of the following terms
with any capitalisation: ‘nf-kappa b’, ‘nf-kappab’,
‘nf kappa b’, ‘nf-kappa b’, ‘nf-kb’, ‘nf-κb’. Since
we retain all texts from matching documents, this
keyword search acts as a broad indicator that the sen-
tences contain topics which correspond to the evalu-
ation dataset. This focussed corpus was then parsed
with the unlexicalised parser and used to create a
statistical model for the reranking system, following
the same methods as described in Sections 3 and 4.2.

Table 1 also contains the results for experiments
in the biomedical domain. The first thing to notice
is that while the upper bound for the unlexicalised
parser is similar to that for the DepBank experiments
in Section 4.2, the baseline results are considerably
higher. This is largely due to the nature of the dataset
– since many complicated multi-word phrases are
treated as single nodes, the parser is not evaluated on
edges within these nodes. In addition, treating these

nodes as unseen words eliminates many incorrect
derivations that would otherwise split the phrases.
This results in a naturally higher baseline of 79.38%,
and also makes it more difficult to further improve
the performance.

The edge scoring methods I, CES1 and ECES1

deliver F-scores lower than the baseline in this ex-
periment. RES, CES2 and ECES2 yield a modest
improvement in both F-score and Spearman’s cor-
relation. Finally, the combination methods again
give the best performance, with CMB2 delivering an
F-score of 80.16%, an absolute increase of 0.78%,
which is statistically significant (p < 0.05). The
experiment shows that our self-learning framework
works on very different domains, and it can be used
to significantly increase the accuracy of an unlexi-
calised parser without requiring any annotated data.

5 Conclusion

We developed a new self-learning framework for de-
pendency graph reranking that requires only a plain-
text corpus from a suitable domain. We automati-
cally parse this corpus and use the highest ranked
analyses to estimate maximum likelihood probabili-
ties for bilexical relations. Every dependency graph
is first modified to incorporate additional edges that
model selected higher-order dependency path rela-
tionships. Each edge in the graph is then assigned a
confidence score based on statistics from the back-
ground corpus and ranking preferences from the un-
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lexicalised parser. We also described a novel method
for smoothing these scores using directional dis-
tributional similarity measures. Finally, the edge
scores are combined into an overall graph score by
first averaging them over individual nodes.

As the method requires no annotated data, it can
be easily adapted to different domains and genres.
Our experiments showed that the reranking process
significantly improved performance on both WSJ
and biomedical data.
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Abstract

Advances in sentiment analysis have enabled
extraction of user relations implied in online
textual exchanges such as forum posts. How-
ever, recent studies in this direction only con-
sider direct relation extraction from text. As
user interactions can be sparse in online dis-
cussions, we propose to apply collaborative
filtering through probabilistic matrix factor-
ization to generalize and improve the opinion
matrices extracted from forum posts. Exper-
iments with two tasks show that the learned
latent factor representation can give good per-
formance on a relation polarity prediction task
and improve the performance of a subgroup
detection task.

1 Introduction

The fast growth of the social Web has led to a large
amount of interest in online social network analysis.
Most existing work on social network analysis re-
lies on explicit links among users such as undirected
friendship relations (Liben-Nowell and Kleinberg,
2003), directed following relations (Hopcroft et al.,
2011) and trust/distrust relations (Leskovec et al.,
2010). However, besides these explicit social rela-
tions, the various kinds of interactions between on-
line users often suggest other implicit relations. In
particular, in online discussion forums, users inter-
act through textual posts and these exchanged texts
often reveal whether two users are friends or foes, or
whether two users share the same viewpoint towards
a given issue.

To uncover such implicit relations requires text
analysis and particularly sentiment analysis. Re-

cently, Hassan et al. (2012) studied predicting the
polarity of user interactions in online discussions
based on textual exchanges. They found that the au-
tomatically predicted signed relations had an accu-
racy above 80%. The extracted signed network was
further used to detect ideological subgroups. This is
a piece of pioneering work that extracts online social
relations based on text analysis.

In this paper, we further extend the idea of mining
social relations from online forum posts by incorpo-
rating collaborative filtering. Our work is motivated
by the observation that direct textual exchanges be-
tween users are sparse. For example, in the data set
we use, only around 13% of user-user pairs have di-
rect interactions. Collaborative filtering is a com-
monly used technique in recommender systems to
predict missing ratings. The key assumption is that
if two people have the same opinion on an item A,
they are likely to also have the same opinion on a
different item B. In online discussion forums, users
express their opinions about each other as well as
the various aspects of the topic under discussion, but
not every user comments on every aspect or every
other user. Collaborative filtering allows us to iden-
tify users with the same opinion even if they have not
directly interacted with each other or commented on
any common aspect.

Our method starts with extracting opinions on
users and topic aspects from online posts using sen-
timent analysis. The results are two matrices indi-
cating the sentiment polarity scores between pairs
of users and pairs of a user and an aspect. To in-
corporate collaborative filtering, we choose proba-
bilistic matrix factorization (PMF) (Salakhutdinov
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and Mnih, 2008), a technique that has been success-
fully applied for collaborative filtering-based recom-
mendation problems. PMF automatically discovers
a low-rank representation for both users and items
based on observed rating data. In our problem, the
predicted sentiment polarity scores are treated as rat-
ing data, and the results of PMF are low-rank vectors
representing each user in online discussions.

We evaluate our method on two tasks. The first
is to predict the polarity of interactions between two
users not from their own textual exchanges but from
their interactions with other users or comments on
topic aspects. The second is to use the latent vectors
to group users based on viewpoints. We find that the
latent factor representation can produce good predic-
tion results for the first task and improve the cluster-
ing results of the second task compared with a num-
ber of baselines, showing the effectiveness of col-
laborative filtering for mining social relations from
online discussions.

2 Related Work

Our work is closely related to recent studies on
detecting subgroups from online discussions (Abu-
Jbara et al., 2012; Dasigi et al., 2012; Hassan et
al., 2012). Abu-Jbara et al. (2012) proposed to
build discussant attitude profiles (DAP) from on-
line posts and use these profiles to cluster users into
subgroups. A DAP is a vector that contains the
attitudes of a discussant towards other discussants
and a set of opinion targets. We also extract opin-
ions of users towards other users and opinion tar-
gets from posts, which are similar to DAPs. The
difference is that we further apply probabilistic ma-
trix factorization to derive a low-rank representation
from the raw opinion scores. Our comparison with
DAP-based clustering shows that probabilistic ma-
trix factorization can improve subgroup detection.
Hassan et al. (2012) proposed to predict the polar-
ity of interactions between users based on their tex-
tual exchanges. They defined a set of interaction
features using sentiment analysis and applied super-
vised learning for polarity prediction. In compari-
son, our work is unsupervised, that is, we do not use
any ground truth of interaction polarity for training.

Probabilistic matrix factorization was proposed
by Salakhutdinov and Mnih (2008) as a collabo-

rative filtering method for recommender systems.
It has attracted much attention and been extended
by Ma et al. (2008) and Wang and Blei (2011).
In particular, Ma et al. (2008) proposed a SocRec
model that combines social network information
with rating data using the PMF framework to per-
form social recommendation. Our model bears sim-
ilarity to SocRec in that we also consider two types
of interactions, i.e. user-user interactions and user-
aspect interactions. However, different from Ma et
al. (2008), we predict both the user-user and user-
aspect scores from textual posts using sentiment
analysis, and the user-user opinion polarity scores
are symmetric.

Part of our method uses sentiment analysis to ex-
tract opinions from text. This is built on top of a
large body of existing work on opinion extraction,
e.g. Choi et al. (2006) and Wu et al. (2009). As the
sentiment analysis component is not our main con-
tribution, we do not review existing work along this
direction in detail here. Interested readers can refer
to Pang and Lee (2008).

The idea of incorporating sentiment analysis into
collaborative filtering algorithms has been explored
by Kawamae (2011), Moshfeghi et al. (2011) and
Leung et al. (2011). While their work also com-
bines sentiment analysis with collaborative filtering,
the purpose is to improve the accuracy of item rec-
ommendation. In contrast, we borrow the idea and
technique of collaborative filtering to improve user
relation mining from online text.

3 Method Overview

In this section, we provide an overview of our
method. We first introduce some concepts.
User: We use user to refer to a discussant in an on-
line discussion. Each user has an online ID, which
can be used by other users to refer to him/her in a
post. Users are both opinion holders and opinion
targets. For example, User 1 below expresses a neg-
ative opinion towards another user in the following
snippet.

User 1: Actually, I have to disagree with you.

Aspect: We use topic aspect or aspect to refer to an
opinion target that is related to the topic under dis-
cussion. For example, when debating about whether
one should vote for Obama, people may express
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opinions on targets such as “President Obama” and
“Republican party,” as shown in the following snip-
pets. These aspects are all related to Obama’s pres-
idential campaign. As we will explain later, the as-
pects we consider are named entities and frequent
noun phrases.

User 2: Americans should vote for President Obama be-
cause he picks good corporations as winners.

User 3: I simply point out how absolutely terrible the Re-
publican party is.

Polarity Score: A sentiment polarity score is a
real number between 0 and 1, where 0 indicates a
completely negative opinion and 1 indicates a com-
pletely positive opinion.
User-User Opinion Matrix: The opinions ex-
tracted from posts between users are represented by
a user-user opinion matrix S, where entry si,j is a
polarity score between the i-th user and the j-th user.
We assume that the polarity scores are symmetric.
User-Aspect Opinion Matrix: The opinions held
by different users on the various topic aspects are
represented by a user-aspect opinion matrix R,
where entry ri,k is a polarity score indicating the i-th
user’s opinion towards the k-th aspect.

Given the matrices S and R, we perform proba-
bilistic matrix factorization to derive a low-rank vec-
tor representation for users and aspects such that if
the polarity score between two users or a user and
an aspect is high, the dot product between the corre-
sponding two vectors is also high.

In Section 4, we will explain in detail how we
identify topic aspects from a discussion thread and
how we obtain polarity scores from posts. In Sec-
tion 5, we will present the details of our probabilistic
matrix factorization model.

4 Construction of Opinion Matrices

The opinion matrices are constructed from a single
forum thread discussing some controversial topic.

4.1 Aspect Identification

As we have pointed out, there are two kinds of opin-
ion targets, namely users and aspects. Users are
clearly defined and can often be identified in posts
by their IDs or second person pronouns. For aspects,
however, there is not a pre-defined set. We observe
that these topic aspects are usually named entities

or noun phrases frequently mentioned. We therefore
use the OpenNLP toolkit1 to perform chunking and
obtain noun phrases and the Standford NER tagger2

to identify named entities from the posts.
Some of the candidate aspect phrases identified

above actually refer to the same actual aspect, e.g.
“Obama voter,” “Obama voters” and “the Obama
voter.” We remove stop words from each candidate
phrase and use the WordNet by Miller (1995) to ob-
tain the lemma of each word such that we can nor-
malize the candidate aspect phases to some extent.

Finally, to select salient aspects for a given discus-
sion topic, we count the number of times each candi-
date aspect has been expressed a positive or negative
opinion on by all users, and select those candidate
aspects which have opinion expressions from at least
M users. We set M to 2 in our experiments. Fig-
ure 1 shows the top salient aspects for the thread on
“Will you vote for Obama?” We acknowledge there
are still duplicate aspects in the results like “Repub-
lican Party” and “GOP”. To normalize these aspects,
some additional information such as Wikipedia en-
tries and Google snippets may be considered. We
will study this problem in our future work.

4.2 Opinion Expression Identification
Our next step is to identify candidate opinion expres-
sions. This problem has been studied in Hu and Liu
(2004), Popescu and Etzioni (2005), and Hassan
and Radev (2010). Based on previous work, we do
the following. We first combine three popular sen-
timent lexicons to form a single sentiment lexicon:
the lexicon used in Hu and Liu (2004), MPQA Sub-
jectivity Lexicon by Wilson et al. (2005) and Senti-
WordNet by Baccianella et al. (2010). Our final sen-
timent lexicon contains 15,322 negative expressions
and 10,144 positive expressions. We then identify
candidate opinion expressions by searching for oc-
currences of words in this lexicon in the posts.

4.3 Opinion Relation Extraction
Given a post that contains an aspect and an opin-
ion expression, we still need to determine whether
the opinion expression is used to describe the as-
pect. This is a relation extraction problem. We use a
supervised learning approach based on dependency

1http://opennlp.apache.org/
2http://nlp.stanford.edu/ner/index.shtml
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Figure 1: Salient aspects and number of users who express opinions on them in the thread “Will you vote for Obama?”

ID Dependency path rule Example

R1 ADJOP ← amod← NTR I simply point out how terrible REPUBLICAN PARTY is.
R2 ADJOP → nsubj → NTR BUSH is even more reasonable for tax hike than Obama.
R3 VOP → dobj → NTR I would never support OBAMA.
R4 VOP → prep ∗ → NTR I’ll vote for OBAMA.
R5 VOP → nsubjpass→ NTR DEMOCRATIC PARTY are ultimately corrupted by love of money.
R6 NOP ← dobj ← V → nsubj → NTR PAKISTAN is increasing terrorist threat.
R7 ADJOP ← amod← N → nsubj → NTR OBAMA was a top scorer for occidental college.
R8 ADVOP ← advmod← V → nsubj → NTR OBAMA is smarter than people.

Table 1: Examples of frequent dependency path rules in our training data. OP and TR refer to the opinion and the
target. The opinion words are in italic and the aspect words are in uppercase.

paths. Previous work by Mintz et al. (2009), and Qiu
et al. (2009) has shown that the shortest path be-
tween a candidate opinion aspect and a candidate
opinion expression in the dependency parse tree can
be effective in extracting opinion relations. We use
the Stanford Parser from Klein and Manning (2003)
to obtain the dependency parse trees for each sen-
tence in the posts and then get the dependency paths
between each pair of candidate aspect and opinion
expression. We use dependency relations and POS
tags of nodes along the path to represent a depen-
dency path. Given a set of training sentences (we
use the one from Wu et al. (2009)), we can get a set
of dependency path rules based on their frequencies
in the training data. Table 1 shows the frequent de-
pendency path rules in our training data.

When a pair of aspect and opinion expression is
identified to be related, we use the polarity of the
opinion expression to label the relation. Finally,
given a pair of users, we use the percentage of pos-
itive interactions between them over all subjective
interactions (i.e. interactions with either positive or
negative opinions) as extracted from their exchanged
posts as the sentiment polarity score between the

two users, regardless of the reply-to direction of
the posts. Similarly, given a user and an aspect,
we also use the percentage of positive opinion re-
lations extracted as the sentiment polarity score be-
tween them. Thus the user-user opinion matrix and
the user-aspect opinion matrix are constructed. If
there is no subjective interaction detected between
two users or between a user and an aspect, the cor-
responding entry in the matrix is left empty. We will
see later that empty entries in the matrices are not
used in the probabilistic matrix factorization step.

5 Probabilistic Matrix Factorization

As we have pointed out earlier, a problem with the
matrices extracted as described in Section 4 is that
the matrices are sparse, i.e. many entries are empty.
For the data set we use, we find that around 87% of
entries in the user-user opinion matrix and around
90% of entries in the user-aspect opinion matrix are
empty. In this section, we describe how we use
Probabilistic Matrix Factorization (PMF) to repre-
sent users and aspects in a latent factor space and
thus generalize the user preferences.

Our model is almost a direct application of proba-
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bilistic matrix factorization from Salakhutdinov and
Mnih (2008), originally proposed for recommender
systems. The main difference is that the user-user
opinion polarity scores are symmetric. Our model is
also similar to the one used by Ma et al. (2008). We
describe our model as follows.

We assume that there are K latent factors with
which both users and aspects can be represented. Let
ui ∈ RK denote the vector in the latent factor space
for the i-th user, and ak the vector for the k-th aspect.

Recall that the opinions extracted from posts be-
tween users are represented by a user-user opinion
matrix S, and the opinions held by different users on
the various topic aspects are represented by a user-
aspect opinion matrix R. We assume that the polar-
ity scores si,j between the i-th and the j-th users and
ri,k between the i-th user and the k-th aspect in the
two matrices S and R are generated in the following
way:

p(si,j |ui, uj , σ2
1) = N (si,j |g(uTi uj), σ2

1),

p(ri,k|ui, ak, σ2
2) = N (ri,k|g(uTi ak), σ2

2),

where σ2
1 and σ2

2 are variance parameters, g(·) the
logistic function, and N (·|µ, σ2) is the normal dis-
tribution with mean µ and variance σ2.

We can see that with this generative assumption,
if two users are similar in terms of their dot product
in the latent factor space, then they are more likely
to have positive interactions as extracted from their
textual exchanges. Similarly, if a user and an aspect
are similar, then the user is more likely to express a
positive opinion on the aspect in his/her posts. The
latent factors can therefore encode user preferences
and similarity between two users in the latent factor
space reflects whether they share similar viewpoints.

We also place the following prior over ui and ak:

p(ui|σ2
U ) = N (ui|~0, σ2

UI),

p(ak|σ2
A) = N (ak|~0, σ2

AI),

where σ2
U and σ2

A are two variance parameters for
users and aspects, respectively, and I is the identify
matrix.

Figure 2 shows the plate notation for the genera-
tive model.

Let U be aK×U matrix containing the vectors ui
for allU users, andA be anK×Amatrix containing

Figure 2: Probabilistic matrix factorization model on
opinion matrices.

the vectors ak for all A aspects. To automatically
learn U andA, we minimize the following objective
function:

L(U ,A,S,R)

=
1

2

U∑
i=1

A∑
k=1

I(ri,k)(ri,k − g(uT
i ak))2

+
λ1

2

U∑
i=1

U∑
j=1

I(si,j)(si,j − g(uT
i uj))

2

+
λU

2
||U||2F +

λA

2
||A||2F , (1)

where λ =
σ2
1

σ2
2

, λU =
σ2
1

σ2
U

, and λA =
σ2
1

σ2
A

, I(s) is
an indicator function which equals 1 when s is not
empty and otherwise 0.

To optimize the objective function above, we can
perform gradient descent on U and A to find a local
optimum point. The derivation is similar to Ma et al.
(2008).

Degenerate Versions of the Model

We refer to the complete model described above
as PMF-UOM (PMF model based on User Opinion
Matrices). PMF-UOM has the following two degen-
erate versions by considering either only the user-
user opinion matrix or only the user-aspect opinion
matrix.
PMF-UU: In this degenerate version of the model,
we use only the user-user opinion matrix to learn the
latent factor representation. Specifically, the objec-
tive function is modified such that we drop the sum
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of the square errors involving R and the regularizer
on A.
PMF-UA: In this degenerate version of the model,
we use only the user-aspect opinion matrix to learn
the latent factor representation. Specifically, the ob-
jective function is modified such that we drop the
sum of the square errors involving S.

6 Experiments

In this section, we present our experiments that eval-
uate our model.

6.1 Data Set and Experiment Settings
The data set we use comes from Abu-Jbara et al.
(2012) and Hassan et al. (2012). The data set
contains a set of discussion threads collected from
two political forums (Createdebate3 and Politicalfo-
rum4) and one Wikipedia discussion session. We
randomly select 6 threads from the original data set
to evaluate our model. Some details of the data we
use are listed in Table 2.

ID topic #sides #sentences #users

DS1 Vote for Obama 2 12492 197
DS2 Abortion Banned 6 3844 70
DS3 Profile Muslims 4 2167 69
DS4 England and USA 6 2030 62
DS5 Tax Cuts 2 1193 26
DS6 Political Spectrum 7 1130 50

Table 2: Some statistics of the data sets.

In our experiments, for the PMF-based methods,
we set the number of latent factors to be 10 as we
do not observe big difference when vary the latent
factor size from 10 to 50. For the other parame-
ters, we select the optimal setting for each thread
based on the average of 50 runs. λU is chosen
from {0.1, 0.01}, λA from {0.01, 0.001} and λ from
{1, 0.1}.

6.2 Relation Polarity Prediction
The first task we use to evaluate our model is to pre-
dict the polarity of interactions between two users.
Different from Hassan et al. (2012), however, we
are not using this task to evaluate the accuracy of
sentiment analysis from text. Our experimental set-
ting is completely different in that we do not make

3www.createdebate.com
4www.politicalforum.com

use of the text exchanges between the two users but
instead use their interactions with other users or as-
pects. The purpose is to test the effectiveness of col-
laborative filtering.

Experimental Setting: The experiments are set up
in the following way. Given a pair of users i and j
who have directly exchanged posts, i.e. si,j is not
empty, we first hide the value of si,j in the matrix S.
Let the altered matrix be S¬(i,j). We then use S¬(i,j)

instead of S in the learning process as described in
Section 5 to learn the latent factor representation.
Let ûi and ûj denote the learned latent vectors for
user i and user j. We predict the polarity of relation
between i and j as follows:

ŝi,j =

{
1 if g(ûT

i ûj) > 0.5,
0 otherwise,

where g(·) is the logistic function to convert the dot
product into a value between 0 and 1.

To judge the quality of the predicted polarity ŝi,j ,
we could compare it with si,j . But since si,j itself is
predicted from the textual exchanges between i and
j, it is not the ground truth. Instead, we ask two hu-
man annotators to assign the true polarity label for
user i and user j by reading the textual exchanges
between them and judging whether they are friends
or foes in the discussion thread. The annotators are
asked to assign a score of 0 (indicating a negative
relation), 0.5 (indicating a neutral relation) or 1 (in-
dicating a positive relation). The lowest agreement
score based on Cohen’s kappa coefficient among the
6 threads we use is 0.56, showing fair to good agree-
ment. As ground truth, we set the final polarity score
to 1 if the average score of the two annotators is
larger than 0.5 and 0 otherwise.

We compare the PMF-based methods with two
majority baselines: MBL-0 always predicts negative
relations for all the user pairs (assuming most rela-
tions are negative) and MBL-1 always predicts posi-
tive relations (assuming most relations are positive).

We use MAE (mean absolute error) and RMSE
(root mean square error) as defined below as perfor-
mance metrics:

MAE =

∑
i,j |ŝi,j − li,j |

N
,

RMSE =

√∑
i,j(ŝi,j − li,j)2

N
,
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Figure 3: Comparing all the methods in terms of MAE.
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Figure 4: Comparing all the methods in terms of RMSE.

where N is the total number of user pairs we test,
and li,j is the ground truth polarity score between
user i and user j.
Results: We show the results of our model and of
PMF-UU and PMF-UA in terms of MAE in Figure 3
and RMSE in Figure 4. The MAE values range be-
tween 0.31 and 0.44 except for DS5, which has a
higher error rate of 0.53. The results show that even
without knowing the textual exchanges between two
users, from their interactions with other users and/or
with topic aspects, we can still infer the polarity of
their relation with decent accuracy most of the time.

The results also show the comparison between our
model and the competing methods. We can see that
overall the complete model (PMF-UOM) performs
better than the two degenerate models (PMF-UU
and PMF-UA). The differences are statistically sig-
nificant at the 5% level without considering DS5, as
indicated by a 2-tailed paired t-test. Comparing to
the majority baselines, our model significantly out-
performs MBL-1 at 1% significance level while out-
performs MBL-0 on all the data sets except DS5. A
close examinations shows DS5 has very unbalanced
relations (around 83% of relations are negative). Ex-
cept for the unbalanced data set, our model has rea-
sonably good performance.

6.3 Subgroup Detection

The second task we study is the problem of detecting
ideological subgroups from discussion threads. The
original data set has been labeled with the ground
truth for this problem, that is, for each thread the

number of viewpoints is known and the viewpoint
held by each user is labeled. A subgroup is defined
as a set of users holding the same viewpoint.
Experimental Setting: Through this second exper-
iment, we would like to verify the hypothesis that
using the learned latent factor representation U for
users, we can better detect subgroups than directly
using the opinion matrices S and R. For all the
methods we compare, we first construct a feature
vector representation for each user. We then apply
K-means clustering to group users. The number of
clusters is set to be the true number of viewpoints
for each thread. The different methods are described
below:

• PMF-based methods: We simply use the
learned latent vectors ûi after optimizing the
objective function as the feature vectors to rep-
resent each user.

• BL-1: This is our own implementation to sim-
ulate the method by Abu-Jbara et al. (2012).
Here each user is represented by a (3 × (U +
A))-dimensional vector, where U is the num-
ber of users and A is the number of aspects,
i.e. (U +A) is the total number of opinion tar-
gets. For each opinion target, there are 3 di-
mensions in the feature vector, corresponding
to the number of positive, neutral and negative
opinion expressions towards the target from the
online posts.

• BL-2: BL-2 is similar to BL-1 except that we
only use a (U+A)-dimensional vector to repre-
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sent each user. Here for each opinion target, we
directly use the corresponding sentiment polar-
ity score si,j or ri,j from the matrix S orR. For
empty entries in S andR, we use a score of 0.5.

We use Purity (the higher the better), Entropy (the
lower the better) and Rand Index (the higher the bet-
ter) to evaluate the performance of subgroup detec-
tion (Manning et al., 2008). We further use Accuracy
obtained by choosing the best alignment of clusters
with the ground truth class labels and computing the
percentage of users that are “classified” correctly.
Results: We first give an overview of the perfor-
mance of all the methods on the task. We show the
average performance of the methods on all the data
sets in Figure 5. Overall, our model has a better per-
formance than all the competing methods.

0.4

0.6

0.8

1.0

Purity Entropy Accuracy RandIndex

BL-1
BL-2

PMF-UU
PMF-UA

PMF-UOM

Figure 5: An overview of the average performance of all
the methods on the 6 threads.

We present all the results in Table 3. We per-
form 2-tailed paired t-test on the results. We find
that PMF-UOM outperforms all the other methods
in terms of RandIndex at 5% significance level and
outperforms other methods in terms of Purity and
Entropy at 10% significance level. Furthermore,
the PMF-UOM model outperforms its degenerative
models PMF-UU and PMF-UA at 10% significance
level in terms of all the measures.

We observe that PMF-UOM achieves the best per-
formance in terms of all the measures for almost
all threads. In particular, comparison with BL-1
and BL-2 shows that collaborative filtering can gen-
eralize the user preferences and help better group
the users based on their viewpoints. The fact that

PMF-UOM outperforms both PMF-UU and PMF-
UA shows that it is important to consider both user-
user interactions and user-aspect interactions.
The Effects of Cluster Size: To test the effect of the
number of clusters on the experiment result, we vary
the number of clusters from 2 to 10 in all methods.
We find that all methods tend to achieve better re-
sults when the number of clusters equals the ground
truth cluster size. Overall, our method PMF-UOM
shows a better performance than the other four meth-
ods when the number of clusters changes, which in-
dicates the robustness of our method.

BL-1 BL-2 PMF-UU PMF-UA PMF-UOM

DS1

P 0.61 0.61 0.61 0.61 0.62
E 0.96 0.96 0.94 0.95 0.94
A 0.59 0.59 0.55 0.57 0.60
R 0.51 0.51 0.50 0.51 0.52

DS2

P 0.53 0.63 0.64 0.61 0.68
E 1.17 1.22 1.14 1.09 0.99
A 0.47 0.53 0.48 0.47 0.50
R 0.50 0.50 0.56 0.56 0.58

DS3

P 0.66 0.68 0.62 0.60 0.68
E 1.05 1.01 1.06 1.07 0.94
A 0.61 0.63 0.48 0.47 0.58
R 0.50 0.52 0.53 0.53 0.57

DS4

P 0.64 0.64 0.66 0.65 0.70
E 0.92 0.94 0.90 0.91 0.85
A 0.59 0.64 0.62 0.62 0.68
R 0.49 0.52 0.52 0.51 0.56

DS5

P 0.86 0.86 0.86 0.86 0.86
E 0.56 0.56 0.49 0.48 0.38
A 0.70 0.70 0.57 0.60 0.71
R 0.52 0.52 0.43 0.45 0.56

DS6

P 0.50 0.50 0.60 0.60 0.68
E 1.35 1.35 1.03 1.04 0.79
A 0.40 0.30 0.53 0.54 0.64
R 0.53 0.53 0.68 0.68 0.74

Table 3: Results on subgroup detection on all the 6
threads. P, E, A and R refer to Purity, Entropy, Accuracy
and RandIndex, respectively.

7 Conclusions

In this paper, we studied how to use probabilistic
matrix factorization, a common technique for col-
laborative filtering, to improve relation mining from
online discussion forums. We first applied senti-
ment analysis to extract user-user opinions and user-
aspect opinions from forum posts. The extracted
opinions form two opinion matrices. We then ap-
plied probabilistic matrix factorization using these

408



two matrices to discover a low-rank latent factor
space which aims to better generalize the users’ un-
derlying preferences and indicate user similarities
based on their viewpoints. Using a data set with 6
discussion threads, we showed that the learned la-
tent vectors can be used to predict the polarity of
user relations well without using the users’ direct
interaction data, demonstrating the effectiveness of
collaborative filtering. We further found that for the
task of subgroup detection, the latent vectors gave
better performance than using the directly extracted
opinion data, again showing that collaborative fil-
tering through probabilistic matrix factorization can
help address the sparseness problem in the extracted
opinion matrices and help improve relation mining.

Our current work mainly focuses on the user opin-
ion matrices. As future work, we would like to ex-
plore how to incorporate textual contents without
opinionated expressions. One possible way is to
consider the combination of matrix factorization and
topic modeling as studied by Wang and Blei (2011)
where we can use topic modeling to study textual
contents.
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Abstract 

Feature and context aggregation play a 

large role in current NER systems, allowing 

significant opportunities for research into op-

timizing these features to cater to different 

domains. This work strives to reduce the noise 

introduced into aggregated features from dis-

parate and generic training data in order to al-

low for contextual features that more closely 

model the entities in the target data. The pro-

posed approach trains models based on only a 

part of the training set that is more similar to 

the target domain. To this end, models are 

trained for an existing NER system using the 

top documents from the training set that are 

similar to the target document in order to 

demonstrate that this technique can be applied 

to improve any pre-built NER system. Initial 

results show an improvement over the Univer-

sity of Illinois NE tagger with a weighted av-

erage F1 score of 91.67 compared to the 

Illinois tagger’s score of 91.32. This research 

serves as a proof-of-concept for future 

planned work to cluster the training docu-

ments to produce a number of more focused 

models from a given training set, thereby re-

ducing noise and extracting a more repre-

sentative feature set. 

1 Introduction 

Though research in the area of named entity 

recognition (NER) is fairly extensive, current state-

of-the-art solutions are generic, succeeding only 

for domains similar to their training data, and still 

fail to adequately provide functionality that is 

adaptable to a broad range of domains (Tkachenko 

and Simanovsky, 2012). This leaves room for im-

provement in designing a system that can more 

easily adapt to previously unseen data. In particu-

lar, the increasingly popular feature set produced 

by feature and context aggregation provides many 

opportunities for different types of optimization 

given the strong correlation between the training 

input and the feature values that are produced. This 

is due to the fact that aggregation looks at features 

at a document or corpus level, rather than at the 

token level, and therefore will be sensitive to 

changes in the training set. This research looks to 

exploit this aspect of feature and context aggrega-

tion by identifying portions of a training set that 

are more similar to the target data and will thus 

provide feature values that are likely more repre-

sentative of the entities within that data. 

Rather than train a model with a full training 

set, this approach extracts portions of the training 

data that are most similar to the target data and 

trains a model using only those documents. This 

initial work tailors a model to a given target docu-

ment to demonstrate that less, but more appropri-

ate, training data is preferable to a full generic 

training set.  

Similar to that of Dalton et al. (2011), in which 

they use passage retrieval to expand their feature 

set, cosine similarity is used to retrieve documents 

containing similar entity instances in an effort to 

achieve a more relevant feature set that will result 

in more likely output label predictions. However, 

the proposed approach conducts document similar-

ity above the tagger level, without modifying the 

underlying tagging system. This allows for domain 

adaptation improvements using any available NER 

tagger.  This approach is able to be implemented 

with any pre-existing NER tagger in order to im-

prove the performance of the tagger for out-of-

domain data. Initial results show an improvement 

over the standard NE tagger from the University of 

Illinois at Urbana-Champaign using a smaller 

training set and no additional external data sources. 

2  Related work 

Feature aggregation refers to collecting feature 

information from across a document or document 

set, rather than simply taking the information from 

a particular word instance. With feature aggrega-
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tion, researchers strive to expand the context used 

to predict the classification of a given token. Much 

of the recent work on features for NER has been 

related to aggregation of some sort in an effort to 

widen model coverage, decrease human interaction 

in the feature generation process, and increase de-

tection and classification accuracy. Many systems 

incorporating feature aggregation have seen per-

formance improvements over other nearly state-of-

the-art systems. 

The global features discussed by Chieu and Ng 

(2003) represent context aggregation in that they 

extract features about the word in multiple instanc-

es within a document. Krishnan and Manning 

(2006) introduce a two-stage approach to feature 

aggregation layering two CRFs in which the sec-

ond uses the output of the first as features, aggre-

gated over both documents and the entire corpus.  

Ratinov and Roth (2009) use a similar imple-

mentation for their work, substituting relative fre-

quencies of tags within a 1000 token window for 

the majority tags used by Krishnan and Manning. 

They refer to the information gathered from aggre-

gation as non-local features and categorize the dif-

ferent approaches as context aggregation, two-

stage prediction aggregation and extended predic-

tion history. In an effort not to treat all tokens in a 

text similarly, which they assert is the case with 

context aggregation and two-stage prediction, 

Ratinov and Roth developed an approach for non-

local feature generation based on extended predic-

tion history. Their approach is based on the idea 

that named entities are easier to spot at the begin-

ning of texts where they are first introduced. They 

keep track of all label assignments for the token in 

the last 1000 words and use that probability infor-

mation as a prediction history feature for the token. 

Huang and Yates (2009) present their feature 

aggregation approaches in the form of smoothing 

of the dataset. Their goal for smoothing is the same 

as for aggregation in that they strive to extend the 

usefulness of the model by sharing information 

about multiple contexts for a token in order to pro-

vide more information about words that are rarely, 

or never, seen in training. In experimentation, the 

authors found that their smoothing approach im-

proved performance on rare words, out-of-domain 

text, and smaller training sets. 

Dalton et al. (2011) take an external knowledge 

approach to context aggregation. Using an infor-

mation retrieval method called Pseudo-Relevance 

Feedback (PRF), they query for relevant passages 

in an external data set using the context for the tar-

get token. Given that they searched for the context 

that the entity occurs in, it is assumed that the top 

returned passages all contain instances of the entity 

with the same label. They then aggregate the fea-

tures for this token across a number of the top re-

trieved documents and induce features based on 

this information. Their approach is compared with 

the Stanford and Illinois NER systems and found 

that their aggregated features improved perfor-

mance over those systems.  

Apart from the body of work attempting to in-

corporate external data sources, such as Wikipedia, 

to augment training data, approaches for domain 

adaptation for NER focus on either adapting fea-

tures to fit the domain or searching for more ab-

stract features that can span multiple domains 

(Zhang and Johnson, 2003; Huang and Yates, 

2009; Lin and Wu, 2009). This is largely due to the 

assumption that a domain-specific, tagged training 

set will not be available for most target domains.  

This research expands on previous work by 

providing a more informative training set that is a 

closer representation of the features contained in 

the target documents. Further, the proposed system 

does not require external knowledge sources or 

additional tagged data to augment the utilized 

training set. The modifications that are made are 

implemented above the tagger level allowing for 

any existing tagger to be used without need to alter 

the underlying source code. 

3 NER approach 

Feature aggregation has become an integral part 

of building an NER prediction model. Because 

aggregating the context of every named entity 

across an entire training set can be fairly computa-

tionally expensive and introduces significant noise 

into the features due to the many contexts in which 

an entity may occur, many researchers have chosen 

instead to conduct local aggregation, such as across 

a document, or with a certain window of tokens 

that may span several documents. The NER tagger 

produced by the University of Illinois at Urbana-

Champaign, one of the best performing systems on 

the CoNLL 2003 data set, uses a 1000 token win-

dow across which to take their global context ag-

gregation (Ratinov and Roth, 2009). By choosing 

1000 tokens, the researchers hope to be able to 
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capture a large enough example set to provide a 

robust feature value while maintaining a reasona-

ble computation time. However, this method leaves 

the choice of context to chance: determined by 

how the documents are organized within the train-

ing set. A better option would be to choose the 

context that best represents the entities to be 

tagged. To that end, this work serves to provide a 

more useful and informative training set from 

which to pull context information. 

The hypothesis explored in this work is that the 

context aggregation feature would prove more use-

ful if the training data were more specific to the 

target entities. For this research, documents from 

the training set were compiled based on their simi-

larity to the target document. These documents 

were then used to train a model for the Illinois NE 

tagger. In this way we strive to reduce the noise 

present in the context aggregation feature as a re-

sult of the generic contexts found in a large, often 

heterogeneous, training set and produce feature 

values that are more representative of the target 

entities, thus producing more reliable output labels.  

3.1 Methodology 

For an initial proof-of-concept test, vectors 

were created for all test (not the development set) 

and training documents in the CoNLL-2003 shared 

task data. This corpus was chosen due to the previ-

ous NER research using this corpus and the results 

available using the LBJ tagger. Also, it has been 

noted that the test and training sets within the cor-

pus are not as similar in nature as are the develop-

ment and training sets (Ratinov and Roth, 2009). 

The training set contains 946 documents, while the 

test set contains 231. For each test document, a 

specified number of the top documents from the 

training set most similar to that test document was 

collected. For this initial work, a simple cosine 

similarity measure was used. These top similar 

documents were used as a training set for the LBJ 

tagger, and the test document was then tagged us-

ing the resultant model. The system was tested by 

pulling the top 20, 50, 100, and 300 similar train-

ing documents to train the models. The perfor-

mance of this customized model is compared to 

that of the standard, two-phase LBJ tagger trained 

on the full CoNLL ’03 training set. 

3.2 Results 

For this research, because each test document is 

tagged using a different model, we chose to meas-

ure our performance on a per-document basis, ra-

ther than the standard overall measure for the 

entire test set.
1
 This performance is compared to 

that achieved by the standard LBJ tagger on the 

same document. Figure 1 shows how many docu-

ments were tagged more accurately using the pro-

posed system compared to the LBJ tagger.  

 

 
Figure 1 – Results showing the number of documents 

for which each system performed better or for which 

they had equal F1 scores. 

 

Further, Figure 2 displays the average percent-

age better and worse in terms of F1 score for each 

training document size. In contrast to Figure 1, 

Figure 2 demonstrates the average difference in F1 

scores between the LBJ tagger trained on the entire 

training set and the proposed system trained on 

varying numbers of training documents. These 

numbers indicate that there exists an optimal bal-

ance that can achieve the dual advantages of hav-

ing a smaller, more relevant training set while also 

maintaining enough data to ensure enough features 

to accurately predict NER labels. 

 The overall aggregated difference is also pro-

vided as a more global view of performance 

achievements. This measurement is calculated by 

multiplying the F1 score of a given document by 

the number of entity tokens contained in that doc-

ument, summing these calculations, and then divid-

ing by the total number of entity tokens across the 

test dataset. These results reveal an improvement 

over the Illinois tagger for the 300 document train-

                                                      
1 The Illinois NE tagger only provides performance infor-

mation in the form of percentages and does not give enough 

information to calculate an overall F1 score for the test set 

using the CoNLL eval script. 
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ing set with a weighted average F1 score of 91.67 

compared to the Illinois score of 91.32. 

 

 
Figure 2 – Average percentage points better and worse 

in the F1 score that the proposed system achieved com-

pared to the standard LBJ tagger for models trained with 

the top 20, 50, 100, and 300 similar documents. 

 

These initial results demonstrate that an availa-

ble training set can be easily tailored to better serve 

the needs of a target data set that differs from the 

training set and showed improvements on an exist-

ing competitive NER system by modifying the 

training data set used to build the prediction model. 

By identifying a smaller, relevant training set, the 

sequence tagging model is better equipped to accu-

rately predict output labels for target data that does 

not closely align with the training documents. 

4 Future work 

Given the computational expense of training a 

model for each individual document to be tagged, 

improvements must be made to the approach to 

transform it into a viable long-term NER solution. 

The next logical step in this research will be to 

cluster the training documents and train models 

based on those clusters. Subsequently, the test 

documents can be clustered to the training set clus-

ters and be tagged using the appropriate model for 

that cluster set. Alternatively, the test set could be 

initially clustered, with the training set then fit to 

those clusters. Tests must be conducted to deter-

mine which option produces the best prediction 

accuracy levels. Once a viable clustering method-

ology has been developed, further testing will be 

conducted to compare it with some of the best cur-

rent techniques (e.g. the work of Dalton et. al 

2011) to provide a more comprehensive evalua-

tion. 

The results presented here were achieved using 

baseline document representation and document 

similarity techniques. Significant work remains for 

experimentation to determine which alternative 

methodologies will result in the optimal NER per-

formance. Not only could different clustering algo-

rithms be employed, but an investigation into 

which type of clustering, in particular linear or hi-

erarchical, is better suited for NER would be pru-

dent. Also, further work will test the validity of 

this approach for successful domain adaptation by 

demonstrating that it is extensible to other data 

sets. 

5 Summary 

This research has implications in the NER do-

main adaptation space as it demonstrates that fewer 

training documents are required as long as they are 

sufficiently similar to the targeted test set. This 

methodology could potentially allow for better uti-

lization of existing, freely-available (possibly ge-

neric) training sets by extracting portions of the 

training set that are more similar to the target data. 

It also allows for existing NER systems to be better 

adapted to domain-specific data without modifica-

tion for feature augmentation or the inclusion of 

additional external data sources. The opportunities 

for continuing this tread of research are numerous, 

and initial results illustrate significant promise giv-

en the relative simplicity of the execution com-

pared with its achievement. 
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Abstract

Language can describe our visual world at
many levels, including not only what is lit-
erally there but also the sentiment that it in-
vokes. In this paper, we study visual language,
both literal and sentimental, that describes the
overall appearance and style of virtual char-
acters. Sentimental properties, including la-
bels such as “youthful” or “country western,”
must be inferred from descriptions of the more
literal properties, such as facial features and
clothing selection. We present a new dataset,
collected to describe Xbox avatars, as well as
models for learning the relationships between
these avatars and their literal and sentimen-
tal descriptions. In a series of experiments,
we demonstrate that such learned models can
be used for a range of tasks, including pre-
dicting sentimental words and using them to
rank and build avatars. Together, these re-
sults demonstrate that sentimental language
provides a concise (though noisy) means of
specifying low-level visual properties.

1 Introduction

Language can describe varied aspects of our visual
world, including not only what is literally there but
also the social, cultural, and emotional sentiment it
invokes. Recently, there has been a growing effort
to study literal language that describes directly ob-
servable properties, such as object color, shape, or

This is a light tan young man
with short and trim haircut. He
has straight eyebrows and large
brown eyes. He has a neat and

trim appearance.

State of mind: angry, upset,
determined. Likes: country
western, rodeo. Occupation:

cowboy, wrangler, horse trainer.
Overall: youthful, cowboy.

Figure 1: (A) Literal avatar descriptions and (B) sen-
timental descriptions of four avatar properties, in-
cluding possible occupations and interests.

category (Farhadi et al., 2009; Mitchell et al., 2010;
Matuszek et al., 2012). Here, we add a focus on
sentimental visual language, which compactly de-
scribes more subjective properties such as if a person
looks determined, if a resume looks professional, or
if a restaurant looks romantic. Such models enable
many new applications, such as text editors that au-
tomatically select properties including font, color, or
text alignment to best match high level descriptions
such as “professional” or “artistic.”
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In this paper, we study visual language, both lit-
eral and sentimental, that describes the overall ap-
pearance and style of virtual characters, like those in
Figure 1. We use literal language as feature norms, a
tool used for studying semantic information in cog-
nitive science (Mcrae et al., 2005). Literal words,
such “black” or “hat,” are annotated for objects to in-
dicate how people perceive visual properties. Such
feature norms provide our gold-standard visual de-
tectors, and allow us to focus on learning to model
sentimental language, such as “youthful” or “goth.”

We introduce a new corpus of descriptions of
Xbox avatars created by actual gamers. Each avatar
is specified by 19 attributes, including clothing and
body type, allowing for more than 1020 possibil-
ities. Using Amazon Mechanical Turk,1 we col-
lected literal and sentimental descriptions of com-
plete avatars and many of their component parts,
such as the cowboy hat in Figure 1(B). In all, there
are over 100K descriptions. To demonstrate poten-
tial for learning, we also report an A/B test which
shows that native speakers can use sentimental de-
scriptions to distinguish the labeled avatars from
random distractors. This new data will enable study
of the relationships between the co-occurring literal
and sentimental text in a rich visual setting.2

We describe models for three tasks: (i) classify-
ing when words match avatars, (ii) ranking avatars
given a description, and (iii) constructing avatars to
match a description. Each model includes literal part
descriptions as feature norms, enabling us to learn
which literal and sentinel word pairs best predict
complete avatars.

Experiments demonstrate the potential for jointly
modeling literal and sentimental visual descriptions
on our new dataset. The approach outperforms sev-
eral baselines and learns varied relationships be-
tween the sentimental and literal descriptions. For
example, in one experiment “nerdy student” is pre-
dictive of an avatar with features indicating its shirt
is “plaid” and glasses are “large” and faces that are
not “bearded.” We also show that individual sen-
timental words can be predicted but that multiple
avatars can match a single sentimental description.
Finally, we use our model to build complete avatars

1www.mturk.com
2Data available at http://homes.cs.washington.

edu/˜my89/avatar.

and show that we can accurately predict the senti-
mental terms annotators ascribe to them.

2 Related Work

To the best of our knowledge, our focus on learn-
ing to understand visual sentiment descriptions is
novel. However, visual sentiment has been stud-
ied from other perspectives. Jrgensen (1998) pro-
vides examples which show that visual descriptions
communicate social status and story information in
addition to literal object and properties. Tousch et
al. (2012) draw the distinction between “of-ness”
(objective and concrete) and “about-ness” (subjec-
tive and abstract) in image retrieval, and observe
that many image queries are abstract (for example,
images about freedom). Finally, in descriptions of
people undergoing emotional distress, Fussell and
Moss (1998) show that literal descriptions co-occur
frequently with sentimental ones.

There has been significant work on more lit-
eral aspects of grounded language understand-
ing, both visual and non-visual. The Words-
Eye project (Coyne and Sproat, 2001) generates
3D scenes from literal paragraph-length descrip-
tions. Generating literal textual descriptions of vi-
sual scenes has also been studied, including both
captions (Kulkarni et al., 2011; Yang et al., 2011;
Feng and Lapata, 2010) and descriptions (Farhadi
et al., 2010). Furthermore, Chen and Dolan (2011)
collected literal descriptions of videos with the
goal of learning paraphrases while Zitnick and
Parikh (2013) describe a corpus of descriptions for
clip art that supports the discovery of semantic ele-
ments of visual scenes.

There has also been significant recent work on au-
tomatically recovering visual attributes, both abso-
lute (Farhadi et al., 2009) and relative (Kovashka et
al., 2012), a challenge that we avoid having to solve
with our use of feature norms (Mcrae et al., 2005).

Grounded language understanding has also re-
ceived significant attention, where the goal is to
learn to understand situated non-visual language
use. For example, there has been work on learning
to execute instructions (Branavan et al., 2009; Chen
and Mooney, 2011; Artzi and Zettlemoyer, 2013),
provide sports commentary (Chen et al., 2010), un-
derstand high level strategy guides to improve game
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Figure 2: The number of assets per category and ex-
ample images from the hair, shirt and hat categories.

play (Branavan et al., 2011; Eisenstein et al., 2009),
and understand referring expression (Matuszek et
al., 2012).

Finally, our work is similar in spirit to sentiment
analysis (Pang et al., 2002), emotion detection from
images and speech (Zeng et al., 2009), and metaphor
understanding (Shutova, 2010a; Shutova, 2010b).
However, we focus on more general visual context.

3 Data Collection

We gathered a large number of natural language de-
scriptions from Mechanical Turk (MTurk). They in-
clude: (1) literal descriptions of specific facial fea-
tures, clothing or accessories and (2) high level sub-
jective descriptions of human-generated avatars.3

Literal Descriptions We showed annotators a sin-
gle image of clothing, a facial feature or an acces-
sory and asked them to produce short descriptions.
Figure 2 shows the distribution over object types.
We restricted descriptions to be between 3 and 15
words. In all, we collected 33.2K descriptions and
had on average 7 words per descriptions. The ex-
ample annotations with highlighted overlapping pat-
terns are in Table 1.

Sentimental Descriptions We also collected 1913
gamer-created avatars from the web. The avatars
were filtered to contain only items from the set of
665 for which we gathered literal descriptions. The
gender distribution is 95% male.

3(2) also has phrases describing emotional reactions. We
also collected (3) multilingual literal, (4) relative literal and (5)
comprehensive full-body descriptions. We do not use this data,
but it will be included in the public release.

LITERAL DESCRIPTIONS

full-sleeved executive blue shirt
blue , long-sleeved button-up shirt
mens blue button dress shirt with dark blue stripes
multi-blue striped long-sleeve button-up dress
shirt with cuffs and breast pocket

Table 1: Literal descriptions of shirt in Figure 2.

To gather high level sentimental descriptions, an-
notators were presented with an image of an avatar
and asked to list phrases in response to the follow
different aspects:

- State of mind of the avatar.
- Things the avatar might care about.
- What the avatar might do for a living.
- Overall appearance of the avatar.

6144 unique vocabulary items occurred in these
descriptions, but only 1179 occurred more than 10
times. Figure 1 (B) shows an avatar and its corre-
sponding sentimental descriptions.

Quality Control All annotations in our dataset are
produced by non-expert annotators. We relied on
manual spot checks to limit poor annotations. Over
time, we developed a trusted crowd of annotators
who produced only high quality annotations during
the earliest stage of data collection.

4 Feasibility

Our hypothesis is that sentimental language does not
uniquely identify an avatar, but instead summarizes
or otherwise describes its overall look. In general,
there is a trade off between concise and precise de-
scriptions. For example, given a single word you
might be able to generally describe the overall look
of an avatar, but a long, detailed, literal description
would be required to completely specify their ap-
pearance.

To demonstrate that the sentimental descriptions
we collected are precise enough to be predictive
of appearance, we conducted an experiment that
prompts people to judge when avatars match de-
scriptions. We created an A/B test where we show
English speakers two avatars and one sentimental
description. They were asked to select which avatar
is better matched by the description and how dif-
ficult they felt, on a scale from 1 to 4, it was to
judge. For 100 randomly selected descriptions, we
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Figure 3: Judged task difficulty versus agreement,
gamer avatar preference, and percentage of data cov-
ered. The difficulty axis is cumulative.

asked 5 raters to compare the gamer avatars to ran-
domly generated ones (where each asset is selected
independently according to a uniform distribution).
Figure 3 shows a plot of Kappa and the percent of
the time a majority of the raters selected the gamer
avatar. The easiest 20% of the data pairs had the
strongest agreement, with kappa=.92, and two thirds
of the data has kappa = .70. While agreement falls
off to .52 for the full data set, the gamer avatar re-
mains the majority judgment 81% of the time.

The fact that random avatars are sometimes pre-
ferred indicates that it can be difficult to judge sen-
timental descriptions. Consider the avatars in Fig-
ure 4. Neither conforms to a clear sentimental de-
scription based on the questions we asked. The
right one is described with conflicting words and
the words describing the left one are very general
(like “dumb”). This corresponds to our intuition that
while many avatars can be succinctly summarized
with our questions, some would be more easily de-
scribed using literal language.

5 Tasks and Evaluation

We formulate three tasks to study the feasibility of
learning the relationship between sentimental and
literal descriptions. In this section, we first define
the space of possible avatars, followed by the tasks.

Avatars Figure 5 summarizes the notation we will
develop to describe the data. An avatar is defined by
a 19 dimensional vector ~a where each position is an

State of mind:
playful, happy;

Likes: sex
Occupation: hobo

Overall: dumb

State of mind: content, humble, satisfied,
peaceful, relaxed, calm. Likes: fashion,
friends, money, cars, music, education.

Occupation: teacher, singer, actor,
performer, dancer, computer engineer.

Overall: nerdy, cool, smart, comfy,
easygoing, reserved

Figure 4: Avatars rated as difficult.

index into a list of possible items~i. Each dimension
represents a position on the avatar, for example, hat
or nose. Each possible item is called an asset and
is associated with a set of positions it can fill. Most
assets take up exactly one position, while there are
a few cases where assets take multiple positions.4

An avatar ~a is valid if all of its mandatory positions
are filled, and no two assets conflict on a position.
Mandatory positions include hair, eyes, ears, eye-
brows, nose, mouth, chin, shirt, pants, and shoes.
All other positions are optional. We refer to this set
of valid ~a as A. Practically speaking, if an avatar is
not valid, it cannot be reliably rendered graphically.

Each item i is associated with the literal descrip-
tions ~di ∈ D where D is the set of literal descrip-
tions. Furthermore, every avatar~a is associated a list
of sentimental query words ~q, describing subjective
aspects of an avatar.5

Sentimental Word Prediction We first study in-
dividual words. The word prediction task is to de-
cide whether a given avatar can be described with a

4For example, long sleeve shirts cover up watches, so they
take up both shirt and wristwear positions. Costumes tend to
span many more positions, for example there a suit that takes
up shirt, pants, wristwear and shoes positions.

5We do not distinguish which prompt (e.g., “state of mind”
or “occupation”) a word in ~q came from, although the vocabu-
laries are relatively disjoint.
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Figure 5: Avatars, queries, items, literal descriptions.

particular sentimental word q∗. We evaluate perfor-
mance with F-score.

Avatar Ranking We also consider an avatar re-
trieval task, where the goal is to rank the set of
avatars in our data, ∪j=1...n ~aj , according to which
one best matches a sentimental description, ~qi. As
an automated evaluation, we report the average per-
centile position assigned to the true ~ai for each ex-
ample. However, in general, many different avatars
can match each ~qi, an interesting phenomena we will
further study with human evaluation.

Avatar Generation Finally, we consider the prob-
lem of generating novel, previously unseen avatars,
by selecting a set of items that best embody some
sentimental description. As with ranking, we aim to
construct the avatar ~ai that matches each sentimen-
tal description ~qi. We evaluate by considering the
item overlap between ~ai and the output avatar ~a∗,
discounting for empty positions:6

f =

∑| ~a∗|
j=1 I(

~a∗j = ~aij)

max(numparts( ~a∗), numparts(~ai))
, (1)

where numparts returns the number of non-empty
avatar positions. The score is a conservative measure
because some items are significantly more visually
salient than others. For instance, shirts and pants oc-
cupy a large portion of the physical realization of the
avatar, while rings are small and virtually unnotice-
able. We additionally perform a human evaluation
in Section 8 to better understand these challenges.

6Optional items are infrequently used. Therefore not pre-
dicting them at all offers a strong baseline. Yet doing this
demonstrates nothing about an algorithm’s ability to predict
items which contribute to the sentimental qualities of an avatar.

6 Methods

We present two different models: one that considers
words in isolation and another that jointly models
the query words. This section defines the models
and how we learn them.

6.1 Independent Sentimental Word Model

The independent word model (S-Independent) as-
sumes that each word independently describes the
avatar. We construct a separate linear model for each
word in the vocabulary.

To train these model, we transform the data to
form a binary classification problem for each word,
where the positive data includes all avatars the word
was seen with, (q, ~ai, 1) for all i and q ∈ ~qi, and the
rest are negative, (q, ~ai, 0) for all i and q /∈ ~qi.

We use the following features:

• an indicator feature for the cross product of a
sentiment query word q, a literal description
word w ∈ D, and the avatar position index j
(for example, q = “angry” with w = “pointy”
and j = eyebrows):

I(q ∈ ~qi, w ∈ ~daij , j)

• a bias feature for keeping a position empty:

I(q ∈ ~qi, aij = empty, j)

These features will allow the model to capture
correlations between our feature norms which pro-
vide descriptions of visual attributes, like black, and
sentimental words, like gothic.
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S-Independent is used for both word prediction
and ranking. For prediction, we train a linear model
using averaged binary perceptron. For ranking, we
try to rank all positive instances above negative in-
stances. We use an averaged structured perceptron
to train the ranker (Collins, 2002). To rank with re-
spect to an entire query ~qi, we sum the scores of each
word q ∈ ~qi.

6.2 Joint Sentimental Model
The second approach (S-Joint) jointly models the
query words to learn the relationships between lit-
eral and sentimental words with score s:

s(~a|~q,D) =

|~a|∑
i=1

|~q|∑
j=1

θT f(~ai, ~qj , ~dai)

Where every word in the query has a separate factor
and every position is treated independently subject
to the constraint that ~a is valid. The feature function
f uses the same features as the word independent
model above.

This model is used for ranking and generation.
For ranking, we try to rank the avatar ai for query
qi above all other avatars in the candidate set. For
generation, we try to score ai above all other valid
avatars given the query qi. In both cases, we train
with averaged structured perceptron (Collins, 2002)
on the original data, containing query, avatar pairs
(~qi, ~ai).

7 Experimental Setup
Random Baseline For the ranking and avatar gen-
eration tasks, we report random baselines. For rank-
ing, we randomly order the avatars. In the genera-
tion case, we select an item randomly for every posi-
tion. This baseline does not generate optional assets
because they are rare in the real data.

Sentimental-Literal Overlap (SL-Overlap) We
also report a baseline that measures the overlap be-
tween words in the sentiment query ~qi and words in
the literal asset descriptions D. In generation, for
each position in the avatar, ~ai, SL-Overlap selects
the item whose literal description has the most words
in common with ~qi. If no item had overlap with the
query, we backoff to a random choice. In the case of
ranking, it orders avatars by the sum over every po-
sition of the number of words in common between

Word F-Score Precision Recall N
happi 0.84 0.89 0.78 149
student 0.78 0.82 0.74 129
friend 0.76 0.84 0.70 153
music 0.74 0.89 0.63 148
confid 0.74 0.82 0.76 157
sport 0.69 0.62 0.76 76
casual 0.63 0.6 0.67 84
youth 0.6 0.57 0.64 88
waitress 0.59 0.42 1 5
smart 0.57 0.54 0.6 88
fashion 0.54 0.54 0.54 70
monei 0.54 0.52 0.56 76
cool 0.54 0.52 0.56 84
relax 0.53 0.52 0.56 90
game 0.51 0.44 0.62 61
musician 0.51 0.44 0.61 66
parti 0.51 0.43 0.62 58
content 0.5 0.47 0.53 75
friendli 0.49 0.42 0.6 56
smooth 0.49 0.4 0.63 57

Table 2: Top 20 words (stemmed) for classification.
N is the number of occurances in the test set.

the literal description and the query, ~qi. This base-
line tests the degree to which literal and sentimental
descriptions overlap lexically.

Feature Generation For all models that use lexi-
cal features, we limited the number of words. 6144
unique vocabulary items occur in the query set, and
3524 in the literal description set. There are over
400 million entries in the full set of features that in-
clude the cross product of these sets with all possible
avatar positions, as described in Section 6. Since this
would present a challenge for learning, we prune in
two ways. We stem all words with a Porter stemmer.
We also filter out all features which do not occur at
least 10 times in our training set. The final model
has approximately 700k features.

8 Results

We present results for the tasks described in Sec-
tion 5 with the appropriate models from Section 6.

8.1 Word Prediction Results
The goal of our first experiment is to study when
individual sentiment words can be accurately pre-
dicted. We computed sentimental word classifica-
tion accuracy for 1179 word classes with 10 or more
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Algorithm Percentile Rank
S-joint 77.3
S-independant 73.5
SL-overlap 60.4
Random 48.8

Table 3: Automatic evaluation of ranking. The aver-
age percentile that a test avatar was ranked given its
sentimental description.

mentions. Table 2 shows the top 20 words ordered
by F-score.7 Many common words can be predicted
with relatively high accuracy. Words with strong
individual cues like happy (a smiling mouth), and
confidence (wide eyes) and nerdi (particular glasses)
can be predicted well.

The average F-score among all words was .085.
33.2% of words have an F-score of zero. These zeros
include words like: unusual, bland, sarcastic, trust,
prepared, limber, healthy and poetry. Some of these
words indicate broad classes of avatars (e.g., unusual
avatars) and others indicate subtle modifications to
looks that without other words are not specific (e.g.,
a prepared surfer vs. a prepared business man). Fur-
thermore, evaluation was done assuming that when
a word is not mentioned, it is should be predicted as
negative. This fails to account for the fact that peo-
ple do not mention everything that’s true, but instead
make choices about what to mention based on the
most relevant qualities. Despite these difficulties,
the classification performance shows that we can ac-
curately capture usage patterns for many words.

8.2 Ranking Results

Ranking allows us to test the hypothesis that multi-
ple avatars are valid for a high level description. Fur-
thermore, we consider the differences between S-
Joint and S-Independent, showing that jointly mod-
elings all words improves ranking performance.

Automatic Evaluation The results are shown in
Table 3. Both S-Independent and S-Joint outperform
the SL-overlap baseline. SL-Overlap’s poor perfor-
mance can be attributed to low direct overlap be-
tween sentimental words and literal words. S-Joint
also outperforms the S-Independent.

7Accuracy numbers are inappropriate in this case because
the number of negative instances, in most cases, is far larger
than the number of positive ones.

Inspection of the parameters shows that S-Joint
does better than S-Independent in modeling words
that only relate to a subset of body positions. For
example, in one case we found that for the word
“puzzled” nearly 50% of the weights were on fea-
tures that related to eyebrows and eyes. This type
of specialization was far more pronounced for S-
Joint. The joint nature of the learning allows the fea-
tures for individual words to specialize for specific
positions. In contrast, S-Independent must indepen-
dently predict all parts for every word.

Human Evaluation We report human relevancy
judgments for the top-5 returned results from S-
Joint. On average, 56.2% were marked to be rele-
vant. This shows that S-Joint is performing better
than automatic numbers would indicate, confirming
our intuition that there is a one-to-many relationship
between a sentimental description and avatars. Sen-
timental descriptions, while having significant sig-
nal, are not exact. These results also indicate that
relying on automatic measures of accuracy that as-
sume a single reference avatar underestimates per-
formance. Figure 6 shows the top ranked results
returned by S-Joint for a sentimental description
where the model performs well.

8.3 Generation Results

Finally we evaluate three models for avatar genera-
tion: Random, SL-Overlap and S-Joint using auto-
matic measures and human evaluation.

Automatic Evaluation Table 4 presents results
for automatic evaluation. The Random baseline per-
forms badly, on average assigning items correctly to
less than 1 position in the generated avatar. The SL-
Overlap baseline improves, but still performs quite
poorly. The S-Joint model performs significantly
better, correctly guessing 2-3 items for each output
avatar. However, as we will see in the manual eval-
uation, many of the non-matching parts it produces
are still a good fit for the query.

Human Evaluation As before, there are many
reasonable avatars that could match as well as the
reference avatars. Therefore, we also evaluated gen-
eration with A/B tests, much like in Section 4. An-
notators were asked to judge which of two avatars
better matched a sentimental description. They
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pensive,confrontational; music,socializing; musician,bar tending,club owner; smart,cool.

Figure 6: A sentimental description paired with the highest ranked avatars found by S-Joint.

Model Overlap
Random 0.041
SL-Overlap 0.049
S-Joint 0.126

Table 4: Automatic generation evaluation results.
The item overlap metric is defined in Section 5.

Kappa Majority Random Sys.
SL-Overlap 0.20 0.25 0.34 0.32
S-Joint 0.52 0.90 0.07 0.81
Gamer 0.52 0.81 0.08 0.77

Table 5: Human evaluation of automatically gener-
ated avatars. Majority represents the percentage of
time the system output is preferred by a majority of
raters. Random and System (Sys.) indicate the per-
centage of time each was preferred.

could rate System A or System B as better, or re-
port that they were equal or that neither matched
the description. We consider two comparisons: SL-
Overlap vs. Random and S-Joint vs Random. Five
annotators performed each condition, rating 100 ex-
amples with randomly ordered avatars.

We report the results for human evaluation includ-
ing kappa, majority judgments, and a distribution
over judgments in Table 5. The SL-Overlap baseline
is indistinguishable from a random avatar. This con-
trasts with the ranking case, where this simple base-
line showed improvement, indicating that generation
is a much harder problem. Furthermore, agreement
is low; people felt the need to make a choice but

were not consistent.
We also see in Table 5 that people prefer the S-

Joint model outputs to random avatars as often as
they prefer gamer to random. While this does not
necessarily imply that S-Joint creates gamer-quality
avatars, it indicates substantial progress by learning
a mapping between literal and sentimental words.

Qualitative Results Table 6 presents the highest
and lowest weighted features for different sentimen-
tal query words. Figure 7 shows four descriptions
that were assigned high quality avatars.

In general, many of the weaker avatars had as-
pects of the descriptions but lacked such distinctive
overall looks. This was especially true when the
descriptions contained seemingly contradictory in-
formation. For example, one avatar was described
as being both nerdy and popular. We generated a
look that had aspects of both of these descriptions,
including a head that contained both conservative el-
ements (like glasses) and less conservative elements
(like crazy hair and earrings). However, the combi-
nation would not be described as nerdy or popular,
because of difficult to predict global interactions be-
tween the co-occurring words and items. This is an
important area for future work.

9 Conclusions

We explored how visual language, both literal and
sentimental, maps to the overall physical appearance
and style of virtual characters. While this paper fo-
cused on avatar design, our approach has implica-
tions for a broad class of natural language-driven
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Ambition; business,
fashion, success;

salesman; smooth,
professional.

Capable, confident, firm; heavy metal,
extreme sports, motorcycles; engineer,

mechanic, machinist; aggressive,
strong, protective.

Stressed, bored,
discontent; emo music;
works at a record store;

goth, dark, drab.

Happy, content, confident,
home, career, family,

secretary,student,
classy,clean,casual

Figure 7: Avatars automatically generated with the S-Joint model.

Sentiment positive features negative features
happi mouth:thick, mouth:smilei, mouth:make, mouth:open mouth:tight, mouth:emotionless, mouth:brownish, mouth:attract
gothic shoes:brown, shirt:black, pants:hot, shirt:band shirt:half, shirt:tight, pants:sexi, hair:brownish
retro eyebrows:men, eyebrows:large, hair:round, pants:light eyebrows:beauti, pants:side; eyebrows:trim, pants:cut
beach pants:yello, pants:half, nose:narrow, pants:white shirt:brown, shirt:side; shoes:long, pants:jean

Table 6: Most positive and negative features for a word stem. A feature is [position]:[literal word].

dialog scenarios. In many situations, a user may
be perfectly able to formulate a high-level descrip-
tion of their intent (“Make my resume look cleaner”
“Buy me clothes for a summer wedding,” or “Play
something more danceable”) while having little or
no understanding of the complex parameter space
that the underlying software must manipulate in or-
der to achieve this result.

We demonstrated that these high-level sentimen-
tal specifications can have a strong relationship to
literal aspects of a problem space and showed that
sentimental language is a concise, yet noisy, way
of specifying high level characteristics. Sentimen-
tal language is an unexplored avenue for improving
natural language systems that operate in situated set-
tings. It has the potential to bridge the gap between
lay and expert understandings of a problem domain.
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Abstract

The many differences between Dialectal Ara-
bic and Modern Standard Arabic (MSA) pose
a challenge to the majority of Arabic natural
language processing tools, which are designed
for MSA. In this paper, we retarget an exist-
ing state-of-the-art MSA morphological tag-
ger to Egyptian Arabic (ARZ). Our evalua-
tion demonstrates that our ARZ morphology
tagger outperforms its MSA variant on ARZ
input in terms of accuracy in part-of-speech
tagging, diacritization, lemmatization and to-
kenization; and in terms of utility for ARZ-to-
English statistical machine translation.

1 Introduction

Dialectal Arabic (DA) refers to the day-to-day na-
tive vernaculars spoken in the Arab World. DA
is used side by side with Modern Standard Arabic
(MSA), the official language of the media and edu-
cation (Holes, 2004). Although DAs are historically
related to MSA, there are many phonological, mor-
phological and lexical differences between them.
Unlike MSA, DAs have no standard orthographies
or language academies. Furthermore, different DAs,
such as Egyptian Arabic (henceforth, ARZ), Levan-
tine Arabic or Moroccan Arabic have important dif-
ferences among them, similar to those seen among
Romance languages (Holes, 2004; Abdel-Massih et
al., 1979). Most tools and resources developed for
natural language processing (NLP) of Arabic are de-
signed for MSA. Such resources are quite limited
when it comes to processing DA, e.g., a state-of-
the-art MSA morphological analyzer only has 60%
coverage of Levantine Arabic verb forms (Habash
and Rambow, 2006).

In this paper, we describe the process of retar-
geting an existing state-of-the-art tool for model-
ing MSA morphology disambiguation to ARZ, the
most commonly spoken DA. The MSA tool we
extend is MADA – Morphological Analysis and
Disambiguation of Arabic (Habash and Rambow,
2005). The approach used in MADA, which was
inspired by earlier work by Hajič (2000), disam-
biguates in context for every aspect of Arabic mor-
phology, thus solving all tasks in “one fell swoop”.
The disadvantage of the MADA approach is its de-
pendence on two complex resources: a morpholog-
ical analyzer for the language and a large collection
of manually annotated words for all morphological
features in the same representation used by the an-
alyzer. For ARZ, such resources have recently be-
come available, with the development of the CAL-
IMA ARZ morphological analyzer (Habash et al.,
2012b) and the release by the Linguistic Data Con-
sortium (LDC) of a large ARZ corpus annotated
morphologically in a manner compatible with CAL-
IMA (Maamouri et al., 2012a). In the work pre-
sented here, we utilize these new resources within
the paradigm of MADA, transforming MADA into
MADA-ARZ. The elegance of the MADA solution
makes this conceptually a simple extension.

Our evaluation demonstrates that our Egyptian
DA version of MADA, henceforth MADA-ARZ,
outperforms MADA for MSA on ARZ morpholog-
ical tagging and improves the quality of ARZ to En-
glish statistical machine translation (MT).

The rest of this paper is structured as follows:
Section 2 discusses related work. Section 3 presents
the challenges of processing Arabic dialects. Sec-
tion 4 outlines our approach. And Section 5 presents
and discusses our evaluation results.
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2 Related Work

There has been a considerable amount of work on
MSA morphological analysis, disambiguation, part-
of-speech (POS) tagging, tokenization, lemmatiza-
tion and diacritization; for an overview, see (Habash,
2010). Most solutions target specific problems, such
as diacritization (Zitouni et al., 2006), tokenization
or POS tagging (Diab et al., 2007). In contrast,
MADA provides a solution to all of these problems
together (Habash and Rambow, 2005).

Previous work on DA morphological tagging fo-
cused on creating resources, using noisy or in-
complete annotations, and using unsupervised/semi-
supervised methods. Duh and Kirchhoff (2005)
adopt a minimally supervised approach that only re-
quires raw text data from several DAs, as well as a
MSA morphological analyzer. They report a POS
accuracy of 70.9% on a rather coarse-grained POS
tagset (17 tags).

Al-Sabbagh and Girju (2012) describe a super-
vised tagger for Egyptian Arabic social networking
corpora trained using transformation-based learning
(Brill, 1995). They report 94.5% F-measure on to-
kenization and 87.6% on POS tagging. Their tok-
enization and POS tagsets are comparable to the set
used by the Arabic Treebank (ATB). We do not com-
pare to them since their data sets are not public.

Stallard et al. (2012) show that unsupervised
methods for learning DA tokenization can outper-
form MSA tokenizers on MT from Levantine Ara-
bic to English. We do not compare to them directly
since our work is on ARZ. However, we carry a sim-
ilar MT experiment in Section 5.

Mohamed et al. (2012) annotated a small corpus
of Egyptian Arabic for morphological segmentation
and learned segmentation models using memory-
based learning (Daelemans and van den Bosch,
2005). Their best system achieves a 91.90% accu-
racy on the task of morpheme-segmentation. We
compare to their work and report on their test set
in Section 5.

There are some other morphological analyzers for
DA. Kilany et al. (2002) worked on ARZ, but the
analyzer has very limited coverage. Their lexicon
was used as part of the development of CALIMA
(Habash et al., 2012b). Other efforts are not about

ARZ (Habash and Rambow, 2006; Salloum and
Habash, 2011).

Given the similarity between MSA and DA, there
has been some work on mapping DA to MSA to
exploit rich MSA resources (Chiang et al., 2006;
Abo Bakr et al., 2008; Salloum and Habash, 2011;
Salloum and Habash, 2013). Other researchers have
studied the value of simply combining DA and
MSA data, such as Zbib et al. (2012) for DA to En-
glish MT. In our approach, we target DA directly,
and we evaluate the use of additional MSA anno-
tated resources to our training in Section 5.

3 Arabic Dialect Challenges

General Arabic Challenges Arabic, as MSA or
DA, poses many challenges for NLP. Arabic is a
morphologically complex language which includes
rich inflectional morphology and a number of cli-
tics. For example, the MSA word Aî

	
EñJ.

�
JºJ
�ð wsyk-

tbwnhA (wa+sa+ya-ktub-uwna+hA)1 ‘and they will
write it [lit. and+will+they-write-they+it]’ has two
proclitics, one circumfix and one pronominal en-
clitic. Additionally, Arabic has a high degree of
ambiguity resulting from its diacritic-optional writ-
ing system and common deviation from spelling
standards (e.g., Alif and Ya variants) (Buckwalter,
2007). The Standard Arabic Morphological Ana-
lyzer for (SAMA) (Graff et al., 2009) produces 12
analyses per MSA word on average.

Differences between ARZ and MSA As men-
tioned above, most tools developed for MSA cannot
be expected to perform well on ARZ. This is due
to the numerous differences between the two vari-
ants. Lexically, the number of differences is quite
significant. For example, ARZ �

è
	Q�
K. Q£ Trbyzh̄ ‘table’

corresponds to MSA �
éËðA£ TAwlh̄. Phonologically,

there are many important differences which relate
to orthography in DA, e.g., the MSA consonant �

H

/θ/ is pronounced as /t/ in ARZ (or /s/ in more re-
cent borrowings from MSA); for a fuller discussion,
see (Habash, 2010; Habash et al., 2012a). Examples
of morphological differences include changes in the

1Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007): (in alphabetical or-
der) AbtθjHxdðrzsšSDTĎςγfqklmnhwy and the additional sym-
bols: ’ Z, Â


@, Ǎ @


, Ā

�
@, ŵ 

ð', ŷ Zø', h̄ �
è, ý ø.
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morpheme form, e.g., the MSA future proclitic +�

sa+ appears in ARZ as +ë ha+. There are some
morphemes in ARZ that do not exist in MSA such
as the negation circum-clitic �

�+ . . . + AÓ mA+ . . . +š.
And there are MSA features that are absent from
ARZ, most notably case and mood.

Since there are no orthographic standards, ARZ
words may be written in a variety of ways reflect-
ing different writing rules, e.g., phonologically or
etymologically. A conventional orthography for Di-
alectal Arabic (CODA) has been proposed and used
for writing ARZ in the context of NLP applications
(Habash et al., 2012a; Al-Sabbagh and Girju, 2012;
Eskander et al., 2013). Finally, MSA and ARZ co-
exist and are often used interchangeably, especially
in more formal settings. The CALIMA morpholog-
ical analyzer we use addresses several of these issues
by modeling both ARZ and MSA together, includ-
ing a limited set of inter-dialect morphology phe-
nomena, and by mapping ARZ words into CODA
orthography internally while accepting a wide range
of spelling variants.

4 Approach

4.1 The MADA Approach

MADA is a method for Arabic morphological anal-
ysis and disambiguation (Habash and Rambow,
2005; Roth et al., 2008). MADA uses a morpholog-
ical analyzer to produce, for each input word, a list
of analyses specifying every possible morphological
interpretation of that word, covering all morphologi-
cal features of the word (diacritization, POS, lemma,
and 13 inflectional and clitic features). MADA then
applies a set of models (support vector machines
and N-gram language models) to produce a predic-
tion, per word in-context, for different morpholog-
ical features, such as POS, lemma, gender, number
or person. A ranking component scores the analy-
ses produced by the morphological analyzer using a
tuned weighted sum of matches with the predicted
features. The top-scoring analysis is chosen as the
predicted interpretation for that word in context.

4.2 Extending MADA into MADA-ARZ

Adjusting MADA to handle DA requires a number
of modifications. The most significant change is re-

placing the MSA analyzer SAMA with the ARZ
analyzer CALIMA to address the differences out-
lined in Section 3. In addition, new feature predic-
tion models are needed; these are trained using ARZ
data sets annotated by the LDC (Maamouri et al.,
2006; Maamouri et al., 2012b). The data sets were
not usable as released due to numerous annotation
inconsistencies and differences from CALIMA, as
well due to gaps in CALIMA. We synchronized the
annotations with the latest version of CALIMA fol-
lowing a technique described by Habash and Ram-
bow (2005). The result of this synchronization step
is the data we use in this study (for training, de-
velopment and testing). Our synchronized annota-
tions fully match the LDC annotations in 90% of the
words (in full morphological tag). We performed a
manual analysis on randomly chosen 100 words that
did not fully match. The choice we made is cor-
rect or acceptable in 55% of the cases of mismatch
with the LDC annotation, which means that the our
choice is accurate in over 95% of all cases.

Some of the original MADA features (which
were needed for MSA) are not used in ARZ and
so are dropped in MADA-ARZ; these features are
case, mood, the question-marking proclitic, state
and voice. Additional ARZ feature values have been
added, e.g., to handle the progressive particle and
future marker, among others. These are provided
by CALIMA and are classified and selected by
MADA-ARZ. In our current implementation, ARZ
features that are not present in MSA, such as the
negation and indirect-object enclitics, are not classi-
fied by MADA-ARZ classifiers, but since they are
provided by CALIMA they can be selected by the
whole MADA-ARZ system.

5 Evaluation

We evaluate MADA-ARZ intrinsically — in terms
of performance on morphological disambiguation
— and extrinsically in the context of MT.

5.1 POS Tagging, Diacritization,
Lemmatization and Segmentation

Experimental Settings We use two sets of anno-
tated data from the LDC: ATB-123, which includes
parts 1, 2 and 3 of the MSA Penn Arabic Treebank
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Development Test
MADA MADA-ARZ MADA MADA-ARZ

Train Data MSA ARZ ALL MSA ARZ ALL

Morph Tag 35.8 84.0 77.3 35.7 84.5 75.5
Penn POS 77.5 89.6 90.2 79.0 90.0 90.1
MADA POS 80.7 90.8 91.3 82.1 91.1 91.4
Diacritic 31.3 82.6 72.9 32.2 83.2 72.2
Lemma 64.0 85.2 81.6 67.1 86.3 82.8
Full 26.2 74.3 65.4 27.0 75.4 64.7
ATB Segmentation 90.6 97.4 97.6 90.5 97.4 97.5

Table 1: Evaluation metrics on the ATB-ARZ development and test sets. The best results are bolded. We compare
MADA and MADA-ARZ with different training data conditions. Definitions of metrics are in Section 5.1. MSA
training data is ATB-123. ARZ training data is ATB-ARZ. ALL training data is ATB-123 plus ATB-ARZ.

(Maamouri et al., 2004); and ATB-ARZ, the Egyp-
tian Arabic Treebank (parts 1-5) (Maamouri et al.,
2012a). For ATB-123 training, we use all of parts 1
and 2 plus the training portion of ATB-3 (as defined
by Zitouni et al. (2006)); for development and test,
we split Zitouni et al. (2006)’s devtest set into two.
We sub-divide ATB-ARZ into development, train-
ing, and test sets (roughly a 10/80/10 split). The
ATB-ARZ training data has 134K words, and the
ATB-123 training data has 711K words.

We evaluate two systems. We used the latest re-
lease of MADA for MSA (v3.2), trained on ATB-
123 (MSA), as our baseline. For MADA-ARZ,
we compare two training settings: using ATB-ARZ
(ARZ) and combining ATB-ARZ with ATB-123
(ALL). We present our results on the ATB-ARZ
development and blind test sets (21.1K words and
20.4K words). Tuning for MADA-ARZ was done
using a random 10% of the ATB-ARZ training data,
which was later integrated back into the training set.

Metrics We use several evaluation metrics to mea-
sure the effectiveness of MADA-ARZ. Morph Tag
refers to the accuracy of correctly predicting the full
CALIMA morphological tag (i.e., not the diacritics
or the lemma). Penn POS and MADA POS are also
tag accuracy metrics. Penn POS, also known as the
Reduced Tag Set, is a tag set reduction of the full
Arabic morphological tag set, which was proposed
for MSA (Kulick et al., 2006; Diab, 2007; Habash,
2010); since it retains no MSA-specific morpholog-

ical features, it also makes sense for ARZ. MADA
POS is the small POS tag set (36 tags) MADA uses
internally. Diacritic and Lemma are the accura-
cies of the choice of diacritized form and Lemma,
respectively. Full is the harshest metric, requiring
that every morphological feature of the chosen anal-
ysis be correct. Finally, ATB Segmentation is the
percentage of words with correct ATB segmentation
(splitting off all clitics except for the determiner +È@

Al+).

Results The results are shown in Table 1.
MADA-ARZ performs much better than the
MADA baselines in all evaluation metrics. Compar-
ing the two MADA-ARZ systems, it is evident that
adding MSA data (ATB123) results in slightly better
performance only for the Penn POS, MADA POS,
and ATB Segmentation metrics. Including the MSA
data results in accuracy reductions for the other met-
rics, but the resulting system still outperforms the
MADA MSA baseline in all cases. The results are
consistent for development and blind test.

The CMUQ-ECA Test Set Mohamed et al.
(2012) reported on the task of ARZ raw orthogra-
phy morph segmentation (determining the morphs
in the raw word). The CMUQ-ECA test data
comprised 36 ARZ political comments and jokes
from the Egyptian web site www.masrawy.com.
The set contains 2,445 words including punctua-
tion. Their best system gets a 91.9% word-level ac-
curacy. Since MADA-ARZ modifies the spelling
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Tokenization OOV BLEU METEOR TER

Punct 9.2 22.1 27.2 63.2
MADA ATB 5.8 24.4 29.6 60.5
MADA-ARZ ATB 4.9 25.2 29.9 59.4

Table 2: Machine translation results on the test set. “Punct” refers to the baseline which only tokenizes at punctuation.

of the word when it maps into CODA, we needed
a manual analysis where no exact match with the
gold occurs (11.8% of the time). We determined
MADA-ARZ’s accuracy on their test set for morph-
segmentation to be 93.2%.

5.2 Egyptian Arabic to English MT

MT Experimental Settings We use the open-
source Moses toolkit (Koehn et al., 2007) to build
a phrase-based SMT system. We use MGIZA++
for word alignment (Gao and Vogel, 2008). Phrase
translations of up to 8 words are extracted in the
phrase table. We use SRILM (Stolcke, 2002) with
modified Kneser-Ney smoothing to build two 4-
gram language models. The first model is trained
on the English side of the bitext, while the other
is trained on the English Gigaword data. Feature
weights are tuned to maximize BLEU (Papineni et
al., 2002) on a development set using Minimum Er-
ror Rate Training (Och, 2003). We perform case-
insensitive evaluation in terms of BLEU , METEOR
(Banerjee and Lavie, 2005) and TER (Snover et al.,
2006) metrics.

Data We trained on DA-English parallel data
(Egyptian and Levantine) obtained from several
LDC corpora. The training data amounts to 3.8M
untokenized words on the Arabic side. The dev set,
used for tuning the parameters of the MT system,
has 15,585 untokenized Arabic words. The test set
has 12,116 untokenized Arabic words. Both dev and
test data contain two sets of reference translations.
The English data is lower-cased and tokenized using
simple punctuation-based rules.

Systems We build three translation systems which
vary in tokenization of the Arabic text. The first
system applies only simple punctuation-based rules.
The second and third systems use MADA and
MADA-ARZ, respectively, to tokenize the Arabic

text in the ATB tokenization scheme (Habash and
Sadat, 2006). The Arabic text is also Alif/Ya nor-
malized.

Results The MT results are in Table 2, which also
shows the percentage of out-of-vocabulary (OOV)
words – test words not in the training data. MADA-
ARZ delivers the best translation performance ac-
cording to all metrics. All MADA-ARZ improve-
ments over MADA are statistically significant at
the .01 level (except in the case of METEOR). All
improvements over Punct by MADA and MADA-
ARZ are also statistically significant. For BLEU
scores, we observe 3.1% absolute improvement to
Punct (14% relative), and 0.8% absolute improve-
ment to MADA (3.3% relative). In addition to bet-
ter morphological disambiguation, MADA-ARZ
reduces the OOV ratio (16% relative to MADA),
which we suspect contributes to the observed im-
provements in MT quality.

6 Conclusion and Future Work

We have presented MADA-ARZ, a system for
morphological tagging of ARZ. We have shown
that it outperforms an state-of-the-art MSA tagger
(MADA) on ARZ text, and that it helps ARZ-to-
English machine translation more than MADA.

In the future, we intend to perform further feature
engineering to improve the results of MADA-ARZ,
and extend the system to handle other DAs.
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Abstract 

We present a novel, structured language 
model - Supertagged Dependency Language 
Model to model the syntactic dependencies 
between words. The goal is to identify 
ungrammatical hypotheses from a set of 
candidate translations in a MT system 
combination framework and help select the 
best translation candidates using a variety of 
sentence-level features. We use a two-step 
mechanism based on constituent parsing and 
elementary tree extraction to obtain supertags 
and their dependency relations. Our 
experiments show that the structured language 
model provides significant improvement in 
the framework of sentence-level system 
combination. 

1 Introduction 

In recent years, there has been a burgeoning 
interest in incorporating syntactic structure into 
Statistical machine translation (SMT) models (e..g, 
Galley et al., 2006; DeNeefe and Knight 2009; 
Quirk et al., 2005). In addition to modeling 
syntactic structure in the decoding process, a 
methodology for candidate translation selection 
has also emerged. This methodology first generates 
multiple candidate translations followed by 
rescoring using global sentence-level syntactic 
features to select the final translation. The 
advantage of this methodology is that it allows for 
easy integration of complex syntactic features that 
would be too expensive to use during the decoding 

process. The methodology is usually applied in two 
scenarios: one is as part of an n-best reranking 
(Och et al., 2004; Hasan et al., 2006), where n-best 
candidate translations are generated through a 
decoding process. The other is translation selection 
or reranking (Hildebrand and Vogel 2008; 
Callison-Burch et al., 2012), where candidate 
translations are generated by different decoding 
processes or different decoders.  

This paper belongs to the latter; the goal is to 
identify ungrammatical hypotheses from given 
candidate translations using grammatical 
knowledge in the target language that expresses 
syntactic dependencies between words. To achieve 
that, we propose a novel Structured Language 
Model (SLM) - Supertagged Dependency 
Language Model (SDLM) to model the syntactic 
dependencies between words. Supertag (Bangalore 
and Joshi, 1999) is an elementary syntactic 
structure based on Lexicalized Tree Adjoining 
Grammar (LTAG). Traditional supertagged n-gram 
LM predicts the next supertag based on the 
immediate words to the left with supertags, so it 
can not explicitly model long-distance dependency 
relations. In contrast, SDLM predicts the next 
supertag using the words with supertags on which 
it syntactically depend, and these words could be 
anywhere and arbitrarily far apart in a sentence. A 
candidate translation’s grammatical degree or 
“fluency” can be measured by simply calculating 
the SDLM likelihood of the supertagged 
dependency structure that spans the entire sentence. 

To obtain the supertagged dependency structure, 
the most intuitive way is through a LTAG parser 
(Schabes et al., 1988). However, this could be very 

433



slow as it has time complexity of O(n6).  Instead 
we propose an alternative mechanism in this paper: 
first we use a constituent parser1 of O(n3) ~ O(n5) 
to obtain the parse of a sentence, and then we 
extract elementary trees with dependencies from 
the parse in linear time.  Aside from the 
consideration of time complexity, another 
motivation of this two-step mechanism is that 
compared with LTAG parsing, the mechanism is 
more flexible for defining syntactic structures of 
elementary trees for our needs. Because those 
structures are defined only within the elementary 
tree extractor, we can easily adjust the definition of 
those structures within the extractor and avoid 
redesigning or retraining our constituent parser. 

We experiment with sentence-level translation 
combination of five different translation systems; 
the goal is for the system to select the best 
translation for each input source sentence among 
the translations provided by the five systems. The 
results show a significant improvement of 1.45 
Bleu score over the best single MT system and 
0.72 Bleu score over a baseline sentence-level 
combination system of using consensus and n-
gram LM. 

2 Related Work  

Och et al., (2004) investigated various syntactic 
feature functions to rerank the n-best candidate 
translations. Most features are syntactically 
motivated and based on alignment information 
between the source sentence and the target 
translation. The results are rather disappointing. 
Only the non-syntactic IBM model 1 yielded 
significant improvement. All other tree-based 
feature functions had only a very small effect on 
the performance. 

In contrast to (Och et al., 2004)’s bilingual 
syntax features, Hasan et al., (2006) focused on 
monolingual syntax features in n-best reranking. 
They also investigated the effect of directly using 
the log-likelihood of the output of a HMM-based 
supertagger, and found it did not improve 
performance significantly. It is worth noticing that 
this log-likelihood is based on supertagged n-gram 

                                                           
1  Stanford parser (http://nlp.stanford.edu/software/lex-

parser.shtml). We use its PCFG version of O(n3) for SDLM 
training of part of Gigaword in addition to Treebank and use 
its factor version of O(n5) to calculate the SDLM likelihood of 
translations. 

LM, which is one type of class-based n-gram LM, 
so it does not model explicit syntactic 
dependencies between words in contrast to the 
work we describe in this paper. Hardmeier et al., 
(2012) use tree kernels over constituency and 
dependency parse trees for either the input or 
output sentences to identify constructions that are 
difficult to translate in the source language, and 
doubtful syntactic structures in the output language. 
The tree fragments extracted by their tree kernels 
are similar to our elementary trees but they only 
regard them as the individual inputs of support 
vector machine regression while binary relations of 
our elementary trees are considered in a 
formulation of a structural language model. 

Outside the field of candidate translation 
selection, Hassan et al., (2007) proposed a phrase-
based SMT model that integrates supertags into the 
target side of the translation model and the target 
n-gram LM. Two kinds of supertags are employed: 
those from LTAG and Combinatory Categorial 
Grannar (CCG), and both yield similar 
improvements. They found that using both or 
either of the supertag-based translation model and 
supertagged LM can achieve significant 
improvement. Again, the supertagged LM is a 
class-based n-gram LM and does not model 
explicit syntactic dependencies during decoding. 

In the field of MT system combination, word-
level confusion network decoding is one of the 
most successful approaches (Matusov et al., 2006; 
Rosti et al., 2007; He et al. 2008; Karakos et al. 
2008; Sim et al. 2007; Xu et al. 2011). It is capable 
of generating brand new translations but it is 
difficult to consider more complex syntax such as 
dependency LM during decoding since it adds one 
word at a time while a dependency based LM must 
parse a complete sentence. Typically, a confusion 
network approach selects one translation as the 
best and uses this as the backbone for the 
confusion network. The work we present here 
could provide a more sophisticated mechanism for 
selecting the backbone. Alternatively, one can 
enhance confusion network models by 
collaborating with a sentence-level combination 
model which uses complex syntax to re-rank n-best 
outputs of a confusion network model. This kind of 
collaboration is one of our future works. 
 
 

434



3 LTAG and Supertag 

LTAG (Joshi et al., 1975; Schabes et al., 1988) is a 
formal tree rewriting formalism, which consists of 
a set of elementary trees, corresponding to minimal 
linguistic structures that localize dependencies, 
including long-distance dependencies, such as 
predicate-argument structure. Each elementary tree 
is associated with at least one lexical item on its 
frontier. The lexical item associated with an 
elementary tree is called the anchor in that tree; an 
elementary tree thus serves as a description of 
syntactic constraints of the anchor. The elementary 
syntactic structures of elementary trees are called 
supertags (Bangalore and Joshi, 1999), in order to 
distinguish them from the standard part-of-speech 
tags. Some examples are provided in figure 1 (b).

Elementary trees are divided into initial and 
auxiliary trees. Initial trees are those for which all 
non-terminal nodes on the frontier are substitutable. 
Auxiliary trees are defined as initial trees, except 
that exactly one frontier, non-terminal node must 
be a foot node, with the same label as the root node. 
Two operations - substitution and adjunction - are 
provided in LTAG to combine elementary trees 
into a derived tree. 

4 SDLM 

Our goal is to use SDLM to calculate the 
grammaticality of translated sentences. We do this 
by calculating the likelihood of the supertagged 
dependency structure that spans the entire sentence 
using SDLM. To obtain the supertagged 
dependency linkage, the most intuitive way is 
through a LTAG parser (Schabes et al., 1988). 
However, this could be very slow as it has time 
complexity of O(n6). Another possibility is to 
follow the procedure in (Joshi and Srinivas 1994, 
Bangalore and Joshi, 1999): use a HMM-based 
supertagger to assign words with supertags, 
followed by derivation of a shallow parse in linear 
time based on only the supertags to obtain the 
dependencies. But since this approach uses only 
the local context, in (Joshi and Srinivas 1994), they 
also proposed another greedy algorithm based on 
supertagged dependency probabilities to gradually 
select the path with the maximum path probability 
to extend to the remaining directions in the 
dependency list.  

In contrast to the LTAG parsing and 
supertagging-based approaches, we propose an 
alternative mechanism: first we use a state-of-the-
art constituent parser to obtain the parse of a 
sentence, and then we extract elementary trees with 
dependencies from the parse to assign each word 
with an elementary tree. The second step is similar 
to the approach used in extracting elementary trees 
from the TreeBank (Xia, 1999; Chen and Vijay-
Shanker, 2000).  

4.1 Elementary Tree Extraction 

We use an elementary tree extractor, a 
modification of (Chen and Vijay-Shanker, 2000), 
to serve our purpose. Heuristic rules were used to 
distinguish arguments from adjuncts, and the 
extraction process can be regarded as a process that 
gradually decomposes a constituent parse to 
multiple elementary trees and records substitutions 
and adjunctions. From elementary trees, we can 
obtain supertags by only considering syntactic 
structure and ignoring anchor words. Take the 
sentence – “The hungry boys ate dinner” as an 
example; the constituent parse and extracted 
supertags are shown in Figure 1. 

In Figure 1 (b), dotted lines represent the 
operations of substitution and adjunction. Note that 
each word in a translated sentence would be 
assigned exactly one elementary syntactic structure 
which is associated with a unique supertag id for 
the whole corpus. Different anchor words could 
own the same elementary syntactic structure and 
would be assigned the same supertag id, such as 
“ 1α  ” for “boys” and “dinner”. For our corpus, 
around 1700 different elementary syntactic 
structures (1700 supertag ids) are extracted. 

 
 

 
 

Figure 1. (a) Parse of “The hungry boys ate dinner”          
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Figure 1. (b) Extracted elementary trees 

4.2 Model  

Bangalore and Joshi (1999) gave a concise 
description for dependencies between supertags: 
“A supertag is dependent on another supertag if the 
former substitutes or adjoins into the latter”. 
Following this description, for the example in 
Figure 1 (b), supertags of “the” and “hungry” are 
dependent on the supertag of “boys”, and supertags 
of “boys” and “dinner” are dependent on the 
supertag of “ate”. These dependencies between 
supertags also provide the dependencies between 
anchor words.  

Since the syntactic constraints for each word in 
its context are decided and described through its 
supertag, the likelihood of SDLM for a sentence 
could also be regarded as the degree of violations 
of the syntactic constraints on all words in the 
sentence. Consider a sentence S = w1 w2 …wn with 
corresponding supertags T = t1 t2 …tn. We use di=j 
to represent the dependency relations for words or 
supertags. For example, d3 = 5 means that w3 
depends on w5 or t3 depends on t5. We propose five 
different bigram SDLM as follows and evaluate 
their effects in section 5. 
 
 
 
 
 

 
 
 
               
 
 

SDLM model (2) is the approximation form of 
model (1); model (3) and (4) are individual terms 
of model (2); model (5) models word dependencies 
based on elementary tree dependencies. The 
estimation of the probabilities is done using 
maximum likelihood estimations with Laplace 

smoothing.  Take Figure 1 (b) as an example; if 
using model (1), the SDLM likelihood of “The 
hungry boys ate dinner” is 
 

)|2,(*)2,|1,(
*)2,|1,(*)1,|2,(*)1,|1,(

rootatePatedinnerP
ateboysPboyshungryPboystheP

ααα
αααβαβ

 

In our experiment on sentence-level translation 
combination, we use a log-linear model to integrate 
all features including SDLM models. The 
corresponding weights are trained discriminatively 
for Bleu score using Minimum Error Rate Training 
(MERT). 

5 Experiment  

Our experiments are conducted and reported on the 
Chinese-English dataset from NIST 2008 
(LDC2010T01). It consists of four human 
reference translations and corresponding machine 
translations for the NIST Open MT08 test set, 
which consists of newswire and web data. The test 
set contains 105 documents with 1312 sentences 
and output from 23 machine translation systems. 
Each system provides the top one translation 
hypothesis for every sentence. We further divide 
the NIST Open MT08 test set into the tuning set 
and test set for our experiment of sentence-level 
translation combination. We divided the 1312 
sentences into tuning data of 524 sentences and the 
test set of 788 sentences. Out of 23 MT systems, 
we manually select the top five MT systems as our 
MT systems for our combination experiment. 

In terms of SDLM training, since the size of 
TreeBank-extracted elementary trees is much 
smaller compared to most practical n-gram LMs 
trained from the Gigaword corpus, we also extract 
elementary trees from automatically-generated 
parses of part of the Gigaword corpus (around one-
year newswire of “afp_eng” in Gigaword 4) in 
addition to TreeBank-extracted elementary trees. 

5.1 Feature Functions 

For the baseline combination system, we use the 
following feature functions in the log-linear model 
to calculate the score of a system translation. 
 

 Sentence consensus based on Translation Edit 
Ratio (TER) 

 Gigaword-trained 3-gram LM and word 
penalty 
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For testing SDLM, in additional to all features 
that the baseline combination system uses, we add 
single or multiple SDLM models in the log-linear 
model, and each SDLM model has its own weight. 

5.2 Result 

From table 1, we can see that the combination of 
SDLM model 3, 4 and 5 yields the best 
performance, which is better than the best MT 
system by Bleu of 1.45, TER of 0.67 and 
METEOR of 1.25, and also better than the baseline 
combination system by Bleu of 0.72, TER of 0.25 
and METEOR of 0.44. Compared with SDLM 
model 5, which represents a type of word 
dependency LM without labels, the results show 
that adding appropriate syntactic “labels” (here, 
they are “supertags”) on word dependencies brings 
benefits. 
 

 
Table 1. Result of Sentence-level Translation Combination 

6 Conclusion  

In this paper we presented Supertagged 
Dependency Language Model for explicitly 
modeling syntactic dependencies of the words of 
translated sentences. Our goal is to select the most 
grammatical translation from candidate translations.  
To obtain the supertagged dependency structure of 
a translation candidate, a two-step mechanism 
based on constituent parsing and elementary tree 
extraction is also proposed. SDLM shows its 
effectiveness in the scenario of translation 
selection.  

There are several avenues for future work: we 
have focused on bigram dependencies in our 
models; extension to more than two dependent 
elementary trees is straightforward. It would also 
be worth investigating the performance of using 
our sentence-level model to re-rank n-best outputs 
of a confusion network model. And in terms of 
applications, SDLM can be directly applied to 

many other NLP tasks, such as speech recognition 
and natural language generation. 
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Abstract

We report the results of our work on automat-
ing the transliteration decision of named en-
tities for English to Arabic machine trans-
lation. We construct a classification-based
framework to automate this decision, evalu-
ate our classifier both in the limited news and
the diverse Wikipedia domains, and achieve
promising accuracy. Moreover, we demon-
strate a reduction of translation error and
an improvement in the performance of an
English-to-Arabic machine translation sys-
tem.

1 Introduction

Translation of named entities (NEs) is important
for NLP applications such as Machine Translation
(MT) and Cross-lingual Information Retrieval. For
MT, NEs are major subset of the out-of-vocabulary
terms (OOVs). Due to their diversity, they cannot
always be found in parallel corpora, dictionaries or
gazetteers. Thus, state-of-the-art of MT needs to
handle NEs in specific ways. For instance, in the
English-Arabic automatic translation example given
in Figure 1, the noun ”North” has been erroneously
translated to ” �

éJ
ËAÒ
�

�Ë@ /Al$mAlyp ” (indicating the
north direction in English) instead of being translit-
erated to ” �

HPñ
	
K / nwrv”.

As shown in Figure 1, direct translation of in-
vocabulary terms could degrade translation quality.
Also blind transliteration of OOVs does not neces-
sarily contribute to translation adequacy and may ac-
tually create noisy contexts for the language model
and the decoder.

English Input: Dudley North was an English merchant.

SMT output: .
�
éK


	Q�
Êm.
�

	
'B


@ Qk. A
�
K

�
éJ
ËAÒ

�
�Ë@ ú



ÍXðX

	
àA¿

kAn dwdly Al$mAlyp tAjr AlInjlyzyp.

Correct Translation: . ø



	Q�
Êm.
�

	
' @


Qk. A
�
K

�
HPñ

	
K ú



ÍXðX

	
àA¿

kAn dwdly nwrv tAjr Injlyzy.

Figure 1: Example of a NE translation error.

An intelligent decision between translation and
transliteration should use semantic and contextual
information such as the type of the named-entity
and the surrounding terms. In this paper, we con-
struct and evaluate a classification-based framework
to automate the translation vs. transliteration deci-
sion. We evaluate our classifier both in the limited
news and diverse Wikipedia domains, and achieve
promising accuracy. Moreover, we conduct an ex-
trinsic evaluation of the classifier within an English
to Arabic MT system. In an in-domain (news) MT
task, the classifier contributes to a modest (yet sig-
nificant) improvement in MT quality. Moreover, for
a Wikipedia translation task, we demonstrate that
our classifier can reduce the erroneous translation of
60.5% of the named entities.

In summary our contributions are: (a) We au-
tomatically construct a bilingual lexicon of NEs
paired with the transliteration/translation decisions
in two domains.1 (b) We build a binary classi-
fier for transliteration and translation decision with
a promising accuracy (c) We demonstrate its utility

1The dataset can be found at
http://www.qatar.cmu.edu/˜behrang/NETLexicon
.
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within an MT framework.

2 Learning when to transliterate

We model the decision as a binary classification at
the token level. A token (within a named-entity)
gets translation or transliteration label. In ”Dudley
North” and ”North London”, our classifier is ex-
pected to choose transliteration of ”North” in the
former case, as opposed to translation in the latter.
The binary decision needs to use a rich set of local
and contextual features. We use the Support Vector
Machines as a robust framework for binary classifi-
cation using a set of interdependent features.2 We
build two classifiers: (a) Classifier Cnews, trained
on a large set of distinct NEs extracted from news-
related parallel corpora; and (b) Classifier Cdiverse,
trained on a combination of the news related NEs
and a smaller set of diverse-topic NEs extracted
from Wikipedia titles. We evaluate the two classi-
fiers in both news and the diverse domains to ob-
serve the effects of noise and domain change.

2.1 Preparing the labeled data

Our classifier requires a set of NEs with token-level
gold labels. We compile such data from two re-
sources: We heuristically extract and label parallel
NEs from a large word aligned parallel corpus and
we use a lexicon of bilingual NEs collected from
Arabic and Wikipedia titles. Starting with a word
aligned parallel corpus, we use the UIUC NE tag-
ger (Ratinov and Roth, 2009) to tag the English
sentences with four classes of NEs: Person (PER),
Location (LOC), Organization (ORG) and Miscella-
neous (MISC). Furthermore, we use the word align-
ments to project and collect the span of the asso-
ciated Arabic named-entities. To reduce the noisy
nature of word alignments, we designed a procedure
to clean up the noisy Arabic NE spans by POS ver-
ification, and heuristically filtering impossible items
(e.g. verbs). This results in a bilingual lexicon of
about 57K named-entity pairs. The distribution of
NEs categories is reported in Table 1.

To train and evaluate the Cdiverse classifier, we
expand our labeled data with Wikipedia NEs us-
ing the cross-lingual hyperlinks. Wikipedia article
titles often correspond to NEs (Kazama and Tori-

2We use the LIBSVM package (Chang and Lin, 2011).

PER LOC ORG MISC
News/57K 43.0% 10.0% 40.0% 7.0%
Wiki/4K 73.0% 19.0% 2.5% 5.5%

Table 1: Distribution of the four NE categories used in
57K News and 4K Wiki datasets.

sawa, 2007) and have been already used in different
works for NEs recognition (Nothman et al., 2013)
and disambiguation (Cucerzan, 2007). We improve
the Arabic-English Wikipedia title lexicon of Mo-
hit et al. (2012) and build a Wikipedia exclusive
lexicon with 4K bilingual entities. In order to test
the domain effects, our lexicon includes only NEs
which are not present in the parallel corpus. The
statistics given in Table 1 demonstrate different na-
ture of the labeled datasets. The two datasets were
labeled semi-automatically using the transliteration
similarity measure (Frscore) proposed by Freeman et
al. (2006), a variant of edit distance measuring the
similarity between an English word and its Arabic
transliteration. In our experiments, English tokens
having an Frscore > 0.6 are considered as translit-
eration, others having Frscore < 0.5 as transla-
tion. These thresholds were determined after tuning
with a held out development set. For tokens having
Frscore between 0.5 and 0.6, the decision is not ob-
vious. To label these instances (around 5K unique
tokens), we manually transliterate them using Mi-
crosoft Maren tool.3 We again compute the Frscore

between the obtained transliteration, in its Buckwal-
ter form and the corresponding English token and
use the same threshold to distinguish between the
two classes. Some examples of NEs and their ap-
propriate classes are presented in Table 2.

Transliteration Translation
Minnesota ↔ A

�
Kñ��


	
JJ
Ó/mynyswta : 0.77 Agency ↔ �

éËA¿ð/wkAlp : 0.33

Fluke ↔ ¼ñÊ
	
¯/flwk : 0.57 Islamic ↔ �

éJ
ÓC�B@/AlAslAmyp : 0.55

Table 2: Examples of NEs labeled using Freeman Score.

2.2 Classification Features
We use a total of 32 features selected from the fol-
lowing classes:

Token-based features: These consist of several
features based on the token string and indicate

3http://afkar.microsoft.com/en/maren
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whether the token is capital initial, composed en-
tirely of capital letters, ends with a period (such
as Mr.), contains a digit or a Latin number (e.g.
Muhammad II) or contains punctuation marks. The
string of the token is also added as a feature. We
also add the POS tag, which could be a good indica-
tor for proper nouns that should mainly be translit-
erated. We also check if the token is a regular noun
in the WORDNET (Fellbaum, 1998) which increases
its chance of being translated as opposed to translit-
erated.

Semantic features: These features mainly indi-
cate the NE category obtained using an NE tag-
ger. We also define a number of markers of person
(such as Doctor, Engineer, etc.) and organization
(such as Corp.) names. We used the list of mark-
ers available at: http://drupal.org/node/
1439292, that we extended manually.

Contextual features: These features are related
to the token’s local context within the NE. These
include information about the current token’s sur-
rounding tokens, its relative position in the NE (be-
ginning, middle or end). Another feature represents
the length of the NE in number of tokens.

2.3 Experiments
We train two classifiers and tune their parameters us-
ing a held out development set of 500 NEs drawn
randomly from the news parallel corpus. We use 55k
NEs from the same corpus to train the Cnews clas-
sifier. Furthermore, we train the Cdiverse classifier
cumulatively with the 55K news NEs and another
4600 NEs from Wikipedia titles.

The classifiers are evaluated on three different
datasets: TestNews which consists of 2K of NEs
selected randomly from the news corpus, TestWiki

consisting of 1K NEs extracted from the Wikipedia
and TestCombination, an aggregation of the two pre-
vious sets. We manually reviewed the labels of these
test sets and fixed any incorrect labels. Table 3 com-
pares the accuracy of the two classifiers under dif-
ferent training and test data settings. Starting with
a majority class baseline, our classifiers achieve a
promising performance in most settings. The major-
ity class for both classifiers is the translation which
performs as a baseline approach with an accuracy
equal to the distribution of the two classes. We also

TestNews TestWiki TestCombination

Baseline 56.70 57.09 56.89
Cnews 90.40 84.10 88.64

Cdiverse 90.42 86.00 89.18

Table 3: Accuracy results for the two classifiers and the
baseline on the three test datasets

observe that the addition of a small diverse training
set in Cdiverse provides a relatively large improve-
ment (about 2%) when tested on Wikipedia. Fi-
nally, Figure 2 illustrates the contribution of differ-
ent classes of features on our diverse classifier (eval-
uated on TestWiki). We observe a fairly linear rela-
tionship between the size of the training data and the
accuracy. Furthermore, we observe that the features
describing the category of the NE are more impor-
tant than the token’s local context. For example, in
the case of ”Dudley North” and ”North London”, the
most effective feature for the decision is the category
of the named entities.
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81

86

All \Token \Context \Semantic

# of examples in the train set
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y

Figure 2: Learning curves obtained on Wiki dataset by
removing features individually.

3 Extrinsic MT evaluation

We evaluate the effects of the classifier on an En-
glish to Arabic statistical MT system. Our first eval-
uation focuses on the utility of our classifier in pre-
venting erroneous translation of NEs which need to
be transliterated. In the following experiments we
use Cnews classifier. In order to experiment with a
diverse set of NEs, we conducted a study on a small
corpus (98,197 terms) of Wikipedia articles from a
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diverse set of topics. We use 10 Wikipedia articles
describing: Anarchism, Artemis, Buddhism, Isfa-
han, Shawn Michaels, Turkey, etc. We first use our
classifier to locate the subset of NEs which should
be transliterated. An annotator validates the deci-
sion and examines the phrase table on the default
MT decision on those NEs. We observe that out of
1031 NE tokens, 624 tokens (60.5%) which would
have been translated incorrectly, are directed to the
transliteration module.

Finally, we deploy the transliteration classifier as
a pre-translation component to the MT system.4 Our
MT test set is the MEDAR corpus (Maegaard et
al., 2010). The MEDAR corpus consists of about
10,000 words English texts on news related to the
climate change with four Arabic reference transla-
tions. Due to the lack of non-news English-Arabic
corpus, we have to limit this experiment only to
the news domain. However, we expect that many
of the NEs may already exist in the training cor-
pus and the effects of the classifier is more limited
than using a diverse domain like Wikipedia. We au-
tomatically locate the NEs in the source language
sentences and use the classifier to find those which
should be transliterated. For such terms, we offer
the transliterated form as an option to the decoder
aiming to improve the decoding process. For that
a human annotator selected the transliterations from
the suggested list that is provided by the automatic
transliterator (Maren) without any knowledge of the
reference transliterations.

Table 4 shows the impact of adding the classifier
to the SMT pipeline with a modest improvement.
Moreover, a bilingual annotator examined the au-
tomatically tagged NEs in the MT test set and la-
beled them with the translation vs. transliteration

4The baseline MT system is the MOSES phrase-based de-
coder (Koehn et al., 2007) trained on a standard English-Arabic
parallel corpus. The 18 million parallel corpus consists of
the non-UN parts of the NIST corpus distributed by the Lin-
guistic Data Consortium. We perform the standard prepro-
cessing and tokenization on the English side. We also use
MADA+TOKAN (Habash et al., 2009) to preprocess and tok-
enize the Arabic side of the corpus. We use the standard setting
of GIZA++ and the grow-diagonal-final heuristic of MOSES

to get the word alignments. We use a set of 500 sentences
to tune the decoder parameters using the MERT (Och, 2003).
We use El Kholy and Habash (2010) detokenization framework
for the Arabic decoding. We evaluate the MT system with the
BLEU metric (Papineni et al., 2002).

MT Baseline MT Baseline + Classifier
BLEU 16.63 16.91

Table 4: Results of the extrinsic usage of the classifier in
SMT

decisions. Having such gold standard decisions, we
evaluated the classifier against the MT test set. The
classifier’s accuracy was 89% which is as strong as
the earlier intrinsic evaluation. The false positives
are 5% which represents around 12.6% of the total
errors.

The following example shows how our classifier
prevents the MT to choose a wrong decoding for
the NE Python (being transliterated rather than
translated). Moreover, the MT system transliterates
the term Monty that is unknown to the underlying
system. Such entities tend to be unseen in the
standard news corpora and consequently unknown
(UNK) to the MT systems. Using our classi-
fier in such conditions is expected to reduce the
domain gap and improve the translation quality.

English Input: The British comedy troupe Monty Python.

Baseline MT: . ù


ª

	
¯ @ UNK �

éJ

	
K A¢�


Q�. Ë @
�
éK
YJ
ÓñºË@

�
é
�
Q̄

	
®Ë @

Alfrqp Alkwmydyp AlbryTAnyp UNK AfEY

MT+Classifier: .
	
àñ

�
JK
AK. ú




�
æ

	
KñÓ

�
éJ


	
K A¢�


Q�. Ë @
�
éK
YJ
ÓñºË@

�
é
�
Q̄

	
®Ë @

Alfrqp Alkwmydyp AlbryTAnyp mwnty
bAyvwn.

4 Related work

A number of efforts have been made to undertake the NE
translation problem for different language pairs. Among
them some use sequence of phonetic-based probabilistic
models to convert names written in Arabic into the En-
glish script (Glover-Stalls and Knight, 1998) for translit-
eration of names and technical terms that occurs in Ara-
bic texts and originate in English. Others rely on spelling-
based model that directly maps an English letter sequence
into an Arabic one (Al-Onaizan and Knight, 2002a). In a
related work, Al-Onaizan and Knight (2002b) describe a
combination of a phonetic-based model and a spelling-
based one to build a transliteration model to generate
Arabic to English name translations. In the same direc-
tion, Hassan et al. (2007) extracted NE translation pairs
from both comparable and parallel corpora and evaluate
their quality in a NE translation system. More recently,
Ling et al. (2011) propose a Web-based method that trans-
lates Chinese NEs into English. Our work is similar in
its general objectives and framework to the work pre-
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sented by Hermjakob et al. (2008), which describes an
approach for identifying NEs that should be transliter-
ated from Arabic into English during translation. Their
method seeks to find a corresponding English word for
each Arabic word in a parallel corpus, and tag the Ara-
bic words as either NEs or non-NEs based on a match-
ing algorithm. In contrast, we tackle this problem in the
reverse direction (translating/transliterating English NEs
into Arabic). We also present a novel binary classifier for
identifying NEs that should be translated and those that
should be transliterated.

5 Conclusion and future work

We reported our recent progress on building a classi-
fier which decides if an MT system should translate or
transliterate a given named entity. The classifier shows
a promising performance in both intrinsic and extrinsic
evaluations. We believe that our framework can be ex-
panded to new languages if the required data resources
and tools (mainly parallel corpus, Named Entity tagger
and transliteration engine) are available. We plan to ex-
pand the features and apply the classifier to new lan-
guages and conduct MT experiments in domains other
than news.
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Abstract

This paper describes an approach to improve
summaries for a collection of Twitter posts cre-
ated using the Phrase Reinforcement (PR) Al-
gorithm (Sharifi et al., 2010a). The PR algo-
rithm often generates summaries with excess
text and noisy speech. We parse these sum-
maries using a dependency parser and use the
dependencies to eliminate some of the excess
text and build better-formed summaries. We
compare the results to those obtained using the
PR Algorithm.

1 Introduction

Millions of people use the Web to express themselves
and share ideas. Twitter is a very popular micro
blogging site. According to a recent study approxi-
mately 340 million Tweets are sent out every day1.
People mostly upload daily routines, fun activities
and other words of wisdom for readers. There is also
plenty of serious information beyond the personal;
according to a study approximately 4% of posts on
Twitter have relevant news data2. Topics that may
be covered by reputable new sources like CNN (Ca-
ble News Network) were considered relevant. A topic
is simply a keyword or key phrase that one may use
to search for Twitter posts containing it. It is pos-
sible to gather large amounts of posts from Twitter
on many different topics in short amounts of time.
Obviously, processing all this information by human
hands is impossible. One way to extract information
from Twitter posts on a certain topic is to automat-
ically summarize them. (Sharifi et al., 2010a; Sharifi
et al., 2010b; Sharifi et al., 2010c) present an al-
gorithm called the Phrase Reinforcement Algorithm
to produces summaries of a set of Twitter posts on

1http://blog.twitter.com/2012/03/

twitter-turns-six.htm
2http://www.pearanalytics.com/blog/wp-content/

uploads/2010/05/Twitter-Study-August-2009.pdf

a certain topic. The PR algorithm produces good
summaries for many topics, but for sets of posts on
certain topics, the summaries become syntactically
malformed or too wordy. This is because the PR
Algorithm does not pay much attention to syntactic
well-formedness as it constructs a summary sentence
from phrases that occur frequently in the posts it
summarizes. In this paper, we attempt to improve
Twitter summaries produced by the PR algorithm.

2 The PR Algorithm Revisited

Given a number of Twitter posts on a certain topic,
the PR algorithm starts construction of what is
called a word graph with a root node containing the
topic phrase. It builds a graph showing how words
occur before and after the phrase in the root node,
considering all the posts on the topic. It builds a
subgraph to the left of the topic phrase and another
subgraph to its right in a similar manner. To con-
struct the left graph, the algorithm starts with the
root node and obtains the set of words that occur
immediately before the current node’s phrase. For
each of these unique words, the algorithm adds them
to the graph as nodes with their associated counts
to the left of the current node. The algorithm con-
tinues this process recursively for each node added
to the graph until all the potential words have been
added to the left-hand side of the graph. The al-
gorithm repeats these steps symmetrically to con-
struct the right subgraph. Once the full graph is
there, the algorithm weights individual nodes. The
weights are initialized to the same values as their
frequency counts. Then, to account for the fact that
some phrases are naturally longer than others, they
penalize nodes that occur farther from the root node
by an amount that is proportional to their distance.
To generate a summary, the algorithm looks for the
most overlapping phrases within the graph. Since
the nodes’ weights are proportional to their overlap,
the algorithm searches for the path within the graph
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with the highest cumulative weight. The sequence of
words in this path becomes the summary.

3 Problem Description

We start by making some observations on the phrase-
reinforcement algorithm. Certain topics do not pro-
duce well-formed summaries, while others yield very
good summaries. For the posts that have a well-
centered topic without a huge amount of variation
among the posts, the algorithm works well and cre-
ates good summaries. Here is an example summary
produced by the PR algorithm.

Phillies defeat Dodgers to take the National
League Championship series.

(Sharifi et al., 2010a; Sharifi et al., 2010b; Sharifi
et al., 2010c) provide additional examples. The PR
algorithm limits the length of the summary to ap-
proximately 140 characters, the maximum length of
a Twitter post. However, often the summary sen-
tence produced has extraneous parts that appear due
to the fact that they appear frequently in the posts
being summarized, but these parts make the sum-
mary malformed or too wordy. An example with
some wordiness is given below.

today is day for vote obama this election day

Some “raw” PR summaries are a lot more wordy
than the one above. The goal we address in this
paper is to create grammatically better formed sum-
maries by processing the “raw” summaries formed by
the PR Algorithm. We drop this excess text and the
phrases or extract pieces of text which make sense
grammatically to form the final summary. This usu-
ally produces a summary with more grammatical ac-
curacy and less noise in between the words. This gets
the main point of the summary across better.

4 Approach

The idea behind creating the desired summary is
to parse the “raw” summary and build dependen-
cies between the dependent and governor words in
each summary. We perform parts of speech tagging
and obtain lists of governing and dependent words.
This data forms the basis for creating a valid sum-
mary. For example given the Twitter post, today
is day for vote obama this election day, a depen-
dency parser produces the governor-dependent rela-
tionships as given in Table 1. Figure 1 also shows
the same grammatical dependencies between words
in the phrases.

We believe that a word which governs many words
is key to the phrase as a whole, and dependent words

Table 1: Governor and Dependent Words for today is
day1 for vote obama this election day2

Governor Dependent
day1 today

is
for
day2

obama vote
for obama
day2 this

election

Algorithm 1 Algorithm to Fix “Raw” PRA Sum-
maries

I. For each word, check grammatical compatibil-
ity with words before and after the word being
checked.
II. If a word has no dependencies immediately be-
fore or after it, drop the word.
III. After each word has been checked, check for
the words that form a grammatical phrase.
IV. Write out the summary without the dropped
words and without phrases with only two words.
V. If needed, go back to step III, because there
shouldn’t be any more single words with no de-
pendencies to check, and repeat as many times as
necessary.

which are closely related, or in other words, lay close
to each other in the phrase should be left in the or-
der they appear. Conceptually, our approach works
as follows: look at every word and see if it makes
sense with the word before and after it. This builds
dependencies between the word in question with the
words around it. If a word before or after the word
being analyzed does not make sense grammatically,
it can be removed from that grammatically correct
phrase. Dependent words that are not close to each
other may not be as important as words that lay
close to each other and have more dependencies, and
thus may be thrown out of the summaries. Through
this process grammatically correct phrases can be
formed.

The dependencies are built by tagging each word
as a part of speech and seeing if it relates to other
words. For example, it checks whether or not the
conjunction “and” is serving its purpose of combin-
ing a set of words or ideas, in other words, if those
dependencies exist. If dependencies exist with the
nearby words, that given collection of words can be
set aside as a grammatically correct phrase until it
reaches words with no dependencies, and the process
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Figure 1: Dependency Parse for today is day1 for vote obama this election day2

today is day for vote obama this election day

dep

c o p

p r e p

nsubj

pobj

n n

det
n n

can continue. The phrases with few words can be
dropped, as well as single words. These new phrases
can be checked for grammatical accuracy in the same
way as the previous phrases, and if they pass, can
remain combined forming a longer summary that
should be grammatically correct. The main steps
are given in Algorithm 1.

Now, take the example summary produced by the
PR Algorithm for the election Twitter posts. Look-
ing at this summary, we, as humans, may make
changes and make the summary grammatically cor-
rect. Two potential ideal summaries would be the
following.

today is the day to vote for obama

vote for obama this election day

The actual process used in the making of the gram-
matical summaries is as follows. Two main lists are
created from lists of governor and dependent words,
one with the governor words and another with the
dependent words. The governor words are checked
to see how many dependent words are linked to them.
The governing words with the highest number of de-
pendent words are kept for later. For example using
the above phrase about the elections, the word “day”
was the governing word with the highest amount of
dependent words and was thus kept for the final sum-
mary. The superscripts on the word “day” differen-
tiate its two occurrences. The dependent words are
kept in groups of closely linked dependent words.
Using the same example about the election, an in-
termediate list of closely related dependent words is
“today,” “is,” “for,” “vote,” “obama,” “this,” “elec-
tion,” and “day.” And the final list of closely related
dependent words is “for,” “vote,” “obama,” “this,”
“election” and “day.” After these two lists are in the
final stages the lists are merged placing the words in
proper order.

5 Experiments and Results

To begin, the Twitter posts were collected manu-
ally and stored in text files. The topics we chose to

Table 2: ROUGE-L without Stopwords, Before

Task Recall Precision F-score
Task 1 0.667 0.343 0.453
Task 2 1.000 0.227 0.370
Task 3 0.353 0.240 0.286
Task 4 0.800 0.154 0.258
Task 5 1.000 0.185 0.313
Task 6 0.667 0.150 0.245
Task 7 0.889 0.125 0.219
Task 8 0.636 0.125 0.209
Task 9 0.500 0.300 0.375
Task 10 0.455 0.100 0.164
Average 0.696 0.195 0.289

focus on important current events and some pop cul-
ture. Approximately 100 posts were collected on ten
different topics. These topics are “The Avengers,”
“Avril Lavigne,” “Christmas,” “the election,” “Elec-
tion Day,” “Iron Man 3,” “president 2012,” “Hurri-
cane Sandy,” “Thanksgiving,” and “vote.”

The collections of posts were passed on to three
volunteers to produce short accurate summaries that
capture the main idea from the posts. The collections
of posts were also first run through the PR Algorithm
and then through the process described in this paper
to try and refine the summaries output by the PR
Algorithm. The Stanford CoreNLP parser3 was used
to build the lists of governor and dependent words.

We use ROUGE evaluation metrics (Lin 2004)
just like (Sharifi et al., 2010a; Sharifi et al., 2010b;
Sharifi et al., 2010c), who evaluated summaries ob-
tained with the PR Algorithm. Specifically, we use
ROUGE-L, which uses the longest common subse-
quence (LCS) to compare summaries. As the LCS of
the two summaries in comparison increases in length,
so does the similarity of the two summaries.

We now discuss results using ROUGE-L on the
summaries we produce. Tables 2 through 5 show
the results of four different ROUGE-L evaluations,
comparing them to the results found using the PR

3http://nlp.stanford.edu/software/corenlp.shtml
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Table 3: ROUGE-L without Stopwords, After

Task Recall Precision F-score
Task 1 0.667 0.480 0.558
Task 2 0.400 0.500 0.444
Task 3 0.000 0.000 0.000
Task 4 0.400 0.333 0.363
Task 5 0.900 0.600 0.720
Task 6 0.389 0.350 0.368
Task 7 0.556 0.250 0.345
Task 8 0.545 0.500 0.522
Task 9 0.417 0.417 0.417
Task 10 0.363 0.200 0.258
Average 0.464 0.363 0.400

Algorithm, and Table 6 shows the comparisons of the
averaged scores to the scores (Sharifi et al., 2010a)
obtained using the PR Algorithm. Table 2 shows the
regular ROUGE-L scores, meaning the recall, pre-
cision and F-scores for each task and the average
overall scores, for the collection of posts before using
the dependency parser to refine the summaries. Ta-
ble 3 displays the results after using the dependency
parser on the summaries formed by the PR Algo-
rithm. One of the options in ROUGE is to show the
“best” result, for each task. Table 4 has this result
for the PR Algorithm results. Table 5 shows the re-
sults of the “best” scores, after running it through
the dependency parser. Table 6 shows the averages
from Tables 3 and 5, using the dependency parser,
compared to Sharifi et al.’s results using the PR Al-
gorithm. Stopwords were not removed in our exper-
iments.

Table 4: ROUGE-L Best without Stopwords, Before

Recall Precision F-score
Task 1 1.000 0.429 0.600
Task 2 1.000 0.227 0.370
Task 3 0.500 0.200 0.286
Task 4 1.000 0.154 0.267
Task 5 1.000 0.167 0.286
Task 6 1.000 0.200 0.333
Task 7 1.000 0.125 0.222
Task 8 1.000 0.071 0.133
Task 9 1.000 0.400 0.571
Task 10 1.000 0.100 0.182
Average 0.950 0.207 0.325

As one can see, the use of our algorithm on the
summaries produced by the PR Algorithm improves
the F-score values, at least in the example cases we
tried. In almost every case, there is substantial rise
in the F-score. As previously mentioned, some col-

Table 5: ROUGE-L Best without Stopwords, After

Recall Precision F-score
Task 1 1.000 0.600 0.750
Task 2 0.400 0.500 0.444
Task 3 0.000 0.000 0.000
Task 4 0.500 0.333 0.400
Task 5 1.000 0.600 0.750
Task 6 0.600 0.600 0.600
Task 7 0.667 0.400 0.500
Task 8 1.000 0.333 0.500
Task 9 1.000 0.667 0.800
Task 10 1.000 0.250 0.400
Average 0.718 0.428 0.515

Table 6: ROUGE-L Averages after applying our algo-
rithm vs. Sharifi et al.

Recall Precision F-score
Sharifi (PRA) 0.31 0.34 0.33
Rouge-L after re-
construction

0.46 0.36 0.40

Rouge-L best after
reconstruction

0.72 0.43 0.52

lections of Tweets do not produce good summaries.
Task 3 had some poor scores in all cases, so one can
deduce that the posts on that topic (Christmas) were
widely spread, or they did not have a central theme.

6 Conclusion

The PR Algorithm is not a pure extractive algo-
rithm. It creates summaries of Twitter posts by piec-
ing together the most commonly occurring words and
phrases in the entire set of tweets, but keeping the
order of constituents as close to the order in which
they occur in the posts, collectively speaking. As
we noted in this paper, the heuristic method using
which the PR Algorithm composes a summary sen-
tence out of the phrases sometimes leads to ungram-
matical sentences or wordy sentences. This paper
shows that the “raw” summaries produced by the
PR Algorithm can be improved by taking into ac-
count governor-dependency relationships among the
constituents. There is nothing in this clean-up algo-
rithm that says that it works only with summaries of
tweets. The same approach can potentially be used
to improve grammaticality of sentences written by
humans in a sloppy manner. In addition, given sev-
eral sentences with overlapping content (from mul-
tiple sources), the same process can potentially be
used to construct a grammatical sentence out of all
the input sentences. This problem often arises in
general multi-document summarization. We believe
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that a corrective approach like ours can be used to-
gether with a sentence compression approach, such
as (Knight and Marcu 2002), to produce even bet-
ter summaries in conjunction with the PR or other
summarization algorithms that work with socially-
generated texts which are often malformed and short.

We have shown in this paper that simply focusing
on grammatical dependency tends to make the fi-
nal summaries more grammatical and readable com-
pared to the raw summaries. However, we believe
that more complex restructuring of the words and
constituents would be necessary to improve the qual-
ity of the raw summaries, in general.
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Abstract 

This paper presents a general, statistical 
framework for modeling phrase translation 
via Markov random fields. The model al-
lows for arbituary features extracted from a 
phrase pair to be incorporated as evidence. 
The parameters of the model are estimated 
using a large-scale discriminative training 
approach that is based on stochastic gradi-
ent ascent and an N-best list based expected 
BLEU as the objective function. The model 
is easy to be incoporated into a standard 
phrase-based statistical machine translation 
system, requiring no code change in the 
runtime engine. Evaluation is performed on 
two Europarl translation tasks, German-
English and French-English. Results show 
that incoporating the Markov random field 
model significantly improves the perfor-
mance of a state-of-the-art phrase-based 
machine translation system, leading to a 
gain of  0.8-1.3 BLEU points. 

1 Introduction 

The phrase translation model, also known as the 
phrase table, is one of the core components of a 
phrase-based statistical machine translation (SMT) 
system. The most common method of constructing 
the phrase table takes a two-phase approach. First, 
the bilingual phrase pairs are extracted heuristical-
ly from an automatically word-aligned training da-
ta. The second phase is parameter estimation, 
where each phrase pair is assigned with some 
scores that are estimated based on counting of 
words or phrases on the same word-aligned train-
ing data. 

There has been a lot of research on improving 
the quality of the phrase table using more princi-
pled methods for phrase extraction (e.g., Lamber 
and Banchs 2005), parameter estimation (e.g., 
Wuebker et al. 2010; He and Deng 2012), or both 
(e.g., Marcu and Wong 2002; Denero et al. 2006). 
The focus of this paper is on the parameter estima-
tion phase. We revisit the problem of scoring a 
phrase translation pair by developing a new phrase 
translation model based on Markov random fields 
(MRFs) and large-scale discriminative training. 
We strive to address the following three primary 
concerns. 

First of all, instead of parameterizing a phrase 
translation pair using a set of scoring functions that 
are learned independently (e.g., phrase translation 
probabilities and lexical weights) we use a general, 
statistical framework in which arbitrary features 
extracted from a phrase pair can be incorporated to 
model the translation in a unified way. To this end, 
we propose the use of a MRF model.  

Second, because the phrase model has to work 
with other component models in an SMT system in 
order to produce good translations and the quality 
of translation is measured via BLEU score, it is de-
sirable to optimize the parameters of the phrase 
model jointly with other component models with 
respect to an objective function that is closely re-
lated to the evaluation metric under consideration, 
i.e., BLEU in this paper. To this end, we resort to a 
large-scale discriminative training approach, fol-
lowing the pioneering work of Liang et al. (2006). 
Although there are established methods of tuning a 
handful of features on small training sets, such as 
the MERT method (Och 2003), the development of 
discriminative training methods for millions of fea-
tures on millions of sentence pairs is still an ongo-
ing area of research. A recent survey is due to 
Koehn (2010). In this paper we show that by using 
stochastic gradient ascent and an N-best list based 
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expected BLEU as the objective function, large-
scale discriminative training can lead to significant 
improvements. 

The third primary concern is the ease of adop-
tion of the proposed method. To this end, we use a 
simple and well-established learning method, en-
suring that the results can be easily reproduced. 
We also develop the features for the MRF model in 
such a way that the resulting model is of the same 
format as that of a traditional phrase table. Thus, 
the model can be easily incorporated into a stand-
ard phrase-based SMT system, requiring no code 
change in the runtime engine. 

In the rest of the paper, Section 2 presents the 
MRF model for phrase translation. Section 3 de-
scribes the way the model parameters are estimated. 
Section 4 presents the experimental results on two 
Europarl translation tasks. Section 5 reviews pre-
vious work that lays the foundation of this study. 
Section 6 concludes the paper. 

2 Model 

The traditional translation models are directional 
models that are based on conditional probabilities. 
As suggested by the noisy-channel model for SMT 
(Brown et al. 1993): 

�∗ = argmax
�

���|�� = argmax
�

�(�)���|� (1) 

The Bayes rule leads us to invert the conditioning 
of translation probability from a foreign (source) 
sentence � to an English (target) translation �.  

However, in practice, the implementation of 
state-of-the-art phrase-based SMT systems uses a 
weighted log-linear combination of several models 
ℎ(�,�,�)  including the logarithm of the phrase 
probability (and the lexical weight) in source-to-
target and target-to-source directions (Och and Ney 
2004) 

�∗ = argmax
�
∑ 	�ℎ�(�,�,�)�
���   (2) 

= argmax
�


����(�,�)  

where �  in ℎ(�,�,�)  is a hidden structure that 
best derives � from �, called the Viterbi derivation 
afterwards. In phrase-based SMT, � consists of (1) 
the segmentation of the source sentence into 
phrases, (2) the segmentation of the target sentence 

into phrases, and (3) an alignment between the 
source and target phrases. 

In this paper we use Markov random fields 
(MRFs) to model the joint distribution ��(�, �) 
over a source-target translation phrase pair (�, �), 
parameterized by �. Different from the directional 
translation models, as in Equation (1), the MRF 
model is undirected, which we believe upholds the 
spirit of the use of bi-directional translation proba-
bilities under the log-linear framework. That is, the 
agreement or the compatibility of a phrase pair is 
more effective to score translation quality than a 
directional translation probability which is mod-
eled based on an imagined generative story does. 

2.1 MRF 

MRFs, also known as undirected graphical models, 
are widely used in modeling joint distributions of 
spatial or contextual dependencies of physical phe-
nomena (Bishop 2006). A Markov random field is 
constructed from a graph � . The nodes of the 
graph represent random variables, and edges define 
the independence semantics between the random 
variables. An MRF satisfies the Markov property, 
which states that a node is independent of all of its 
non-neighbors, defined by the clique configura-
tions of �. In modeling a phrase translation pair, 
we define two types of nodes, (1) two phrase nodes 
and (2) a set of word nodes, each for a word in the-
se phrases, such as the graph in Figure 1. Let us 
denote a clique by � and the set of variables in that 
clique by ��, ��� . Then, the joint distribution over 
the random variables in � is defined as 

��(�, �) =
�

	
∏ ��(��, ���;�)�
�(�) , (3) 

where � = ��, … , �|| , � = ��, … , �|�|  and �(�)  is 
the set of cliques in �, and each ��(��, ���;�) is a 
non-negative potential function defined over a 
clique � that measures the compatibility of the var-
iables in �, � is a set of parameters that are used 
within the potential function. �  in Equation (3), 
sometimes called the partition function, is a nor-
malization constant and is given by  

� = ∑ ∑ ∏ ��(��, ���;�)�
�(�)�   (4) 

= ∑ ∑ 
���(�, �)� ,  

which ensures that the distribution ��(�, �) given 
by Equation (3) is correctly normalized. The pres-
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ence of � is one of the major limitations of MRFs 
because it is generally not feasible to compute due 
to the exponential number of terms in the summa-
tion. However, we notice that �  is a global con-
stant which is independent of � and �. Therefore, in 
ranking phrase translation hypotheses, as per-
formed by the decoder in SMT systems, we can 
drop �  and simply rank each hypothesis by its 
unnormalized joint probability. In our implementa-
tion, we only store in the phrase table for each 
translation pair ��, �� its unnormalized probability, 
i.e., 
���(�, �) as defined in Equation (4). 

It is common to define MRF potential functions 
of the exponential form as �����, ���;�� =

exp (������), where ���� is a real-valued feature 
function over clique � and �� is the weight of the 
feature function. In phrase-based SMT systems, the 
sentence-level translation probability from �  to � 
is decomposed as the product of a set of phrase 
translation probabilities. By dropping the phrase 
segmentation and distortion model components, we 
have  

�(�|�) ≈ max
�
�(�|�,�) (5) 

�(�|�,�) = ∏ �(�|�)(�,)∈� ,  

where �  is the Viterbi derivation. Similarly, the 
joint probability �(�,�) can be decomposed as 

���,�� ≈ max
�
�(�,�,�) (6) 

���,�,�� = ∏ ��(�, �)(�,)∈�   

∝ ∑ log����, ����,�∈�   

∝ ∑ ∑ ���(�)�∈�(�(�,�))��,�∈�   

= ∑ � ∙ �(�, �)��,�∈�   

which is essentially proportional to a weighted lin-
ear combination of a set of features. 

To instantiate an MRF model, one needs to de-
fine a graph structure representing the translation 
dependencies between source and target phrases, 
and a set of potential functions over the cliques of 
this graph.  

2.2 Cliques and Potential Functions 

The MRF model studied in this paper is construct-
ed from the graph � in Figure 1. It contains two 
types of nodes, including two phrase nodes for the 
source and target phrases respectively and word 
nodes, each for a word in these phrases. The 
cliques and their corresponding potential functions 
(or features) attempt to abstract the idea behind 
those translation models that have been proved ef-
fective for machine translation in previous work. In 
this study we focus on three types of cliques. 

First, we consider cliques that contain two 
phrase nodes. A potential function over such a 
clique captures phrase-to-phrase translation de-
pendencies similar to the use the bi-directional 
translation models in phrase-based SMT systems. 
The potential is defined as ����, �� = ����(�, �), 
where the feature ��(�, �), called the phrase-pair 
feature, is an indicator function whose value is 1 if 
� is target phrase and � is source phrase, and 0 oth-
erwise. While the conditional probabilities in a di-
rectional translation model are estimated using rel-
ative frequencies of phrase pairs extracted from 
word-aligned parallel sentences, the parameter of 
the phrase-pair function �� is learned discrimina-
tively, as we will describe in Section 3. 

Second, we consider cliques that contain two 
word nodes, one in source phrase and the other in 
target phrase. A potential over such a clique cap-
tures word-to-word translation dependencies simi-
lar to the use the IBM Model 1 for lexical 
weighting in phrase-based SMT systems (Koehn et 
al. 2003). The potential function is defined as 
����, �� = ����(�, �), where the feature ��(�, �), 
called the word-pair feature, is an indicator func-
tion whose value is 1 if � is a word in target phrase 
� and f is a word in source phrase �, and 0 other-
wise.  

The third type of cliques contains three word 
nodes. Two of them are in one language and the 
third in the other language. A potential over such a 
clique is intended to capture inter-word dependen-

 

Figure 1: A Markov random field model for phrase 
translation of � = ��, �� and � = ��,��,��. 
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cies for selecting word translations. The potential 
function is inspired by the triplet lexicon model 
(Hasan et al. 2008) which is based on lexicalized 
triplets (�, �, �’) . It can be understood as two 
source (or target) words triggering one target (or 
source) word. The potential function is defined as 
�����, ��, �� = ������(�, ��, �), where the feature 
���(�, ��, �), called the triplet feature, is an indica-
tor function whose value is 1 if � is a word in tar-
get phrase � and � and �’ are two different words 
in source phrase �, and 0 otherwise. 

For any clique � that contains nodes in only one 
language we assume that ���� = 1 for all setting 
of the clique, which has no impact on scoring a 
phrase pair. One may wish to define a potential 
over cliques containing a phrase node and word 
nodes in target language, which could act as a form 
of target language model. One may also add edges 
in the graph so as to define potentials that capture 
more sophisticated translation dependencies. The 
optimal potential set could vary among different 
language pairs and depend to a large degree upon 
the amount and quality of training data. We leave a 
comprehensive study of features to future work. 

3 Training 

This section describes the way the parameters of 
the MRF model are estimated. Although MRFs are 
by nature generative models, it is not always ap-
propriate to train the parameters using convention-
al likelihood based approaches mainly for two rea-
sons. The first is due to the difficulty in computing 
the partition function in Equation (4), especially in 
a task of our scale. The second is due to the metric 
divergence problem (Morgan et al. 2004). That is, 
the maximum likelihood estimation is unlikely to 
be optimal for the evaluation metric under consid-
eration, as demonstrated on a variety of tasks in-
cluding machine translation (Och 2003) and infor-
mation retrieval (Metzler and Croft 2005; Gao et 
al. 2005). Therefore, we propose a large-scale dis-
criminative training approach that uses stochastic 
gradient ascent and an N-best list based expected 
BLEU as the objective function.  

We cast machine translation as a structured 
classification task (Liang et al. 2006). It maps an 
input source sentence �  to an output pair (�,�) 
where �  is the output target sentence and �  the 
Viterbi derivation of � . � is assumed to be con-
structed during the translation process. In phrase-

based SMT, �  consists of a segmentation of the 
source and target sentences into phrases and an 
alignment between source and target phrases.  

We also assume that translations are modeled 
using a linear model parameterized by a vector �. 
Given a vector �(�,�,�) of feature functions on 
(�,�,�) , and assuming �  contains a component 
for each feature, the output pair (�,�) for a given 
input � are selected using the argmax decision rule 

(�∗,�∗) = argmax
(�,�)

���(�,�,�) (7) 

In phrase-based SMT, computing the argmax ex-
actly is intractable, so it is performed approximate-
ly by beam decoding. 

In a phrase-based SMT system equipped by a 
MRF-based phrase translation model, the parame-
ters we need to learn are � = (�,�), where � is a 
vector of a handful parameters used in the log-
linear model of Equation (2), with one weight for 
each component model; and � is a vector contain-
ing millions of weights, each for one feature func-
tion in the MRF model of Equation (3). Our meth-
od takes three steps to learn �: 

1. Given a baseline phrase-based SMT system 
and a pre-set �, we generate for each source 
sentence in training data an N-best list of 
translation hypotheses. 

2. We fix �, and optimize � with respect to an 
objective function on training data. 

3. We fix �, and optimize � using MERT (Och 
2003) to maximize the BLEU score on de-
velopment data. 

Now, we describe Steps 1 and 2 in detail. 

3.1 N-Best Generation 

Given a set of source-target sentence pairs as train-
ing data ��� ,����,� = 1 …�, we use the baseline 
phrase-based SMT system to generate for each 
source sentence �  a list of 100-best candidate 
translations, each translation �  coupled with its 
Viterbi derivation � , according to Equation (7). 
We denote the 100-best set by GEN(�). Then, each 
output pair ��,��  is labeled by a sentence-level 
BLEU score, denoted by sBLEU, which is comput-
ed according to Equation (8) (He and Deng 2012), 

sBLEU(�,��) =  � ×
�

�
∑ log!��
��� , (8) 
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where ��  is the reference translation, and !� ,� =

1 … 4, are precisions of n-grams. While precisions 
of lower order n-grams, i.e., !� and !�, are com-
puted directly without any smoothing, matching 
counts for higher order n-grams could be sparse at 
the sentence level and need to be smoothed as 

!� =
#("#$�ℎ�% �&#") + '!��

#(�&#") + ' , for � = 3,4 

where ' is a smoothing parameter and is set to 5, 
and !��  is the prior value of !� , whose value is 
computed as !�� = �!�����/!��� for � = 3 and 4. 
 �  in Equation (8) is the sentence-level brevity 

penalty, computed as  � = exp (1 − ) �
�
*, which 

differs from its corpus-level counterpart (Papineni 
et al. 2002) in two ways. First, we use a non-
clipped  �, which leads to a better approximation 
to the corpus-level BLEU computation because the 
per-sentence  � might effectively exceed unity in 
corpus-level BLEU computation, as discussed in 
Chiang et al. (2008). Second, the ratio between the 
length of reference sentence r and the length of 
translation hypothesis c is scaled by a factor ) such 
that the total length of the references on training 
data equals that of the 1-best translation hypothe-
ses produced by the baseline SMT system. In our 
experiments, the value of ) is computed, on the N-
best training data, as the ratio between the total 
length of the references and that of the 1-best 
translation hypotheses 

In our experiments we find that using sBLEU 
defined above leads to a small but consistent im-
provement over other variations of sentence-level 
BLEU proposed previously (e.g., Liang et al. 
2006). In particular, the use of the scaling factor ) 
in computing  �  makes  �  of the baseline’s 1-
best output close to perfect on training data, and 
has an effect of forcing the discriminative training 
to improve BLEU by improving n-gram precisions 
rather than by improving brevity penalty.   

3.2 Parameter Estimation 

We use an N-best list based expected BLEU, a var-
iant of that in Rosti et al. (2011), as the objective 
function for parameter optimization. Given the cur-
rent model � , the expected BLEU, denoted by 
xBLEU(�), over one training sample i.e., a labeled 
N-best list GEN(�) generated from a pair of source 
and target sentences (�,��), is defined as 

xBLEU��� 
= ∑ ����|��sBLEU(�,��)�∈�� (!) , (9) 

where sBLEU is the sentence-level BLEU, defined 
in Equation (8), and ����|�� is a normalized trans-
lation probability from �  to �  computed using 
softmax as  

����|�� =
"#$(%�&�'��!,��)

∑ "#$(%�&�'��!,�
��)

��

, (10) 

where 
����. � is the translation score according 
to the current model � 

������,�� = � ∙ ���,�,�� (11) 

+∑ � ∙ �(�, �)(�,)∈� . 
 

The right hand side of (11) contains two terms. The 
first term is the score produced by the baseline sys-
tem, which is fixed during phrase model training. 
The second term is the translation score produced 
by the MRF model, which is updated after each 
training sample during training. Comparing Equa-
tions (2) and (11), we can view the MRF model yet 
another component model under the log linear 
model framework with its 	 being set to 1. 

Given the objective function, the parameters of 
the MRF model are optimized using stochastic 
gradient ascent. As shown in Figure 2, we go 
through the training set + times, each time is con-
sidered an epoch. For each training sample, we up-
date the model parameters as 

��') = �&*+ + , ∙ -(�&*+) (12) 

where , is the learning rate, and the gradient - is 
computed as 

���� =
,xBLEU(�)

,�
  (13) 

1 Initialize �, assuming � is fixed during training 

2 For t = 1…T (T = the total number of iterations) 

3    For each training sample (labeled 100-best list) 

4 Compute ����|�� for each translation hypothe-
sis � based on the current model 	 = (�,�) 

5       Update the model via � = � + 
 ∙ �(�), 
where 
 is the learning rate and � the gradient 
computed according to Equations (12) and (13) 

Figure 2: The algorithm of training a MRF-based 
phrase translation model. 
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= ∑ U(�,�)����|���(�,�,�)(�,�) ,   

where U(�,�) = sBLEU��,���− xBLEU���. 
Two considerations regarding the development 

of the training method in Figure 2 are worth men-
tioning. They significantly simplify the training 
procedure without sacrificing much the quality of 
the trained model. First, we do not include a regu-
larization term in the objective function because 
we find early stopping and cross valuation more ef-
fective and simpler to implement. In experiments 
we produce a MRF model after each epoch, and 
test its quality on a development set by first com-
bining the MRF model with other baseline compo-
nent models via MERT and then examining BLEU 
score on the development set. We performed train-
ing for T epochs (+ = 100 in our experiments) and 
then pick the model with the best BLEU score on 
the development set. Second, we do not use the 
leave-one-out method to generate the N-best lists 
(Wuebker et al. 2010). Instead, the models used in 
the baseline SMT system are trained on the same 
parallel data on which the N-best lists are generat-
ed. One may argue that this could lead to over-
fitting. For example, comparing to the translations 
on unseen test data, the generated translation hy-
potheses on the training set are of artificially high 
quality with the derivations containing artificially 
long phrase pairs. The discrepancy between the 
translations on training and test sets could hurt the 
training performance. However, we found in our 
experiments that the impact of over-fitting on the 
quality of the trained MRF models is negligible1. 

4 Experiments 

We conducted our experiments on two Europarl 
translation tasks, German-to-English (DE-EN) and 
French-to-English (FR-EN). The data sets are pub-
lished for the shared task in NAACL 2006 Work-
shop on Statistical Machine Translation (WMT06) 
(Koehn and Monz 2006). 

For DE-EN, the training set contains 751K sen-
tence pairs, with 21 words per sentence on average. 
The official development set used for the shared 

                                                           
1 As pointed out by one of the reviewers, the fact that our 
training works fine without leave-one-out is probably due to 
the small phrase length limit (i.e., 4) we used. If a longer 
phrase limit (e.g., 7) is used the result might be different. We 
leave it to future work. 

task contains 2000 sentences. In our experiments, 
we used the first 1000 sentences as a development 
set for MERT training and optimizing parameters 
for discriminative training, such as learning rate 
and the number of iterations. We used the rest 
1000 sentences as the first test set (TEST1). We 
used the WMT06 test data as the second test set 
(TEST2), which contains 2000 sentences. 

For FR-EN, the training set contains 688K sen-
tence pairs, with 21 words per sentence on average. 
The development set contains 2000 sentences. We 
used 2000 sentences from the WMT05 shared task 
as TEST1, and the 2000 sentences from the 
WMT06 shared task as TEST2. 

Two baseline phrase-based SMT systems, each 
for one language pair, are developed as follows. 
These baseline systems are used in our experi-
ments both for comparison purpose and for gener-
ating N-best lists for discriminative training. First, 
we performed word alignment on the training set 
using a hidden Markov model with lexicalized dis-
tortion (He 2007), then extracted the phrase table 
from the word aligned bilingual texts (Koehn et al. 
2003). The maximum phrase length is set to four. 
Other models used in a baseline system include a 
lexicalized reordering model, word count and 
phrase count, and a trigram language model trained 
on the English training data provided by the 
WMT06 shared task. A fast beam-search phrase-
based decoder (Moore and Quirk 2007) is used and 
the distortion limit is set to four. The decoder is 
modified so as to output the Viterbi derivation for 
each translation hypothesis.  

The metric used for evaluation is case insensi-
tive BLEU score (Papineni et al. 2002). We also 
performed a significance test using the paired t-
test. Differences are considered statistically signif-
icant when the p-value is less than 0.05. Table 1 

                                                           
2  The official results are accessible at 
http://www.statmt.org/wmt06/shared-task/results.html  

Systems DE-EN (TEST2) FR-EN (TEST2) 
Rank-1 system 27.3 30.8 
Rank-2 system 26.0 30.7 
Rank-3 system 25.6 30.5 
Our baseline 26.0 31.4 

Table 1: Baseline results in BLEU. The results of 
top ranked systems are reported in Koehn and 
Monz (2006)2. 
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presents the baseline results. The performance of 
our phrase-based SMT systems compares favora-
bly to the top-ranked systems, thus providing a fair 
baseline for our research. 

4.1 Results 

Table 2 shows the main results measured in BLEU 
evaluated on TEST1 and TEST2. 

Row 1 is the baseline system. Rows 2 to 5 are 
the systems enhanced by integrating different ver-
sions of the MRF-based phrase translation model. 
These versions, labeled as MRFf, are trained using 
the method described in Section 3, and differ in the 
feature classes (which are specified by the sub-
script f) incorporated in the MRF-based model. In 
this study we focused on three classes of features, 
as described in Section 2, phrase-pair features (p), 
word-pair features (t) and triplet features (tp). The 
statistics for these features are given in Table 3. 

Table 2 shows that all the MRF models lead to a 
substantial improvement over the baseline system 
across all test sets, with a statistically significant 
margin from 0.8 to 1.3 BLEU points. As expected, 
the best phrase model incorporates all of the three 
classes of features (MRFp+t+tp in Row 2). We also 
find that both MRFp and MRFt, although using 
only one class of features, perform quite well. In 
TEST2 of DE-EN and TEST1 of FR-EN, they are 
in a near statistical tie with MRFp+t and MRFp+t+tp. 

The result suggests that while the MRF models are 
very effective in modeling phrase translations, the 
features we used in this study may not fully realize 
the potential of the modeling technology. 

We also measured the sensitivity of the discrim-
inative training method to different initializations 
and training parameters. Results show that our 
method is very robust. All the MRF models in Ta-
ble 2 are trained by setting the initial feature vector 
to zero, and the learning rate ,=0.01. Figure 3 plots 
the BLEU score on development sets as a function 
of the number of epochs t. The BLEU score im-
proves quickly in the first 5 epochs, and then either 
remains flat, as on the DE-EN data, or keeps in-
creasing but in a much slower pace, as on the FR-
EN data.  

4.2  Comparing Objective Functions 

This section compares different objective functions 
for discriminative training. As shown in Table 4, 
xBLEU is compared to three widely used convex 
loss functions, i.e., hinge loss, logistic loss, and log 
loss. The hinge loss and logistic loss take into ac-
count only two hypotheses among an N-best list 
GEN: the one with the best sentence-level BLEU 
score with respect to its reference translation, de-
noted by (�∗,�∗) , called the oracle candidate 
henceforth, and the highest scored incorrect candi-
date according to the current model, denoted by 
(��,��), defined as 

# Systems DE-EN FR-EN 
TEST1 TEST2 TEST1 TEST2 

1 Baseline 26.0 26.0 31.3 31.4 
2 MRFp+t+tp 27.3 α 27.1 α 32.4 α 32.2 α 
3 MRFp+t 27.2 α 26.9 α 32.3 α 32.0 α 
4 MRFp 26.8 αβ 26.7 αβ 32.2 α 31.8 αβ 
5 MRFt 26.8 αβ 26.8 α 32.1 α 31.9 αβ 

Table 2: Main results (BLEU scores) of MRF-
based phrase translation models with different 
feature classes. The superscripts α and β indicate 
statistically significant difference (p < 0.05) 
from Baseline and  MRFp+t+tp, respectively. 
 
Feature classes # of features (weights) 

DE-EN FR-EN 
phrase-pair features (p) 2.5M 2.3M 
word-pair features (t) 12.2M 9.7M 
triplet features (tp) 13.4M 13.8M 

Table 3: Statistics of the features used in build-
ing MRF-based phrase translation models. 
 

 

 
Figure 3: BLEU score on development data (y 
axis) for DE-EN (top) and FR-EN (bottom) as a 
function of the number of epochs (x axis). 
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(��,��) =

argmax��,��∈�� (!)\{(�∗,�∗)} 
���-(�,�,�), 

where 
���-(. ) is defined in Equation (11). Let 
. = ���,�∗,�∗�− ���,��,��� . The hinge loss 
under the N-best re-ranking framework is defined 
as max (0,1 − ��.) . It is easy to verify that to 
train a model using this version of hinge loss, the 
update rule of Equation (12) can be rewritten as 

��') = /�&*+ ,                   if �0 = �∗

�&*+ + ,., �$ℎ��12�3 (14) 

where �0  is the highest scored candidate in GEN. 
Following Shalev-Shwartz (2012), by setting 
 =

1 , we reach the Perceptron-based training algo-
rithm that has been widely used in previous studies 
of discriminative training for SMT (e.g., Liang et 
al. 2006; Simianer et al. 2012).  

The logistic loss log(1 + exp(−��.)) leads to 
an update rule similar to that of hinge loss 

��') = /�
&*+ ,                              if �0 = �∗

�&*+ + ,��(.)., �$ℎ��12�3 (15) 

where ����� = 1/(1 + exp(	��)). 
The log loss is widely used when a probabilistic 

interpretation of the trained model is desired, as in 
conditional random fields (CRFs) (Lafferty et al. 
2001). Given a training sample, log loss is defined 
as log����∗|��, where �∗ is the oracle translation 
hypothesis with respect to its reference translation. 
����∗|�� is computed as Equation (10). So, unlike 
hinge loss and logistic loss, log loss takes into ac-
count the distribution over all hypotheses in an N-
best list. 

The results in Table 4 suggest that the objective 
functions that take into account the distribution 

over all hypotheses in an N-best list (i.e., xBLEU 
and log loss) are more effective than the ones that 
do not. xBLEU, although it is a non-concave func-
tion, significantly outperforms the others because it 
is more closely coupled with the evaluation metric 
under consideration (i.e., BLEU).  

5 Related Work 

Among the attempts to learning phrase translation 
probabilities that go beyond pure counting of 
phrases on word-aligned corpora, Wuebker et al. 
(2010) and He and Deng (2012) are most related to 
our work. The former find phrase alignment direct-
ly on training data and update the translation prob-
abilities based on this alignment. The latter learn 
phrase translation probabilities discriminatively, 
which is similar to our approach. But He and 
Deng’s method involves multiple stages, and is not 
straightforward to implement3. Our method differs 
from previous work in its use of a MRF model that 
is simple and easy to understand, and a stochastic 
gradient ascent based training method that is effi-
cient and easy to implement. 

A large portion of previous studies on discrimi-
native training for SMT either use a handful of fea-
tures or use small training sets of a few thousand 
sentences (e.g., Och 2003; Shen et al. 2004; 
Watanabe et al. 2007; Duh and Kirchhoff 2008; 
Chiang et al. 2008; Chiang et al. 2009). Although 
there is growing interest in large-scale discrimina-
tive training (e.g., Liang et al. 2006; Tillmann and 
Zhang 2006; Blunsom et al. 2008; Hopkins and 
May 2011; Zhang et al. 2011), only recently does 
some improvement start to be observed (e.g., 
Simianer et al. 2012; He and Deng 2012). It still 
remains uncertain if the improvement is attributed 
to new features, new training algorithms, objective 
functions, or simply large amounts of training data. 
We show empirically the importance of objective 
functions. Gimple and Smith (2012) also analyze 
objective functions, but more from a theoretical 
viewpoint. 

 The proposed MRF-based translation model is 
inspired by previous work of applying MRFs for 
information retrieval (Metzler and Croft 2005), 
query expansion (Metzler et al. 2007; Gao et al. 
2012) and POS tagging (Haghighi and Klein 2006). 
                                                           
3 For comparison, the method of He and Deng (2012) also 
achieved very similar results to ours using the same experi-
mental setting, as described in Section 4. 

# Objective 
functions 

DE-EN FR-EN 
TEST

1 
TEST2 TEST1 TEST2 

1 xBLEU 27.2 26.9 32.3 32.0 
2 hinge loss 26.4α 26.2α 31.8α 31.5α 
3 logistic loss 26.3α 26.2α 31.7α 31.5α 
4 log loss 26.5α 26.2α 32.1 31.7α   

Table 4: BLEU scores of MRF-based phrase trans-
lation models trained using different objective 
functions. The MRF models use phrase-pair and 
word-pair features.  The superscript α indicates 
statistically significant difference (p < 0.05) from 
xBLUE. 
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Another undirected graphical model that has been 
more widely used for NLP is a CRF (Lafferty et al. 
2001). An MRF differs from a CRF in that its par-
tition function is no longer observation dependent. 
As a result, learning an MRF is harder than learn-
ing a CRF using maximum likelihood estimation 
(Haghighi and Klein 2006). Our work provides an 
alternative learning method that is based on dis-
criminative training. 

6 Conclusions 

The contributions of this paper are two-fold. First, 
we present a general, statistical framework for 
modeling phrase translations via MRFs, where dif-
ferent features can be incorporated in a unified 
manner. Second, we demonstrate empirically that 
the parameters of the MRF model can be learned 
effectively using a large-scale discriminative train-
ing approach which is based on stochastic gradient 
ascent and an N-best list based expected BLEU as 
the objective function. 

In future work we strive to fully realize the po-
tential of the MRF model by developing features 
that can capture more sophisticated translation de-
pendencies that those used in this study. We will 
also explore the use of MRF-based translation 
models for translation systems that go beyond sim-
ple phrases, such as hierarchical phrase based sys-
tems (Chiang 2005) and syntax-based systems 
(Galley et al. 2004). 
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Abstract
In this paper, we study the problem of auto-
matic enrichment of a morphologically under-
specified treebank for Arabic, a morpholog-
ically rich language. We show that we can
map from a tagset of size six to one with 485
tags at an accuracy rate of 94%-95%. We
can also identify the unspecified lemmas in
the treebank with an accuracy over 97%. Fur-
thermore, we demonstrate that using our au-
tomatic annotations improves the performance
of a state-of-the-art Arabic morphological tag-
ger. Our approach combines a variety of tech-
niques from corpus-based statistical models to
linguistic rules that target specific phenomena.
These results suggest that the cost of treebank-
ing can be reduced by designing underspec-
ified treebanks that can be subsequently en-
riched automatically.

1 Introduction
Collections of manually-annotated morphological
and syntactic analyses of sentences, or treebanks,
are an important resource for building statistical
parsing models or for syntax-aware approaches to
applications such as machine translation. Rich tree-
bank annotations have also been used for a variety
of natural language processing (NLP) applications
such as tokenization, diacritization, part-of-speech
(POS) tagging, morphological disambiguation, base
phrase chunking, and semantic role labeling.

The development of a treebank with rich annota-
tions is demanding in time and money, especially for
morphologically complex languages. Consequently,
the richer the annotation, the slower the annotation
process and the smaller the size of the treebank. As
such, a tradeoff is usually made between the size of
the treebank and the richness of its annotations.

In this paper, we investigate the possibility of
automatically enriching the morphologically un-
derspecified Columbia Arabic Treebank (CATiB)

(Habash and Roth, 2009; Habash et al., 2009) with
the more complex POS tags and lemmas used in
the Penn Arabic Treebank (PATB) (Maamouri et al.,
2004). We employ a variety of techniques that range
from corpus-based statistical models to handwrit-
ten rules based on linguistic observations. Our best
method reaches accuracy rates of 94%-95% on full
POS tag identification. We can also identify the un-
specified lemmas in CATiB with an accuracy over
97%. 37% of our POS tag errors are due to gold tree
or gold POS errors. A learning curve experiment to
evaluate the dependence of our method on annotated
data shows that while the quality of some compo-
nents may reduce sharply with less data (12% abso-
lute reduction in accuracy when using 1

32 of the data
or some 10K annotated words), the overall effect is
a lot smaller (2% absolute drop). These results sug-
gest that the cost of treebanking can be reduced by
designing underspecified treebanks that can be sub-
sequently enriched automatically.

The rest of this paper is structured as follows:
Section 2 presents related work; Section 3 details
various language background facts about Arabic and
its treebanking; Section 4 explains our approach;
and Section 5 presents and discusses our results.

2 Related Work

Arabic Treebanking There has been a lot work
on building treebanks for different languages. In
the case of Modern Standard Arabic (MSA), there
are three efforts that vary in terms of richness and
representation choice. The Penn Arabic Treebank
(PATB) (Maamouri et al., 2004; Maamouri et al.,
2009b; Maamouri et al., 2009a), the Prague Ara-
bic Dependency Treebank (PADT) (Smrž and Ha-
jič, 2006; Smrž et al., 2008) and the Columbia
Arabic Treebank (CATiB) (Habash and Roth, 2009;
Habash et al., 2009) . The PATB uses phrase struc-
ture representation, while the other two use two
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different dependency representations. The PATB
and PADT representations are quite detailed. The
PATB not only provides tokenization, complex POS
tags (485 tags in our data set), and syntactic struc-
ture; it also provides empty categories, diacritiza-
tion, lemma choices, glosses and some semantic
tags. In comparison CATiB only provides tokeniza-
tion, six POS tags and eight dependency relations.
The tradeoff is speed: CATiB’s complete POS and
syntax annotation rate is 540 tokens/hour (and an-
notator training takes two months), a much higher
speed than reported for complete (POS and syntax)
annotation in PATB (around 250-300 tokens/hour
and 6-12 months for annotator training) and PADT
(around 75 tokens/hour) (Habash and Roth, 2009).
An important recent addition to the family of Arabic
treebanks is the Quran Treebank, which targets the
Classical Arabic language of the Quran, not MSA
(Dukes and Buckwalter, 2010).

Treebank Enrichment There has been a number
of efforts on developing treebanks with rich rep-
resentations and on treebank enrichment for many
languages, such Danish, English, German, Italian
and Spanish (Oepen et al., 2002; Hinrichs et al.,
2004; Müller, 2010). Additionally, there has been
some work on Arabic treebank enrichment that built
on the PATB by manually extending its already
rich annotations or automatically converting them
to new formalisms. The Arabic Propbank (Proposi-
tional Bank) (Palmer et al., 2008) and the OntoNotes
project (Hovy et al., 2006) both annotate for Ara-
bic semantic information. Alkuhlani and Habash
(2011) add annotations marking functional gender
and number, and rationality; and Abdul-Mageed and
Diab (2012) annotate the sentence level with sen-
timent labels. Tounsi et al. (2009) automatically
converted the PATB to a lexical functional gram-
mar (LFG) representation. Similarly, Habash and
Roth (2009) used a similar technique to build an
initial version of CATiB. We use this CATiB ver-
sion of PATB to evaluate our approach in this pa-
per. Also related to this is the work on automatic
enrichment of specific features, e.g., Habash et al.
(2007a) demonstrated that nominal case, can be de-
termined for gold syntactic analyses at high accu-
racy. We replicate their results and improve upon
them. And unlike them, we handle all the morpho-
logical features in the PATB, not just case.

Morphological Disambiguation There has been
a lot of work on Arabic POS tagging and morpho-
logical disambiguation (Diab et al., 2004; Habash
and Rambow, 2005; Smith et al., 2005; Hajič et al.,
2005; Roth et al., 2008; Habash et al., 2013). These
approaches are intended to apply to raw text and
determine the appropriate in-context morphological
reading for each word. In contrast, in this paper,
we are starting from a partially disambiguated and
relatively rich representation: we have tokenization,
general POS tags and syntactic dependency infor-
mation.

Finally, morphological information (beyond tok-
enization) has been shown to be useful for many
NLP applications. Marton et al. (2011) demon-
strated that morphology helps Arabic parsing. Us-
ing morphological features such as case has also
improved parsing for Russian, Turkish and Hindi
(Nivre et al., 2008; Eryigit et al., 2008; Nivre, 2009).
Other work has shown value for morphology in the
context of Arabic named entity recognition (Bena-
jiba et al., 2009). These results support the value of
our goal of enriching resources with morphological
information, which then can be used to improve dif-
ferent NLP applications.

3 Linguistic Background

In this section, we present some relevant general
linguistic facts about Arabic and then discuss the
specifics of the tagsets we work with in this paper.

Arabic Linguistic Facts The Arabic language
poses many challenges for NLP. Arabic is a mor-
phologically complex language which includes rich
inflectional and cliticizational morphology, e.g., the
word Aî 	EñJ. �JºJ
�ð w+s+y-ktb-wn+hA1 ‘and they will
write it’ has two proclitics, one prefix, one suffix and
one pronominal enclitic. Additionally, Arabic has a
high degree of ambigiouty due to the absence of the
diacritics and inconsistent spelling of letters such as
Alif,


@ Â and Ya ø
 y. The Buckwalter Arabic Mor-

phological Analyzer (BAMA) (Buckwalter, 2004),
which is used in the PATB, produces an average of
12 analyses per word.

In this paper, we work with gold tokenized Ara-
bic as it appears in the PATB and CATiB treebanks.

1Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007b): (in alphabetical or-
der) AbtθjHxdðrzsšSDTĎςγfqklmnhwy and the additional sym-
bols: ’ Z, Â


@, Ǎ @, Ā

�
@, ŵ ð', ŷ Zø', h̄ �è, ý ø.
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As such, the words are partially disambiguated with
regards to possible tokenizable clitics and Alif/Ya
spelling forms. That said, there is still a lot of am-
biguity remaining especially because diacritics are
not marked. Words in the treebank may be ambigu-
ous in terms of their POS, lemmas and inflectional
features. The inflectional features include gender,
number, person, case, state, mood, voice, aspect and
the presence of the determiner +È@ Al+ ‘the’, which
is not tokenized off in the treebanks.

Arabic has a well known discrepancy in form and
function that appears most commonly in the form
of irregular plurals, called Broken Plurals, which
although functionally are plural, have singular suf-
fixes. We will not discuss form and function dis-
crepancy in this paper except as needed. For more
on this see Habash (2010).

The Buckwalter Tagset The Buckwalter POS
tagset is perhaps one of the most commonly used
tagsets for Arabic NLP research. The tagset’s pop-
ularity is in part due to its use in the PATB. Buck-
walter tags can be used for tokenized and untok-
enized text. The untokenized tags are produced by
BAMA (Buckwalter, 2004) and consist of 485 tags.
The tokenized tags, which are used in the PATB,
are derived from the untokenized tags and can reach
thousands of tags. Both variants use the same ba-
sic 70 or so sub-tag symbols (such as DET ‘deter-
miner’, NSUFF ‘nominal suffix’, ADJ ‘adjective’
and ACC ‘accusative’) (Maamouri et al., 2009a).
These sub-tags are combined to form around 170
morpheme tags such as NSUFF_FEM_SG ‘femi-
nine singular nominal suffix’ and CASE_DEF_ACC
‘accusative definite’. The word tags are con-
structed out of one or more morpheme tags,
e.g. DET+NOUN_PROP+CASE_DEF_NOM for
the word 	á�
�Ë@ Al+Siyn+u ‘China’.

CATiB Trees and POS Tags CATiB uses the
same basic tokenization scheme used by PATB and
PADT. However, the CATiB POS tagset is much
smaller. Whereas in practice PATB uses 485 Buck-
walter tags specifying every aspect of Arabic word
morphology such as definiteness, gender, number,
person, mood, voice and case, CATiB uses 6 POS
tags: NOM (non-proper nominals including nouns,
pronouns, adjectives and adverbs), PROP (proper
nouns), VRB (verbs), VRB-PASS (passive-voice
verbs), PRT (particles such as prepositions or con-

VRB
����� trsl
———

IV3FS+IV+IVSUFF_MOOD:I
���

�
� >arsal

‘send’

MOD

PRT
+� s+
———

FUT_PART
+� sa+

‘will’

SBJ

PROP������� AlSyn
———

DET+NOUN_PROP
+CASE_DEF_NOM����� Siyn

‘China’

OBJ

NOM
����� qmrA
———
NOUN

+CASE_INDEF_ACC
���� qamar

‘moon’

MOD

NOM
����� ������ <STnAEyA

———
ADJ

+CASE_INDEF_ACC
���� ������ <iSTinAEy∼

‘artificial’

MOD

PRT
���� <lY
———

PREP
���� <lY

‘to’

OBJ

PROP
������� � Almryx

———
DET+NOUN_PROP
+CASE_DEF_GEN

������ mar∼iyx
‘Mars’

Figure 1: An example dependency tree for the sentence ������� � ���� ����� ������ ����� � ���� � ������ s+trsl Alhnd qmrA
<STnAEyA <lY Almryx ‘India will send a satellite to Mars [in 2013]’. In every tree node, the terms above the line are
part of the CATiB annotations: the word, POS (VRB = verb, PRT = particle, PROP = proper noun, NOM = nominal)
and relation (MOD = modifier, SBJ = subject, OBJ = object). The terms under the line are the Buckwalter POS tag, the
lemma and the gloss, respectively.

analyses as a constraint on the space from which we
will select the appropriate in context tag. The ap-
proach is quite similar to how MADA (morphologi-
cal analysis and disambiguation for Arabic) (Habash
and Rambow, 2005) works except that we are using
the CATiB tree as the context in which we disam-
biguate. Given the degree of richness of the tree, we
expect to outperform basic disambiguation on text.

In the rest of this section, we discuss our general
strategy, followed by a detailed presentation of our
approach: morphological disambiguation and mor-
phological filtering.

4.1 From CATiB to Buckwalter: Devising a
Strategy

In CATiB trees, different pieces of information can
be relevant to different disambiguation tasks. We an-
alyzed the data we have and obtained the following

observations which we use to devise our strategy for
how to address different types of ambiguity:

• Words in CATiB treebank are tokenized. This
resolves many ambiguous cases: analyses in-
volving cliticized prepositions or conjunctions
are dismissed. Further more, separated clitics
are marked, which restricts their reading.

• The CATiB POS tag, although two orders of
magnitude smaller than the Buckwalter tag set,
provides a lot of information. It resolves ambi-
guity amongst verbs (active or passive), nomi-
nals, particles, proper nouns and punctuation.

• The CATiB tags NOM or PRT are the most am-
biguous. They are challenging because there
are both lexical and morphosyntactic features
at play. We rely on our training data to learn
models of how to disambiguate them.

Figure 1: An example dependency tree for the sentence
t�'
QÖÏ @ úÍ@ AJ
«A 	J¢�@ @QÔ�̄ 	á�
�Ë@ É�Q��� s+trsl AlSyn qmrA

ǍSTnAςyA Ǎlý Almryx ‘China will send a satellite to
Mars’. In every tree node, the terms above the line are
part of the CATiB annotations: the word, POS (VRB,
PRT, PROP, NOM) and relation (MOD, SBJ, OBJ). The
terms under the line are the Buckwalter POS tag, the
lemma and the gloss, respectively.

junctions) and PNX (punctuation). CATiB uses a
dependency representation that models predicate-
argument structure (subject, object, etc.) and Ara-
bic nominal structure (idafa, tamyiz, modification).
The eight CATiB relation labels are: SBJ (sub-
ject of verb or topic of simple nominal sentence),
OBJ (object of verb, preposition, or deverbal noun),
TPC (topic in complex nominal sentences contain-
ing an explicit pronominal referent), PRD (pred-
icate marking the complement in some copular
constructions), IDF (relation between the posses-
sor [dependent] and the possessed [head] in the
idafa/possessive nominal construction), TMZ (re-
lation of the specifier [dependent] to the specified
[head] in the tamyiz/specification nominal construc-
tions), MOD (general modifier of verbs or nouns),
and — (marking flatness inside constructions such
as first-last proper name sequences). This relation
label set is much smaller than the twenty or so dash-
tags used in PATB to mark syntactic and semantic
functions. Furthermore, no empty categories, coref-
erence, or semantic relations (e.g., TMP or LOC) are
provided (Habash and Roth, 2009). A detailed dis-
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cussion of CATiB guidelines and further comparison
with PATB appears in (Habash et al., 2009).

In this paper, we target the enrichment of CATiB
with the morphological information used in the
PATB: Buckwalter POS tags and lemmas. We do
not address other kinds of rich information. Figure 1
presents an example of a CATiB tree with the exten-
sions we predict automatically for each word.

4 Approach

We define our task as assigning a Buckwalter POS
tag and lemma to each word in a CATiB syntac-
tic tree, i.e., disambiguating the CATiB POS tag in
terms of the finer grained Buckwalter tag in context.
Our approach utilizes a variety of corpus-based and
rule-based techniques. We use corpus-based tech-
niques that exploit available training data in the form
of portions of the PATB that are automatically con-
verted to CATiB style trees. We also use rule-based
solutions that allow us to apply linguistic knowl-
edge and insights. An important tool that we use
is a morphological analyzer which generates for ev-
ery word all possible out-of-context analyses. We
use these analyses as a constraint on the space from
which we will select the appropriate in-context tag.
The approach is quite similar to how MADA (Mor-
phological Analysis and Disambiguation for Arabic)
(Habash and Rambow, 2005) works except that we
are using the CATiB tree as the context in which we
disambiguate. Given the degree of richness of the
tree, we expect to outperform basic disambiguation
on text.

In the rest of this section, we discuss our general
strategy, followed by a detailed presentation of our
approach: morphological disambiguation and mor-
phological filtering.

4.1 From CATiB to Buckwalter: Devising a
Strategy

In CATiB trees, different pieces of information can
be relevant to different disambiguation tasks. We an-
alyzed a sample of the data we have and obtained the
following observations which we use to devise our
strategy for how to address different types of ambi-
guity:

• Words in the CATiB treebank are tokenized.
This resolves many ambiguous cases: anal-
yses involving cliticized prepositions or con-
junctions are dismissed. Further more, sepa-

rated clitics are marked, which restricts their
reading. The ambiguity in terms of the number
of lemmas per word reduces from 2.7 for unto-
kenized words to just 1.1 for tokenized words.

• The CATiB POS tagset, although two orders of
magnitude smaller than the Buckwalter tagset,
provides a lot of information. It resolves ambi-
guity amongst verbs (active or passive), nomi-
nals, particles, proper nouns and punctuation.

• The CATiB tags NOM and PRT are the most
ambiguous. They are challenging because there
are both lexical and morphosyntactic features
at play. We rely on our training data to learn
models of how to disambiguate them. The
CATiB treebank annotation does not determin-
istically allow us to identify the finer grained
tag using the POS and relations alone: e.g., the
NOM child of an NOM parent (with the rela-
tion MOD) can be an ADJ (67% probability)
or a NOUN (21%).

• Case, state, mood and to a lesser degree aspect
are syntactically dependent features, for which
we use the CATiB tree and linguistic rules to
disambiguate the correct value in context.

• Gender, number and person are expressed using
affixes that highly limit the feature-value possi-
bilities, e.g., the suffix �è+ +h̄ deterministically
selects for +NSUFF_FEM_SG suffix tag.

4.2 Morphological Analysis & Disambiguation

We use the morphological analyzer BAMA to get a
list of all possible analyses for a word. BAMA re-
turns unranked analyses for untokenized text only.
Since we know that the input is already tokenized,
we built an extension to BAMA that handles clitics
and accepts analyses that are consistent with the tok-
enization of the input, discarding all other analyses.

We use both the morphological analyzer BAMA
and a training set from the PATB to predict the Buck-
walter tag for a given word. We use BAMA to get a
list of all possible Buckwalter tag and lemma pairs
for each word. We then rank these choices using one
of the following two methods: a maximum likeli-
hood estimate model (MLE) conditioned on specific
features in the CATiB tree or a MADA-like suite of
classifiers that select for specific POS tag features
such as gender or number.
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4.2.1 Maximum Likelihood Model
The MLE model ranks the set of choices from

BAMA returning the most probable analysis. We
consider two models:

• MLE Baseline 1 selects the Buckwalter tag
with the highest unconditioned probability in
the training data, P(BW), among the set of
BAMA choices for the word whose tag we
want to determine.

• MLE Baseline 2 selects the Buckwalter tag
with the highest probability conditioned on
the word and CATiB tag: P(BW|word,CATiB).
This model backs off to the Buckwalter tag
with the highest probability conditioned on the
CATiB tag, i.e., P(BW|CATiB), and then backs
off to MLE Baseline 1.

4.2.2 Analysis and Disambiguation of
Tokenized Arabic

We retrained the MADA system (Habash and
Rambow, 2005) using a tokenized version of the
PATB. We call the new version TADA: Tokenized
Analysis and Disambiguation of Arabic. TADA
takes tokenized text, and returns a ranked list of
analyses for each tokenized word and clitic. Just
like MADA, TADA uses BAMA to identify possible
analyses of the word. It then uses a suite of classi-
fiers to predict inflectional and lexical features that
are used to rank the possible analyses.

As expected, TADA outperforms the simple MLE
models described earlier; however, its performance
is not high enough since it makes no use of tree fea-
tures. The results are presented in Section 5. How-
ever, we will present here a preliminary error analy-
sis of TADA’s output to motivate the morphological
filters presented next (Section 4.3).

TADA Preliminary Error Analysis We consid-
ered the first 100 errors in the Buckwalter tags in our
development set. About half of the errors involved a
problem in case (42%), state (13%) or mood (3%).
Case and state errors had many overlaps. All of
these errors are syntactically determinable using the
tree representation in a manner similar to Habash
et al. (2007a). In 17% of the cases, a POS error
can be resolved using the CATiB tag, (e.g., proper
noun vs adjective or verb). In 2% of the cases, the
error involved an orthographic normalization (Alif-
form) that led to an undesirable solution (e.g., �é 	J�Ë


@

Âlsnh̄ ‘tongues’ vs �é 	J�Ë@ Alsnh̄ ‘the-year’). These
cases should be resolved by enforcing the CATiB
tree word form. Ambiguity in CATiB tags was a
problem for nominal forms 15% of the time (e.g.,
NOUN vs ADJ), particles 10% of the time (e.g., +ð
w+ ‘and’ can be CONJ or SUB_CONJ), and pro-
nouns 5% of the time (e.g., Ñë+ +hm ‘them’ can be
IVSUFF_DO:3MP or PVSUFF_DO:3MP [attached
to an imperfective or perfective verb]).2 In 1% of
the cases, there was an error involving ambiguity
in number (dual/plural). And finally, in 3% of the
cases, we determined that the gold POS tag was ac-
tually incorrect. Within the same set of sentences
studied, we found 18 lemma choice errors. Almost
all, except for three cases, involve a nominal form
ambiguity resulting from diacrtic absence, e.g., XYêÓ
muhad∼id ‘threatening’ or muhad∼ad ‘threatened’.
Eight of the 18 cases (or 44%) happened without an
accompanying POS error. Overall, the accuracy of
lemma choice is highly dependent on the correct-
ness of the chosen core Buckwalter tag; lemma ac-
curacy when the tag is correct is 97.9%, but it drops
to 71.3% when the tag is wrong.

4.3 Morphological Filters

We implemented a set of filters that take the list of
ranked analyses produced by TADA and discard any
analyses that are inconsistent with the filters’ deci-
sions in the tree context. TADA ranking is preserved
among the remaining analyses.

4.3.1 CATiB Filter
TADA returns all analyses for word, including

different forms of the word (i.e., different Alif/Ya
forms as part of BAMA’s back-off mode). For ex-
ample, when given the word úÎ« ςlý, TADA returns
analyses for both the words úÎ« ςlý ‘on’ and ú
Î« ςly
‘Ali’. Since the input to our system is the gold word
form from CATiB trees, the CATiB filter will discard
analyses that do not match the given word form.

The CATiB filter also resolves some POS ambigu-
ity given information in the CATiB POS tag. For ex-
ample, the CATiB POS tags NOM or VRB can eas-
ily decide whether the ambiguous word I. �KA¿ kAtb
is a noun (kAtib ‘writer’) or a verb (kAtab ‘to corre-
spond’).

2This is a peculiarity of the tagset used in PATB. The dis-
tinction does not seem to be necessary to our knowledge, but
we still consider it the gold goal.
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4.3.2 Pronominal Filter
The pronominal filter (PRON) selects the pro-

nouns that are consistent with the verbs they are at-
tached to. A pronoun attached to a verb could either
be IVSUFF_DO, PVSUFF_DO or CVSUFF_DO
depending on whether the verb is imperfective (IV),
perfective (PV), or imperative (CV).

4.3.3 Noun/Adjective Filter
The noun/adjective (NOUN/ADJ) filter is ap-

plied to words with the CATiB tag NOM.
It uses a nominal classifier, which classifies
CATiB NOM words into one of the follow-
ing Buckwalter noun/adjective classes: NOUN,
NOUN.VN, NOUN_QUANT, NOUN_NUM, ADJ,
ADJ.VN, ADV_COMP, ADV_NUM. The NA (not-
applicable) tag is assigned to all other words. For ex-
ample, the classifier will decide whether �èQ�
J.» kbyrh̄
is a noun ‘abomination’ or an adjective ‘great [fem-
inine singular]’ based on the context.

To build the nominal classifier, we use Yam-
cha (Kudo and Matsumoto, 2003), a support-vector-
machine-based sequence tagger trained on our PATB
training data. We use the following set of fea-
tures: the word form, CATiB POS tag, parent fea-
tures (word form, CATiB POS tag), dependency re-
lation, order of appearance (the word comes before
or after its parent), the distance between the word
and its parent, and different types of relation-child
POS (REL-CTB) features. The REL-CTB features
state whether a word has a child with a CATiB POS
(CTB) under a dependency relation (REL). A word
can have 0 or more children. We have six CATiB
POS tags and eight dependency relations and thus up
to 48 different REL-CTB binary learning features.
An example of this feature is a PRT that has a child
NOM under a dependency relation OBJ. In this case,
the value of the feature OBJ-NOM is 1. We also add
a window of two words before and two words after
the word being tagged as static features, and the tag
of the previous two words as dynamic features. The
nominal classifier predicts the correct nominal class
with an accuracy of 97.70%.

4.3.4 Particle Filter
The particle filter (PRT) selects the specific Buck-

walter POS for a particle. For example, the particle
AÓ mA can be the negative particle ‘not’, the relative
pronoun ‘that’ or the interrogative pronoun ‘what?’.
The PRT filter uses a particle classifier that uses the

same learning features and training data as the nomi-
nal classifier. The particle classifier predicts the cor-
rect particle class with an accuracy of 99.54%.

4.3.5 Verbal Mood and Aspect Filter
The Buckwalter POS tags for verbs have three

markers for aspect: imperfective (IV), perfective
(PV), and imperative (CV); and three markers for
mood: jussive (J), subjunctive (S) and indicative
(I). We apply our rule-based mood-and-aspect fil-
ter (MOOD/ASPECT) to words that have the CATiB
tag VRB or VRB-PASS.

If the verb is preceded by a jussive, subjunctive or
future particle then it is imperfective in aspect and
its mood is determined by the particle. The mood is
indicative if the verb is preceded by a future particle
such as 	¬ñ� swf ‘will’; it is jussive if the verb is pre-
ceded by a jussive particle such as ÕË lm ‘not+past’,
+È l+ ‘for’; and it is subjunctive if the verb is pre-
ceded by a subjunctive particle such as 	à


@ Ân ‘that’,

	áË ln ‘not+future’, ú
» ky ‘so as to’, and ú �æk Htý ‘un-
til’. This is also valid when a negating B lA inter-
venes between the subjunctive particle and the verb.
If the verb is proceeded with the particle Y�®Ë lqd ‘al-
ready’, then the verb is perfective. Otherwise, the
verb could be either imperfective (with an indicative
mood), perfective or imperative (all allowed through
the filter).

4.3.6 Nominal State Filter
The Buckwalter POS tags have three nominal

state markers: INDEF, DEF and POSS.3 The nomi-
nal state filter (STATE) applies the following rules:
If the word is head of an idafa (IDF), then we ex-
clude the INDEF analyses. Otherwise, we exclude
the POSS and the non-Al/DET determined DEF
analysis (which are only used for IDF heads).

4.3.7 Nominal Case Filter
The nominal case filter (CASE) assigns the val-

ues nom (nominative), acc (accusative) or gen (gen-
itive) to each NOM/PROP word primarily based on
the CATiB dependency relation label that describes
the type of relation between the word and its parent.
The nominal case filter extends the case predictor in
Habash et al. (2007a). The following four rules are
applied in sequence.

3These values do not exactly match the functional values for
state in Arabic (Smrž, 2007).
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• RULE 1: Assign acc to all NOM/PROP words
as a default.

• RULE 2: Assign nom to NOM/PROP words
that (a) head the tree, (b) have the label TPC,
(c) have the label SBJ but are not headed by a
particle from the closed class of Inna and its
sisters (Habash et al., 2007a), or (d) have the
label PRD but is not headed by a verb or dever-
bal noun. Exempt words in the closed class of
adverb-like nouns such as ��ñ 	̄ fwq ‘over’, ÉJ. �̄
qbl ‘before’, and Èñk Hwl ‘around’.

• RULE 3: Assign gen to NOM/PROP words that
have the label OBJ under a preposition, or that
have the label IDF.

• RULE 4: All children of NOM/PROP parents
whose label is MOD, and NOM/PROP chil-
dren of conjunctions whose label is OBJ, copy
the case of their parent. Conjunctions carry the
case temporarily to pass on agreement.

4.3.8 MLE Override

We added an MLE-based component to override
answers that are provided by our final system. We
used a no-BAMA version of the MLE Baseline 2.
The difference between the MLE override compo-
nent and MLE Baseline 2 is that it takes into account
all possible Buckwalter POS tags that appear in the
training set for a specific word regardless of whether
they are provided by BAMA or not. This MLE over-
ride component is trained on the same training set
and returns the most common Buckwalter tag and
lemma pair for a given word form and CATiB POS
tag pair. BAMA is not used here since the reason
behind this additional step is to overcome any limi-
tation caused by using BAMA to start with. These
limitations include primarily cases of BAMA failure
to produce analyses (OOV) or minor version differ-
ences between BAMA and the PATB. If a Buckwal-
ter tag and lemma pair appear above a threshold of
n times and always with the same word-lemma pair,
then we override our answer with the new answer
from the MLE. When we override, we only override
the core part of the Buckwalter tag. We do not over-
ride the state, case, and mood features since they are
syntactic features. We tried different values for the
threshold and got the best results when n = 4.

4.4 Putting it All Together
TADA provides an initial list of ranked analyses.
Then, the morphological filters discard analyses that
are not consistent with the CATiB tree information.
The analysis with the highest TADA rank among the
remaining analyses is selected as the answer.

We apply our filters in the following order. We
first apply the CATiB filter. After that, we apply
the pronominal, noun/adjective and particle filters.
These three filters can be applied in any order since
they are applied on disjoint sets of words. The next
filter is the mood/aspect filter which has to be ap-
plied after the particle filter since it depends on the
particle choice in predicting the mood of the follow-
ing verb. At this point, we freeze the lemma choice
for the word. The next two filters, state and case,
look at syntactic features and should not affect the
choice of the lemma.

We use two back-off mechanisms. The first one
is with the application of each filter. If the effect of
applying a filter results in an empty set (no match
found) then we undo the effect of the filter and pass
the list of analyses as is to the next filter. The sec-
ond mechanism is using the MLE override at the end
of the pipeline. TADA, the noun/adjective and par-
ticle filters, and the MLE override use corpus-based
components while all other filters are rule-based.

5 Evaluation

5.1 Experimental Settings
We use a CATiB version of the PATB part 3v3.1 and
part 2v3.0 released by the Linguistic Data Consor-
tium (LDC) (Maamouri et al., 2004). We use the
train/development/test (80/10/10) splits of Marton et
al. (2010) for PATB part 3v3.1 (16.6K sentences;
400K tokens): we use their train as our training data,
their development as the tuning data for TADA and
their test as our development set. For our blind test,
we use the first 1000 sentences in PATB part 2v3.0
(38K tokens).

We report all results in terms of token accuracy
on the full Buckwalter tag, reduced Buckwalter tag
and the lemma. The reduced Buckwalter tag is the
Buckwalter tag without case, state, and mood. The
number of tags is reduced to 220 tags (compared to
485 tags for the full Buckwalter tagset).

In cases of gold full Buckwalter tags that are un-
derspecified for case, state or mood, we do not pe-
nalize our systems if our more specific predicted
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Full Reduced
BW BW Diff Lemma

MLE Baseline 1 57.19 73.44 16.25 90.87
MLE Baseline 2 77.69 93.27 15.58 94.31
TADA 86.15 94.04 7.89 96.97
++ CATiB 87.33 95.50 8.17 97.72
++ PRON 88.16 96.32 8.16 97.72
++ NOUN/ADJ 88.93 97.26 8.33 97.72
++ PRT 89.24 97.57 8.33 97.72
++ MOOD/ASPECT 89.46 97.60 8.14 97.74
++ STATE 89.92 97.61 7.69 97.74
++ CASE 94.90 97.61 2.71 97.74
++ MLE override 95.27 98.00 2.73 97.81

Table 1: Accuracy of enriching CATiB trees with Buck-
walter (BW) tags and lemmas on the development set.
Reduced Buckwalter is similar to Buckwalter, but ignores
case, mood and state. The Difference between the two
metrics highlights the errors from case, mood and state.

tag otherwise matches the gold tag. Words whose
lemmas are unknown (nolemma, TBupdate) or has
the lemma DEFAULT (including digits and punc-
tuation) are excluded from the evaluation, but not
training: in the development set, 4,498 out of 25,446
words were excluded (∼18%).

5.2 Results
Table 1 shows the results of our experiments on

the development set. Considering the baseline sys-
tems, we see that using both the CATiB POS tag
and the word form in MLE Baseline 2 gives us a
20.5% absolute increase above MLE Baseline 1. Us-
ing TADA improves the performance significantly
(adding 8.46% absolute over MLE Baseline 2). Ev-
ery additional morphological filter has a positive im-
pact and the improvement of the accuracy for full
Buckwalter with each new filter ranged between
0.22% and 1.18% absolute except for the case filter,
which adds almost 5%. Adding the MLE override
has a positive impact on the accuracy of the full and
reduced Buckwalter tags and the lemma.

We apply our baselines, TADA, TADA+filters and
TADA+filters+MLE to the blind test set (see Ta-
ble 2). The test set is a bit harder than the devel-
opment set, but the results are consistent with those
seen for the development set.

5.3 Error Analysis
We conducted an analysis of the errors in the output
of the final system TADA+filters+MLE on the devel-
opment set. We considered 100 randomly selected
error cases and examined them in the CATiB trees

Full Reduced
BW BW Diff Lemma

MLE Baseline 1 55.96 71.88 15.92 90.77
MLE Baseline 2 77.15 92.88 15.73 94.03
TADA 86.49 94.42 7.93 96.63
++ All filters 93.44 97.25 3.81 97.13
++ MLE override 93.61 97.43 3.82 97.17

Table 2: Accuracy of enriching CATiB trees with Buck-
walter (BW) tags and lemmas on the blind test set.

to assess the source of the error. About 37% of all
errors are due to gold treebank errors: 21% are gold
tree structure/relation errors and 16% are gold POS
errors. The rest of the errors result from failures in
our system. The most common error is in NOM dis-
ambiguation: NOUN/NOUN_NUM, NOUN/ADJ,
NOUN/NOUN_QUANT, etc. The NOM errors ac-
counted for 33% of all errors. Case comes sec-
ond with 12% errors, then PRT and gender-number-
person errors with 5% each. State errors contribute
to 3% of total errors.

5.4 Learning Curve Study

The non-rule-based components of our approach,
namely TADA, NOUN/ADJ and PRT filters, and
MLE override depend on the existence of an anno-
tated treebank in rich format. To understand the de-
gree of dependence, we ran a series of experiments
on different sizes of the training data: 1

2 , 1
4 , 1

8 , 1
16 ,

and 1
32 of the full training set (341.1K words). These

data sets were used to train new versions of TADA,
the NOUN/ADJ and PRT filters, and the MLE over-
ride. The results of running TADA and the final sys-
tem on the development set using the different data
sets are summarized in Tables 3 and 4, respectively.
As expected, when the training data size goes down
the accuracy goes down. Our final system, which
adds filters on top of TADA, had a significant ef-
fect on the performance as shown in Table 4. Using
only 10.6K of annotated words, the quality of TADA
reduces sharply (12.12% absolute reduction in accu-
racy) while the overall effect on our full system is
a lot smaller (2.03% absolute drop). Similarly, the
performance of the nominal and particle classifiers
degrade when trained on less data. When we use
1
32 of the training data, the correct nominal class is
predicted at an accuracy of 90.49% (7.21% absolute
drop), while the correct particle class is predicted at
an accuracy of 96.59% (2.95% absolute drop). We
used the MLE override threshold determined based
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Size Full BW Reduced BW Diff Lemma
1/32 10.6K 74.03 88.78 14.75 93.41
1/16 21.3K 77.16 90.30 13.14 94.37
1/8 42.6K 79.76 91.63 11.87 95.56
1/4 85.3K 81.91 92.80 10.89 96.22
1/2 170.7K 84.12 93.62 9.50 96.74
1 341.1K 86.15 94.04 7.89 96.97

Table 3: Accuracy of enriching CATiB trees with Buck-
walter (BW) tags and lemmas using TADA only for dif-
ferent training sizes on the development set.

Size Full BW Reduced BW Diff Lemma
1/32 10.6K 93.24 95.81 2.57 95.68
1/16 21.3K 93.67 96.28 2.61 96.27
1/8 42.6K 94.14 96.79 2.65 96.94
1/4 85.3K 94.56 97.26 2.70 97.22
1/2 170.7K 94.96 97.66 2.70 97.61
1 341.1K 95.27 98.00 2.73 97.81

Table 4: Accuracy of enriching CATiB trees with Buck-
walter (BW) tags and lemmas using our best performing
system for different training sizes on the development set.

on the full training data, which may not be optimal
for smaller data sets.

The contribution of our full system over TADA
when using 1

32 of the full training data is over
19% absolute (on full Buckwalter tag determination)
compared to 9% when using the full training data.
The morph analysis (out of context) is the same for
all experiments and that this provides a lot of stabil-
ity to the results. The high lemma accuracy overall
is a result of disambiguating tokenized words, where
the average numbers of lemmas per word is only 1.1
as mentioned above. These results suggest that our
approach is usable even in the early stages of devel-
oping new richly annotated treebanks.

5.5 Extrinsic Evaluation
We applied our automatic enrichment to the under-
specified CATiB treebank (as opposed to the parts of
PATB, which we used throughout the paper to sim-
ulate CATiB). We evaluate the added value of these
annotations by using them to extend the training data
for the morphological tagger MADA (Habash and
Rambow, 2005), which is used on untokenized text.
We train a new set of MADA classifier models using
a combination of the original MADA (v 3.2) train-
ing data (578K words taken from PATBs 1, 2 and 3)
and the enriched CATiB data (218K words). We ap-
ply the new MADA system to our development set
and evaluate on several metrics. As a baseline, we

process the same development set using MADA (v
3.2). Other than the training data used to construct
the classifier models, there are no differences be-
tween the two systems. The CATiB-enriched system
results in a Buckwalter POS tag accuracy of 85.6%
(a 2.2% error reduction over the baseline). When
evaluating on the set of 14 MADA morphological
features, the new system results in a 85.7% accuracy
(2.4% error reduction). The new system also im-
proves PATB segmentation accuracy (99.2%, a 5.4%
error reduction). In the future, we will evaluate the
contribution of the additional annotations in the con-
text of other applications, such as syntactic parsing.

6 Conclusion and Future Work

We have demonstrated that an underspecified ver-
sion of an Arabic treebank can be fully specified for
Arabic’s rich morphology automatically at an accu-
racy rate of 94%-95% for POS tags and 97% for
lemmas. Our approach combines a variety of tech-
niques from corpus-based statistical models (which
require some rich annotations) to linguistic rules that
target specific phenomena. Since the underspecified
treebank is much faster to manually annotate than its
fully specified version, these results suggest that the
cost of treebanking can be reduced by designing un-
derspecified treebanks that can be subsequently en-
riched automatically.

In the future, we plan to extend the automatic
enrichment effort to include more complex features
such as empty nodes and semantic labels. We also
plan to take the insights from this effort and apply
them to treebanks of other languages. A small por-
tion of a treebank that is fully annotated in rich for-
mat will of course be needed before we can apply
these insights to other languages.
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Abstract

Social media texts are written in an infor-
mal style, which hinders other natural lan-
guage processing (NLP) applications such as
machine translation. Text normalization is
thus important for processing of social media
text. Previous work mostly focused on nor-
malizing words by replacing an informal word
with its formal form. In this paper, to fur-
ther improve other downstream NLP applica-
tions, we argue that other normalization oper-
ations should also be performed, e.g., missing
word recovery and punctuation correction. A
novel beam-search decoder is proposed to ef-
fectively integrate various normalization oper-
ations. Empirical results show that our system
obtains statistically significant improvements
over two strong baselines in both normaliza-
tion and translation tasks, for both Chinese
and English.

1 Introduction

Social media texts include SMS (Short Message
Service) messages, Twitter messages, Facebook up-
dates, etc. They are different from formal texts due
to their significant informal characteristics, so they
always pose difficulties for applications such as ma-
chine translation (MT) (Aw et al., 2005) and named
entity recognition (Liu et al., 2011), because of a
lack of training data containing informal texts. Thus,
the applications always suffer from a substantial per-
formance drop when evaluated on social media texts.
For example, Ritter et al. (2011) reported a drop
from 90% to 76% on part-of-speech tagging, and

Foster et al. (2011) found a drop of 20% in depen-
dency parsing.

Creating training data of social media texts specif-
ically for a text processing task is time-consuming.
For example, to create parallel Chinese-English
training texts for translation of social media texts,
it takes three minutes on average to translate an in-
formally written social media text of eleven words
from Chinese into English. On the other hand, it
takes thirty seconds to normalize the same message,
a six-fold increase in speed. After training a text nor-
malization system to normalize social media texts,
we can use an existing statistical machine translation
(SMT) system trained on normal texts (non-social
media texts) to carry out translation. So we argue
that normalization followed by regular translation is
a more practical approach. Thus, text normalization
is important for social media text processing.

Most previous work on normalization of social
media text focused on word substitution (Beaufort
et al., 2010; Gouws et al., 2011; Han and Baldwin,
2011; Liu et al., 2012). However, we argue that
some other normalization operations besides word
substitution are also critical for subsequent natu-
ral language processing (NLP) applications, such
as missing word recovery (e.g., zero pronouns) and
punctuation correction.

In this paper, we propose a novel beam-search
decoder for normalization of social media text for
MT. Our decoder can effectively integrate differ-
ent normalization operations together. In contrast
to previous work, some of our normalization opera-
tions are specifically designed for MT, e.g., missing
word recovery based on conditional random fields
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(CRF) (Lafferty et al., 2001) and punctuation cor-
rection based on dynamic conditional random fields
(DCRF) (Sutton et al., 2004).

To the best of our knowledge, our work is the
first to perform missing word recovery and punc-
tuation correction for normalization of social me-
dia text, and also the first to perform message-level
normalization of Chinese social media text. We in-
vestigate the effects on translating social media text
after addressing various characteristics of informal
social media text through normalization. To show
the applicability of our normalization approach for
different languages, we experiment with two lan-
guages, Chinese and English. We achieved statisti-
cally significant improvements over two strong base-
lines: an improvement of 9.98%/7.35% in BLEU
scores for normalization of Chinese/English social
media text, and an improvement of 1.38%/1.35% in
BLEU scores for translation of Chinese/English so-
cial media text. We created two corpora: a Chinese
corpus containing 1,000 Weibo1 messages with their
normalizations and English translations; and another
similar English corpus containing 2,000 SMS mes-
sages from the NUS SMS corpus (How and Kan,
2005). As far as we know, our corpora are the first
publicly available Chinese/English corpora for nor-
malization and translation of social media text2.

2 Related Work

Zhu et al. (2007) performed text normalization of
informally written email messages using CRF (Laf-
ferty et al., 2001). Due to its importance, normaliza-
tion of social media text has been extensively studied
recently. Aw et al. (2005) proposed a noisy chan-
nel model consisting of different operations: sub-
stitution of non-standard acronyms, deletion of fla-
vor words, and insertion of auxiliary verbs and sub-
ject pronouns. Choudhury et al. (2007) used hid-
den Markov model to perform word-level normal-
ization. Kobus et al. (2008) combined MT and auto-
matic speech recognition (ASR) to better normalize
French SMS message. Cook and Stevenson (2009)
used an unsupervised noisy channel model consid-
ering different word formation processes. Han and
Baldwin (2011) normalized informal words using

1A Chinese version of Twitter at www.weibo.com
2Available at www.comp.nus.edu.sg/∼nlp/corpora.html

morphophonemic similarity. Pennell and Liu (2011)
only dealt with SMS abbreviations. Xue et al. (2011)
normalized social media texts incorporating ortho-
graphic, phonetic, contextual, and acronym factors.
Liu et al. (2012) designed a system combining dif-
ferent human perspectives to perform word-level
normalization. Oliva et al. (2013) normalized Span-
ish SMS messages using a normalization and a pho-
netic dictionary. For normalization of Chinese so-
cial media text, Xia et al. (2005) investigated infor-
mal phrase detection, and Li and Yarowsky (2008)
mined informal-formal phrase pairs from Web cor-
pora.

All the above work focused on normalizing
words. In contrast, our work also performs other
normalization operations such as missing word re-
covery and punctuation correction, to further im-
prove machine translation. Previously, Aw et al.
(2006) adopted phrase-based MT to perform SMS
normalization, and required a relatively large num-
ber of manually normalized SMS messages. In con-
trast, our approach performs beam search at the sen-
tence level, and does not require large training data.

We evaluate the success of social media text nor-
malization in the context of machine translation, so
research on machine translation of social media text
is relevant to our work. However, there is not much
comparative evaluation of social media text transla-
tion other than the Haitian Creole to English SMS
translation task in the 2011 Workshop on Statistical
Machine Translation (WMT 2011) (Callison-Burch
et al., 2011). However, the setup of the WMT 2011
task is different from ours, in that the task provided
parallel training data of SMS texts and their transla-
tions. As such, text normalization is not necessary
in that task. For example, the best reported system
in that task (Costa-jussà and Banchs, 2011) did not
perform SMS message normalization.

In speech to speech translation (Paul, 2009;
Nakov et al., 2009), the input texts contain wrongly
transcribed words due to errors in automatic speech
recognition, whereas social media texts contain ab-
breviations, new words, etc. Although the input
texts in both cases deviate from normal texts, the ex-
act deviations are different.
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Category Freq. Example
Punctuation 81你好[hi]～(你好。[hi .]);
Pronunciation 47表[watch](不要[don’t]);酱紫(这样子[this]);
New word 43萌[bud](可爱[cute]);
Interjection 27好的[ok]哦[oh](好的[ok]);
Pronoun 23想要[want](我[i]想要[want]);
Segmentation 14表酱紫(不要[don’t]这样子[this]);
Pronunciation 288 4(for); oredi(already);
Abbreviation 98 slp(sleep); whr(where);
Prefix 74 lect(lecture); doin(doing);
Punctuation 69 where r u(where r u ?);
Interjection 68 ok lor .(ok .);
Quotation 24 im sure(i ’m sure); dont go(don ’t go);
Be 24 i coming; you free?;
Tokenization 19 ok.why ?(ok . why ?);
Time 2 end at 730(end at 7:30); 1130 am(11:30 am);

Table 1: Occurrence frequency of various informal char-
acteristics in 200 Chinese/English social media texts.

3 Challenges in Normalization of Social
Media Text

To better understand the informal characteristics of
social media texts, we first analyzed a small sample
of such texts in Chinese and English. We crawled
200 Chinese messages from Weibo. The informal
characteristics of these messages are shown in the
first half of Table 1. The manually normalized form
is shown in round brackets, and the English gloss is
shown in square brackets. Omitted, extraneous, and
misused punctuation symbols occur frequently. On
average, each Chinese message contains only less
than one informal word, and many informal words
are either new words or existing words with new
meaning. The messages also contain redundant in-
terjections like “哦[oh]”. Pronouns are often omit-
ted in Chinese messages, especially for “我[I]”. Chi-
nese informal words can be wrongly segmented due
to lack of word segmentation training data contain-
ing informal words.

Similarly, 200 English SMS messages were ran-
domly selected from the NUS SMS corpus (How
and Kan, 2005). The informal characteristics of
these messages are shown in the second half of Ta-
ble 1. We found that our English messages contain
more informal words than Chinese messages. En-
glish words are shortened in three ways: (1) using
a shorter word form with similar pronunciation; (2)
abbreviating a formal word; and (3) using only a pre-
fix of a formal word. Other informal characteristics
include: (1) informal punctuation conventions in-

cluding omitted and misused punctuation; (2) redun-
dant interjections; (3) quotation-related problems,
e.g., omitted quotation marks; (4) “be” omission;
(5) tokenization problems; and (6) informally writ-
ten time expressions.

4 Methods

As can be seen in Section 3, social media texts of
different languages exhibit different informal char-
acteristics. For example, English messages have
more informal words than Chinese messages, while
punctuation problems are more prevalent for Chi-
nese messages. Also, fixing different types of infor-
mal characteristics often depends on each other. For
example, to be able to correct punctuation, it helps
that the surrounding words are already correctly nor-
malized. On the other hand, with punctuation al-
ready corrected, it will be easier to normalize the
surrounding words.

In this section, we first present our punctuation
correction method based on a DCRF model, and
then present missing word recovery based on a CRF
model. Next, we present a novel beam-search de-
coder for normalization of social media text, which
can effectively integrate different normalization op-
erations, including statistical and rule-based normal-
ization. Finally, details of text normalization for
Chinese and English are presented.

4.1 Punctuation Correction

In normalization of social media text, punctuation
correction is also important besides word normal-
ization, as the subsequent NLP applications are typ-
ically trained on formal texts with correct punctua-
tion. We define punctuation correction as correcting
punctuation in sentences which may have no or un-
reliable punctuation. The task performs three punc-
tuation operations: insertion, deletion, and substitu-
tion.

To our knowledge, no previous work has been
done on punctuation correction for normalization of
social media text. In ASR, punctuation prediction
only inserts punctuation symbols into ASR output
that has no punctuation (Kim and Woodland, 2001;
Huang and Zweig, 2002), but without punctuation
deletion or substitution. Lu and Ng (2010) argued
that punctuation prediction should be jointly per-
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formed with sentence boundary detection, so they
modeled punctuation prediction using a two-layer
DCRF model (Sutton et al., 2004).

We also believe that punctuation correction is
closely related to sentence boundary detection.
Thus, we propose a two-layer DCRF model for
punctuation correction. Layer 1 gives the actual
punctuation tags None, Comma, Period, Question-
Mark, and Exclamatory-Mark. Layer 2 gives
the sentence boundary, including tags Declarative-
Begin, Declarative-In, Question-Begin, Question-In,
Exclamatory-Begin, and Exclamatory-In, indicating
whether the current word is at the beginning of (or
inside) a declarative, question, or exclamatory sen-
tence.

We use word n-grams (n = 1, 2, 3) and punctu-
ation symbols within 5 words before and after the
current word as binary features in the DCRF model.
As an example, Table 2 shows the tags and features
for the word “where” in the message “where| .|? i|
can| not| see| you| !|!”, where the punctuation sym-
bols after the vertical bars are the corrected symbols.

Tags Content
Layer 1 Question-Mark
Layer 2 Question-Begin
Features Content
unigram <s>@-1 where@0 i@1 can@2 not@3

see@4 you@5
bigram <s>+where@-1 where+i@0 i+can@1

can+not@2 not+see@3 see+you@4
you+</s>@5

trigram <s>+where+i@-1 where+i+can@0
i+can+not@1 can+not+see@2
not+see+you@3 see+you+</s>@4

punctuation .@0 !@5

Table 2: An example of tags and features used in punctu-
ation correction.

Due to the lack of informal training texts with cor-
rected punctuation, we train our punctuation correc-
tion model on formal texts with synthetically cre-
ated punctuation errors. We randomly add, delete,
and substitute punctuation symbols in formal texts
with equal probabilities. Specifically, for s ∈ {, .?!},
P (none|s) = P (, |s) = P (.|s) = P (?|s) =
P (!|s) = 0.2 denotes the probability of replacing
a punctuation symbol s (replacing s by none de-
notes deletion); and for a real word (not a punctua-
tion symbol)w, P (none|w) = P (, |w) = P (.|w) =
P (?|w) = P (!|w) = 0.2 denotes the probability

of inserting a punctuation symbol after w (inserting
none after w denotes no insertion).

4.2 Missing Word Recovery

As shown in Section 3, some words are often omit-
ted in social media texts, e.g., the pronoun “我[I]”
in Chinese and be in English. To fix this problem,
we propose a CRF model to recover such missing
words. We explain the CRF model using be in En-
glish. The CRF model has five tags: None, BE, IS,
ARE, and AM. In an input sentence, every token (in-
cluding words, punctuation symbols, and a special
start-of-sentence placeholder) will be assigned a tag,
denoting the insertion of the form of be after the to-
ken. We use the same n-gram features as our punc-
tuation correction model, but exclude the punctua-
tion features. The model is trained on synthetically
created training texts in which be has been randomly
deleted with probability 0.5.

4.3 A Decoder for Text Normalization

When designing our text normalization system, we
aim for a general framework that can be applied to
text normalization across different languages with
minimal effort. This is a challenging task, since so-
cial media texts in different languages exhibit differ-
ent informal characteristics, as illustrated in Section
3. Motivated by the beam-search decoders for SMT
(Koehn et al., 2007), ASR (Young et al., 2002), and
grammatical error correction (Dahlmeier and Ng,
2012), we propose a novel beam-search decoder for
normalization of social media text.

Given an input message, the normalization de-
coder searches for its best normalization, i.e., the
best hypothesis, by iteratively performing two sub-
tasks: (1) producing new sentence-level hypotheses
from hypotheses in the current stack, carried out by
hypothesis producers; and (2) evaluating the new hy-
potheses to retain good ones, carried out by feature
functions. Each hypothesis is the result of apply-
ing successive normalization operations on the ini-
tial input message, where each normalization oper-
ation is carried out by one hypothesis producer that
deals with one aspect of the informal characteristics
of social media text. The hypotheses are grouped
into stacks, where stack i stores all hypotheses ob-
tained by applying i hypothesis producers on the in-
put message. The beam-search algorithm is shown
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where you .

whr you are

whr u

whr you

Dictionary: u=>you

be

where you

Abbreviation: whr=>where

Punctuation

where are you

Be

where are you ?

Punctuation

Figure 1: An example search tree when normalizing “whr
u”. The solid (dashed) boxes represent good (bad) hy-
potheses. The hypothesis producers are indicated on the
edges.

in Algorithm 1, and Figure 1 shows an example
search tree for an English message.

Algorithm 1 The beam-search decoder
INPUT: a raw message M whose length is N
RETURN: the best normalization for M
1: initialize hypothesisStacks[N+1] and hypothesisProducers;
2: add the initial hypothesis M to stack hypothesisStacks[0];
3: for i← 0 to N-1 do
4: for each hypo in hypothesisStacks[i] do
5: for each producer in hypothesisProducers do
6: for each newHypo produced by producer from hypo do
7: add newHypo to hypothesisStacks[i+1];
8: prune hypothesisStacks[i+1];
9: return the best hypothesis in hypothesisStacks[0...N];

We give the details of the hypothesis producers
for Chinese and English social media texts in the
next two subsections. A number of the hypothesis
producers detect and deal with informal words w
present in a hypothesis by relying on bigram counts
of w in a large corpus of formal texts. Specifically,
a word w in a hypothesis . . . w−1ww1 . . . is consid-
ered an informal word if both bigrams w−1w and
ww1 occur infrequently (≤ 5) in the formal corpus.

Given a hypothesis message h, the feature func-
tions include a language model score (the normal-
ized sentence probability of h), an informal word
count penalty (the number of informal words de-
tected in h), and count feature functions. Each count
feature function gives the count of the modifications
made by a hypothesis producer. The feature func-

tions are used by the decoder to distinguish good
hypotheses from bad ones. All feature functions are
combined using a linear model to obtain the score
for a hypothesis h:

score(h) =
∑

i

λifi(h), (1)

where fi is the i-th feature function with weight λi.
The weights of the feature functions are tuned using
the pairwise ranking optimization algorithm (Hop-
kins and May, 2011) on the development set.

4.4 Text Normalization for Chinese
Taking into account the informal characteristics of
Chinese social media text in Section 3, we design the
following hypothesis producers for Chinese text
normalization:

Dictionary: We have manually assembled a dic-
tionary of 703 informal-formal word pairs from the
Internet. The word pairs are used to produce new
hypotheses. For example, given a hypothesis “神
马[magical horse] 时候[time]”, if the dictionary
contains the word pair “(神马,什么[what])”, the
Dictionary hypothesis producer generates a new hy-
pothesis “什么[what]时候[time]”.

Punctuation: A punctuation correction model
(Section 4.1) is adopted to correct punctuation in
the current hypothesis, e.g., it may normalize “什
么[what]时候[time]” into “什么时候？”.

Pronunciation: We use Chinese Pinyin to model
the pronunciation similarity of words. To accom-
plish this, we pair some Pinyin initials that sound
similar into a group. The groups of paired Pinyin
initials are (c, ch), (s, sh), and (z, zh). For exam-
ple, given the hypothesis “北京[Beijing]筒子[tube]
来了[come]”, the Pinyin of the informal word “筒
子” is “t ong z i”. The Pinyin of the formal word
“同志[comrade]” is “t ong zh i”. Since the sim-
ilar sounding Pinyin initials z and zh are paired
in a group, a new hypothesis “北京[Beijing] 同
志[comrade]来了[come]” can be produced.

In practice, this hypothesis producer can propose
many spurious candidates w′ for an informal word
w. As such, after we replace w by w′ in the hypoth-
esis, we require that some 4-gram containing w′ and
its surrounding words in the hypothesis appears in a
formal corpus. We call this filtering process contex-
tual filtering.
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Pronoun: With the method of Section 4.2, a CRF
model is trained to recover the missing pronoun
“我[I]”.

Interjection: If a word w in a pre-defined list
of frequent redundant interjections appears at the
end of a sentence, we produce a new hypothesis by
removing w, e.g., from “好的[ok] 哦[oh]” to “好
的[ok]”.

Resegmentation: This hypothesis producer fixes
word segmentation problems. If an informal word is
a concatenation of two constituent informal words
w1 and w2 in our normalization dictionary, the in-
formal word will be segmented into two words w1

and w2. As a result, the Dictionary hypothesis pro-
ducer can subsequently normalize w1 and w2.

4.5 Text Normalization for English
Similar to Chinese text normalization, we also cre-
ate the Dictionary, Punctuation, and Interjection hy-
pothesis producers for English text normalization.
We also add the following English-specific hypoth-
esis producers:

Pronunciation: This hypothesis producer uses
pronunciation similarity to find formal candidates
for a given informal word. It considers a word as
a sequence of letters and convert it into a sequence
of phones using phrase-based SMT trained on the
CMU pronouncing dictionary (Weide, 1998). Simi-
lar sounding phones are paired together in a group:
(ah, ao), (ow, uw), and (s, z). To illustrate, in the hy-
pothesis “wat is it”, the informal word “wat” maps
to the phone sequence “w ao t”. Since the formal
word “what” maps to the phone sequence “w ah t”
and the phones ah and ao are paired in a group, the
new hypothesis “what is it” is generated.

Be: We train a CRF model to recover missing
words be, as described in Section 4.2.

Retokenization: This hypothesis producer fixes
tokenization problems. More precisely, given an in-
formal word which is not a URL or email address
and contains a period, it splits the informal word at
the period. For example, “how r u.where r u” is nor-
malized to “how r u . where r u”.

Prefix: This hypothesis producer generates a for-
mal word w′ for an informal word w if w is a prefix
of w′. To avoid spurious candidates, we only gener-
ate w′ if |w| ≥ 3 and |w′| − |w| ≤ 4.

Quotation: If an informal word ends with a letter

in (m, s, t) and if the word produced by inserting a
quotation mark before the letter is a formal word, a
new hypothesis with the quotation mark inserted is
produced. This hypothesis producer thus generates
“i’m” from “im”, “she’s” from “shes”, “isn’t” from
“isnt”, etc.

Abbreviation: Letters denoting the vowels in a
formal word are often deleted to form an infor-
mal word. This hypothesis producer generates a
formal word w′ from an informal word w if w′

can be obtained from w by adding missing vowels.
To avoid spurious candidates, we only consider w
where |w| ≥ 2.

Time: If a number can be a potential time expres-
sion and appears after “at” or before “am” or “pm”, a
new hypothesis is produced by changing the number
into a time expression, e.g., “1130 am” is normal-
ized to “11 : 30 am”.

Since the Pronunciation, Prefix, and Abbreviation
hypothesis producers can propose spurious candi-
dates for an informal word, we also use contextual
filtering to further filter the candidates for these hy-
pothesis producers.

5 Experiments

5.1 Evaluation Corpora

As previous work (Choudhury et al., 2007; Han and
Baldwin, 2011; Liu et al., 2012) mostly focused
on word normalization, no data is available with
corrected punctuation and recovered missing words.
We thus create the following two corpora (Table 3):

Chinese-English corpus We crawled 1,000 mes-
sages from Weibo which were first normalized into
formal Chinese and then translated into formal En-
glish. The first half of the corpus serves as our de-
velopment set to tune our text normalization decoder
for Chinese, while the second half serves as the test
set to evaluate text normalization for Chinese and
Chinese-English MT.

English-Chinese corpus From the NUS English
SMS corpus (How and Kan, 2005), we randomly se-
lected 2,000 messages. The messages were first nor-
malized into formal English and then translated into
formal Chinese. Similar to the Chinese-English cor-
pus, the first half of the corpus serves as our devel-
opment set while the second half serves as the test
set.
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Corpus # messages # tokens (EN/CN/NCN)
CN2EN-dev 500 6.95K/5.45K/5.70K
CN2EN-test 500 7.14K/5.64K/5.82K
Corpus # messages # tokens (EN/CN/NEN)
EN2CN-dev 1,000 16.63K/18.14K/18.21K
EN2CN-test 1,000 16.14K/17.69K/17.76K

Table 3: Statistics of the corpora. CN2EN-dev/CN2EN-
test is the development/test set in our Chinese-
English experiments. EN2CN-dev/EN2CN-test is the
development/test set in our English-Chinese experi-
ments. NEN/NCN denotes manually normalized En-
glish/Chinese texts.

The formal corpus used (as described in Section
4) is the concatenation of two Chinese-English spo-
ken parallel corpora: the IWSLT 2009 corpus (Paul,
2009) and another spoken text corpus collected at
the Harbin Institute of Technology3. The language
model used for Chinese (English) text normalization
is the Chinese (English) side of the formal corpus
and the LDC Chinese (English) Gigaword corpus.

To evaluate the effect of text normalization
on MT, we build phrase-based MT systems
using Moses (Koehn et al., 2007), with word
alignments generated by GIZA++ (Och and
Ney, 2003). The MT training data contains
the above formal corpus and some LDC4 par-
allel corpora (LDC2000T46, LDC2002E18,
LDC2003E14, LDC2004E12, LDC2005T06,
LDC2005T10, LDC2007T23, LDC2008T06,
LDC2008T08, LDC2008T18, LDC2009T02,
LDC2009T06, LDC2009T15, LDC2010T03). In
total, 214M/192M English/Chinese tokens are used
to train our MT systems. The language model
of the Chinese-English (English-Chinese) MT
system is the English (Chinese) side of the FBIS
corpus (LDC2003E14) and the English (Chinese)
Gigaword corpus. Our MT systems are tuned on the
manually normalized messages of our development
sets.

Following (Aw et al., 2006; Oliva et al., 2013),
we use BLEU scores (Papineni et al., 2002) to eval-
uate text normalization. We also use BLEU scores
to evaluate MT quality. We use the sign test to de-
termine statistical significance, for both text normal-
ization and translation.

3http://mitlab.hit.edu.cn/
4http://www.ldc.upenn.edu/Catalog/

5.2 Baselines

We compare our text normalization decoder against
three baseline methods for performing text normal-
ization. We then send the respective normalized
texts to the same MT system to evaluate the effect
of text normalization on MT.

The simplest baseline for text normalization is
one that does no text normalization. The raw text
(un-normalized) is simply passed on to the MT sys-
tem for translation. We call this baseline ORIGINAL.

The second baseline, LATTICE, is to use a lattice
to normalize text. For each input message, a lattice
is generated in which each informal word is aug-
mented with its formal candidates taken from the
same normalization dictionary (downloaded from
Internet) used in our text normalization decoder. The
lattice is then decoded by the same language model
used in our text normalization decoder to generate
the normalized text (Stolcke, 2002). Another pos-
sible way of using lattice is to directly feed the lat-
tice to the MT system (Eidelman et al., 2011), but
since in this paper, we assume that the MT system
can only translate plain text, we leave this as future
work.

The third baseline, PBMT, is a competitive base-
line that performs text normalization via phrase-
based MT, as proposed in Aw et al. (2006). Moses
(Koehn et al., 2007) is used to perform text normal-
ization, by “translating” un-normalized text to nor-
malized text. The training data used is the same
development set used in our text normalization de-
coder. The normalized text is then sent to our MT
system for translation. This method was also used in
the SMS translation task of WMT 2011 by (Stymne,
2011).

In the tables showing experimental results, nor-
malization and translation BLEU scores that are sig-
nificantly higher than (p < 0.01) the LATTICE or
PBMT baseline are in bold or underlined, respec-
tively.

5.3 Chinese-English Experimental Results

The Chinese-English normalization and translation
results are shown in Table 4. The first group of
experiments is the three baselines, and the second
group is an oracle experiment using manually nor-
malized messages as the output of text normaliza-
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BLEU scores (%)
System Normalization MT
ORIGINAL baseline 61.01 9.06
LATTICE baseline 74.52 11.50
PBMT baseline 76.77 12.65
ORACLE 100.00 15.04
Dictionary 77.80 12.35
Punctuation 65.95 9.63
Pronunciation 61.30 9.13
Pronoun 61.11 9.01
Interjection 61.05 9.14
Resegmentation 60.98 9.03
Dictionary 77.80 12.35
+Punctuation 84.69 13.37
+Pronunciation 84.69 13.40
+Pronoun 84.96 13.50
+Interjection 85.33 13.68
+Resegmentation 86.75 14.03

Table 4: Chinese-English experimental results.

tion which indicates the theoretical upper bounds of
perfect normalization. In the normalization experi-
ments, the ORIGINAL baseline gets a BLEU score
of 61.01%, and the LATTICE baseline greatly im-
proves the ORIGINAL baseline by 13.51%, which
shows that the dictionary collected from the Inter-
net is highly effective in text normalization. The
PBMT baseline further improves the BLEU score by
2.25%. In the corresponding MT experiments, as the
normalization BLEU scores increase, the MT BLEU
scores also increase.

The third group is the isolated experiments, i.e.,
each experiment only uses one hypothesis producer.
As expected, the individual hypothesis producers
alone do not work well except the Dictionary hy-
pothesis producer. One interesting discovery is that
the Dictionary hypothesis producer outperforms the
LATTICE baseline, which shows that our normaliza-
tion decoder can utilize the dictionary more effec-
tively, probably because of the additional features
used in our normalization decoder such as the infor-
mal word penalty. The Resegmentation hypothesis
producer alone worsens the BLEU scores, since it
can only split informal words, and is designed to
work together with other hypothesis producers to
normalize words.

The last group is the combined experiments. We
add each hypothesis producer in the order of its nor-
malization effectiveness in the isolated experiments.
Adding the Punctuation hypothesis producer greatly
improves the BLEU scores of both normalization

and translation, which confirms the importance of
punctuation correction. The Pronoun and Inter-
jection hypothesis producers also contribute some
improvements. Finally, Resegmentation signifi-
cantly improves the normalization/translation BLEU
scores by 1.42%/0.35%. Compared with the isolated
experiments, the combined experiments show that
our normalization decoder can effectively integrate
different hypothesis producers to achieve better per-
formance for both text normalization and transla-
tion.

Overall, in the Chinese text normalization exper-
iments, our normalization decoder outperforms the
best baseline PBMT by 9.98% in BLEU score. In
the Chinese-English MT experiments, the normal-
ized texts output by our normalization decoder lead
to improved translation quality compared to normal-
ization by the PBMT baseline, by 1.38% in BLEU
score.

5.4 English-Chinese Experimental Results

The English-Chinese normalization and translation
results are shown in Table 5, with the same experi-
mental setup as in the Chinese-English experiments.

The text normalization BLEU score of the ORIG-
INAL baseline is much lower in English compared
to Chinese, since the English texts contain more in-
formal words. Again, the individual hypothesis pro-
ducers alone do not work well, except the Dictio-
nary hypothesis producer. The Retokenization hy-
pothesis producer greatly improves the normaliza-
tion/translation BLEU scores by 2.37%/0.86%. The
Punctuation hypothesis producer helps less for En-
glish compared to Chinese, suggesting that our Chi-
nese texts contain noisier punctuation.

Overall, we achieved similar improvements in En-
glish text normalization and English-Chinese trans-
lation, and the improvements in BLEU scores are
7.35% and 1.35% respectively.

5.5 Further Analysis

The effect of contextual filtering. To measure
the effect of contextual filtering proposed in Sec-
tion 4.4, we ran our normalization decoder with-
out contextual filtering. We obtained BLEU scores
of 65.05%/22.38% in the English-Chinese experi-
ments, which were lower than 66.54%/22.81% ob-
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BLEU scores (%)
System Normalization MT
ORIGINAL baseline 37.38 13.63
LATTICE baseline 56.98 20.56
PBMT baseline 59.19 21.46
ORACLE 100.00 28.48
Dictionary 59.90 20.84
Retokenization 38.79 14.06
Prefix 38.68 13.90
Interjection 38.37 13.92
Quotation 38.04 13.65
Abbreviation 37.94 13.74
Time 37.65 13.66
Pronunciation 37.62 13.80
Punctuation 37.62 13.79
Be 37.47 13.59
Dictionary 59.90 20.84
+Retokenization 62.27 21.70
+Prefix 63.22 21.88
+Interjection 64.85 22.30
+Quotation 65.24 22.31
+Abbreviation 65.35 22.34
+Time 65.59 22.38
+Pronunciation 65.64 22.38
+Punctuation 66.38 22.74
+Be 66.54 22.81

Table 5: English-Chinese experimental results.

tained with contextual filtering. This shows the ben-
eficial effect of contextual filtering.

Decoding speed. The decoding speed of our text
normalization decoder was 0.2 seconds per message
on our test sets, using a 2.27 GHz Intel Xeon CPU
with 32 GB memory.

The effect of text normalization decoder on
MT. We manually analyzed the effect of our text
normalization decoder on MT. For example, given
the un-normalized English test message “yeah must
sign up , im in lt25”, our English-Chinese MT
system translated it into “对[yeah] 必须[must] 签
署[sign up] ， im 在[in] lt25” On the other hand,
our normalization decoder normalized it into “yeah
must sign up , i ’m in lt25 .” which was then trans-
lated into “对必须签署 ,我在 lt25。” by our MT
system. This example shows that our text normal-
ization decoder uses word normalization and punc-
tuation correction to improve translation.

6 Conclusion

This paper presents a novel beam-search decoder
for normalization of social media text. Our de-
coder for text normalization effectively integrates
multiple normalization operations. In our experi-
ments, we achieved statistically significant improve-

ments over two strong baselines: an improvement of
9.98%/7.35% in BLEU scores for normalization of
Chinese/English social media text, and an improve-
ment of 1.38%/1.35% in BLEU scores for transla-
tion of Chinese/English social media text. Future
work can investigate how to more tightly integrate
our beam-search decoder for text normalization with
a standard MT decoder, e.g., by using a lattice or an
n-best list.
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Abstract

LDA-frames is an unsupervised approach for
identifying semantic frames from semanti-
cally unlabeled text corpora, and seems to
be a useful competitor for manually created
databases of selectional preferences. The most
limiting property of the algorithm is such that
the number of frames and roles must be pre-
defined. In this paper we present a modifi-
cation of the LDA-frames algorithm allowing
the number of frames and roles to be deter-
mined automatically, based on the character
and size of training data.

1 Introduction

Semantic frames and valency lexicons are useful
lexical sources capturing semantic roles valid for
a set of lexical units. The structures of linked seman-
tic roles are called semantic frames. Linguists are
using them for their ability to describe an interface
between syntax and semantics. In practical natural
language processing applications, they can be used,
for instance, for the word sense disambiguation task
or in order to resolve ambiguities in syntactic analy-
sis of natural languages.

The lexicons of semantic frames or verb valencies
are mainly created manually or semi-automatically
by highly trained linguists. Manually created lex-
icons involve, for instance, a well-known lexi-
con of semantic frames FrameNet (Ruppenhofer
et al., 2006) or a lexicon of verb valencies VerbNet
(Schuler, 2006). These and other similar lexical re-
sources have many promising applications, but suf-
fer from several disadvantages:

• Creation of them requires manual work of
trained linguists which is very time-consuming
and expensive.

• Coverage of the resources is usually small or
limited to some specific domain.

• Most of the resources do not provide any
information about relative frequency of us-
age in corpora. For instance, both patterns
[Person] acquire [Physical object]
and [Person] acquire [Disease] reflect
correct usage of verb acquire, but the former
is much more frequent in English.

• Notion of semantic classes and frames is sub-
jectively biased when the frames are created
manually without corpus evidence.

In order to avoid those problems we proposed
a method for creating probabilistic semantic frames
called LDA-frames (Materna, 2012). The main idea
of LDA-frames is to generate the set of semantic
frames and roles automatically by maximizing pos-
terior probability of a probabilistic model on a syn-
tactically annotated training corpus. A semantic role
is represented as probability distribution over all its
realizations in the corpus, a semantic frame as a tu-
ple of semantic roles, each of them connected with
some grammatical relation. For every lexical unit
(a verb in case of computing verb valencies), a prob-
ability distribution over all semantic frames is gen-
erated, where the probability of a frame corresponds
to the relative frequency of usage in the corpus for
a given lexical unit. An example of LDA-frames
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computed on the British National Corpus is avail-
able at the LDA-frames website1.

The original LDA-frames algorithm has two pa-
rameters that must be predefined – number of frames
and number of roles – which is the most limiting
property of the algorithm. A simple cross-validation
approach can be used in case of very small data.
However, real data is much bigger and it is not re-
commended to use such techniques. For example,
the inference on the British National Corpus using a
single core 2.4 GHz CPU takes several days to com-
pute one reasonable combination of parameters.

In this paper we present a non-parametric modifi-
cation of the LDA-frames algorithm allowing to de-
termine the parameters automatically, based on the
character and size of training data.

2 LDA-Frames

LDA-frames (Materna, 2012) is an unsupervised ap-
proach for identifying semantic frames from seman-
tically unlabeled text corpora. In the LDA-frames,
a frame is represented as a tuple of semantic roles,
each of them connected with a grammatical rela-
tion i.e. subject, object, modifier, etc. These frames
are related to a lexical unit via probability distribu-
tion. Every semantic role is represented as probabil-
ity distribution over its realizations.

The method of automatic identification of se-
mantic frames is based on probabilistic generative
process. Training data for the algorithm consists
of tuples of grammatical relation realizations ac-
quired using a dependency parser from the train-
ing corpus for every lexical unit. For example, sup-
pose that the goal is to generate semantic frames of
verbs from a corpus for grammatical relations sub-
ject and object. The training data for lexical unit
eat may look like {(peter, cake), (man,
breakfast), (dog, meat), ...}, where
the first component of the tuples corresponds to sub-
ject and the second to object.

In the generative process, each grammatical rela-
tion realization is treated as being generated from
a given semantic frame according to the realiza-
tion distribution of the corresponding semantic role.
Supposing the number of frames is given by param-
eter F , the number of semantic roles by R, the num-

1http://nlp.fi.muni.cz/projekty/lda-frames/

ber of slots (grammatical relations) by S and the size
of vocabulary is V . The realizations are generated as
follows.
For each lexical unit u ∈ {1, 2, . . . , U}:

1. Choose a frame distribution ϕu from Dir(α).

2. For each lexical unit realization
t ∈ {1, 2, . . . , Tu} choose a frame fu,t from
Multinomial(ϕu), where fu,t ∈ {1, 2, . . . , F}.

3. For each slot s ∈ {1, 2, . . . , S} of frame
fu,t, generate a grammatical relation realiza-
tion wu,t,s from Multinomial(θrfu,t,s

), where
rf,s is a projection (f, s) 7→ r, which assigns
a semantic role for each slot s in frame f . The
multinomial distribution of realizations, sym-
bolized by θr, for semantic role r is generated
from Dir(β).

The graphical model for LDA-Frames is shown
in figure 1. It is parametrized by hyperparameters of
prior distributions α and β, usually set by hand to
a value between 0.01 – 0.1.

α

φ f

r

w

U
T

S

θ

β

F
S

u u,t

f,s

u,t,s

r

R

Figure 1: Graphical model for LDA-frames.

The inference is performed using the Collapsed
Gibbs sampling (Neal, 2000), where the θ and ϕ dis-
tributions are marginalized out of the equations. In
each iteration, latent variables fu,t and rf,s are sam-
pled as follows

P (fu,t|f−(u,t), r,w, α, β) ∝

(fc
−(u,t)
fu,t,u

+ α)

S∏
s=1

wc
−(u,t,s)
wu,t,s,rfu,t,s + β

wc
−(u,t,s)
∗,rfu,t,s

+ V β

(1)

483



P (rf,s|f , r−(f,s),w, α, β) ∝
V∏
v=1

(
wc
−(f,s)
v,rf,s + β

wc
−(f,s)
∗,rf,s

+ V β

)wcf,s,v

,
(2)

where fc−(u,t)
f,u is the number of times frame f is

assigned to lexical unit u excluding (u, t), wc−(u,t,s)
v,r

is the number of times word v is assigned to role
r excluding (u, t, s), and wcf,s,v is the number of
times word v is assigned to slot s in frame f . The
asterisk sign * stands for any value in its position.

After having all latent variables f and r inferred,
one can proceed to compute the lexical unit–frame
distribution and the semantic role–word distribution
using the following formulas:

ϕu =
fcf,u + α∑
f fcf,u + Fα

(3)

θr =
wcv,r + β∑
v wcv,r + V β

. (4)

3 Parameter Estimation

As one can see from the LDA-frames model, the
requirement is to define the number of frames and
roles in advance. It is not clear, however, how to se-
lect the best values that depend on several factors.
First of all, the number of frames and roles usually
increase with the growing size of training corpus. If
the training data is small and covers just a small pro-
portion of lexical unit usage patterns, the number of
semantic frames should be small as well. The pa-
rameters are also affected by the granularity of roles
and frames. One way to estimate the parameters au-
tomatically is to select those that maximize posterior
probability of the model given training data.

LDA-frames algorithm generates frames from the
Dirichlet distribution (DD) which requires a fixed
number of components. Similarly, the latent vari-
ables rf,s are chosen from a fixed set of semantic
roles. In order to be able to update the number of
frames and roles during the inference process, we
propose to add the Chinese restaurant process (CRP)
(Aldous, 1985) prior for the rf,s variables, and to re-
place the Dirichlet distribution the semantic frames
are generated from with the Dirichlet process (Fer-
guson, 1973).

3.1 Number of Semantic Roles
In the original version of the LDA-frames model,
the latent variables rf,s, representing semantic role
assignment for slot s in frame f , are chosen from
a fixed set of semantic roles without any prior distri-
bution. We propose to generate rf,s from the CRP,
which is a single parameter distribution over parti-
tions of integers. The generative process can be de-
scribed by using an analogy with a Chinese restau-
rant. Consider a restaurant with an infinite number
of tables, each of them associated with some dish,
and N customers choosing a table. The first cus-
tomer sits at the first table. The nth customer sits at
table t drawn from the following distribution

P (t = occupied table i) =
ni

γ + n− 1

P (t = next unoccupied table) =
γ

γ + n− 1
,

(5)

where ni is the number of customers sitting at the
table i and γ > 0 is a concentration parameter which
controls how often a customer chooses a new table.
The seating plan makes a partition of the customers
(Aldous, 1985).

In the proposed modification of the LDA-frames
model, the dishes are replaced with the semantic role
numbers and customers with slots of frames. In the
model we use prior distribution ω corresponding to
the CRP with concentration parameter γ. The latent
variables rf,s are then sampled as follows

P (rf,s|f , r−(f,s),w, α, β, γ) ∝

(rc−(f,s)
rf,s

+ γ)
V∏
v=1

(
wc
−(f,s)
v,rf,s + β

wc
−(f,s)
∗,rf,s

+ V β

)wcf,s,v

,
(6)

where rc−(f,s)
r is the number of times role r is used

in any frame and slot excluding slot s in frame f .
Notice that the sampling space hasR+1 dimensions
with the probability of the last unseen component
proportional to

γ

V∏
v=1

1

V wcf,s,v
. (7)

3.2 Number of Semantic Frames
Estimating the number of frames is a little bit more
complicated than the case of semantic roles. The
idea is to replace DD ϕu with the Dirichlet process.
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The Dirichlet process DP (α0, G0) is a stochastic
process that generates discrete probability distribu-
tions. It has two parameters, a base distribution G0

and a concentration parameter α0 > 0. A sample
from the Dirichlet process (DP) is then

G =
∞∑
k=1

βkδφk
, (8)

where φk are independent random variables dis-
tributed according to G0, δφk

is an atom at φk, and
weights βk are also random and dependent on the
parameter α0 (Teh et al., 2006). Simply, DP is a dis-
tribution over some infinite and discrete distribu-
tions. It is the reason why DP is often used instead of
DD in order to avoid using a fixed number of com-
ponents.

The question, however, is how to make the sam-
pled frames shared between different lexical units.
We propose to generate base distributions of the
DPs from GEM distribution (Pitman, 2002) τ with
concentration parameter δ. The idea is inspired by
the Hierarchical Dirichlet Process (Teh et al., 2006)
used for topic modeling. The graphical model of the
non-parametric LDA-frames is shown in figure 2.
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φ f

r

w

U
T

S

θ

β

S

u u,t

f,s

u,t,s

rω

γ
∞∞

τ

δ

Figure 2: Graphical model for non-parametric LDA-
frames.

Since it is hard to integrate out the DP with base
distribution generated from GEM in this model, we
proceeded to sample τ separately (Porteous, 2010).
The base distribution proportions can be sampled
by simulating how new components are created for
fcf,u draws from DP with the concentration param-
eter ατf , which is a sequence of Bernoulli trials for

each u and f (Heinrich, 2011):

P (uf,u,r = 1) =
ατf

ατf + r − 1
∀r ∈ [1, fcf,u]

τ ∼ Dir({uf}f , δ) with uf =
∑
u

∑
r

uf,u,r.
(9)

Finally, the latent variables fu,t are sampled as fol-
lows

P (fu,t|f−(u,t), r,w, α, β, τ) ∝

(fc
−(u,t)
fu,t,u

+ ατf )
S∏
s=1

wc
−(u,t,s)
wu,t,s,rfu,t,s + β

wc
−(u,t,s)
∗,rfu,t,s

+ V β
.

(10)

4 Evaluation

The non-parametric algorithm was evaluated by
an experiment on a synthetic data set consisting
of 155 subject-object tuples. The training data
was generated randomly from a predefined set of 7
frames and 4 roles for 16 verbs using the following
algorithm. For every lexical unit u:

1. Choose a number of corpus realizations Nu ∈
{5, . . . , 15} from the uniform distribution.

2. For each realization nu ∈ {1, . . . , Nu}, among
all permitted frames for lexical unit u, choose
a semantic frame fnu from the uniform distri-
bution.

3. For each frame fnu , generate a realization of all
its roles from the uniform distribution.

Each semantic role had 6 possible realizations on
average, some of them assigned to more than one se-
mantic role to reflect the character of real languages.
Since the data was generated artificially, we knew
the number of frames and roles, how the frames were
defined, and which frame and which role was re-
sponsible for generating each realization in the data.

We ran the non-parametric algorithm with hyper-
parameters α = 5, β = γ = 0.1, δ = 1.5. It has
been shown that the selection of hyperparameters
has little impact on the resulting frames when they
are in some reasonable range, thus, the hyperparam-
eters were chosen empirically by hand. The experi-
ment led to correct assignments of fu,t and rf,s after
56 iterations on average (based on 10 independent
runs of the algorithm).
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In order to compare the non-parametric algorithm
with the original, we ran the original algorithm with
the same data that had the number of frames and
roles set to R ∈ {1 . . . 10}, F ∈ {1 . . . 20}, and
measured the perplexity of the data given to the
model after convergence. The perplexities for all
settings are shown in figure 3. The lowest perplexity
was reached with F = 7, R = 4 and had the same
value as the case of the non-parametric algorithm.
The fu,t and rf,s assignments were correct as well.

Figure 3: Perplexities for different values of F and R.

We also ran the non-parametric algorithm with the
same hyperparameters on real data (1.4 millions of
subject-object tuples) acquired from the British Na-
tional Corpus2 using the Stanford Parser (de Marn-
effe et al., 2006). The algorithm reached the opti-
mal perplexity with 427 frames and 144 roles. This
experiment has been performed only for illustrating
the algorithm on real data. Because of long running
time of the algorithm on such huge data set, we did
not perform the same experiments as with the case
of the small synthetic data.

5 Conclusion

In this paper we presented a method for estimat-
ing the number of frames and roles for the LDA-
frames model. The idea is based on using the Chi-
nese Restaurant Process and the Dirichlet Process
instead of the Dirichlet Distributions and selecting
such parameters that maximize the posterior proba-
bility of the model for given training data. An ex-
periment showed that the non-parametric algorithm

2http://www.natcorp.ox.ac.uk

infers correct values of both the number of frames
and roles on a synthetic data set.
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Abstract

We provide an approximation algorithm for
PCFG parsing, which asymptotically im-
proves time complexity with respect to the in-
put grammar size, and prove upper bounds on
the approximation quality. We test our algo-
rithm on two treebanks, and get significant im-
provements in parsing speed.

1 Introduction

The problem of speeding-up parsing algorithms
based on probabilistic context-free grammars
(PCFGs) has received considerable attention in
recent years. Several strategies have been proposed,
including beam-search, best-first and A∗. In this
paper we focus on the standard approach of approx-
imating the source PCFG in such a way that parsing
accuracy is traded for efficiency.

Nederhof (2000) gives a thorough presentation
of old and novel ideas for approximating non-
probabilistic CFGs by means of finite automata,
on the basis of specialized preprocessing of self-
embedding structures. In the probabilistic domain,
approximation by means of regular grammars is also
exploited by Eisner and Smith (2005), who filter
long-distance dependencies on-the-fly.

Beyond finite automata approximation, Charniak
et al. (2006) propose a coarse-to-fine approach in
which an approximated (not necessarily regular)
PCFG is used to construct a parse forest for the in-
put sentence. Some statistical parameters are then
computed on such a structure, and exploited to filter
parsing with the non-approximated grammar. The
approach can also be iterated at several levels. In
the non-probabilistic setting, a similar filtering ap-

proach was also proposed by Boullier (2003), called
“guided parsing.”

In this paper we rely on an algebraic formulation
of the inside-outside algorithm for PCFGs, based on
a tensor formulation developed for latent-variable
PCFGs in Cohen et al. (2012). We combine the
method with known techniques for tensor decompo-
sition to approximate the source PCFG, and develop
a novel algorithm for approximate PCFG parsing.
We obtain improved time upper bounds with respect
to the input grammar size for PCFG parsing, and
provide error upper bounds on the PCFG approxi-
mation, in contrast with existing heuristic methods.

2 Preliminaries

This section introduces the special representation for
probabilistic context-free grammars that we adopt in
this paper, along with the decoding algorithm that
we investigate. For an integer i ≥ 1, we let [i] =
{1, 2, . . . , i}.

2.1 Probabilistic Context-Free Grammars
We consider context-free grammars (CFGs) in
Chomsky normal form, and denote them as
(N ,L,R) where:

• N is the finite set of nonterminal symbols, with
m = |N |, and L is the finite set of words (lexi-
cal tokens), with L∩N = ∅ and with n = |L|.

• R is a set of rules having the form a→ b c,
a, b, c ∈ N , or the form a→ x, a ∈ N and
x ∈ L.

A probabilistic CFG (PCFG) is a CFG associated
with a set of parameters defined as follows:

• For each (a→ b c) ∈ R, we have a parameter
p(a→ b c | a).
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• For each (a→ x) ∈ R, we have a parameter
p(a→ x | a).

• For each a ∈ N , we have a parameter πa,
which is the probability of a being the root
symbol of a derivation.

The parameters above satisfy the following nor-
malization conditions:∑
(a→b c)∈R

p(a→ b c | a) +
∑

(a→x)∈R

p(a→ x | a) = 1,

for each a ∈ N , and
∑

a∈N πa = 1.
The probability of a tree τ deriving a sentence in

the language, written p(τ), is calculated as the prod-
uct of the probabilities of all rule occurrences in τ ,
times the parameter πa where a is the symbol at the
root of τ .

2.2 Tensor Form of PCFGs

A three-dimensional tensor C ∈ R(m×m×m) is a
set of m3 parameters Ci,j,k for i, j, k ∈ [m]. In what
follows, we associate with each tensor three func-
tions, each mapping a pair of vectors in Rm into a
vector in Rm.

Definition 1 Let C ∈ R(m×m×m) be a tensor.
Given two vectors y1, y2 ∈ Rm, we let C(y1, y2)
be the m-dimensional row vector with components:

[C(y1, y2)]i =
∑

j∈[m],k∈[m]

Ci,j,ky
1
j y

2
k .

We also let C(1,2)(y
1, y2) be the m-dimensional col-

umn vector with components:

[C(1,2)(y
1, y2)]k =

∑
i∈[m],j∈[m]

Ci,j,ky
1
i y

2
j .

Finally, we let C(1,3)(y
1, y2) be the m-dimensional

column vector with components:

[C(1,3)(y
1, y2)]j =

∑
i∈[m],k∈[m]

Ci,j,ky
1
i y

2
k .

For two vectors x, y ∈ Rm we denote by x� y ∈
Rm the Hadamard product of x and y, i.e., [x�y]i =
xiyi. Finally, for vectors x, y, z ∈ Rm, xy>z> is the

tensor D ∈ Rm×m×m where Di,j,k = xiyjzk (this
is analogous to the outer product: [xy>]i,j = xiyj).

We extend the parameter set of our PCFG such
that p(a→ b c | a) = 0 for all a→ b c not in R,
and p(a→ x | a) = 0 for all a→ x not in R. We
also represent each a ∈ N by a unique index in [m],
and we represent each x ∈ L by a unique index in
[n]: it will always be clear from the context whether
these indices refer to a nonterminal inN or else to a
word in L.

In this paper we assume a tensor representation
for the parameters p(a→ b c | a), and we denote by
T ∈ Rm×m×m a tensor such that:

Ta,b,c , p(a→ b c | a).

Similarly, we denote by Q ∈ Rm×n a matrix such
that:

Qa,x , p(a→ x | a).

The root probabilities are denoted using a vector π ∈
Rm×1 such that πa is defined as before.

2.3 Minimum Bayes-Risk Decoding

Let z = x1 · · ·xN be some input sentence; we write
T (z) to denote the set of all possible trees for z. It
is often the case that parsing aims to find the high-
est scoring tree τ∗ for z according to the underlying
PCFG, also called the “Viterbi parse:”

τ∗ = argmax
τ∈T (z)

p(τ)

Goodman (1996) noted that Viterbi parsers do not
optimize the same metric that is usually used for
parsing evaluation (Black et al., 1991). He sug-
gested an alternative algorithm, which he called the
“Labelled Recall Algorithm,” which aims to fix this
issue.

Goodman’s algorithm has two phases. In the first
phase it computes, for each a ∈ N and for each sub-
string xi · · ·xj of z, the marginal µ(a, i, j) defined
as:

µ(a, i, j) =
∑

τ∈T (z) : (a,i,j)∈τ

p(τ).

Here we write (a, i, j) ∈ τ if nonterminal a spans
words xi · · ·xj in the parse tree τ .
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Inputs: Sentence x1 · · ·xN , PCFG (N ,L,R), pa-
rameters T ∈ R(m×m×m), Q ∈ R(m×n), π ∈
R(m×1).
Data structures:

• Each µ(a, i, j) ∈ R for a ∈ N , i, j ∈ [N ],
i ≤ j, is a marginal probability.

• Each γi,j ∈ R for i, j ∈ [N ], i ≤ j, is the high-
est score for a tree spanning substring xi · · ·xj .

Algorithm:
(Marginals) ∀a ∈ N ,∀i, j ∈ [N ], i ≤ j, compute
the marginals µ(a, i, j) using the inside-outside
algorithm.

(Base case) ∀i ∈ [N ],

γi,i = max
(a→xi)∈R

µ(a, i, i)

(Maximize Labelled Recall) ∀i, j ∈ [N ], i < j,

γi,j = max
a∈N

µ(a, i, j) + max
i≤k<j

(
γi,k + γk+1,j

)

Figure 1: The labelled recall algorithm from Goodman
(1996). The algorithm in this figure finds the highest
score for a tree which maximizes labelled recall. The ac-
tual parsing algorithm would use backtrack pointers in
the score computation to return a tree. These are omitted
for simplicity.

The second phase includes a dynamic program-
ming algorithm which finds the tree τ∗ that maxi-
mizes the sum over marginals in that tree:

τ∗ = argmax
τ∈T (z)

∑
(a,i,j)∈τ

µ(a, i, j).

Goodman’s algorithm is described in Figure 1.
As Goodman notes, the complexity of the second

phase (“Maximize Labelled Recall,” which is also
referred to as “minimum Bayes risk decoding”) is
O(N3 +mN2). There are two nested outer loops,
each of order N , and inside these, there are two sep-
arate loops, one of order m and one of order N ,
yielding this computational complexity. The reason

for the linear dependence on the number of nonter-
minals is the lack of dependence on the actual gram-
mar rules, once the marginals are computed.

In its original form, Goodman’s algorithm does
not enforce that the output parse trees are included in
the tree language of the PCFG, that is, certain com-
binations of children and parent nonterminals may
violate the rules in the grammar. In our experiments
we departed from this, and changed Goodman’s al-
gorithm by incorporating the grammar into the dy-
namic programming algorithm in Figure 1. The rea-
son this is important for our experiments is that we
binarize the grammar prior to parsing, and we need
to enforce the links between the split nonterminals
(in the binarized grammar) that refer to the same
syntactic category. See Matsuzaki et al. (2005) for
more details about the binarization scheme we used.
This step changes the dynamic programming equa-
tion of Goodman to be linear in the size of the gram-
mar (figure 1). However, empirically, it is the inside-
outside algorithm which takes most of the time to
compute with Goodman’s algorithm. In this paper
we aim to asymptotically reduce the time complex-
ity of the calculation of the inside-outside probabili-
ties using an approximation algorithm.

3 Tensor Formulation of the
Inside-Outside Algorithm

At the core of our approach lies the observation that
there is a (multi)linear algebraic formulation of the
inside-outside algorithm. It can be represented as a
series of tensor, matrix and vector products. A sim-
ilar observation has been made for latent-variable
PCFGs (Cohen et al., 2012) and hidden Markov
models, where only matrix multiplication is required
(Jaeger, 2000). Cohen and Collins (2012) use this
observation together with tensor decomposition to
improve the speed of latent-variable PCFG parsing.

The representation of the inside-outside algorithm
in tensor form is given in Figure 2. For example,
if we consider the recursive equation for the inside
probabilities (where αi,j is a vector varying over the
nonterminals in the grammar, describing the inside
probability for each nonterminal spanning words i
to j):

αi,j =

j−1∑
k=i

T (αi,k, αk+1,j)
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Inputs: Sentence x1 · · ·xN , PCFG (N ,L,R), pa-
rameters T ∈ R(m×m×m), Q ∈ R(m×n), π ∈
R(m×1).
Data structures:

• Each αi,j ∈ R1×m, i, j ∈ [N ], i ≤ j, is a row
vector of inside terms ranging over a ∈ N .

• Each βi,j ∈ Rm×1, i, j ∈ [N ], i ≤ j, is a
column vector of outside terms ranging over
a ∈ N .

• Each µ(a, i, j) ∈ R for a ∈ N , i, j ∈ [N ],
i ≤ j, is a marginal probability.

Algorithm:
(Inside base case) ∀i ∈ [N ], ∀(a→ xi) ∈ R,

[αi,i]a = Qa,x

(Inside recursion) ∀i, j ∈ [N ], i < j,

αi,j =

j−1∑
k=i

T (αi,k, αk+1,j)

(Outside base case) ∀a ∈ N ,

[β1,N ]a = πa

(Outside recursion) ∀i, j ∈ [N ], i ≤ j,

βi,j =

i−1∑
k=1

T(1,2)(β
k,j , αk,i−1)+

N∑
k=j+1

T(1,3)(β
i,k, αj+1,k)

(Marginals) ∀a ∈ N ,∀i, j ∈ [N ], i ≤ j,

µ(a, i, j) = [αi,j ]a · [βi,j ]a

Figure 2: The tensor form of the inside-outside algorithm,
for calculation of marginal terms µ(a, i, j).

and then apply the tensor product from Definition 1
to this equation, we get that coordinate a in αi,j is

defined recursively as follows:

[αi,j ]a =

j−1∑
k=i

∑
b,c

Ta,b,c × αi,kb × α
k+1,j
c

=

j−1∑
k=i

∑
b,c

p(a→ b c | a)× αi,kb × α
k+1,j
c ,

which is exactly the recursive definition of the inside
algorithm. The correctness of the outside recursive
equations follows very similarly.

The time complexity of the algorithm in this case
is O(m3N3). To see this, observe that each tensor
application takes timeO(m3). Furthermore, the ten-
sor T is applied O(N) times in the computation of
each vector αi,j and βi,j . Finally, we need to com-
pute a total ofO(N2) inside and outside vectors, one
for each substring of the input sentence.

4 Tensor Decomposition for the
Inside-Outside Algorithm

In this section, we detail our approach to approxi-
mate parsing using tensor decomposition.

4.1 Tensor Decomposition

In the formulation of the inside-outside algorithm
based on tensor T , each vector αi,j and βi,j consists
of m elements, where computation of each element
requires timeO(m2). Therefore, the algorithm has a
O(m3) multiplicative factor in its time complexity,
which we aim to reduce by means of an approximate
algorithm.

Our approximate method relies on a simple ob-
servation. Given an integer r ≥ 1, assume that
the tensor T has the following special form, called
“Kruskal form:”

T =

r∑
i=1

λiuiv
>
i w
>
i . (1)

In words, T is the sum of r tensors, where each
tensor is obtained as the product of three vectors
ui, vi and wi, together with a scalar λi. Exact
Kruskal decomposition of a tensor is not necessarily
unique. See Kolda and Bader (2009) for discussion
of uniqueness of tensor decomposition.
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Consider now two vectors y1, y2 ∈ Rm, associ-
ated with the inside probabilities for the left (y1) and
right child (y2) of a given node in a parse tree. Let
us introduce auxiliary arrays U, V,W ∈ Rr×m, with
the i-th row being ui, vi and wi, respectively. Let
also λ = (λ1, . . . , λr). Using the decomposition in
Eq. (1) within Definition 1 we can express the array
T (y1, y2) as:

T (y1, y2) =

[
r∑
i=1

λiuiv
>
i w
>
i

]
(y1, y2) =

r∑
i=1

λiui(v
>
i y

1)(w>i y
2) =(

U>(λ� V y1 �Wy2)
)
. (2)

The total complexity of the computation in Eq. (2)
is nowO(rm). It is well-known that an exact tensor
decomposition for T can be achieved with r = m2

(Kruskal, 1989). In this case, there is no computa-
tional gain in using Eq. (2) for the inside calculation.
The minimal r required for an exact tensor decom-
position can be smaller than m2. However, identify-
ing that minimal r is NP-hard (Høastad, 1990).

In this section we focused on the computa-
tion of the inside probabilities through vectors
T (αi,k, αk+1,j). Nonetheless, the steps above can
be easily adapted for the computation of the outside
probabilities through vectors T(1,2)(β

k,j , αk,i−1)

and T(1,3)(β
i,k, αj+1,k).

4.2 Approximate Tensor Decomposition

The PCFG tensor T will not necessarily have the ex-
act decomposed form in Eq. (1). We suggest to ap-
proximate the tensor T by finding the closest tensor
according to some norm over Rm×m×m.

An example of such an approximate decom-
position is the canonical polyadic decomposition
(CPD), also known as CANDECOMP/PARAFAC
decomposition (Carroll and Chang, 1970; Harsh-
man, 1970; Kolda and Bader, 2009). Given an in-
teger r, least squares CPD aims to find the nearest
tensor in Kruskal form, minimizing squared error.

More formally, for a given tensor D ∈ Rm×m×m,
let ||D||F =

√∑
i,j,kD

2
i,j,k. Let the set of tensors in

Kruskal form Cr be:

Cr ={C ∈ Rm×m×m | C =
r∑
i=1

λiuiv
>
i w
>
i

s.t. λi ∈ R, ui, vi, wi ∈ Rm,

||ui||2 = ||vi||2 = ||wi||2 = 1}.

The least squares CPD of C is a tensor Ĉ such
that Ĉ ∈ argminĈ∈Cr ||C − Ĉ||F . Here, we treat
the argmin as a set because there could be multiple
solutions which achieve the same accuracy.

There are various algorithms to perform CPD,
such as alternating least squares, direct linear de-
composition, alternating trilinear decomposition and
pseudo alternating least squares (Faber et al., 2003)
and even algorithms designed for sparse tensors (Chi
and Kolda, 2011). Most of these algorithms treat
the problem of identifying the approximate tensor as
an optimization problem. Generally speaking, these
optimization problems are hard to solve, but they
work quite well in practice.

4.3 Parsing with Decomposed Tensors
Equipped with the notion of tensor decomposition,
we can now proceed with approximate tensor pars-
ing in two steps. The first is approximating the ten-
sor using a CPD algorithm, and the second is apply-
ing the algorithms in Figure 1 and Figure 2 to do
parsing, while substituting all tensor product com-
putations with the approximate O(rm) operation of
tensor product.

This is not sufficient to get a significant speed-up
in parsing time. Re-visiting Eq. (2) shows that there
are additional ways to speed-up the tensor applica-
tion T in the context of the inside-outside algorithm.

The first thing to note is that the projections V y1

and Wy2 in Eq. (2) can be cached, and do not have
to be re-calculated every time the tensor is applied.
Here, y1 and y2 will always refer to an outside or
an inside probability vector over the nonterminals in
the grammar. Caching these projections means that
after each computation of an inside or outside proba-
bility, we can immediately project it to the necessary
r-dimensional space, and then re-use this computa-
tion in subsequent application of the tensor.

The second thing to note is that the U projection
in T can be delayed, because of rule of distributiv-
ity. For example, the step in Figure 2 that computes
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the inside probability αi,j can be re-formulated as
follows (assuming an exact decomposition of T ):

αi,j =

j−1∑
k=i

T (αi,k, αk+1,j)

=

j−1∑
k=1

U>(λ� V αi,k �Wαk+1,j)

= U>

(
j−1∑
k=1

(λ� V αi,k �Wαk+1,j)

)
. (3)

This means that projection through U can be done
outside of the loop over splitting points in the sen-
tence. Similar reliance on distributivity can be used
to speed-up the outside calculations as well.

The caching speed-up and the delayed projection
speed-up make the approximate inside-outside com-
putation asymptotically faster. While naı̈ve applica-
tion of the tensor yields an inside algorithm which
runs in time O(rmN3), the improved algorithm
runs in time O(rN3 + rmN2).

5 Quality of Approximate Tensor Parsing

In this section, we give the main approximation re-
sult, that shows that the probability distribution in-
duced by the approximate tensor is close to the orig-
inal probability distribution, if the distance between
the approximate tensor and the rule probabilities is
not too large.

Denote by T (N) the set of trees in the tree lan-
guage of the PCFG with N words (any nontermi-
nal can be the root of the tree). Let T (N) be the
set of pairs of trees τ = (τ1, τ2) such that the to-
tal number of binary rules combined in τ1 and τ2 is
N − 2 (this means that the total number of words
combined is N ). Let T̂ be the approximate ten-
sor for T . Denote the probability distribution in-
duced by T̂ by p̂.1 Define the vector ξ(τ) such that
[ξ(τ)]a = Ta,b,c · p(τ1 | b) · p(τ2 | c) where the root
τ1 is nonterminal b and the root of τ2 is c. Similarly,
define [ξ̂(τ)]a = T̂a,b,c · p̂(τ1 | b) · p̂(τ2 | c).

Define Z(a,N) =
∑

τ∈T (N)[ξ̂(τ)]a. In addition,

define D(a,N) =
∑

τ∈T (N) |[ξ̂(τ)]a − [ξ(τ)]a|
1Here, p̂ does not have to be a distribution, because T̂ could

have negative values, in principle, and its slices do not have to
normalize to 1. However, we just treat p̂ as a function that maps
trees to products of values according to T̂ .

and define F (a,N) = D(a,N)/Z(a,N). De-
fine ∆ = ||T̂ − T ||F . Last, define ν =
min(a→b c)∈R p(a→ b c | a). Then, the following
lemma holds:

Lemma 1 For any a and any N , it holds:

D(a,N) ≤ Z(a,N)
(
(1 + ∆/ν)N − 1

)
Proof sketch: The proof is by induction on N .
Assuming that 1 + F (b, k) ≤ (1 + ∆/ν)k and
1 + F (c,N − k − 1) ≤ (1 + ∆/ν)N−k−1 for F
defined as above (this is the induction hypothesis), it
can be shown that the lemma holds. �

Lemma 2 The following holds for any N :

∑
τ∈T (N)

|p̂(τ)− p(τ)| ≤ m
(
(1 + ∆/ν)N − 1

)

Proof sketch: Using Hölder’s inequality and
Lemma 1 and the fact that Z(a,N) ≤ 1, it follows
that:∑
τ∈T (N)

|p̂(τ)− p(τ)| ≤
∑

τ∈T (N),a

|[ξ(τ)]a − [ξ̂(τ)]a|

≤

(∑
a

Z(a,N)

)(
(1 + ∆/ν)N − 1

)
≤ m

(
(1 + ∆/ν)N − 1

)
�

Then, the following is a result that explains how
accuracy changes as a function of the quality of the
tensor approximation:

Theorem 1 For any N , and ε < 1/4, it holds that if
∆ ≤ εν

2Nm
, then:

∑
τ∈T (N)

|p̂(τ)− p(τ)| ≤ ε

Proof sketch: This is the result of applying Lemma 2
together with the inequality (1 + y/t)t− 1 ≤ 2y for
any t > 0 and y ≤ 1/2. �
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We note that Theorem 1 also implicitly bounds
the difference between a marginal µ(a, i, j) and its
approximate version. A marginal corresponds to a
sum over a subset of summands in Eq. (1).

A question that remains at this point is to decide
whether for a given grammar, the optimal ν that can
be achieved is large or small. We define:

∆∗r = min
T̂∈Cr

||T − T̂ ||F (4)

The following theorem gives an upper bound on
the value of ∆∗r based on intrinsic property of the
grammar, or more specifically T . It relies on the
fact that for three-dimensional tensors, where each
dimension is of length m, there exists an exact de-
composition of T using m2 components.

Theorem 2 Let:

T =
m2∑
i=1

λ∗iu
∗
i (v
∗
i )
>(w∗i )

>

be an exact Kruskal decomposition of T such that
||u∗i ||2 = ||v∗i ||2 = ||w∗i || = 1 and λ∗i ≥ λ∗i+1 for
i ∈ [m2 − 1]. Then, for a given r, it holds:

∆∗r ≤
m2∑

i=r+1

|λ∗i |

Proof: Let T̂ be a tensor that achieves the minimum
in Eq. (4). Define:

T ′r =
r∑
i=1

λ∗iu
∗
i (v
∗
i )
>(w∗i )

>

Then, noting that ∆∗r is a minimizer of the norm
difference between T and T̂ and then applying the
triangle inequality and then Cauchy-Schwartz in-
equality leads to the following chain of inequalities:

∆∗r = ||T − T̂ ||F ≤ ||T − T ′r||F

= ||
m2∑

i=r+1

λ∗iu
∗
i (v
∗
i )
>(w∗i )

>||F

≤
m2∑

i=r+1

|λ∗i | · ||u∗i (v∗i )>(w∗i )
>||F =

m2∑
i=r+1

|λ∗i |

as required. �

6 Experiments

In this section, we describe experiments that demon-
strate the trade-off between the accuracy of the ten-
sor approximation (and as a consequence, the accu-
racy of the approximate parsing algorithm) and pars-
ing time.

Experimental Setting We compare the tensor ap-
proximation parsing algorithm versus the vanilla
Goodman algorithm. Both algorithms were imple-
mented in Java, and the code for both is almost iden-
tical, except for the set of instructions which com-
putes the dynamic programming equation for prop-
agating the beliefs up in the tree. This makes the
clocktime comparison reliable for drawing conclu-
sions about the speed of the algorithms. Our im-
plementation of the vanilla parsing algorithm is lin-
ear in the size of the grammar (and not cubic in the
number of nonterminals, which would give a worse
running time).

In our experiments, we use the method described
in Chi and Kolda (2011) for tensor decomposition.2

This method is fast, even for large tensors, as long
as they are sparse. Such is the case with the tensors
for our grammars.

We use two treebanks for our comparison: the
Penn treebank (Marcus et al., 1993) and the Arabic
treebank (Maamouri et al., 2004). With the Penn
treebank, we use sections 2–21 for training a max-
imum likelihood model and section 22 for parsing,
while for the Arabic treebank we divide the data into
two sets, of size 80% and 20%, one is used for train-
ing a maximum likelihood model and the other is
used for parsing.

The number of binary rules in the treebank gram-
mar is 7,240. The number of nonterminals is 112
and the number of preterminals is 2593Unary rules
are removed by collapsing non-terminal chains. This
increased the number of preterminals. The number
of binary rules in the Arabic treebank is significantly
smaller and consists of 232 rules. We run all parsing
experiments on sentences of length ≤ 40. The num-
ber of nonterminals is 48 and the number of preter-

2We use the implementation given in Sandia’s Mat-
lab Tensor Toolbox, which can be downloaded at http:
//www.sandia.gov/˜tgkolda/TensorToolbox/
index-2.5.html.

3.
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rank (r) baseline 20 60 100 140 180 220 260 300 340

Arabic speed 0.57 0.04 0.06 0.1 0.12 0.16 0.19 0.22 0.26 0.28
F1 63.78 51.80 58.39 63.63 63.77 63.88 63.82 63.84 63.80 63.88

English speed 3.89 0.15 0.21 0.30 0.37 0.44 0.52 0.60 0.70 0.79
F1 71.07 57.83 61.67 68.28 69.63 70.30 70.82 71.42 71.28 71.13

Table 1: Results for the Arabic and English treebank of parsing using a vanilla PCFG with and without tensor decom-
position. Speed is given in seconds per sentence.

minals is 81.

Results Table 1 describes the results of compar-
ing the tensor decomposition algorithm to the vanilla
PCFG parsing algorithm.

The first thing to note is that the running time of
the parsing algorithm is linear in r. This indeed
validates the asymptotic complexity of the inside-
outside component in Goodman’s algorithm with the
approximate tensors. It also shows that most of the
time during parsing is spent on the inside-outside al-
gorithm, and not on the dynamic programming algo-
rithm which follows it.

In addition, compared to the baseline which uses
a vanilla CKY algorithm (linear in the number of
rules), we get a speed up of a factor of 4.75 for
Arabic (r = 140) and 6.5 for English (r = 260)
while retaining similar performance. Perhaps more
surprising is that using the tensor approximation ac-
tually improves performance in several cases. We
hypothesize that the cause of this is that the tensor
decomposition requires less parameters to express
the rule probabilities in the grammar, and therefore
leads to better generalization than a vanilla maxi-
mum likelihood estimate.

We include results for a more complex model for
Arabic, which uses horizontal Markovization of or-
der 1 and vertical Markovization of order 2 (Klein
and Manning, 2003). This grammar includes 2,188
binary rules. Parsing exhaustively using this gram-
mar takes 1.30 seconds per sentence (on average)
with an F1 measure of 64.43. Parsing with tensor
decomposition for r = 280 takes 0.62 seconds per
sentence (on average) with an F1 measure of 64.05.

7 Discussion

In this section, we briefly touch on several other top-
ics related to tensor approximation.

7.1 Approximating the Probability of a String

The probability of a sentence z under a PCFG is de-
fined as p(z) =

∑
τ∈T (z) p(τ), and can be approx-

imated using the algorithm in Section 4.3, running
in time O(rN3 + rmN2). Of theoretical interest,
we discuss here a time O(rN3 + r2N2) algorithm,
which is more convenient when r < m.

Observe that in Eq. (3) vector αi,j always appears
within one of the two terms V αi,j and Wαi,j in
Rr×1, whose dimensions are independent of m.
We can therefore use Eq. (3) to compute V αi,j as
V αi,j = V U>

(∑j−1
k=1(λ� V αi,k �Wαk+1,j)

)
,

where V U> is a Rr×r matrix that can be
computed off-line, i.e., independently of
z. A symmetrical relation can be used
to compute Wαi,j . Finally, we can write
p(z) = π>U

(∑N−1
k=1 (λ� V α1,k �Wαk+1,N )

)
,

where π>U is a R1×r vector that can again be
computed off-line. This algorithm then runs in time
O(rN3 + r2N2).

7.2 Applications to Dynamic Programming

The approximation method presented in this paper is
not limited to PCFG parsing. A similar approxima-
tion method has been used for latent-variable PCFGs
(Cohen and Collins, 2012), and in general, ten-
sor approximation can be used to speed-up inside-
outside algorithms for general dynamic program-
ming algorithms or weighted logic programs (Eisner
et al., 2004; Cohen et al., 2011). In the general case,
the dimension of the tensors will not be necessarily
just three (corresponding to binary rules), but can be
of a higher dimension, and therefore the speed gain
can be even greater. In addition, tensor approxima-
tion can be used for computing marginals of latent
variables in graphical models.

For example, the complexity of the forward-
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backward algorithm for HMMs can be reduced to
be linear in the number of states (as opposed to
quadratic) and linear in the rank used in an approxi-
mate singular-value decomposition (instead of ten-
sor decomposition) of the transition and emission
matrices.

7.3 Tighter (but Slower) Approximation Using
Singular Value Decomposition

The accuracy of the algorithm depends on the ability
of the tensor decomposition algorithm to decompose
the tensor with a small reconstruction error. The de-
composition algorithm is performed on the tensor T
which includes all rules in the grammar.

Instead, one can approach the approximation by
doing a decomposition for each slice of T separately
using singular value decomposition. This will lead
to a more accurate approximation, but will also lead
to an extra factor of m during parsing. This factor
is added because now there is not a single U , V and
W , but instead there are such matrices for each non-
terminal in the grammar.

8 Conclusion

We described an approximation algorithm for prob-
abilistic context-free parsing. The approximation al-
gorithm is based on tensor decomposition performed
on the underlying rule table of the CFG grammar.
The approximation algorithm leads to significant
speed-up in PCFG parsing, with minimal loss in per-
formance.
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Abstract

The rising influence of user-generated online
reviews (Cone, 2011) has led to growing in-
centive for businesses to solicit and manufac-
ture DECEPTIVE OPINION SPAM—fictitious
reviews that have been deliberately written to
sound authentic and deceive the reader. Re-
cently, Ott et al. (2011) have introduced an
opinion spam dataset containing gold standard
deceptive positive hotel reviews. However, the
complementary problem of negative deceptive
opinion spam, intended to slander competitive
offerings, remains largely unstudied. Follow-
ing an approach similar to Ott et al. (2011), in
this work we create and study the first dataset
of deceptive opinion spam with negative sen-
timent reviews. Based on this dataset, we find
that standard n-gram text categorization tech-
niques can detect negative deceptive opinion
spam with performance far surpassing that of
human judges. Finally, in conjunction with
the aforementioned positive review dataset,
we consider the possible interactions between
sentiment and deception, and present initial
results that encourage further exploration of
this relationship.

1 Introduction

Consumer’s purchase decisions are increasingly in-
fluenced by user-generated online reviews of prod-
ucts and services (Cone, 2011). Accordingly,
there is a growing incentive for businesses to so-
licit and manufacture DECEPTIVE OPINION SPAM—
fictitious reviews that have been deliberately writ-
ten to sound authentic and deceive the reader (Ott et

al., 2011). For example, Ott et al. (2012) has esti-
mated that between 1% and 6% of positive hotel re-
views appear to be deceptive, suggesting that some
hotels may be posting fake positive reviews in order
to hype their own offerings.

In this work we distinguish between two kinds of
deceptive opinion spam, depending on the sentiment
expressed in the review. In particular, reviews in-
tended to promote or hype an offering, and which
therefore express a positive sentiment towards the
offering, are called positive deceptive opinion spam.
In contrast, reviews intended to disparage or slander
competitive offerings, and which therefore express a
negative sentiment towards the offering, are called
negative deceptive opinion spam. While previous
related work (Ott et al., 2011; Ott et al., 2012) has
explored characteristics of positive deceptive opin-
ion spam, the complementary problem of negative
deceptive opinion spam remains largely unstudied.

Following the framework of Ott et al. (2011), we
use Amazon’s Mechanical Turk service to produce
the first publicly available1 dataset of negative de-
ceptive opinion spam, containing 400 gold standard
deceptive negative reviews of 20 popular Chicago
hotels. To validate the credibility of our decep-
tive reviews, we show that human deception detec-
tion performance on the negative reviews is low, in
agreement with decades of traditional deception de-
tection research (Bond and DePaulo, 2006). We then
show that standard n-gram text categorization tech-
niques can be used to detect negative deceptive opin-
ion spam with approximately 86% accuracy — far

1Dataset available at: http://www.cs.cornell.
edu/˜myleott/op_spam.
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surpassing that of the human judges.
In conjunction with Ott et al. (2011)’s positive de-

ceptive opinion spam dataset, we then explore the
interaction between sentiment and deception with
respect to three types of language features: (1)
changes in first-person singular use, often attributed
to psychological distancing (Newman et al., 2003),
(2) decreased spatial awareness and more narrative
form, consistent with theories of reality monitor-
ing (Johnson and Raye, 1981) and imaginative writ-
ing (Biber et al., 1999; Rayson et al., 2001), and (3)
increased negative emotion terms, often attributed to
leakage cues (Ekman and Friesen, 1969), but per-
haps better explained in our case as an exaggeration
of the underlying review sentiment.

2 Dataset

One of the biggest challenges facing studies of de-
ception is obtaining labeled data. Recently, Ott et
al. (2011) have proposed an approach for generat-
ing positive deceptive opinion spam using Amazon’s
popular Mechanical Turk crowdsourcing service. In
this section we discuss our efforts to extend Ott et
al. (2011)’s dataset to additionally include negative
deceptive opinion spam.

2.1 Deceptive Reviews from Mechanical Turk
Deceptive negative reviews are gathered from Me-
chanical Turk using the same procedure as Ott et
al. (2011). In particular, we create and divide 400
HITs evenly across the 20 most popular hotels in
Chicago, such that we obtain 20 reviews for each
hotel. We allow workers to complete only a single
HIT each, so that each review is written by a unique
worker.2 We further require workers to be located
in the United States and to have an average past ap-
proval rating of at least 90%. We allow a maximum
of 30 minutes to complete the HIT, and reward ac-
cepted submissions with one US dollar ($1).

Each HIT instructs a worker to imagine that they
work for the marketing department of a hotel, and
that their manager has asked them to write a fake
negative review of a competitor’s hotel to be posted
online. Accompanying each HIT is the name and

2While Mechanical Turk does not provide a convenient
mechanism for ensuring the uniqueness of workers, this con-
straint can be enforced with Javascript. The script is available
at: http://uniqueturker.myleott.com.

URL of the hotel for which the fake negative re-
view is to be written, and instructions that: (1) work-
ers should not complete more than one similar HIT,
(2) submissions must be of sufficient quality, i.e.,
written for the correct hotel, legible, reasonable in
length,3 and not plagiarized,4 and, (3) the HIT is for
academic research purposes.

Submissions are manually inspected to ensure
that they are written for the correct hotel and to
ensure that they convey a generally negative senti-
ment.5 The average accepted review length was 178
words, higher than for the positive reviews gathered
by Ott et al. (2011), who report an average review
length of 116 words.

2.2 Truthful Reviews from the Web

Negative (1- or 2-star) truthful reviews are mined
from six popular online review communities: Expe-
dia, Hotels.com, Orbitz, Priceline, TripAdvisor, and
Yelp. While reviews mined from these communities
cannot be considered gold standard truthful, recent
work (Mayzlin et al., 2012; Ott et al., 2012) suggests
that deception rates among travel review portals is
reasonably small.

Following Ott et al. (2011), we sample a subset
of the available truthful reviews so that we retain an
equal number of truthful and deceptive reviews (20
each) for each hotel. However, because the truthful
reviews are on average longer than our deceptive re-
views, we sample the truthful reviews according to
a log-normal distribution fit to the lengths of our de-
ceptive reviews, similarly to Ott et al. (2011).6

3 Deception Detection Performance

In this section we report the deception detection per-
formance of three human judges (Section 3.1) and
supervised n-gram Support Vector Machine (SVM)
classifiers (Section 3.2).

3We define “reasonable length” to be ≥ 150 characters.
4We use http://plagiarisma.net to determine

whether or not a review is plagiarized.
5We discarded and replaced approximately 2% of the sub-

missions, where it was clear that the worker had misread the
instructions and instead written a deceptive positive review.

6We use the R package GAMLSS (Rigby and Stasinopou-
los, 2005) to fit a log-normal distribution (left truncated at 150
characters) to the lengths of the deceptive reviews.
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TRUTHFUL DECEPTIVE

Accuracy P R F P R F

HUMAN

JUDGE 1 65.0% 65.0 65.0 65.0 65.0 65.0 65.0
JUDGE 2 61.9% 63.0 57.5 60.1 60.9 66.3 63.5
JUDGE 3 57.5% 57.3 58.8 58.0 57.7 56.3 57.0

META
MAJORITY 69.4% 70.1 67.5 68.8 68.7 71.3 69.9

SKEPTIC 58.1% 78.3 22.5 35.0 54.7 93.8 69.1

Table 1: Deception detection performance, incl. (P)recision, (R)ecall, and (F)1-score, for three human judges and two
meta-judges on a set of 160 negative reviews. The largest value in each column is indicated with boldface.

3.1 Human Performance

Recent large-scale meta-analyses have shown hu-
man deception detection performance is low, with
accuracies often not much better than chance (Bond
and DePaulo, 2006). Indeed, Ott et al. (2011) found
that two out of three human judges were unable to
perform statistically significantly better than chance
(at the p < 0.05 level) at detecting positive decep-
tive opinion spam. Nevertheless, it is important to
subject our reviews to human judgments to validate
their convincingness. In particular, if human detec-
tion performance is found to be very high, then it
would cast doubt on the usefulness of the Mechan-
ical Turk approach for soliciting gold standard de-
ceptive opinion spam.

Following Ott et al. (2011), we asked three vol-
unteer undergraduate university students to read and
make assessments on a subset of the negative review
dataset described in Section 2. Specifically, we ran-
domized all 40 deceptive and truthful reviews from
each of four hotels (160 reviews total). We then
asked the volunteers to read each review and mark
whether they believed it to be truthful or deceptive.

Performance for the three human judges appears
in Table 1. We additionally show the deception de-
tection performance of two meta-judges that aggre-
gate the assessments of the individual human judges:
(1) the MAJORITY meta-judge predicts deceptive
when at least two out of three human judges predict
deceptive (and truthful otherwise), and (2) the SKEP-
TIC meta-judge predicts deceptive when at least one
out of three human judges predicts deceptive (and
truthful otherwise).

A two-tailed binomial test suggests that JUDGE 1
and JUDGE 2 both perform better than chance (p =
0.0002, 0.003, respectively), while JUDGE 3 fails to
reject the null hypothesis of performing at-chance

(p = 0.07). However, while the best human judge
is accurate 65% of the time, inter-annotator agree-
ment computed using Fleiss’ kappa is only slight
at 0.07 (Landis and Koch, 1977). Furthermore,
based on Cohen’s kappa, the highest pairwise inter-
annotator agreement is only 0.26, between JUDGE

1 and JUDGE 2. These low agreements suggest
that while the judges may perform statistically better
than chance, they are identifying different reviews
as deceptive, i.e., few reviews are consistently iden-
tified as deceptive.

3.2 Automated Classifier Performance

Standard n-gram–based text categorization tech-
niques have been shown to be effective at detect-
ing deception in text (Jindal and Liu, 2008; Mihal-
cea and Strapparava, 2009; Ott et al., 2011; Feng et
al., 2012). Following Ott et al. (2011), we evaluate
the performance of linear Support Vector Machine
(SVM) classifiers trained with unigram and bigram
term-frequency features on our novel negative de-
ceptive opinion spam dataset. We employ the same
5-fold stratified cross-validation (CV) procedure as
Ott et al. (2011), whereby for each cross-validation
iteration we train our model on all reviews for 16
hotels, and test our model on all reviews for the re-
maining 4 hotels. The SVM cost parameter, C, is
tuned by nested cross-validation on the training data.

Results appear in Table 2. Each row lists the sen-
timent of the train and test reviews, where “Cross
Val.” corresponds to the cross-validation procedure
described above, and “Held Out” corresponds to
classifiers trained on reviews of one sentiment and
tested on the other. The results suggest that n-gram–
based SVM classifiers can detect negative decep-
tive opinion spam in a balanced dataset with perfor-
mance far surpassing that of untrained human judges
(see Section 3.1). Furthermore, our results show that
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TRUTHFUL DECEPTIVE

Train Sentiment Test Sentiment Accuracy P R F P R F
POSITIVE POSITIVE (800 reviews, Cross Val.) 89.3% 89.6 88.8 89.2 88.9 89.8 89.3

(800 reviews) NEGATIVE (800 reviews, Held Out) 75.1% 69.0 91.3 78.6 87.1 59.0 70.3
NEGATIVE POSITIVE (800 reviews, Held Out) 81.4% 76.3 91.0 83.0 88.9 71.8 79.4

(800 reviews) NEGATIVE (800 reviews, Cross Val.) 86.0% 86.4 85.5 85.9 85.6 86.5 86.1
COMBINED POSITIVE (800 reviews, Cross Val.) 88.4% 87.7 89.3 88.5 89.1 87.5 88.3

(1600 reviews) NEGATIVE (800 reviews, Cross Val.) 86.0% 85.3 87.0 86.1 86.7 85.0 85.9

Table 2: Automated classifier performance for different train and test sets, incl. (P)recision, (R)ecall and (F)1-score.

classifiers trained and tested on reviews of differ-
ent sentiments perform worse, despite having more
training data,7 than classifiers trained and tested on
reviews of the same sentiment. This suggests that
cues to deception differ depending on the sentiment
of the text (see Section 4).

Interestingly, we find that training on the com-
bined sentiment dataset results in performance that
is comparable to that of the “same sentiment” classi-
fiers (88.4% vs. 89.3% accuracy for positive reviews
and 86.0% vs. 86.0% accuracy for negative reviews).
This is explainable in part by the increased training
set size (1,280 vs. 640 reviews per 4 training folds).

4 Interaction of Sentiment and Deception

An important question is how language features op-
erate in our fake negative reviews compared with the
fake positive reviews of Ott et al. (2011). For exam-
ple, fake positive reviews included less spatial lan-
guage (e.g., floor, small, location, etc.) because in-
dividuals who had not actually experienced the ho-
tel simply had less spatial detail available for their
review (Johnson and Raye, 1981). This was also the
case for our negative reviews, with less spatial lan-
guage observed for fake negative reviews relative to
truthful. Likewise, our fake negative reviews had
more verbs relative to nouns than truthful, suggest-
ing a more narrative style that is indicative of imag-
inative writing (Biber et al., 1999; Rayson et al.,
2001), a pattern also observed by Ott et al. (2011).

There were, however, several important differ-
ences in the deceptive language of fake negative rel-
ative to fake positive reviews. First, as might be
expected, negative emotion terms were more fre-

7“Cross Val.” classifiers are effectively trained on 80% of
the data and tested on the remaining 20%, whereas “Held Out”
classifiers are trained and tested on 100% of each data.

quent, according to LIWC (Pennebaker et al., 2007),
in our fake negative reviews than in the fake posi-
tive reviews. But, importantly, the fake negative re-
viewers over-produced negative emotion terms (e.g.,
terrible, disappointed) relative to the truthful re-
views in the same way that fake positive reviewers
over-produced positive emotion terms (e.g., elegant,
luxurious). Combined, these data suggest that the
more frequent negative emotion terms in the present
dataset are not the result of “leakage cues” that re-
veal the emotional distress of lying (Ekman and
Friesen, 1969). Instead, the differences suggest that
fake hotel reviewers exaggerate the sentiment they
are trying to convey relative to similarly-valenced
truthful reviews.

Second, the effect of deception on the pattern of
pronoun frequency was not the same across posi-
tive and negative reviews. In particular, while first
person singular pronouns were produced more fre-
quently in fake reviews than truthful, consistent with
the case for positive reviews, the increase was di-
minished in the negative reviews examined here. In
the positive reviews reported by Ott et al. (2011),
the rate of first person singular in fake reviews
(M=4.36%, SD=2.96%) was twice the rate observed
in truthful reviews (M=2.18%, SD=2.04%). In con-
trast, the rate of first person singular in the deceptive
negative reviews (M=4.47%, SD=2.83%) was only
57% greater than for truthful reviews (M=2.85%,
SD=2.23%). These results suggest that the empha-
sis on the self, perhaps as a strategy of convinc-
ing the reader that the author had actually been to
the hotel, is not as evident in the fake negative re-
views, perhaps because the negative tone of the re-
views caused the reviewers to psychologically dis-
tance themselves from their negative statements, a
phenomenon observed in several other deception
studies, e.g., Hancock et al. (2008).
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5 Conclusion

We have created the first publicly-available corpus
of gold standard negative deceptive opinion spam,
containing 400 reviews of 20 Chicago hotels, which
we have used to compare the deception detection ca-
pabilities of untrained human judges and standard
n-gram–based Support Vector Machine classifiers.
Our results demonstrate that while human deception
detection performance is greater for negative rather
than positive deceptive opinion spam, the best detec-
tion performance is still achieved through automated
classifiers, with approximately 86% accuracy.

We have additionally explored, albeit briefly, the
relationship between sentiment and deception by
utilizing Ott et al. (2011)’s positive deceptive opin-
ion spam dataset in conjunction with our own. In
particular, we have identified several features of lan-
guage that seem to remain consistent across senti-
ment, such as decreased awareness of spatial details
and exaggerated language. We have also identified
other features that vary with the sentiment, such as
first person singular use, although further work is re-
quired to determine if these differences may be ex-
ploited to improve deception detection performance.
Indeed, future work may wish to jointly model sen-
timent and deception in order to better determine the
effect each has on language use.
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Abstract

We present a method for improving the perceived nat-
uralness of corpus-based speech synthesizers. It con-
sists in removing pronounced pitch peaks in the origi-
nal recordings, which typically lead to noticeable dis-
continuities in the synthesized speech. We perceptu-
ally evaluated this method using two concatenative and
two HMM-based synthesis systems, and found that us-
ing it on the source recordings managed to improve
the naturalness of the synthesizers and had no effect
on their intelligibility.

1 Introduction

By definition, corpus-based speech synthesizers,
such as concatenative and HMM-based systems,
rely heavily on the quality of the speech corpus used
for building the systems. Creating speech corpora
for this purpose is expensive and time consuming, so
when the synthesized speech obtained is not as good
as expected, it may be desirable to modify or correct
the corpus rather than record a new one. Common
corrections are limited to discarding mispronounced
words or noisy units. In this work we describe a sim-
ple method for attenuating pronounced pitch peaks,
a frequent problem in recordings made by profes-
sional speakers, and evaluate it using four different
corpus-based systems. Sections 2 and 3 describe the
speech synthesis systems and corpus employed in
this work. In Section 4 we present the method for
reducing pitch peaks. In Section 5 we describe how
we evaluated the effect of our method on intelligibil-
ity and naturalness of the synthesizers.

2 Synthesis systems

Festival1 is a general framework for building speech
synthesis systems, written in C++ and developed by
the Center of Speech Technology Research at the
University of Edinburgh (Black et al., 2001). It
provides an implementation of concatenative speech
synthesis as well as synthesis based on Hidden
Markov Models (HMM). In this work we used a Fes-
tival module called Clunits unit selection engine to
build concatenative synthesizers. The unit size is the
phone, although since a percentage of the previous
unit is included in the acoustic distance measure, the
unit size is rather “phone plus previous phone”, thus
similar to a diphone (Black and Lenzo, 2007). Ad-
ditionally, we used a second Festival module called
Clustergen parametric synthesis engine for building
HMM-based speech synthesizers.

MARY TTS2 is an open-source synthesis plat-
form written in Java, originally jointly developed
by the Language Technology Lab at the German
Research Center for Artificial Intelligence (DFKI)
and the Institute of Phonetics at Saarland Univer-
sity, and currently maintained by DFKI. Like Fes-
tival, MARY provides toolkits for building unit se-
lection and HMM-based synthesis voices (Schröder
and Trouvain, 2003).

3 Corpus

For building our systems we used the SECYT cor-
pus, created by the Laboratorio de Investigacio-
nes Sensoriales (Universidad de Buenos Aires) for

1http://festvox.org/festival
2http://mary.dfki.de
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studying the prosody of Argentine Spanish (Torres
and Gurlekian, 2004). It consists of 741 declarative
sentences recorded by a female professional speaker
(pitch range: 130-380Hz). On average, sentences
are 7 words and 3.9 seconds long. The entire corpus
has manual phonetic transcriptions and time align-
ments, following a version of the Speech Assessment
Methods Phonetic Alphabet (SAMPA) adapted for
Argentine Spanish (Gurlekian et al., 2001).

A priori, this corpus is a very good candidate for
building a synthesis system – its 741 sentences are
phonetically balanced, the audio quality is excellent,
and it has precise time-aligned phonetic transcrip-
tions. We thus built two concatenation systems us-
ing this corpus: Festival’s diphone-like and MARY’s
diphone systems. The results were not satisfactory.
The new voices presented clearly noticeable discon-
tinuities, both in intensity and pitch, which affected
their naturalness – as judged impressionistically by
the authors and non-expert colleagues.

In an attempt to attenuate these problems, we lev-
eled the intensity of all recordings to a mean of 72dB
using linear interpolation. Specifically, each sound
was multiplied by a number such that its new aver-
age RMS intensity was 72dB; so that all sentences
in the corpus ended up with the same average inten-
sity. After this conversion, we rebuilt the systems.
The resulting voices sounded somewhat better, but
their most noticeable problem, severe pitch discon-
tinuities, persisted.

Further analysis of the corpus recordings revealed
that this issue was likely due to the speaking style
employed by the professional speaker. It contains
frequent pronounced pitch peaks, a verbal stylistic
device acquired by the speaker as part of her pro-
fessional training. These events produced units with
very different pitch levels and slopes, thus leading to
the discontinuities mentioned above.

4 Reduction of pitch peaks

We searched for ways to reduce the magnitude of
these pitch peaks by manipulating the pitch track
of the recordings using the Time-Domain Pitch-
Synchronous OverLap-and-Add (TD-PSOLA) sig-
nal processing technique (Moulines and Charpen-
tier, 1990). We used the implementation of TD-
PSOLA included in the Praat toolkit (Boersma and

Weenink, 2012).
We tried several formulas for TD-PSOLA and

ended up choosing the one that appeared to yield the
best results, evaluated perceptually by the authors:

f(x) =

{
(x− T ) ∗ s + T if x > T
x otherwise.

This formula linearly scales the pitch track by a scal-
ing factor s above a threshold T , and leaves it intact
below T . When 0 < s < 1, the pitch track gets com-
pressed above the threshold. We experimented with
several values for the two constants, and selected
T = 200Hz and s = 0.4 as the ones producing the
best results. Figure 1 illustrates the pitch peak re-
duction method. The black solid line corresponds to

1.0 1.5 2.0 2.5
Time (s)

150

200

250

300

H
z

Original
Modified

Figure 1: Reduction of pitch peaks. The original pitch
track (in black) is scaled down 40% above 200Hz.

the pitch track of the original audio; the red dotted
line, to the pitch track of the modified audio. Note
that the modified pitch track is scaled down above
200Hz, but identical to the original below it.

5 Evaluation of the method

Next we proceeded to evaluate the effect on synthe-
sizer quality of reducing pitch peaks in the train-
ing corpus. For this purpose we prepared two ver-
sions of the SECYT corpus – with and without ap-
plying our pitch-peak reduction technique. We refer
to these two as the original and modified recordings,
respectively. In both cases, the intensity level of all
audios was first leveled to a mean of 72dB using
linear interpolation, to compensate for differences
across recordings.
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Subsequently, we built 8 speech synthesizers,
consisting in all combinations of: Festival and
MARY frameworks, concatenative and HMM-based
synthesis, and original and modified recordings. We
refer to these systems using the following nota-
tion: {fest, mary} {conc, hmm} {orig, mod}; e.g.,
mary conc mod is a concatenative system built us-
ing the MARY framework with the modified corpus.

We evaluated these systems along two dimen-
sions: intelligibility and naturalness. Our goal was
to compare four system pairs: systems built using
the original recordings vs. those built using the mod-
ified recordings. The null hypothesis was that there
was no difference between ‘orig’ and ‘mod’ sys-
tems; and the alternative hypothesis was that ‘mod’
systems were better than ‘orig’ ones.

5.1 Intelligibility

To evaluate intelligibility we used the Semantically
Unpredictable Sentences (SUS) method (Nye and
Gaitenby, 1974), which consists in asking partici-
pants to listen to and transcribe sentences with cor-
rect syntax but no semantic sense, for later measur-
ing and comparing the number of transcription er-
rors. We used a set of 50 such sentences, each 6-10
words long, created by Gurlekian et al. (2012) for
evaluating Spanish speech synthesizers. A sample
sentence is, El viento dulce armó un libro de pan-
queques (The sweet wind made a book of pancakes).

For each participant, 40 sentences were selected
at random and synthesized with the 8 systems (5 sen-
tences per system, with no repetitions). Participants
were given the following instructions,

La primera tarea consiste en escuchar varios audios, y
transcribir para cada audio la oración que escuches.
Prestá atención, porque podés escuchar cada audio
una sola vez.
(The first task consists in listening to several audios,
and transcribing for each audio the sentence you hear.
Pay attention, because you can only listen to each au-
dio once.)

5.2 Naturalness

To evaluate naturalness we used the Mean Opin-
ion Score (MOS) method, in which participants
are asked to rate the overall quality of synthe-
sized speech on a 10-point scale (Viswanathan and
Viswanathan, 2005).

We used a set of 20 sentences, each 5-20 words
long, created by Gurlekian et al. (2012), plus 20 ad-
ditional sentences created for this study. A sample
sentence is, El sector de informática es el nuevo
generador de empleo del paı́s (The information
technology sector is the country’s new job creator).

Again, for each participant, 40 sentences were se-
lected at random and synthesized with the 8 systems
(5 sentences per system). Participants were given
the following instructions,

La segunda (y última) tarea consiste en escuchar otros
audios, y puntuar la naturalidad de cada uno. Usar
una escala de 1 a 10, donde 1 significa “no suena nat-
ural en lo absoluto” y 10 significa “suena completa-
mente natural”. En este caso, podés escuchar cada
audio una o más veces.
(The second (and last) task consists in listening to
other audios, and score the naturalness of each. Use
a scale from 1 to 10, where 1 means “it does not sound
natural at all” and 10 means “it sounds completely nat-
ural”. In this case, you may listen to each audio one or
more times.)

5.3 Results
SUS and MOS tests were administered on a com-
puter interface in a silent laboratory using regular
headphones. 14 graduate and undergraduate stu-
dents (11 male, 3 female; mean age: 27.6) com-
pleted both tests – first SUS, followed by MOS.

The transcriptions of the SUS tests were manually
corrected for obvious typos and spelling errors that
did not form a valid Spanish word. Suspected typos
and spelling errors that formed a valid word were not
corrected. For example, peliculas was corrected to
pelı́culas, and precion to presión; but canto was not
corrected to cantó, since it is a valid word. Subse-
quently, we computed the Levenshtein distance be-
tween each transcription and the corresponding sen-
tence. Figure 2 shows the distribution of Leven-
shtein distances for each of our eight systems. We
observe that all systems had a low error count, with
a median of 0 or 1 errors per sentence. Two-tail
Wilcoxon signed-rank tests revealed no significant
differences between the systems built with the origi-
nal and modified recordings (p=0.70 for fest conc,
p = 0.40 for fest hmm, p = 0.69 for mary conc,
p=0.40 for mary hmm, and p=0.41 for all systems
together). These results indicate that the intelligibil-
ity of all four system types was not affected by the
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Figure 2: Intelligibility (SUS) results.

modifications performed on the corpus for reducing
pitch peaks.

To account for the different interpretations of the
10-point scale, we normalized all MOS test scores
by participant using z-scores.3 Figure 3 shows the
distribution of values for each system.
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Figure 3: Naturalness (MOS) results.

We performed a series of Wilcoxon signed-rank
tests to assess the statistical significance of the ob-
served differences. The null hypothesis was that
there was no difference between ‘orig’ and ‘mod’
systems; and the alternative hypothesis was that
‘mod’ systems were perceived as more natural than
‘orig’ ones. Table 5.3 summarizes these results.

For mary conc and mary hmm (concatenative
and HMM-based systems built using the MARY

3z = (x− x)/s, where x and s are estimates of the partici-
pant’s mean and standard deviation, respectively.

W p-value
fest conc 2485 0.559
fest hmm 2175 0.126

mary conc 1933 0.016
mary hmm 1680.5 0.001
All systems 34064.5 0.004

Table 1: Results of Wilcoxon tests comparing systems
using the original and modified audios.

framework) the perceived naturalness was signifi-
cantly higher for systems built using the modified
recordings (i.e., after reducing pitch peaks) than
for systems built with the original recordings. For
fest conc (concatenative system built with Festival)
we found no evidence of such differences. Finally,
for fest hmm (Festival HMM-based) the difference
approaches significance at 0.126.

6 Conclusions

In this paper we presented a method for improving
the perceived naturalness of corpus-based speech
synthesizers. It consists in removing pronounced
pitch peaks in the original recordings, which typ-
ically produce discontinuities in the synthesized
speech. We evaluated this method using two com-
mon technologies (concatenative and HMM-based
synthesis) and two different implementations (Festi-
val and MARY), aiming at a good coverage of state-
of-the-art speech synthesizers, and obtained clear re-
sults. First, its utilization on the source recordings
had no effect (negative or positive) on the intelligi-
bility of any of the systems. Second, the natural-
ness of the concatenative and HMM-based systems
built with the MARY framework improved signif-
icantly; the HMM-based system built with Festival
showed an improved naturalness at a level approach-
ing significance; and the Festival concatenative sys-
tem showed no improvement. In summary, the pre-
sented method did not harm the intelligibility of the
systems, and in some cases managed to improve
their naturalness. Therefore, since the impact of the
proposed modifications on all four systems was pos-
itive to neutral, developers may find this methodol-
ogy beneficial.
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Abstract

We show that existing methods for training
preposition error correction systems, whether
using well-edited text or error-annotated cor-
pora, do not generalize across very differ-
ent test sets. We present a new, large error-
annotated corpus and use it to train systems
that generalize across three different test sets,
each from a different domain and with differ-
ent error characteristics. This new corpus is
automatically extracted from Wikipedia revi-
sions and contains over one million instances
of preposition corrections.

1 Introduction

One of the main themes that has defined the field of
automatic grammatical error correction has been the
availability of error-annotated learner data to train
and test a system. Some errors, such as determiner-
noun number agreement, are easily corrected us-
ing rules and regular expressions (Leacock et al.,
2010). On the other hand, errors involving the usage
of prepositions and articles are influenced by sev-
eral factors including the local context, the prior dis-
course and semantics. These errors are better han-
dled by statistical models which potentially require
millions of training examples.

Most statistical approaches to grammatical error
correction have used one of the following training
paradigms: 1) training solely on examples of cor-
rect usage (Han et al., 2006); 2) training on exam-
ples of correct usage and artificially generated er-
rors (Rozovskaya and Roth, 2010); and 3) training

on examples of correct usage and real learner er-
rors (Dahlmeier and Ng, 2011; Dale et al., 2012).
The latter two methods require annotated corpora of
errors, and while they have shown great promise,
manually annotating grammatical errors in a large
enough corpus of learner writing is often a costly
and time-consuming endeavor.

In order to efficiently and automatically acquire a
very large corpus of annotated learner errors, we in-
vestigate the use of error corrections extracted from
Wikipedia revision history. While Wikipedia re-
vision history has shown promise for other NLP
tasks including paraphrase generation (Max and
Wisniewski, 2010; Nelken and Yamangil, 2008) and
spelling correction (Zesch, 2012), this resource has
not been used for the task of grammatical error cor-
rection.

To evaluate the usefulness of Wikipedia revision
history for grammatical error correction, we address
the task of correcting errors in preposition selection
(i.e., where the context licenses the use of a prepo-
sition, but the writer selects the wrong one). We
first train a model directly on instances of correct
and incorrect preposition usage extracted from the
Wikipedia revision data. We also generate artificial
errors using the confusion distributions derived from
this data. We compare both of these approaches to
models trained on well-edited text and evaluate each
on three test sets with a range of different character-
istics. Each training paradigm is applied to multiple
data sources for comparison. With these multiple
evaluations, we address the following research ques-
tions:

1. Across multiple test sets, which data source
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is more useful for correcting preposition er-
rors: a large amount of well-edited text, a large
amount of potentially noisy error-annotated
data (either artificially generated or automati-
cally extracted) or a smaller amount of higher
quality error-annotated data?

2. Given error-annotated data, is it better to train
on the corrections directly or to use the con-
fusion distributions derived from these correc-
tions for generating artificial errors in well-
edited text?

3. What is the impact of having a mismatch in the
error distributions of the training and test sets?

2 Related Work

In this section, we only review work in preposi-
tion error correction in terms of the three training
paradigms and refer the reader to Leacock et al.
(2010) for a more comprehensive review of the field.

2.1 Training on Well-Edited Text
Early approaches to error detection and correction
did not have access to large amounts of error-
annotated data to train statistical models and thus,
systems were trained on millions of well-edited ex-
amples from news text instead (Gamon et al., 2008;
Tetreault and Chodorow, 2008; De Felice and Pul-
man, 2009). Feature sets usually consisted of n-
grams around the preposition, POS sequences, syn-
tactic features and semantic information. Since the
model only had knowledge of correct usage, an error
was flagged if the system’s prediction for a particu-
lar preposition context differed from the preposition
the writer used.

2.2 Artificial Errors
The issue with training solely on correct usage was
that the systems had no knowledge of typical learner
errors. Ideally, a system would be trained on ex-
amples of correct and incorrect usage, however, for
many years, such error-annotated corpora were not
available. Instead, several researchers generated ar-
tificial errors based on the error distributions derived
from the error-annotated learner corpora available at
the time. Izumi et al. (2003) was the first to evaluate
a model trained on incorrect usage as well as artifi-
cial errors for the task of correcting several different

error types, including prepositions. However, with
limited training data, system performance was quite
poor. Rozovskaya and Roth (2010) evaluated dif-
ferent ways of generating artificial errors and found
that a system trained on artificial errors could outper-
form the more traditional training paradigm of using
only well-edited texts. Most recently, Imamura et al.
(2012) showed that performance could be improved
by training a model on artificial errors and address-
ing domain adaptation for the task of Japanese par-
ticle correction.

2.3 Error-Annotated Learner Corpora

Recently, error-annotated learner data has become
more readily and publicly available allowing models
to be trained on both examples of correct usage as
well typical learner errors. Han et al. (2010) showed
that a preposition error detection and correction sys-
tem trained on 100,000 annotated preposition errors
from the Chungdahm Corpus of Korean Learner En-
glish (in addition to 1 million examples of correct
usage) outperformed a model trained only on 5 mil-
lion examples of correct usage. Gamon (2010) and
Dahlmeier and Ng (2011) showed that combining
models trained separately on examples of correct
and incorrect usage could also improve the perfor-
mance of a preposition error correction system.

3 Mining Wikipedia Revisions for
Grammatical Error Corrections

3.1 Related Work

Many NLP researchers have taken advantage of the
wealth of information available in Wikipedia revi-
sions. Dutrey et al. (2011) define a typology of mod-
ifications found in the French Wikipedia (WiCo-
PaCo). They show that the kinds of edits made range
from specific lexical changes to more general rewrite
edits. Similar types of edits are found in the En-
glish Wikipedia. The data extracted from Wikipedia
revisions has been used for a wide variety of tasks
including spelling correction (Max and Wisniewski,
2010; Zesch, 2012), lexical error detection (Nelken
and Yamangil, 2008), sentence compression (Ya-
mangil and Nelken, 2008), paraphrase generation
(Max and Wisniewski, 2010; Nelken and Yamangil,
2008), lexical simplification (Yatskar et al., 2010)
and entailment (Zanzotto and Pennacchiotti, 2010;
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(1) [Wiki clean] In addition, sometimes it is also left to stand overnight (at→ in) the refrigerator.

(2) [Wiki clean] Also none of the witnesses present (of→ on) those dates supports Ranneft’s claims.

(3) [Wiki dirty] . . . cirque has a permanent production (to→ at) the Mirage, love.

(4) [Wiki dirty] In the late 19th century Vasilli Andreyev a salon violinist took up the balalaika in his
performances for French tourists (in→ to) Petersburg.

Figure 1: Example sentences with preposition errors extracted from Wikipedia revisions. The second preposition is
assumed to be the correction.

Cabrio et al., 2012). To our knowledge, no one has
previously extracted data for training a grammatical
error detection system from Wikipedia revisions.

3.2 Extracting Preposition Correction Data
from Wikipedia Revisions

As the source of our Wikipedia revisions, we used an
XML snapshot of Wikipedia generated in July 2011
containing 8,735,890 articles and 288,583,063 revi-
sions.1 We then used the following process to ex-
tract preposition errors and their corresponding cor-
rections from this snapshot:

Step 1: Extract the plain text versions of all revi-
sions of all articles using the Java Wikipedia
Library (Ferschke et al., 2011).

Step 2: For each Wikipedia article, compare each
revision with the revision immediately preced-
ing it using an efficient diff algorithm.2

Step 3: Compute all 1-word edit chains for the arti-
cle, i.e., sequences of related edits derived from
all revisions of the same article. For example,
say revision 10 of an article inserts the preposi-
tion of into a sentence and revision 12 changes
that preposition to on. Assuming that no other
revisions change this sentence, the correspond-
ing edit chain would contain the following 3 el-
ements: ε→of→on. The extracted chains con-
tain the full context on either side of the 1-word
edit, up to the automatically detected sentence
boundaries.

Step 4: (a) Ignore any circular chains, i.e., where
the first element in the edit chain is the same as
the last element. (b) Collapse all non-circular

1http://dumps.wikimedia.org/enwiki/
2http://code.google.com/p/google-diff-match-patch/

chains, i.e., only retain the first and the last ele-
ments in a chain. Both these decisions are mo-
tivated by the assumption that the intermediate
links in the chain are unreliable for training an
error correction system since a Wikipedia con-
tributor modified them.

Step 5 : From all remaining 2-element chains, find
those where a preposition is replaced with an-
other preposition. If the preposition edit is the
only edit in the sentence, we convert the chain
into a sentence pair and label it clean. If there
are other 1-word edits but not within 5 words of
the preposition edit on either side, we label the
sentence somewhat clean. Otherwise, we label
it dirty. The motivation is that the presence of
other nearby edits make the preposition correc-
tion less reliable when used in isolation, due to
the possible dependencies between corrections.

All extracted sentences were part-of-speech tagged
using the Stanford Tagger (Toutanova et al., 2003).
Using the above process, we are able to extract ap-
proximately 2 million sentences containing preposi-
tions errors and their corrections. Some examples
of the sentences we extracted are given in Figure 1.
Example (4) shows an example of a bad correction.

4 Corpora

We use several corpora for training and testing our
preposition error correction system. The proper-
ties of each are outlined in Table 1, organized by
paradigm. For each corpus we report the total num-
ber of prepositions used for training, as well as the
number and percentage of preposition corrections.

4.1 Well-edited Text
We train our system on two well-edited corpora.
The first is the same corpus used by Tetreault and
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Corpus Total # Preps # Corrected Preps

Well-edited Text Wikipedia Snapshot (10m sents) 26,069,860 0 (0%)
Lexile/SJM 6,719,077 0 (0%)

Artificially Generated
Errors

Wikipedia Snapshot 26,127,464 2,844,227 (10.9%)
Lexile/SJM 6,723,206 792,195 (11.8%)

Naturally Occurring
Errors

Wikipedia Revisions All 7,125,317 1,027,643 (20.6%)
Wikipedia Revisions ∼Clean 3,001,900 381,644 (12.7%)
Wikipedia Revisions Clean 1,978,802 266,275 (14.4%)
Lang-8 129,987 53,493 (41.2%)
NUCLE Train 72,741 922 (1.3%)

Test Corpora NUCLE Test 9,366 125 (1.3%)
FCE 33,243 2,900 (8.7%)
HOO 2011 Test 1,703 81 (4.8%)

Table 1: Corpora characteristics

Chodorow (2008), comprising roughly 1.8 million
sentences from the San Jose Mercury News Corpus3

and roughly 1.8 million sentences from grades 11
and 12 of the MetaMetrics Lexile Corpus. Our sec-
ond corpus is a random sample of 10 million sen-
tences containing at least one preposition from the
June 2012 snapshot of English Wikipedia Articles.4

4.2 Artificially Generated Errors

Similar to Foster and Andersen (2009) and Ro-
zovskaya and Roth (2010), we artificially introduce
preposition errors into well-edited corpora (the two
described above). We do this based on a distribu-
tion of possible confusions and train a model that
is aware of the corrections. The two sets of con-
fusion distributions we used were derived based on
the errors extracted from Wikipedia revisions and
Lang-8 respectively (discussed in Section 4.3). For
each corrected preposition pi in the revision data,
we calculated P (pi|pj), where pj is each of the pos-
sible original prepositions that were confused with
pi. Then, for each sentence in the well-edited text,
all prepositions are extracted. A preposition is ran-
domly selected (without replacement) and changed
based on the distribution of possible confusions
(note that the original preposition is also included
in the distribution, usually with a high probabil-

3The San Jose Mercury News is available from the Linguis-
tic Data Consortium (catalog number LDC93T3A).

4We used a newer version of the Wikipedia text for the well-
edited text, since we assume that more recent versions of the
text will be most grammatical, and therefore closer to well-
edited.

ity, meaning that there is a strong preference not to
change the preposition). If a preposition is changed
to something other than the original preposition, all
remaining prepositions in the sentence are left un-
changed.

4.3 Naturally Occurring Errors

We have a number of corpora that contain annotated
preposition errors. Note that we are only considering
incorrectly selected prepositions, we do not consider
missing or extraneous.

NUCLE The NUS Corpus of Learner English (NU-
CLE)5 contains one million words of learner
essay text, manually annotated with error tags
and corrections. We use the same training, dev
and test splits as Dahlmeier and Ng (2011).

FCE The CLC FCE Dataset6 is a collection of
1,244 exam scripts written by learners of En-
glish as part of the Cambridge ESOL First Cer-
tificate in English (Yannakoudakis et al., 2011).
It includes demographic metadata about the
candidate, a grade for each essay and manually-
annotated error corrections.

Wikipedia We use three versions of the preposi-
tion errors extracted from the Wikipedia revi-
sions as described in Section 3.2. The first in-
cludes corrections where the preposition was
the only word corrected in the entire sentence

5http://bit.ly/nuclecorpus
6http://ilexir.co.uk/applications/clc-fce-dataset/
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(clean). The second contains all clean cor-
rections, as well as all corrections where there
were no other edits within a five-word span on
either side of the preposition (∼clean). The
third contains all corrections regardless of any
other changes in the surrounding context (all).

Lang-8 The Lang-8 website contains journals writ-
ten by language learners, where native speakers
highlight and correct errors on a sentence-by-
sentence basis. As a result, it contains typical
grammatical mistakes made by language learn-
ers, which can be easily downloaded. We auto-
matically extract 75,622 sentences with prepo-
sition errors and corrections from the first mil-
lion journal entries.7

HOO 2011 We take the test set from the HOO 2011
shared task (Dale and Kilgarriff, 2011) and ex-
tract all examples of preposition selection er-
rors. The texts are fragments of ACL papers
that have been manually annotated for gram-
matical errors.8

It is important to note that the three test sets we use
are from entirely different domains: exam scripts
from non-native English speakers (FCE), essays by
highly proficient college students in Singapore (NU-
CLE) and ACL papers (HOO). In addition, they have
a different number of total prepositions as well as er-
roneous prepositions.

5 Preposition Error Correction
Experiments

We use the preposition error correction model de-
scribed in Tetreault and Chodorow (2008)9 to eval-
uate the many ways of using Wikipedia error cor-
rections as described in the Section 4. We use this
system since it has been recreated for other work
(Dahlmeier and Ng, 2011; Tetreault et al., 2010) and
is similar in methodology to Gamon et al. (2008)

7Tajiri et al. (2012) extract a corpus of English verb phrases
corrected for tense/aspect errors from Lang-8. They kindly pro-
vided us with their scripts to carry out the scraping of Lang-8.

8The results of the HOO 2011 shared task were not reported
at level of preposition selection error, therefore it is not possible
to compare the results presented in this paper with those results.

9Note that in that work, the model was evaluated in terms of
preposition error detection rather than correction, however the
model itself does not change.

and De Felice and Pulman (2009). In short, the
method models the problem of preposition error cor-
rection (for replacement errors) as a 36-way classifi-
cation problem using a multinomial logistic regres-
sion model.10 The system uses 25 lexical, syntac-
tic and n-gram features derived from the contexts of
each preposition training instance.

We modified the training paradigm of Tetreault
and Chodorow (2008) so that a model could be
trained on examples of correct usage as well as ac-
tual errors. We did this by adding a new feature
specifying the writer’s original preposition (as in
Han et al. (2010) and Dahlmeier and Ng (2011)).

5.1 Results

We train a preposition correction system using each
of the three data paradigms and test on the FCE,
NUCLE and HOO 2011 test corpora. For each
preposition in the test corpus, we record whether
the system predicted that it should be changed,
and if so, what it should be changed to. We then
compare the prediction to the annotation in the test
corpus. We report results in terms of f-score, where
precision and recall are calculated as follows:11

Precision = Number of correct preposition corrections
Total number of corrections suggested

Recall = Number of correct preposition corrections
Total number of corrections in test set

Note that due to the high volume of unchanged
prepositions in the test corpus, we obtain very high
accuracies, which are not indicative of true perfor-
mance, and are not included in our results.

The results of our experiments are presented in
Table 2.12 The first part of the table shows the f-
scores of preposition error correction systems that

10We use liblinear (Fan et al., 2008) with the L1-regularized
logistic regression solver and default parameters.

11As Chodorow et al. (2012) note, it is not clear how to han-
dle cases where the system predicts a preposition that is neither
the same as the writer preposition nor the correct preposition.
We count these cases as false positives.

12No thresholds were used in the systems that were trained
on well-edited text. Traditionally, thresholds are applied so as
to only predict a correction when the system is highly confident.
This has the effect of increasing precision at the cost of recall,
and sometimes leads to an overall improved f-score. Here we
take the prediction of the system, regardless of the confidence,
reflecting a lower-bound of this method.
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Data Source Paradigm CLC-FCE NUCLE HOO2011
N=33,243 N=9,366 N=1,703

Without
Wikipedia
Revisions
(nonWikiRev)

Wikipedia Snapshot Well-edited Text 24.43∗ 5.02∗ 12.36∗

Lexile/SJM Well-edited Text 24.73∗ 4.29∗ 9.73∗

Wikipedia Snapshot Artificial Errors (Lang-8) 42.15∗ 19.91∗ 28.75
Lexile/SJM Artificial Errors (Lang-8) 45.36 18.00∗ 25.15
Lang-8 Error-annotated Text 38.22∗ 8.18∗ 24.00
NUCLE train Error-annotated Text 5.38∗ 20.14 4.82∗

With
Wikipedia
Revisions
(WikiRev)

Wikipedia Snapshot Artificial Errors (Wiki) 31.17∗ 24.52 28.30
Lexile/SJM Artificial Errors (Wiki) 34.35∗ 23.38 32.76
Wikipedia Revisions All Error-annotated Text 33.59∗ 26.39 36.84
Wikipedia Revisions ∼Clean Error-annotated Text 29.68∗ 22.13 36.04
Wikipedia Revisions Clean Error-annotated Text 28.09∗ 21.74 28.30

Table 2: Preposition selection error correction results (f-score). The systems with scores in bold are statistically
significantly better than all systems marked with an asterisk (p < 0.01). Confidence intervals were obtained using
bootstrap resampling with 50,000 replicates.

one might be able to train with publicly available
data excluding the Wikipedia revisions that we have
extracted. We refer to these systems as nonWikiRev
systems. The second part of the table shows the f-
scores of systems trained on the Wikipedia revisions
data – either directly on the annotated errors or on
the artificial errors produced using the confusion dis-
tributions derived from these annotated errors. We
refer to this second set of systems as WikiRev sys-
tems. The nonWikiRev systems perform inconsis-
tently, heavily dependent on the characteristics of
the test set in question. On the other hand, it is
obvious that the WikiRev systems — while not al-
ways outperforming the best nonWikiRev systems
— generalize much better across the three test sets.
In fact, for the NUCLE test set, the best WikiRev
system performs as well as the nonWikiRev system
trained on data from the same domain and with iden-
tical error characteristics as the test set. The distri-
butions of errors in the three test sets are not sim-
ilar, and therefore, the stability in performance of
the WikiRev systems cannot be attributed to the hy-
pothesis that the WikiRev training data error distri-
butions are more similar to the test data than any of
the other training corpora. Therefore, we claim that
if a preposition error correction system is to be de-
ployed on data for which the error characteristics are
not known in advance, i.e. most real-world scenar-
ios, training the system using Wikipedia revisions is
likely to be the most robust option.

6 Discussion

We examine the results of our experiments in light
of the research questions we posed in Section 1.

6.1 Which Data Source is More Useful?

We wanted to know whether it was better to have
a smaller corpus of carefully annotated corrections,
or a much larger (but automatically generated, and
therefore noisier) error-annotated corpus. We also
wanted to compare this scenario to training on large
amounts of well-edited text. From our experiments,
it is clear that the composition of the test set plays
a major role in answering this question. On a test
set with few corrections (NUCLE), training on well-
edited text (and without using thresholds) performs
particularly poorly. On the other hand, when eval-
uating on the FCE test set which contains far more
errors, training on well-edited text performs reason-
ably well (though statistically significantly worse
than training on all of the Wikipedia errors). Sim-
ilarly, training on the smaller, high-quality NU-
CLE corpus and evaluating on the NUCLE test set
achieves good results, however training on NUCLE
and testing on FCE achieves the lowest f-score of all
our systems on that test set.

Figure 2 shows the learning curves obtained by
increasing the size of the training data for two
of the test sets.13 Although one might assume

13For space reasons, the graph for HOO2011 is omitted. Also
note that the results in Table 2 may not appear in the graph,
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Figure 2: The effect of varying the size of the training corpus

that Wikipedia-clean would be more reliable than
Wikipedia-all, the cleanness of the Wikipedia data
seems to make very little difference, probably be-
cause the data extracted in the dirty contexts is not
as noisy as we expected. Interestingly, it also seems
that additional data would lead to further improve-
ments for models trained on artificial errors in Lexile
data and for those trained on all of the automatically
extracted Wikipedia errors.

Another interesting aspect of Figure 2 is that

since we were sampling at specific data points which did not
correspond exactly to the total sizes of the training corpora.

training on the Lang-8 data shows a very steep rising
trend. This suggests that automatically-scraped data
that is highly targeted towards language learners is
very useful in correcting preposition errors in texts
where they are reasonably frequent.

6.2 Natural or Artificially Generated Errors?

Table 2 shows that training on artificially generated
errors via Wikipedia revisions performs fairly con-
sistently across test corpora. While using Lang-8
for artificial error generation is also quite promis-
ing for FCE, it does not generalize across test sets.
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Figure 3: The effect of varying the percentage of errors in the training corpus

On FCE it achieves the highest results, on NUCLE
it performs statistically significantly worse than the
best system, and on HOO 2011 it achieves a lower
(though not statistically significant) result than the
best system. This highlights that extracting errors
from Wikipedia is useful in two ways: (1) training a
system on the errors alone works well and (2) gener-
ating artificial errors in well-edited corpora of differ-
ent domains and training a system on that also works
well. It also indicates that if the system were to be
applied to a specific domain, applying the confusion
distributions to a domain specific corpus – if avail-

able – would likely yield the best results.

6.3 Mismatching Distributions

The proportion of errors in the training and test data
plays an important role in the performance of any
preposition error correction system. This is clearly
evident by comparing system performances across
the three test sets which have fairly different compo-
sitions. FCE contains a much higher proportion of
errors than NUCLE, and HOO falls somewhere in
between. Interestingly, the system trained on Lang-
8 data (which contains the highest proportion of er-
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rors among all training corpora) performs best on
the FCE data. On the other hand, the same sys-
tem performs poorly on NUCLE test which contains
far fewer errors. In this instance, the system learns
to predict an incorrect preposition too often. We
see a similar pattern with the system trained on the
NUCLE training data. It performs poorly on FCE
which contains many errors, but well on NUCLE
test which contains a similar proportion of errors.

In order to better understand the relationship be-
tween the percentage of errors in the training data
and system performance, we vary the percentage of
errors in each training corpus from 1-50% and test
on the unchanged FCE and NUCLE test corpora.
For each training corpus, we reduce the size to be
twice the size of the total number of errors.14 Keep-
ing this size constant, we then artificially change the
percentage of errors. Note that because the total size
of the corpus has changed, the results in Table 2 may
not appear in the graph. Figure 3 shows the effect on
f-score when the data composition is changed. For
both test sets, there is a peak after which increas-
ing the proportion of errors in the training corpus is
detrimental. For NUCLE test with its low number
of preposition errors, this peak is very pronounced.
For FCE, it is more of a gentle degradation in per-
formance, but the pattern is clear. Also noteworthy
is the fact that the degradation for models trained on
artificial errors is less steep suggesting that they may
be more stable across test sets.

In general, these results indicate that when
building a preposition error detection using error-
annotated data, the characteristics of the data to
which the system will be applied should play a vital
role in how the system is to be trained. Our results
show that the WikiRev systems are robust across
test sets, however if the exact distribution of errors
in the data is known in advance, other models may
perform better.

7 Conclusion

Although previous approaches to preposition er-
ror correction using either well-edited text or small
hand-annotated corrections performed well on some
specific test set, they did not generalize well across

14We omit the NUCLE train corpus from this comparison,
because it contains too few errors to obtain a meaningful result.

very different test sets. In this paper, we present
work that automatically extracts preposition error
corrections from Wikipedia Revisions and uses it
to build robust error correction systems. We show
that this data is useful for two purposes. Firstly, a
model trained directly on the corrections performs
well across test sets. Secondly, models trained on ar-
tificial errors generated from the distribution of con-
fusions in the Wikipedia data perform equally well.
The distribution of confusions can also be applied to
other well-edited corpora in different domains, pro-
viding a very powerful method of automatically gen-
erating error corpora. The results of our experiments
also highlight the importance of the distribution of
expected errors in the test set. Models that perform
well on one kind of distribution may not necessar-
ily work on a completely different one, as evident
in the performances of the systems trained on either
Lang-8 or NUCLE. In general, the WikiRev mod-
els perform well across distributions. We also con-
ducted some preliminary system combination exper-
iments and found that while they yielded promising
results, further investigation is necessary. We have
also made the Wikipedia preposition correction cor-
pus available for download.15

In future work, we will examine whether the
results we obtain for English generalize to other
Wikipedia languages. We also plan to extract multi-
word corrections for other types of errors and to ex-
amine the usefulness of including error contexts in
our confusion distributions (e.g., preposition confu-
sions following verbs versus those following nouns).
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Abstract

Prior research into learning translations from
source and target language monolingual texts
has treated the task as an unsupervised learn-
ing problem. Although many techniques take
advantage of a seed bilingual lexicon, this
work is the first to use that data for super-
vised learning to combine a diverse set of sig-
nals derived from a pair of monolingual cor-
pora into a single discriminative model. Even
in a low resource machine translation setting,
where induced translations have the potential
to improve performance substantially, it is rea-
sonable to assume access to some amount of
data to perform this kind of optimization. Our
work shows that only a few hundred transla-
tion pairs are needed to achieve strong per-
formance on the bilingual lexicon induction
task, and our approach yields an average rel-
ative gain in accuracy of nearly 50% over an
unsupervised baseline. Large gains in accu-
racy hold for all 22 languages (low and high
resource) that we investigate.

1 Introduction

Bilingual lexicon induction is the task of identifying
word translation pairs using source and target mono-
lingual corpora, which are often comparable. Most
approaches to the task are based on the idea that
words that are translations of one another have sim-
ilar distributional properties across languages. Prior
research has shown that contextual similarity (Rapp,
1995), temporal similarity (Schafer and Yarowsky,
2002), and topical information (Mimno et al., 2009)

⇤Performed while faculty at Johns Hopkins University

are all good signals for learning translations from
monolingual texts.

Most prior work either makes use of only one or
two monolingual signals or uses unsupervised meth-
ods (like rank combination) to aggregate orthogonal
signals (Schafer and Yarowsky, 2002; Klementiev
and Roth, 2006). Surprisingly, no past research has
employed supervised approaches to combine diverse
monolingually-derived signals for bilingual lexicon
induction. The field of machine learning has shown
decisively that supervised models dramatically out-
perform unsupervised models, including for closely
related problems like statistical machine translation
(Och and Ney, 2002).

For the bilingual lexicon induction task, a super-
vised approach is natural, particularly because com-
puting contextual similarity typically requires a seed
bilingual dictionary (Rapp, 1995), and that same
dictionary may be used for estimating the param-
eters of a model to combine monolingual signals.
Alternatively, in a low resource machine transla-
tion (MT) setting, it is reasonable to assume a small
amount of parallel data from which a bilingual dic-
tionary can be extracted for supervision. In this set-
ting, bilingual lexicon induction is critical for trans-
lating source words which do not appear in the par-
allel data or dictionary.

We frame bilingual lexicon induction as a binary
classification problem; for a pair of source and tar-
get language words, we predict whether the two are
translations of one another or not. For a given source
language word, we score all target language can-
didates separately and then rerank them. We use
a variety of signals derived from source and target
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monolingual corpora as features and use supervision
to estimate the strength of each. In this work we:

• Use the following similarity metrics derived
from monolingual corpora to score word pairs:
contextual, temporal, topical, orthographic, and
frequency.

• For the first time, explore using supervision to
combine monolingual signals and learn a dis-
criminative model for predicting translations.

• Present results for 22 low and high resource
languages paired with English and show large
accuracy gains over an unsupervised baseline.

2 Previous Work

Prior work suggests that a wide variety of mono-
lingual signals, including distributional, temporal,
topic, and string similarity, may inform bilingual
lexicon induction (Rapp, 1995; Fung and Yee, 1998;
Rapp, 1999; Schafer and Yarowsky, 2002; Schafer,
2006; Klementiev and Roth, 2006; Koehn and
Knight, 2002; Haghighi et al., 2008; Mimno et
al., 2009; Mausam et al., 2010). Klementiev et al.
(2012) use many of those signals to score an exist-
ing phrase table for end-to-end MT but do not learn
any new translations. Schafer and Yarowsky (2002)
use an unsupervised rank-combination method for
combining orthographic, contextual, temporal, and
frequency similarities into a single ranking.

Recently, Ravi and Knight (2011), Dou and
Knight (2012), and Nuhn et al. (2012) have worked
toward learning a phrase-based translation model
from monolingual corpora, relying on decipherment
techniques. In contrast to that work, we use a
seed bilingual lexicon for supervision and multiple
monolingual signals proposed in prior work.

Haghighi et al. (2008) and Daumé and Jagarla-
mudi (2011) use some supervision to learn how to
project contextual and orthographic features into a
low-dimensional space, with the goal of represent-
ing words which are translations of one another
as vectors which are close together in that space.
However, both of those approaches focus on only
two signals, high resource languages, and frequent
words (frequent nouns, in the case of Haghighi et
al. (2008)). In our classification framework, we can
incorporate any number of monolingual signals, in-

Language #Words Language #Words
Nepali 0.4 Somali 0.5
Uzbek 1.4 Azeri 2.6
Tamil 3.7 Albanian 6.5
Bengali 6.6 Welsh 7.5
Bosnian 12.9 Latvian 40.2
Indonesian 21.8 Romanian 24.1
Serbian 25.8 Turkish 31.2
Ukrainian 37.6 Hindi 47.4
Bulgarian 49.5 Polish 104.5
Slovak 124.3 Urdu 287.2
Farsi 710.3 Spanish 972

Table 1: Millions of monolingual web crawl and
Wikipedia word tokens

cluding contextual and string similarity, and directly
learn how to combine them.

3 Monolingual Data and Signals

3.1 Data

Throughout our experiments, we seek to learn how
to translate words in a given source language into
English. Table 1 lists our languages of interest,
along with the total amount of monolingual data
that we use for each. We use web crawled time-
stamped news articles to estimate temporal sim-
ilarity, Wikipedia pages which are inter-lingually
linked to English pages to estimate topic similarity,
and both datasets to estimate frequency and contex-
tual similarity. Following Irvine et al. (2010), we
use pairs of Wikipedia page titles to train a simple
transliterator for languages written in a non-Roman
script, which allows us to compute orthographic
similarity for pairs of words in different scripts.

3.2 Signals

Our definitions of orthographic, topic, temporal, and
contextual similarity are taken from Klementiev et
al. (2012), and the details of each may be found
there. Here, we give briefly describe them and give
our definition of a novel, frequency-based signal.

Orthographic We measure orthographic similar-
ity between a pair of words as the normalized1 edit
distance between the two words. For non-Roman
script languages, we transliterate words into the Ro-
man script before measuring orthographic similarity.

Topic We use monolingual Wikipedia pages to es-
timate topical signatures for each source and target

1Normalized by the average of the lengths of the two words
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language word. Signature vectors are the length of
the number of inter-lingually linked source and En-
glish Wikipedia pages and contain counts of how
many times the word appears on each page. We use
cosine similarity to compare pairs of signatures.

Temporal We use time-stamped web crawl data
to estimate temporal signatures, which, for a given
word, are the length of the number of time-stamps
(dates) and contain counts of how many times the
word appears in news articles with the given date.
We use a sliding window of three days and use co-
sine similarity to compare signatures. We expect
that source and target language words which are
translations of one another will appear with similar
frequencies over time in monolingual data.

Contextual We score monolingual contextual
similarity by first collecting context vectors for each
source and target language word. The context vector
for a given word contains counts of how many times
words appear in its context. We use bag of words
contexts in a window of size two. We gather both
source and target language contextual vectors from
our web crawl data and Wikipedia data (separately).

Frequency Words that are translations of one an-
other are likely to have similar relative frequencies
in monolingual corpora. We measure the frequency
similarity of two words as the absolute value of the
difference between the logs of their relative mono-
lingual corpus frequencies.

4 Supervised Bilingual Lexicon Induction

4.1 Baseline

Our unsupervised baseline method is based on
ranked lists derived from each of the signals listed
above. For each source word, we generate ranked
lists of English candidates using the following six
signals: Crawls Context, Crawls Time, Wikipedia
Context, Wikipedia Topic, Edit distance, and Log
Frequency Difference. Then, for each English can-
didate we compute its mean reciprocal rank2 (MRR)
based on the six ranked lists. The baseline ranks En-
glish candidates according to the MRR scores. For
evaluation, we use the same test sets, accuracy met-
ric, and correct translations described below.

2The MRR of the jth English word, ej , is 1
N

PN
i=1

1
rankij

,
where N is the number of signals and rankij is ej’s rank ac-
cording to signal i.

4.2 Supervised Approach

In addition to the monolingual resources described
in Section 3.1, we have a bilingual dictionary for
each language, which we use to project context vec-
tors and for supervision and evaluation. For each
language, we choose up to 8, 000 source language
words among those that occur in the monolingual
data at least three times and that have at least one
translation in our dictionary. We randomly divide
the source language words into three equally sized
sets for training, development, and testing. We use
the training data to train a classifier, the develop-
ment data to choose the best classification settings
and feature set, and the test set for evaluation.

For all experiments, we use a linear classifier
trained by stochastic gradient descent to minimize
squared error3 and perform 100 passes over the
training data.4 The binary classifiers predict whether
a pair of words are translations of one another or not.
The translations in our training data serve as posi-
tive supervision, and the source language words in
the training data paired with random English words5

serve as negative supervision. We used our develop-
ment data to tune the number of negative examples
to three for each positive example. At test time, af-
ter scoring all source language words in the test set
paired with all English words in our candidate set,6

we rank the English candidates by their classifica-
tion scores and evaluate accuracy in the top-k trans-
lations.

4.3 Features
Our monolingual features are listed below and are
based on raw similarity scores as well as ranks:

• Crawls Context: Web crawl context similarity score
• Crawls Context RR: reciprocal rank of crawls con-

text
3We tried using logistic rather than linear regression, but

performance differences on our development set were very
small and not statistically significant.

4We use http://hunch.net/˜vw/ version 6.1.4, and
run it with the following arguments that affect how updates are
made in learning: –exact adaptive norm –power t 0.5

5Among those that appear at least five times in our monolin-
gual data, consistent with our candidate set.

6All English words appearing at least five times in our
monolingual data. In practice, we further limit the set to those
that occur in the top-1000 ranked list according to at least one
of our signals.

520



●

●

●0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
 in

 T
op
−1

0

Crawl
Context

Edit
Dist

Crawl
Time

Wiki
Context

Wiki
Topic

Is−
Ident.

Diff
Lg−Frq

Discrim
All

Figure 1: Each box-and-whisker plot summarizes per-
formance on the development set using the given fea-
ture(s) across all 22 languages. For each source word
in our development sets, we rank all English target words
according to the monolingual similarity metric(s) listed.
All but the last plot show the performance of individual
features. Discrim-All uses supervised data to train classi-
fiers for each language based on all of the features.

• Crawls Time: Web crawl temporal similarity score
• Crawls Time RR: reciprocal rank of crawls time
• Edit distance: normalized (by average length of

source and target word) edit distance
• Edit distance RR: reciprocal rank of edit distance
• Wiki Context: Wikipedia context similarity score
• Wiki Context RR: recip. rank of wiki context
• Wiki Topic: Wikipedia topic similarity score
• Wiki Topic RR: recip. rank of wiki topic
• Is-Identical: source and target words are the same
• Difference in log frequencies: Difference between

the logs of the source and target word monolingual
frequencies

• Log Freqs Diff RR: reciprocal rank of difference in
log frequencies

We train classifiers separately for each source lan-
guage, and the learned weights vary based on, for
example, corpora size and the relatedness of the
source language and English (e.g. edit distance is
informative if there are many cognates). In order to
use the trained classifiers to make top-k translation
predictions for a given source word, we rank candi-
dates by their classification scores.

4.4 Feature Evaluation and Selection
After training initial classifiers, we use our develop-
ment data to choose the most informative subset of
features. Figure 1 shows the top-10 accuracy on the
development data when we use individual features

●

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 in
 T

op
−1

0

Wiki
Topic

Wiki
Context

Diff
Log−Freq

Edit
Dist.

Edit
Dist. RR

Crawl
Context

All
Features

Figure 2: Performance on the development set goes up
as features are greedily added to the feature space. Mean
performance is slightly higher using this subset of six fea-
tures (second to last bar) than using all features (last bar).

to predict translations. Top-10 accuracy refers to the
percent of source language words for which a correct
English translation appears in the top-10 ranked En-
glish candidates. Each box-and-whisker plot sum-
marizes performance over the 22 languages. We
don’t display reciprocal rank features, as their per-
formance is very similar to that of the correspond-
ing raw similarity score. It’s easy to see that features
based on the Wikipedia topic signal are the most in-
formative. It is also clear that training a supervised
model to combine all of the features (the last plot)
yields performance that is dramatically higher than
using any individual feature alone.

Figure 2, from left to right, shows a greedy search
for the best subset of features among those listed
above. Again, the Wikipedia topic score is the most
informative stand-alone feature, and the Wikipedia
context score is the most informative second feature.
Adding features to the model beyond the six shown
in the figure does not yield additional performance
gains over our set of languages.

4.5 Learning Curve Analysis

Figure 3 shows learning curves over the number of
positive training instances. In all cases, the number
of randomly generated negative training instances
is three times the number of positive. For all lan-
guages, performance is stable after about 300 cor-
rect translations are used for training. This shows
that our supervised method for combining signals
requires only a small training dictionary.
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Figure 3: Learning curves over number of positive train-
ing instances, up to 1250. For some languages, 1250
positive training instances are not available. In all cases,
evaluation is on the development data and the number of
negative training instances is three times the number of
positive. For all languages, performance is fairly stable
after about 300 positive training instances.

5 Results

We use a model based on the six features shown
in Figure 2 to score and rank English translation
candidates for the test set words in each language.
Table 2 gives the result for each language for the
MRR baseline and our supervised technique. Across
languages, the average top-10 accuracy using the
MRR baseline is 30.4, and the average using our
technique is 43.9, a relative improvement of about
44%. We did not attempt a comparison with more
sophisticated unsupervised rank aggregation meth-
ods. However, we believe the improvements we
observe drastically outweigh the expected perfor-
mance differences between different rank aggrega-
tion methods. Figure 4 plots the accuracies yielded
by our supervised technique versus the total amount
of monolingual data for each language. An increase
in monolingual data tends to improve accuracy. The
correlation isn’t perfect, however. For example, per-
formance on Urdu and Farsi is relatively poor, de-
spite the large amounts of monolingual data avail-
able for each. This may be due to the fact that we
have large web crawls for those languages, but their
Wikipedia datasets, which tend to provide a strong
topic signal, are relatively small.

Azeri
Bengali

Bosnian
Welsh

Hindi

Indonesian

Latvian

Nepali

Romanian

Slovak

Somali

Albanian

SerbianTamil
Uzbek

Farsi

Spanish

Urdu

Turkish
Bulgarian

Ukranian

Polish

Millions of Monolingual Word Tokens

Ac
cu

ra
cy

1e−01 1e+00 1e+01 1e+02 1e+03
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Millions of monolingual word tokens vs. Lex-
icon Induction Top-10 Accuracy

Lang MRR Supv. Lang MRR Supv.
Nepali 11.2 13.6 Somali 16.7 18.1
Uzbek 23.2 29.6 Azeri 16.1 29.4
Tamil 28.4 33.3 Albanian 32.0 45.3
Bengali 19.3 32.8 Welsh 36.1 56.4
Bosnian 32.6 52.8 Latvian 29.6 47.7
Indonesian 41.5 63.5 Romanian 53.3 71.6
Serbian 29.0 33.3 Turkish 31.4 52.1
Ukrainian 29.7 46.0 Hindi 18.2 34.6
Bulgarian 40.2 57.9 Polish 47.4 67.1
Slovak 34.6 53.5 Urdu 13.2 21.2
Farsi 10.5 21.1 Spanish 74.8 85.0

Table 2: Top-10 Accuracy on test set. Performance
increases for all languages moving from the baseline
(MRR) to discriminative training (Supv).

6 Conclusions

On average, we observe relative gains of more than
44% over an unsupervised rank-combination base-
line by using a seed bilingual dictionary and a di-
verse set of monolingual signals to train a supervised
classifier. Using supervision for bilingual lexicon in-
duction makes sense. In some cases a dictionary is
already assumed for computing contextual similar-
ity, and, in the remaining cases, one could be com-
piled easy, either automatically, e.g. Haghighi et al.
(2008), or through crowdsourcing, e.g. Irvine and
Klementiev (2010) and Callison-Burch and Dredze
(2010). We have shown that only a few hundred
translation pairs are needed to achieve good perfor-
mance. Our framework has the additional advantage
that any new monolingually-derived similarity met-
rics can easily be added as new features.
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Abstract

Bilingual dictionaries are expensive resources
and not many are available when one of the
languages is resource-poor. In this paper, we
propose algorithms for creation of new reverse
bilingual dictionaries from existing bilingual
dictionaries in which English is one of the two
languages. Our algorithms exploit the simi-
larity between word-concept pairs using the
English Wordnet to produce reverse dictionary
entries. Since our algorithms rely on available
bilingual dictionaries, they are applicable to
any bilingual dictionary as long as one of the
two languages has Wordnet type lexical ontol-
ogy.

1 Introduction

The Ethnologue organization1 lists 6,809 distinct
languages in the world, most of which are resource-
poor. Most existing online bilingual dictionaries are
between two resource-rich languages (e.g., English,
Spanish, French or German) or between a resource-
rich language and a resource-poor language. There
are languages for which we are lucky to find a single
bilingual dictionary online. For example, the Uni-
versity of Chicago hosts bilingual dictionaries from
29 Southeast Asian languages2, but many of these
languages have only one bilingual dictionary online.

Existing algorithms for creating new bilingual
dictionaries use intermediate languages or interme-
diate dictionaries to find chains of words with the
same meaning. For example, (Gollins and Sander-
son, 2001) use lexical triangulation to translate in
parallel across multiple intermediate languages and

1http://www.ethnologue.com/
2http://dsal.uchicago.edu/dictionaries/list.html

fuse the results. They query several existing dictio-
naries and then merge results to maximize accuracy.
They use four pivot languages, German, Spanish,
Dutch and Italian, as intermediate languages. An-
other existing approach for creating bilingual dictio-
naries is using probabilistic inference (Mausam et
al., 2010). They organize dictionaries in a graph
topology and use random walks and probabilistic
graph sampling. (Shaw et al., 2011) propose a set
of algorithms to create a reverse dictionary in the
context of single language by using converse map-
ping. In particular, given an English-English dictio-
nary, they attempt to find the original words or terms
given a synonymous word or phrase describing the
meaning of a word.

The goal of this research is to study the feasibility
of creating a reverse dictionary by using only one ex-
isting dictionary and Wordnet lexical ontology. For
example, given a Karbi3-English dictionary, we will
construct an ENG-AJZ dictionary. The remainder of
this paper is organized as follows. In Section 2, we
discuss the nature of bilingual dictionaries. Section
3 describes the algorithms we propose to create new
bilingual dictionaries from existing dictionaries. Re-
sults of our experiments are presented in Section 4.
Section 5 concludes the paper.

2 Existing Online Bilingual Dictionaries

Powerful online translators developed by Google
and Bing provide pairwise translations (including
for individual words) for 65 and 40 languages, re-
spectively. Wiktionary, a dictionary created by vol-
unteers, supports over 170 languages. We find a

3Karbi is an endangered language spoken by 492,000 peo-
ple (2007 Ethnologue data) in Northeast India, ISO 639-3 code
AJZ. ISO 693-3 code for English is ENG.
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large number of bilingual dictionaries at PanLex4

including an ENG-Hindi5 and a Vietnamese6-ENG
dictionary. The University of Chicago has a number
of bilingual dictionaries for South Asian languages.
Xobdo7 has a number of dictionaries, focused on
Northeast India.

We classify the many freely available dictionaries
into three main kinds.
• Word to word dictionaries: These are dictionar-

ies that translate one word in one language to
one word or a phrase in another language. An
example is an ENG-HIN dictionary at Panlex.
• Definition dictionaries: One word in one lan-

guage has one or more meanings in the second
language. It also may have pronunciation, parts
of speech, synonyms and examples. An exam-
ple is the VIE-ENG dictionary, also at Panlex.
• One language dictionaries: A dictionary of this

kind is found at dictionary.com.

We have examined several hundred online dictionar-
ies and found that they occur in many different for-
mats. Extracting information from these dictionaries
is arduous. We have experimented with five existing
bilingual dictionaries: VIE-ENG, ENG-HIN, and a
dictionary supported by Xobdo with 4 languages:
Assamese8, ENG, AJZ, and Dimasa9. We consider
the last one to be a collection of 3 bilingual dictio-
naries: ASM-ENG, AJZ-ENG, and DIS-ENG. We
choose these languages since one of our goals is to
work with resource-poor languages to enhance the
quantity and quality of resources available.

3 Proposed Solution Approach

A dictionary entry, called LexicalEntry, is a 2-tuple
<LexicalUnit, Definition>. A LexicalUnit is a
word or a phrase being defined, also called definien-
dum (Landau, 1984). A list of entries sorted by
the LexicalUnit is called a lexicon or a dictionary.
Given a LexicalUnit, the Definition associated with
it usually contains its class and pronunciation, its

4http://panlex.org/
5ISO 693-3 code HIN
6ISO 693-3 code VIE
7http://www.xobdo.org/
8Assamese is an Indo-European language spoken by about

30 million people, but it is resource-poor, ISO 693-3 code ASM.
9Dimasa is another endangered language from Northeast In-

dia, spoken by about 115,000 people, ISO 693-3 code DIS.

meaning, and possibly additional information. The
meaning associated with it can have several Senses.
A Sense is a discrete representation of a single aspect
of the meaning of a word. Thus, a dictionary entry
is of the form <LexicalUnit, Sense1, Sense2, · · ·>.

In this section, we propose a series of algorithms,
each one of which automatically creates a reverse
dictionary, or ReverseDictionary, from a dictio-
nary that translates a word in language L1 to a word
or phrase in language L2. We require that at least
one of two these languages has a Wordnet type lexi-
cal ontology (Miller, 1995). Our algorithms are used
to create reverse dictionaries from them at various
levels of accuracy and sophistication.

3.1 Direct Reversal (DR)

The existing dictionary has alphabetically sorted
LexicalUnits in L1 and each of them has one or
more Senses in L2. To create ReverseDictionary,
we simply take every pair <LexicalUnit, Sense>
in SourceDictionary and swap the positions of the
two.

Algorithm 1 DR Algorithm
ReverseDictionary := φ
for allLexicalEntryi ∈ SourceDictionary do

for all Sensej ∈ LexicalEntryi do
Add tuple <Sensej ,
LexicalEntryi.LexicalUnit> to
ReverseDictionary

end for
end for

This is a baseline algorithm so that we can com-
pare improvements as we create new algorithms.
If in our input dictionary, the sense definitions
are mostly single words, and occasionally a sim-
ple phrase, even such a simple algorithm gives
fairly good results. In case there are long or com-
plex phrases in senses, we skip them. The ap-
proach is easy to implement, and produces a high-
accuracy ReverseDictionary. However, the num-
ber of entries in the created dictionaries are lim-
ited because this algorithm just swaps the posi-
tions of LexicalUnit and Sense of each entry in the
SourceDictionary and does not have any method
to find the additional words having the same mean-
ings.
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3.2 Direct Reversal with Distance (DRwD)

To increase the number of entries in the output dic-
tionary, we compute the distance between words
in the Wordnet hierarchy. For example, the words
"hasta-lipi" and "likhavat" in HIN have the meanings
"handwriting" and "script", respectively. The dis-
tance between "handwriting" and "script" in Word-
net hierarchy is 0.0, so that "handwriting" and
"script" likely have the same meaning. Thus, each of
"hasta-lipi" and "likhavat" should have both mean-
ings "handwriting" and "script". This approach
helps us find additional words having the same
meanings and possibly increase the number of lexi-
cal entries in the reverse dictionaries.

To create a ReverseDictionary, for every
LexicalEntryi in the existing dictionary,
we find all LexicalEntryj , i 6= j with dis-
tance to LexicalEntryi equal to or smaller
than a threshold α. As results, we have new
pairs of entries <LexicalEntryi.LexicalUnit,
LexicalEntryj .Sense> ; then we swap positions
in the two-tuples, and add them into the Reverse-
Dictionary. The value of α affects the number of
entries and the quality of created dictionaries. The
greater the value of α, the larger the number of
lexical entries, but the smaller the accuracy of the
ReverseDictionary.

The distance between the two LexicalEntrys is the
distance between the two LexicalUnits if the Lexi-
calUnits occur in Wordnet ontology; otherwise, it is
the distance between the two Senses. The distance
between each phrase pair is the average of the to-
tal distances between every word pair in the phrases
(Wu and Palmer, 1994). If the distance between two
words or phrases is 1.00, there is no similarity be-
tween these words or phrases, but if they have the
same meaning, the distance is 0.00.

We find that aReverseDictionary created using
the value 0.0 for α has the highest accuracy. This ap-
proach significantly increases the number of entries
in the ReverseDictionary. However, there is an is-
sue in this approach. For instance, the word "tuhbi"
in DIS means "crowded", "compact", "dense", or
"packed". Because the distance between the En-
glish words "slow" and "dense" in Wordnet is 0.0,
this algorithm concludes that "slow" has the mean-
ing "tuhbi" also, which is wrong.

Algorithm 2 DRwD Algorithm
ReverseDictionary := φ
for allLexicalEntryi ∈ SourceDictionary do

for all Sensej ∈ LexicalEntryi do
for all LexicalEntryu ∈
SourceDictionary do

for all Sensev ∈ LexicalEntryu do
if distance(<LexicalEntryi.LexicalUnit,
Sensej> ,<LexicalEntryu.LexicalUnit,
Sensev> ) 6 α then

Add tuple <Sensej ,
LexicalEntryu.LexicalUnit>
to ReverseDictionary

end if
end for

end for
end for

end for

3.3 Direct Reversal with Similarly (DRwS)

The DRwD approach computes simply the dis-
tance between two senses, but does not look at
the meanings of the senses in any depth. The
DRwS approach represents a concept in terms of
its Wordnet synset10, synonyms, hyponyms and
hypernyms. This approach is like the DRwD
approach, but instead of computing the distance
between lexical entries in each pair, we calcu-
late the similarity, called simValue. If the sim-
Value of a <LexicalEntryi,LexicalEntryj>, i 6=
j pair is equal or larger than β, we conclude
that the LexicalEntryi has the same meaning as
LexicalEntryj .

To calculate simValue between two phrases, we
obtain the ExpansionSet for every word in each
phrase from the WordNet database. An Expansion-
Set of a phrase is a union of synset, and/or synonym,
and/or hyponym, and/or hypernym of every word in
it. We compare the similarity between the Expan-
sionSets. The value of β and the kinds of Expan-
sionSets are changed to create different ReverseDic-
tionarys. Based on experiments, we find that the best
value of β is 0.9, and the best ExpansionSet is the
union of synset, synonyms, hyponyms, and hyper-
nyms. The algorithm for computing the simValue of
entries is shown in Algorithm 3.

10Synset is a set of cognitive synonyms.
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Algorithm 3 simValue(LexicalEntryi,
LexicalEntryj)
simWords := φ
if LexicalEntryi.LexicalUnit &
LexicalEntryj .LexicalUnit have a Word-
net lexical ontology then

for all (LexicalUnitu ∈ LexicalEntryi) &
(LexicalUnitv ∈ LexicalEntryj) do

Find ExpansionSet of every
LexicalEntry based on LexicalUnit

end for
else

for all (Senseu ∈ LexicalEntryi) &
(Sensev ∈ LexicalEntryj) do

Find ExpansionSet of every
LexicalEntry based on Sense

end for
end if
simWords ← ExpansionSet (LexicalEntryi) ∩
ExpansionSet(LexicalEntryj)
n←ExpansionSet(LexicalEntryi).length
m←ExpansionSet(LexicalEntryj).length
simValue←min{ simWords.length

n , simWords.length
m }

4 Experimental results

The goals of our study are to create the high-
precision reverse dictionaries, and to increase the
numbers of lexical entries in the created dictio-
naries. Evaluations were performed by volunteers
who are fluent in both source and destination lan-
guages. To achieve reliable judgment, we use the
same set of 100 non-stop word ENG words, ran-
domly chosen from a list of the most common
words11. We pick randomly 50 words from each
created ReverseDictionary for evaluation. Each
volunteer was requested to evaluate using a 5-point
scale, 5: excellent, 4: good, 3: average, 2: fair, and
1: bad. The average scores of entries in the Reverse-
Dictionarys is presented in Figure 1. The DRwS dic-
tionaries are the best in each case. The percentage of
agreements between raters is in all cases is around
70%.

The dictionaries we work with frequently have
several meanings for a word. Some of these mean-
ings are unusual, rare or very infrequently used. The

11http://www.world-english.org/english500.htm

DR algorithm creates entries for the rare or unusual
meanings by direct reversal. We noticed that our
evaluators do not like such entries in the reversed
dictionaries and mark them low. This results in
lower average scores in the DR algorithm compar-
ing to averages cores in the DRwS algorithm. The
DRwS algorithm seems to have removed a number
of such unusual or rare meanings (and entries simi-
lar to the rare meanings, recursively) improving the
average score

Our proposed approaches do not work well for
dictionaries containing an abundance of complex
phrases. The original dictionaries, except the VIE-
ENG dictionary, do not contain many long phrases
or complex words. In Vietnamese, most words
we find in the dictionary can be considered com-
pound words composed of simpler words put to-
gether. However, the component words are sepa-
rated by space. For example, "bái thần giáo" means
"idolatry". The component words are "bái" mean-
ing "bow low"; "thần" meaning "deity"; and "giáo"
meaning "lance", "spear", "to teach", or "to edu-
cate". The presence of a large number of compound
words written in this manner causes problems with
the ENG-VIE dictionary. If we look closely at Fig-
ure 1, all language pairs, except ENG-VIE show
substantial improvement in score when we compare
the DR algorithm with DRwS algorithm.

Figure 1: Average entry score in ReverseDictionary

The DRwD approach significantly increases the
number of entries, but the accuracy of the created
dictionaries is much lower. The DRwS approach us-
ing a union of synset, synonyms, hyponyms, and hy-
pernyms of words, and β ≥ 0.9 produces the best re-
verse dictionaries for each language pair. The DRwS
approach increases the number of entries in the cre-
ated dictionaries compared to the DR algorithm as
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shown in Figure 2.

Figure 2: Number of lexical entries in
ReverseDictionarys generated from 100 common
words

We also create the entire reverse dictionary for
the AJZ-ENG dictionary. The total number of en-
tries in the ENG-AJZ dictionaries created by us-
ing the DR algorithm and DRwS algorithm are
4677 and 5941, respectively. Then, we pick 100
random words from the ENG-AJZ created by us-
ing the DRwS algorithm for evaluation. The av-
erage score of every entry in this created dictio-
nary is 4.07. Some of the reversal bilingual dictio-
naries can be downloaded at http://cs.uccs.edu/ lin-
clab/creatingBilingualLexicalResource.html.

5 Conclusion

We proposed approaches to create a reverse dic-
tionary from an existing bilingual dictionary using
Wordnet. We show that a high precision reverse dic-
tionary can be created without using any other inter-
mediate dictionaries or languages. Using the Word-
net hierarchy increases the number of entries in the
created dictionaries. We perform experiments with
several resource-poor languages including two that
are in the UNESCO’s list of endangered languages.
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Abstract 

This paper examines the efficacy of the appli-

cation of a pre-existing technique in the area 

of event-event temporal relationship identifi-

cation. We attempt to both reproduce the re-

sults of said technique, as well as extend the 

previous work with application to a newly-

created domain of biographical data. We find 

that initially the simpler feature sets perform 

as expected, but that the final improvement to 

the feature set underperforms. In response, we 

provide an analysis of the individual features 

and identify differences existing between two 

corpora.  

1 Introduction 

As natural language systems continue to grow, 

so too does the importance of extracting temporal 

information from text. Narratives often contain a 

wealth of temporal information, linking specific 

events to each other and to individual named enti-

ties of importance, but such information is often 

implicitly conveyed, rather than explicitly stated. 

The continued interest in Question Answering and 

other data extraction systems has emphasized the 

need to better understand these relations to move 

past superficial understanding to a level of deeper 

comprehension. For native speakers, the temporal 

clues hidden in the text are relatively simple to 

comprehend. However, even for human annotators, 

the task of identifying and classifying the specific 

relationship between two events can be problemat-

ic. This complexity, of course, only exacerbates the 

problem of trying to automate the process for any 

information extraction system. 

The creation of the TimeBank Corpus 

(Pustejovsky et al, 2003a), a fully-annotated 

newswire domain, opened up the possibility of ap-

plying machine learning techniques to the task of 

automatically extracting temporal relations. We 

look to the standards of the TimeBank Corpus to 

create a corpus of biographical accounts, and apply 

techniques that have been shown to work on 

TimeBank to the new domain. 

2 Related Work 

Domain-independent approaches have often 

focused on events that can be bound to a global 

timeline (Mani et al, 2003). This includes dates and 

times, but often neglects phrases that indicate 

events occurring in relative time (e.g. “during 

school,” “before the crash,” or “recently”). Re-

search conducted on news articles attempted to 

identify the specific temporal relationships be-

tween two events, as seen in (Mani et al, 2006). 

Further work in that domain extended this start by 

identifying additional features that better predicted 

those temporal relations. (Lapata & Lascarides 

2007; Chambers et al, 2007). 

In this work, we are primarily interested in 

applying event ordering techniques to documents 

less structured than news articles, specifically bi-

ographies. It is the intention of our work to validate 

the efficacy of previous techniques in a different 

domain, and thus we attempt to extend the work 

completed by Chambers et al through application 

to a newly created corpus of biographical data. In 

the previous work, Chambers reports best results of 

59.43% accuracy with gold standard features on 

TimeBank. We attempt to reproduce these results, 

and also adopt the policy of including incremental 

results against features selected based on the work 
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of Mani et al (2006), and Lapata & Lascarides 

(2007). 

3 Data 

For purposes of validation of our implementa-

tion, we adopt the use of the TimeBank corpus 

(v1.1), which consists of 186 newswire documents 

and 3,406 identified event pairs with temporal rela-

tionships. The number of identified event pairs 

differs slightly from the previous work, which re-

ports only 3,345. We cannot account for this dis-

crepancy. 

Furthermore, we oversee the creation of the  

Bio Corpus, consisting of 17 biographical accounts 

and annotated with 1,594 event pairs. Despite the 

small size of the corpus, we feel that the greatly 

increased event relationship density of our samples 

compared to a similar number of TimeBank docu-

ments offsets the disadvantage of the small docu-

ment count. 

The accounts are drawn from those available at 

Biography.com, and describe multiple aspects of 

the subject’s life. Because the style of the biog-

raphies tends to explore one aspect of life fully, 

before moving on to another, we frequently see 

references to events contained in previous sections. 

These relations, which are not only across sentence 

boundaries but often in entirely different para-

graphs, are one of the most striking differences 

between TimeBank documents and those of the 

new corpus. 

To prepare the corpus, each document was au-

tomatically event tagged through the adoption of 

EVITA, the Events in Text Analyzer (Sauri et al, 

2005). EVITA was previously found to perform 

with 80.12% accuracy, a result comparable to the 

accuracy of graduate student annotators with basic 

training. The temporal relations between event 

pairs were then hand-annotated according to the 

TimeML standard (Pustejovsky et al, 2003b). 

4 Methodology 

In an attempt to reproduce the event relation-

ship classification techniques of the previous work, 

we first implement the approach and test it on our 

version of the TimeBank corpus. We then demon-

strate that the validated techniques are applicable 

to the biographical domain, and that where dis-

crepancies do occur, the specific feature set can be 

modified to elicit improvements not seen in the 

TimeBank data. In all possible cases we utilize the 

same techniques and tools as the earlier work, ex-

cept where sufficient information is lacking, such 

as in the specific implementation of the machine 

learning techniques. In such situations, assump-

tions are made as deemed necessary. 

Chambers’ work attempts to identify the rela-

tionships between event pairs according to a previ-

ously defined set consisting of Before, iBefore, 

Includes, Begins, Ends, and Simultaneous. The set 

of event pairs are pre-selected and chosen for 

preexisting relationships, so a classification of No 

Relation is not required. In order to achieve classi-

fication, a support vector machine (SVM) is im-

plemented via the Library for Support Vector 

Machines (Chang & Lin, 2011) and is trained on 

an extensive set of thirty-five features, as detailed 

below. 

Table 1. Features of classification at each stage. 

 

The feature set was incrementally built by a 

number of previous experiments, as detailed in 

Table 1, above. Initially, five temporal attributes 

originally identified by TimeML as having tem-

poral significance, are adopted. These include the 

tense, aspect, and class of each event, as well as 

the modality and polarity of each. However, per 

the previous work, which demonstrated modality 

and polarity performing with high majority base-

lines, we exclude them from consideration. While 

Chambers et al include the task of automating the 

identification of these features, we report results 

versus the gold standards taken from TimeBank. 

Mani et al (2006) added features indicating an 

agreement between the two events in the case of 

tense and aspect, and Chambers extends this to 

include a class agreement variable. In addition to 

simple agreement, bigrams of tense, aspect, and 

class are first included by Chambers to more fully 

represent the relationship between the event attrib-

utes (e.g. "Past Present," "Perfect Prog"). 

Next to be included are the event strings them-

selves, extracted verbatim, and the corresponding

(1) Mani Tense, Aspect, Class, Tense_Agree, 

Aspect_Agree, Event Words 

(2) Lapata Subord., Before, Synsets, Lemmas 

(3) Chambers POS, Class_Agree, Temporal Bi-

grams, Dominance, Prepositions, 

Same_Sentence 
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 Baseline Mani Lapata Chambers 

TimeBank – Chambers 37.22 50.97 52.29 60.45 

TimeBank – New 37.11 51.97 53.79 58.22 

Bio Corpus 45.67 53.14 52.89 56.65 

Table 2: Accuracy of SVM classification for Temporal Relationships. 
 

 

 Baseline – 

(Lapata) 

Part-of-Speech Prepositional 

Head 

Class 

Agreement 

Temporal 

Bigrams 

TimeBank 53.79 55.99 56.48 55.02 54.84 

Bio Corpus 55.40 54.77 57.34 55.71 55.49 

Table 3: Accuracy of feature subset analysis. Includes all features attributed to Mani and Lapata. 

 

Wordnet (Fellbaum, 1998) synsets and lemmas. 

Also included are the parts-of-speech for both 

event words, the two words immediately preceding 

each event, and that of the token immediately fol-

lowing the events. Bigrams for part-of-speech from 

each event and its preceding token are also includ-

ed, as well as a bigram for the part-of-speech of the 

two events as related to each other. 

Lapata and Lascarides (2006) first added a fea-

ture indicating whether or not two events were in a 

subordinate relationship, which Chambers' in-

cludes, and extends it with the addition of one in-

dicating a dominating relationship. This 

information is extracted by considering the parse 

tree as defined by an intermediate stage of the 

Stanford Parser. Similar to these two linguistic or-

dering features, we include another feature indicat-

ing the textual ordering of the two events (true if 

Event 1 is before Event 2, and false if not), and one 

indicating whether the two events are intra- or in-

ter- sentential (same sentence or different sentenc-

es). Finally, we adopt Chambers' use of a feature 

for identifying whether or not each event is a part 

of a prepositional phrase. 

All of these features are extracted from the text 

via regular expressions and application of the 

aforementioned third-party tools (such as WordNet 

and the Stanford Parser). With the features extract-

ed, the first experiment on TimeBank uses only 

those features identified by Mani et al. Experi-

ments two and three incrementally grow the fea-

ture set with those identified by Lapata & 

Lascarides and Chambers, respectively. The fea-

ture sets can be seen in Table 1, above. Results of 

this reproduction of the previous work are used as 

a point of comparison to the results of classifica-

tion on our own Bio Corpus, using the same in-

cremental growth classification scheme as before. 

Furthermore, we provide independent feature 

analysis of a selection of the new features added by 

Chambers over the Mani+Lapata set, leveraging 

the results to draw some conclusions as to the lin-

guistic differences existing between the two corpo-

ra. 

5 Results 

We first perform classification on TimeBank 

with the feature set attributed to Mani, the results 

of which can be seen in Table 2. Our system re-

turns an accuracy of 51.97%, outperforming 

Chambers’ reported result by one full point. This 

over-performance is extended to the Lapata feature 

set in a 1.82 point increase over our results for 

Mani’s features, versus the 1.32 increase seen in 

Chambers’ reported results, which at least main-

tains a similar magnitude of improvement. 

With the full set of features, including Cham-

bers’ additions, our system exhibits a reversal in 

the previous trend of over-performance. As seen in 

Table 2, when Chambers’ reported results of 

60.45%, our own system returns results of only 

58.22%. Not only does this leave a void of over 

two percent between the expected and actual accu-

racies, but it represents a much smaller increase in 

performance between Lapata’s and Chambers’ fea-

ture sets on Bio. In an effort to identify an under-

performing feature, although without point of 

comparison from previous work, we explore an 

independent analysis of the new features, and 

found all features to be performing with at least 

some measure of improvement, as can be seen in 

Table 3. 

Mani’s feature set, when applied to the Bio 

Corpus, returns similar results as on TimeBank, 

with slightly higher accuracy at 53.14%. This 
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translates to a smaller improvement over the base-

line than we see in the newswire domain, but main-

tains approximately the same level of accuracy. 

Also following the same trend that is exhibited on 

TimeBank, the new features attributed to Lapata 

yield results with a small degree of improvement 

over the expected values at 55.4% versus Time-

Bank’s 53.79%. 

The application of the full feature set returns 

the expected reversal of trend, but underperforms 

by an even greater degree at 56.65%, leading us to 

suspect linguistic differences between the two cor-

pora. In an effort to confirm this, we perform the 

same independent feature analysis as we performed 

on TimeBank. Notable results of re-classification 

(seen in Table 3) came from the part-of-speech 

features, as well as from the prepositional phrase 

heads. Part-of-speech was found to degrade per-

formance and drop accuracy from 55.40% to 

54.77%. Omission of the part-of-speech from a full 

feature set classification does not, however, im-

prove performance over the initial classification. 

The prepositional phrase feature, on the other 

hand, returned the opposite result from part-of-

speech – an improvement over the full feature set 

accuracy at 57.34%, strongly suggesting the im-

portance of prepositional phrases in classification 

in the Bio Corpus. 

6 Discussion 

On TimeBank, results of temporal relationship 

classification return results similar to what was 

expected. In the simpler feature sets of Mani and 

Lapata, our own experiments over-perform by a 

small margin in each case, maintaining a similar 

magnitude of improvement at each step. This small 

but interesting variation is likely the result of the 

61 additional event pairs in our version of the 

TimeBank corpus. Given our lack of justification 

for the difference, this claim is merely speculative. 

On the final feature set, with the inclusion of all 

features set out by Chambers, we still see a small 

improvement over the prior feature sets, but a 

small magnitude of change, coming in at a high of 

58.22% compared to Chambers’ 60.45%. While 

still reasonable, a sudden underperformance com-

pared to the previous slight over-performances is 

unusual. Justification for this discrepancy could be 

attributed to the differences in the data set, but 

there is also a possibility that ambiguity in the de-

scription of the features led to improper extraction 

techniques. Our analysis of the individual feature 

fails to return what we can identify as an under-

performing feature, however. 

In the case of the Bio Corpus, we initially see a 

similar trend in performance, with the feature sets 

attributed to Mani and Lapata performing as ex-

pected, while the full Chambers set returns a less 

than impressive result. Additional analysis of the 

individual improvements from Chambers’ new 

features, however, identifies two outliers to per-

formance on Bio. The underperformance of part-

of-speech, and the surprising improvement based 

solely on the prepositional phrase feature, would 

suggest different linguistic trends between the two 

corpora. 

In future explorations of this topic, we would 

like to expand the size of the biographical corpus 

and reaffirm its correctness through the use of 

cross-validation between multiple annotators. This 

would help to ensure that no unintentional biases 

have skewed our results. In addition, we would like 

to further investigate feature selection to find a 

best-case subset for performance on the Bio cor-

pus. While we initially began such an analysis, the 

sheer number of potential combinations rendered it 

outside of the scope of this work. 
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Abstract

We examine predicative adjectives as an unsu-
pervised criterion to extract subjective adjec-
tives. We do not only compare this criterion
with a weakly supervised extraction method
but also with gradable adjectives, i.e. another
highly subjective subset of adjectives that can
be extracted in an unsupervised fashion. In or-
der to prove the robustness of this extraction
method, we will evaluate the extraction with
the help of two different state-of-the-art senti-
ment lexicons (as a gold standard).

1 Introduction

Since the early work on sentiment analysis, it has
been established that the part of speech with the
highest proportion of subjective words are adjec-
tives (Wiebe et al., 2004) (see Sentence (1)). How-
ever, not all adjectives are subjective (2).

(1) A grumpyguest made someimpolite remarks
to theinsecureandinexperiencedwaitress.

(2) Theold man wearing ayellowpullover sat on a
plasticchair.

This justifies the exploration of criteria to automati-
cally separate the subjective adjectives from the non-
subjective adjectives.

In this work, we are interested in an out-of-
context assessment of adjectives and therefore eval-
uate them with the help of sentiment lexicons. We
examine the property of being apredicativeadjec-
tive as an extraction criterion. Predicative adjectives
are adjectives that do not modify the head of a noun

phrase, but which predicate a property of the refer-
ent of a noun phrase to which they are linked via a
copula or a control predicate (3).

We show that adjectives that frequently occur as
predicative adjectives are more likely to convey sub-
jectivity (in general) than adjectives that occur non-
predicatively, such as the pre-nominal (attributive)
adjectives (4). A subjective adjective may occur
both as a predicative (3) and a non-predicative (5)
adjective and also convey subjectivity in both con-
texts. However, a large fraction of non-subjective
adjectives do not occur as predicative adjectives (6).

(3) Her idea wasbrilliant .
(4) This is afinancialproblem.
(5) She came up with abrilliant idea.
(6) ?The problem isfinancial.

2 Related Work

The extraction of subjective adjectives has already
attracted some considerable attention in previous re-
search. Hatzivassiloglou and McKeown (1997) ex-
tract polar adjectives by a weakly supervised method
in which subjective adjectives are found by search-
ing for adjectives that are conjuncts of a pre-defined
set of polar seed adjectives. Wiebe (2000) in-
duces subjective adjectives with the help of distribu-
tional similarity. Hatzivassiloglou and Wiebe (2000)
examine the properties of dynamic, gradable and
polar adjectives as a means to detect subjectivity.
Vegnaduzzo (2004) presents another bootstrapping
method of extracting subjective adjectives with the
help of head nouns of the subjective candidates and
distributional similarity. Baroni and Vegnaduzzo
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(2004) employ Web-based Mutual information for
this task and largely outperform the results produced
by Vegnaduzzo (2004).

3 Method

In the following, we present different features with
the help of which subjective adjectives can be ex-
tracted. For all resulting lists, the adjectives will be
ranked according to their frequency of co-occurring
with a particular feature.

3.1 Extracting Predicative Adjectives (PRD)

For the extraction of predicative adjectives, we ex-
clusively rely on the output of a dependency parser.
Predicative adjectives are usually connected to the
subject of the sentence via the dependency label
nsubj (Example (7) would correspond to Sen-
tence (3)).

(7) nsubj(brilliant, idea)

3.2 Extracting Gradable Adjectives (GRD)

As an alternative extraction method, we consider
morpho-syntacticallygradable adjectives. Gradable
adjectives, such asniceor small, are adjectives “that
can be inflected to specify the degree or grade of
something” (Wiktionary1). It has been stated in pre-
vious work that if some adjective can build a com-
parative (e.g.nicer) or a superlative (e.g.nicest),
then this adjective tends to be subjective (Hatzivas-
siloglou and Wiebe, 2000).

We employ the property of gradability, since,
firstly, it is very predictive towards subjectivity and,
secondly, it is the only other unsupervised criterion
currently known to extract subjective adjectives. For
the extraction of gradable adjectives, we rely, on the
one hand, on the part-of-speech labelsJJR (com-
parative) andJJS (superlative). On the other hand,
we also consider adjectives being modified by ei-
ther more or most. For the former case, we need
to normalize the comparative (e.g.nicer) or superla-
tive (e.g.nicest) word form to the canonical positive
word form (e.g.nice) that is commonly used in sen-
timent lexicons.

1http://en.wiktionary.org/wiki/gradable

3.3 Weakly-Supervised Extraction (WKS)

We also consider a weakly supervised extraction
method in this paper, even though it is not strictly
fair to compare such a method with our two pre-
vious extraction methods which are completely un-
supervised. WKS considers an adjective subjective,
if it co-occurs as a conjunct of a previously defined
highly subjective (seed) adjective (8). In order to de-
tect such conjunctions, we employ the dependency
relationconj. By just relying on surface patterns,
we would not be able to exclude spurious conjunc-
tions in which other constituents than the two adjec-
tives are coordinated, such as Sentence (10).

(8) This approach isill-conceivedandineffective.
(9) conj(ill-conceived,

ineffective)

(10) [Evil witches are stereotypically dressed in
black] and[goodfairies in white].

We also experimented with other related weakly-
supervised extraction methods, such asmutual in-
formationof two adjectives at the sentence level (or
even smaller window sizes). However, using con-
junctions largely outperformed these alternative ap-
proaches so we only pursue conjunctions here.

4 Experiments

As a large unlabeled (training) corpus, we chose the
North American News Text Corpus (LDC95T21)
comprising approximately 350 million words of
news text. For syntactic analysis we use the Stan-
ford Parser (Finkel et al., 2005). In order to decide
whether an extracted adjective is subjective or not,
we employ two sentiment lexicons, namely theSub-
jectivity Lexicon (SUB) (Wilson et al., 2005) and
SO-CAL (SOC) (Taboada et al., 2011). According to
the recent in-depth evaluation presented in Taboada
et al. (2011), these two sentiment lexicons are the
most effective resources for English sentiment anal-
ysis. By taking into account two different lexicons,
which have also been built independently of each
other, we want to provide evidence that our pro-
posed criterion to extract subjective adjectives is not
sensitive towards a particular gold standard (which
would challenge the general validity of the proposed
method).
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ALL other new last many first such next political federal own sev-
eral few good∗ former same economic public major recent
American second big∗ foreign high small local military fi-
nancial little∗ national

PRD able∗ likely available clear∗ difficult∗ important∗ ready∗

willing∗ hard∗ good∗ due possible∗ sure∗ interested un-
likely necessary∗ high responsible∗ easy∗ strong∗ unable∗

different enough open aware happy impossible∗ right∗

wrong∗ confident∗

Table 2: The 30 most frequent adjectives (ALL) and pred-
icative adjectives (PRD);∗ marks matches with both sen-
timent lexicons SUB and SOC.

In order to produce the subjective seed adjec-
tives for the weakly supervised extraction, we col-
lect from the sentiment lexicon that we evaluate the
n most frequent subjective adjectives according to
our corpus. In order to further improve the quality
of the seed set, we only considerstrong subjective
expressions from SUB and expressions with the in-
tensity strength±5 from SOC.

Table 1 lists the size of the different sentiment lex-
icons and the rankings produced by the different ex-
traction methods. Of course, the list of all adjectives
from the corpus(ALL) is the largest list2 while PRD
is the second largest and GRD the third largest. The
rankings produced by WKS are fairly sparse, in par-
ticular the ones induced with the help of SOC; ap-
parently there are more frequently occurring strong
subjective adjectives in SUB than there are high in-
tensity adjectives in SOC.

4.1 Frequent Adjectives vs. Frequent
Predicative Adjectives

Table 2 compares the30 most frequent adjectives
(ALL) and predicative adjectives (PRD). Not only
does this table show that the proportion of subjective
adjectives is much larger among the predicative ad-
jectives but we may also gain some insight into what
non-subjective adjectives are excluded. Among the
high frequent adjectives are many quantifiers (many,
fewandseveral) and ordinal expressions (first, next
and last). In principle, most of these expressions
are not subjective. One may argue that these adjec-
tives behave like function words. Since they occur

2It will also contain many words erroneously tagged as ad-
jectives, however, this is unlikely to affect our experiments since
we only focus on the highly ranked (i.e. most frequent) words.
The misclassifications rather concern infrequent words.

very frequently, one might exclude some of them
by just ignoring the most frequent adjectives. How-
ever, there are also other types of adjectives, espe-
cially pertainyms (political, federal, economic, pub-
lic, American, foreign, local, military, financial and
national) that appear on this list which could not be
excluded by that heuristic. We found that these non-
subjective content adjectives are present throughout
the entire ranking and they are fairly frequent (on
the ranking). On the list of predicative adjectives all
these previous types of adjectives are much less fre-
quent. Many of them only occur on lower ranks (and
we assume that several of them only got on the list
due to parsing errors).

4.2 Comparison of the Different Extraction
Methods

Table 3 compares the precision of the different ex-
traction methods at different cut-off values. It is in-
teresting to see that for ALL in particular the higher
ranks are worse than the lower ranks (e.g. rank
1000). We assume that this is due to the high-
frequency adjectives which are similar to function
words (see Section 4.1). At all cut-off values, how-
ever, this baseline is beaten by every other method,
including our proposed method PRD. The two unsu-
pervised methods PRD and GRD perform on a par
with each other. On SUB, PRD even mostly out-
performs GRD. The precision achieved by WKS is
quite good. However, the coverage of this method
is low. It would require more seed expressions to
increase it, however, this would also mean consider-
ably more manual guidance.

Table 3 also shows that the precision of all ex-
traction methods largely drops on the lower ranks.
However, one should not conclude from that the ex-
traction methods proposed only work well for highly
frequent words. The drop can be mostly explained
by the fact that the two sentiment lexicons we use
for evaluation are finite (i.e. SUB: 4396 words/SOC:
2827 words (Table 1)), and that neither of these lexi-
cons (nor their union) represents the complete set of
all English subjective adjectives. Both lexicons will
have a bias towards frequently occurring subjective
expressions.

Inspecting the ranks 3001-3020 produced by PRD
as displayed in Table 4, for example, actually reveals
that there are still many more subjective adjectives

536



Lexicons Extraction Methods
WKS-5 WKS-10 WKS-25 WKS-50

SUB SOC ALL PRD GRD SUB SOC SUB SOC SUB SOC SUB SOC
4396 2827 212287 20793 7942 292 81 440 131 772 319 1035 385

Table 1: Statistics regarding the size (i.e. number of adjectives) of the different sentiment lexicons and rankings.

artistic∗ appealable airtight adjustable∗ activist∗ accommodat-
ing acclimated well-meaning weakest upsetting∗ unsurpassed
unsatisfying∗ unopposed unobtrusive∗ unobjectionable unem-
ployable understanding∗ uncharacteristic submerged speechless

Table 4: A set of entries PRD produces on lower ranks
(ranks 3001-3020);∗ marks matches with either of the
sentiment lexicons SUB or SOC.

than the matches with our sentiment lexicons sug-
gest (e.g.appealable, accomodating, well-meaning,
weakest, unsurpassed, unopposed, unobjectionable,
unemployable, uncharacteristicor speechless). In
other words, these are less frequent words; many
of them are actually subjective even though they are
not listed in the sentiment lexicons. Moreover, irre-
spective of the drop in precision on the lower ranks,
PRD and GRD still outperform ALL on both senti-
ment lexicons (Table 3). Despite the sparseness of
our two gold standards on the lower ranks, we thus
have some indication that PRD and GRD are more
effective than ALL.

The problem of the evaluation of less-frequent
words could not be solved by an extrinsic evaluation,
either, e.g. by using the extracted lists for some text
classification task (at the sentence/document level).
The evaluation on contextual classification on cor-
pora would also be biased towards high-frequency
words (as the word distribution is typically Zipfian).
For instance, on the MPQA-corpus (Wiebe et al.,
2005), i.e. the standard dataset for (fine-grained)
sentiment analysis, there is not a single mention of
the subjective wordsappealable, accommodating,
unsurpassed, unopposed, unobtrusiveor speechless,
which were found among the lower ranks 3001-
3020.

4.3 How Different Are Gradable and
Predicative Adjectives?

Since in the previous experiments the proportion of
subjective adjectives was similar among the grad-
able adjectives and the predicative adjectives, we

may wonder whether these two extraction methods
produce the same adjectives. In principle, the set of
gradable adjectives extracted is much smaller than
the list of extracted predicative adjectives (see Ta-
ble 1). We found that the gradable adjectives are
a proper subset of predicative adjectives, which is
in line with the observation by (Bolinger, 1972,
21) that gradable adjectives (which he calls degree
words) readily occur predicatively whereas non-
gradable ones tend not to.

However, while gradability implies compatibility
with predicative use, the reverse is not true. Ac-
cordingly, we found adjectives that are definitely not
gradable among the predicative adjectives that are
subjective, for instanceendless, insolvent, nonexis-
tent, stagnant, unavailableor untrue. This means
that with the criterion of predicative adjectives one
is able to extract relevant subjective adjectives that
cannot be caught by the gradability criterion alone,
namelycomplementaryadjectives that refer to a sim-
ple binary opposition (Cruse, 1986, 198-99).

4.4 Intersecting the Different Unsupervised
Criteria

In this section, we want to find out whether we can
increase the precision by considering intersections
of the two different unsupervised extraction crite-
ria. (Due to the sparsity of WKS, it does not make
sense to include that method in this experiment.) In
our previous experiments it turned out that as far as
precision is concerned, our new proposed extraction
criterion was similar to the gradability criterion. If,
however, the intersection of these two criteria pro-
duces better results, then we have provided some
further proof of the effectiveness of our proposed
criterion (even though we may sacrifice some exclu-
sive subjective adjectives in PRD as pointed out in
Section 4.3). It would mean that this criterion is also
beneficial in the presence of the gradability criterion.

Figure 1 shows the corresponding results. We
computed the intersection of PRD and GRD at var-
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ALL PRD GRD WKS-5 WKS-10 WKS-25 WKS-50
Rank n SUB SOC SUB SOC SUB SOC SUB SOC SUB SOC SUB SOC SUB SOC

10 10.00 30.00 90.00 90.00 80.00 60.00 80.00 90.00 80.00 90.00 90.00 70.00 90.00 70.00
25 20.00 32.00 88.00 60.00 64.00 60.00 92.00 80.00 91.00 80.00 92.00 80.00 92.00 84.00
50 30.00 34.00 88.00 64.00 70.00 68.00 82.00 78.00 92.00 78.00 92.00 84.00 90.00 86.00

100 37.00 38.00 81.00 68.00 79.00 75.00 80.00 N/A 82.00 72.00 89.00 78.00 92.00 77.00
250 45.60 43.20 79.60 75.60 84.80 76.00 70.80 N/A 74.40 N/A 80.40 67.50 82.04 67.20
500 48.00 49.20 77.20 70.00 82.20 74.00 N/A N/A N/A N/A 72.60 N/A 75.20 N/A

1000 48.70 48.10 75.50 65.60 72.60 65.00 N/A N/A N/A N/A N/A N/A 64.30 N/A
1500 49.07 46.53 68.60 59.07 66.27 58.60 N/A N/A N/A N/A N/A N/A N/A N/A
2000 48.00 43.85 64.55 55.40 61.55 54.25 N/A N/A N/A N/A N/A N/A N/A N/A
2500 46.08 40.96 59.52 51.28 56.36 50.00 N/A N/A N/A N/A N/A N/A N/A N/A
3000 44.20 39.17 54.63 47.13 51.47 46.03 N/A N/A N/A N/A N/A N/A N/A N/A

Table 3: Precision at rankn of the different extraction methods;WKS-mdenotes that for the extraction them most
frequent subjective adjectives from the respective sentiment lexicon were considered as seed expressions.

ious cut-off values ofn. The resulting intersection
comprisesm ranks withm < n. The precision of
the intersection was consequently compared against
the precision of PRD and GRD at rankm. The figure
shows that with the exception of the higher ranks on
SUB (< 200) there is indeed a systematic increase
in precision when the intersection of PRD and GRD
is considered.

5 Conclusion

We examined predicative adjectives as a criterion
to extract subjective adjectives. As this extraction
method is completely unsupervised, it is preferable
to weakly supervised extraction methods since we
are not dependent on a manually designed high qual-
ity seed set and we obtain a much larger set of ad-
jectives. This extraction method is competitive if
not slightly better than gradable adjectives. In ad-
dition, combining these two unsupervised methods
by assessing their intersection results mostly in an
increase in precision.
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Abstract

Incorporating semantic structure into a
linguistics-free translation model is chal-
lenging, since semantic structures are
closely tied to syntax. In this paper, we
propose a two-level approach to exploiting
predicate-argument structure reordering in a
hierarchical phrase-based translation model.
First, we introduce linguistically motivated
constraints into a hierarchical model, guiding
translation phrase choices in favor of those
that respect syntactic boundaries. Second,
based on such translation phrases, we propose
a predicate-argument structure reordering
model that predicts reordering not only
between an argument and its predicate, but
also between two arguments. Experiments on
Chinese-to-English translation demonstrate
that both advances significantly improve
translation accuracy.

1 Introduction

Hierarchical phrase-based (HPB) translation mod-
els (Chiang, 2005; Chiang, 2007) that utilize syn-
chronous context free grammars (SCFG) have been
widely adopted in statistical machine translation
(SMT). Although formally syntactic, such models
rarely respect linguistically-motivated syntax, and
have no formal notion of semantics. As a re-
sult, they tend to produce translations containing
both grammatical errors and semantic role confu-
sions. Our goal is to take advantage of syntactic
and semantic parsing to improve translation qual-
ity of HPB translation models. Rather than intro-
ducing semantic structure into the HPB model di-
rectly, we construct an improved translation model
by incorporating linguistically motivated syntactic
constraints into a standard HPB model. Once the

translation phrases are linguistically constrained, we
are able to propose a predicate-argument reorder-
ing model. This reordering model aims to solve
two problems: ensure that arguments are ordered
properly after translation, and to ensure that the
proper argument structures even exist, for instance
in the case of PRO-drop languages. Experimental
results on Chinese-to-English translation show that
both the hard syntactic constraints and the predicate-
argument reordering model obtain significant im-
provements over the syntactically and semantically
uninformed baseline.

In principle, semantic frames (or, more specifi-
cally, predicate-argument structures: PAS) seem to
be a promising avenue for translational modeling.
While languages might diverge syntactically, they
are less likely to diverge semantically. This has
previously been recognized by Fung et al. (2006),
who report that approximately 84% of semantic
role mappings remained consistent across transla-
tions between English and Chinese. Subsequently,
Zhuang and Zong (2010) took advantage of this
consistency to jointly model semantic frames on
Chinese/English bitexts, yielding improved frame
recognition accuracy on both languages.

While there has been some encouraging work on
integrating syntactic knowledge into Chiang’s HPB
model, modeling semantic structure in a linguisti-
cally naive translation model is a challenge, because
the semantic structures themselves are syntactically
motivated. In previous work, Liu and Gildea (2010)
model the reordering/deletion of source-side seman-
tic roles in a tree-to-string translation model. While
it is natural to include semantic structures in a tree-
based translation model, the effect of semantic struc-
tures is presumably limited, since tree templates
themselves have already encoded semantics to some
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extent. For example, template (VP (VBG giving)
NP#1 NP#2) entails NP#1 as receiver and NP#2 as
thing given. Xiong et al. (2012) model the reorder-
ing between predicates and their arguments by as-
suming arguments are translated as a unit. However,
they only considered the reordering between argu-
ments and their predicates.

2 Syntactic Constraints for HPB
Translation Model

In this section, we briefly review the HPB model,
then present our approach to incorporating syntactic
constraints into it.

2.1 HPB Translation Model

In HPB models, synchronous rules take the form
X → 〈γ, α,∼〉, where X is the non-terminal sym-
bol, γ and α are strings of lexical items and non-
terminals in the source and target side, respectively,
and ∼ indicates the one-to-one correspondence be-
tween non-terminals in γ and α. Each such rule
is associated with a set of translation model fea-
tures {φi}, including phrase translation probabil-
ity p (α | γ) and its inverse p (γ | α), the lexical
translation probability plex (α | γ) and its inverse
plex (γ | α), and a rule penalty that affects prefer-
ence for longer or shorter derivations. Two other
widely used features are a target language model
feature and a target word penalty.

Given a derivation d, its translation probability is
estimated as:

P (d) ∝
∏
i

φi (d)
λi

(1)

where λi is the corresponding weight of feature φi.
See (Chiang, 2007) for more details.

2.2 Syntactic Constraints

Translation rules in an HPB model are extracted
from initial phrase pairs, which must include at least
one word inside one phrase aligned to a word inside
the other, such that no word inside one phrase can
be aligned to a word outside the other phrase. It
is not surprising to observe that initial phrases fre-
quently are non-intuitive and inconsistent with lin-
guistic constituents, because they are based only on
statistical word alignments. Nothing in the frame-
work actually requires linguistic knowledge.

Koehn et al. (2003) conjectured that such non-
intuitive phrases do not help in translation. They
tested this conjecture by restricting phrases to syn-
tactically motivated constituents on both the source
and target side: only those initial phrase pairs are
subtrees in the derivations produced by the model.
However, their phrase-based translation experiments
(on Europarl data) showed the restriction to syn-
tactic constituents is actually harmful, because too
many phrases are eliminated. The idea of hard syn-
tactic constraints then seems essentially to have been
abandoned: it doesn’t appear in later work.

On the face of it, there are many possible rea-
sons Koehn et al. (2003)’s hard constraints did not
work, including, for example, tight restrictions that
unavoidably exclude useful phrases, and practical is-
sues like the quality of parse trees. Although en-
suing work moved in the direction of soft syntactic
constraints (see Section 6), our ultimate goal of cap-
turing predicate-argument structure requires linguis-
tically valid syntactic constituents, and therefore we
revisit the idea of hard constraints, avoiding prob-
lems with their strictness by relaxing them in three
ways.

First, requiring source phrases to be subtrees in
a linguistically informed syntactic parse eliminates
many reasonable phrases. Consider the English-
Chinese phrase pair 〈the red car, hongse de qiche〉.1
It is easily to get a translation entry for the whole
phrase pair. By contrast, the phrase pair 〈the red,
hongse de〉 is typically excluded because it does not
correspond to a complete subtree on the source side.
Yet translating the red is likely to be more useful
than translating the red car, since it is more general:
it can be followed by any other noun translation. To
this end, we relax the syntactic constraints by allow-
ing phrases on the source side corresponding to ei-
ther one subtree or sibling subtrees with a common
parent node in the syntactic parse. For example, the
red in Figure 1(a) is allowed since it spans two sub-
trees that have a common parent node NP.

Second, we might still exclude useful phrases be-
cause the syntactic parses of some languages, like
Chinese, prefer deep trees, resulting in a head and
its modifiers being distributed across multiple struc-
tural levels. Consider the English sentence I still

1We use English as source language for better readability.
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like the red car very much and its syntactic structure
as shown in Figure 1(a). Phrases I still, still like,
I still like are not allowed, since they don’t map to
either a subtree or sibling subtrees. Logically, how-
ever, it might make sense not just to include phrases
mapping to (sibling) subtrees, but to include phrases
mapping to subtrees with the same head. To this end,
we flatten the syntactic parse so that a head and all its
modifiers appear at the same level. Another advan-
tage of this flattened structure is that flattened trees
are more reliable than unflattened ones, in the sense
that some bracketing errors in unflattened trees can
be eliminated during tree flattening. Figure 1(b) il-
lustrates flattening a syntactic parse by moving the
head (like) and all its modifiers (I, still, the red car,
and very much) to the same level.

Third, initial phrase pair extraction in Chiang’s
HPB generates a very large number of rules, which
makes training and decoding very slow. To avoid
this, a widely used strategy is to limit initial phrases
to a reasonable length on either side during rule ex-
traction (e.g., 10 in Chiang (2007)). A correspond-
ing constraint to speed up decoding prohibits any X
from spanning a substring longer than a fixed length,
often the same as the maximum phrase length in rule
extraction. Although the initial phrase length limita-
tion mainly keeps non-intuitive phrases out, it also
closes the door on some useful phrases. For ex-
ample, a translation rule 〈I still like X, wo rengran
xihuan X〉 will be prohibited if the non-terminal X
covers 8 or more words. In contrast, our hard con-
straints have already filtered out dominating non-
intuitive phrases; thus there is more room to include
additional useful phrases. As a result, we can switch
off the constraints on initial phrase length in both
training and decoding.

2.3 Reorderable Glue Rules

In decoding, if no good rule (e.g., a rule whose left-
hand side is X) can be applied or the length of the
potential source span is larger than a pre-defined
length, a glue rule (either S → 〈X1, X1〉 or S →
〈S1X2, S1X2〉) will be used to simply stitch two
consequent translated phrases together in monotonic
way. This will obviously prevent some reasonable
translation derivations because in certain cases, the
order of phrases may be inverted on the target side.
Moreover, even that the syntactic constraints dis-

a. Word alignment for an English-Chinese sentence pair 
with the parse tree for the English sentence 

I 

ADVP

like the red car very much

NP 

still 

VBP NP ADVP

S

b. Flattened parse tree for the English sentence

S

我  仍然   非常  喜欢  红色 的 汽车
wo rengran feichang xihua hongse de qiche 

VP

VP 

I 

ADVP 

like the red car very much

NP 

still 

VBP NP ADVP

Figure 1: Example of flattening parse tree.

cussed above make translation nodeXs are syntacti-
cally informed, stitching translated phrases from left
to right will unavoidably generate non-syntactically
informed node Ss. For example, the combination of
X (like) and X (the) does not make much sense in
linguistic perspective.

Alternatively, we replace glue rules of HPB with
reorderable ones:

• T → 〈X1, X1〉

• T → 〈T1T2, T1T2〉

• T → 〈T1T2, T2T1〉

where the second (third) rule combines two trans-
lated phrases in a monotonic (inverted) way. Specif-
ically, we set the translation probability of the first
translation rule as 1 while estimating the probabil-
ities of the other two rules from training data. In
both training and decoding, we require the phrases
covered by T to satisfy our syntactic constraints.
Therefore, all translation nodes (both Xs and T s)
in derivations are syntactically informed, providing
room to explore PAS reordering in HPB model.

3 PAS Reordering Model

Ideally, we aim to model PAS reordering based on
the true semantic roles of both the source and tar-
get side, as to better cater not only consistence but
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I 

AM-TMP 

like the red car very much

A0 

still 

VBP A1 AM-MNR

我  仍然   非常  喜欢  红色 的 汽车

wo rengran feichang xihua hongse de qiche

a. Word alignment for an English-Chinese sentence 
pair with semantic roles for the English sentence 

PAS-S 

AM-TMP2A01 VBP3 A14 AM-MNR5 

PAS-T 

X2 X1 X5 X3 X4 

b. PAS-S and PAS-T for predicate like  

Figure 2: Example of PAS on both the source and target
side. Items are aligned by indices.

divergence between semantic frames of the source
and target language. However, considering there is
no efficient way of jointly performing MT and SRL,
accurate SRL on target side can only be done after
translation. Similar to related work (Liu and Gildea,
2010; Xiong et al., 2012), we obtain the PAS of
the source language (PAS-S) via a shallow seman-
tic parser and project the PAS of the target language
(PAS-T) using the word alignment derived from the
translation process. Specifically, we use PropBank
standard (Palmer et al., 2005; Xue, 2008) which de-
fines a set of numbered core arguments (i.e., A0-A5)
and adjunct-like arguments (e.g., AM-TMP for tem-
poral, AM-MNR for manner). Figure 2(b) shows
an example of PAS projection from source language
to target language.2 The PAS reordering model de-
scribes the probability of reordering PAS-S into PAS-
T. Given a predicate p, it takes the following form:

P (PAS-T | PAS-S, PRE=p) (2)

Note that cases for untranslated roles can be natu-
rally reflected in our PAS reordering model. For ex-
ample, if the argument IA0 is untranslated in Figure
2, its PAS-T will be X2X5X3X4.

2In PAS-S, we use parts-of-speech (POS) of predicates to
distinguish different types of verbs since the semantic structures
of Chinese adjective verbs are different from those of others.

3.1 Probability Estimation

While it is hard and unnecessary to translate a pred-
icate and all its associated arguments with one rule,
especially if the sentence is long, a practicable way,
as most decoders do, is to translate them in multi-
ple level rules. In addition, some adjunct-like argu-
ments are optional, or structurally dispensable part
of a sentence, which may result in data sparsity is-
sue. Based on these observations, we decompose
Formula 2 into two parts: predicate-argument re-
ordering and argument-argument reordering.

Predicate-Argument Reordering estimates the
reordering probability between a predicate and one
of its arguments. Taking predicate like and its argu-
ment A1 the red car in Figure 2(a) as an example,
the predicate-argument pattern on the source side
(PA-S) is VBP1 A12 while the predicate-argument
pattern on the target side (PA-T) is X1X2. The re-
ordering probability is estimated as:

PP-A (PA-T=X1 X2 | PA-S=VBP1 A12, PRE=like) =

Count (PA-T=X1 X2, PA-S=VBP1 A12, PRE=like)∑
T ∈Φ(PA-S) Count (PA-T=T , PA-S=VBP1 A12, PRE=like)

(3)
where Φ (PA-S) enumerates all possible reorder-
ings on the target side. Moreover, we take the pred-
icate lexicon of predicate into account. To avoid
data sparsity, we set a threshold (e.g., 100) to re-
tain frequent predicates. For infrequent predicates,
their probabilities are smoothed by replacing predi-
cate lexicon with its POS. Finally, if source side pat-
terns are infrequent (e.g., less than 10) for frequent
predicates, their probabilities are smoothed as well
with the same way.

Argument-Argument Reordering estimates the
reordering probability between two arguments, i.e.,
argument-argument pattern on the source side (AA-
S) and its counterpart on the target side (AA-T).
However, due to that arguments are driven and piv-
oted by their predicates, we also include predicate
in patterns of AA-S and AA-T. Let’s revisit Fig-
ure 2(a). A1 the red car and AM-MNR very much
are inverted on the target side, whose probability is
estimated as:
PA-A (AA-T=X3 X1 X2 | AA-S=VBP1 A12 AM-MNR3, PRE=like)

(4)
Similarly we smooth the probabilities by distin-
guishing frequent predicates from infrequent ones,
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as well as frequent patterns from infrequent ones.

3.2 Integrating the PAS Reordering Model into
the HPB Model

We integrate the PAS reordering model into the HPB
SMT by adding a new feature into the log-linear
translation model. Unlike the conventional phrase
and lexical translation features whose values are
phrase pair-determined and thus can be calculated
offline, the value of the PAS reordering model can
only be obtained with being aware of the predicate-
argument structures a hypothesis may cover. Before
we present the algorithm of integrating the PAS re-
ordering model, we define a few functions by assum-
ing p for a predicate, a for an argument, and H for a
hypothesis:

• A (i, j, p): returns arguments of p which are
fully located within the span from word i to j
on the source side. For example, in Figure 2,
A (4, 8, like) = {A1, AM -MRN}.3

• B (i, j, p): returns true if p is located within [i, j];
otherwise returns false.

• C (a, p): returns true if predicate-argument reorder-
ing for a and p has not calculated yet; otherwise re-
turns false.

• D (a1, a2, p): returns true if argument-argument
reordering for p’s arguments a1 and a2 has not cal-
culated yet; otherwise returns false.

• PP -A (H, a, p): according to Eq. 3, returns the
probability of predicate-argument reordering of a
and p, given a and p are covered by H . The po-
sitional relation of a and p on the target side can be
detected according to translation derivation of H .

• PA-A (H, a1, a2, p): according to Eq. 4, returns
the probability of argument-argument reordering of
p’s arguments a1 and a2, given a1, a2 and p are cov-
ered by H .

Algorithm 1 integrates the PAS reordering model
into a CKY-style decoder whenever a new hypothe-
sis is generated. Given a hypothesis H , it first looks
for predicates and their arguments which are covered

3The hard constraints make sure a valid source text span
would never fully cover some roles while partially cover other
roles. For example, phrases like the red, the read car very in
Figure 1 are invalid.

Algorithm 1: Integrating the PAS reordering
model into a CKY-style decoder

Input: Sentence f in the source language
Predicate-Argument Structures of f
Hypothesis H spanning from word i to j

Output: Log-Probability of the PAS reordering
model
1. set prob = 0.0
2. for predicate p in f , such that B (i, j, p) is true
3. ARG = A (i, j, p)
4. for a ∈ ARG such that C (a, p) is true
5. prob+= logPP -A (H, a, p)
6. for a1, a2 ∈ ARG such that a1 6= a2 and

D (a1, a2, p) is true
7. prob+= logPA-A (H, a1, a2, p)
8. return prob

by H (line 2-3). Then it respectively calculates the
probabilities of predicate-argument reordering and
argument-argument reordering(line 4-7).

4 Experiments

We have presented our two-level approach to in-
corporating syntactic and semantic structures in a
HPB system. In this section, we test the effect of
such structural information on a Chinese-to-English
translation task. The baseline system is a reproduc-
tion of Chiang’s (2007) HPB system. The bilin-
gual training data contains 1.5M sentence pairs with
39.4M Chinese words and 46.6M English words.4

We obtain the word alignments by running GIZA++
(Och and Ney, 2000) on the corpus in both direc-
tions and applying “grow-diag-final-and” refinement
(Koehn et al., 2003). We use the SRI language mod-
eling toolkit to train a 5-gram language model on the
Xinhua portion of the Gigaword corpus and standard
MERT (Och, 2003) to tune the feature weights on
the development data.

To obtain syntactic parse trees for instantiating
syntactic constraints and predicate-argument struc-
tures for integrating the PAS reordering model, we
first parse the source sentences with the Berkeley
Parser (Petrov and Klein, 2007) trained on Chinese
TreeBank 6.0 and then ran the Chinese semantic role

4This dataset includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06
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System MT 02 MT 04 MT 05 Ave.

max-phrase-length=10
max-char-span=10

base HPB 40.00 35.33 32.97 36.10
+ basic constraints + unflattened tree 33.90 32.00 29.83 31.91

+ our constraints + unflattened tree 38.47 34.51 32.15 35.04
+ our constraints + flattened tree 38.55 35.38 32.44 35.46

max-phrase-length=∞
max-char-span=∞

+ basic constraints + unflattened tree 35.38 32.89 30.42 32.90
+ our constraints + unflattened tree 39.41 36.02 33.21 36.21

+ our constraints + flattened tree 40.01 36.24 33.65 36.71

Table 1: Effects of hard constraints. Here max-phrase-length is for maximum initial phrase length in training and
max-char-span for maximum phrase length can be covered by non-terminal X in decoding.

labeler (Li et al., 2010) on all source parse trees to
annotate semantic roles for all verbal predicates.

We use the 2003 NIST MT evaluation test data
(919 sentence pairs) as the development data, and
the 2002, 2004 and 2005 NIST MT evaluation
test data (878, 1788 and 1082 sentence pairs, re-
spectively) as the test data. For evaluation, the
NIST BLEU script (version 11b) is used to calcu-
late the NIST BLEU scores, which measures case-
insensitive matching of n-grams with n up to 4. To
test whether a performance difference is statistically
significant, we conduct significance tests following
the paired bootstrapping approach (Koehn, 2004).

4.1 Effects of Syntactic Constraints

We have also tested syntactic constraints that simply
require phrases on the source side to map to a sub-
tree (called basic constraints). Similar to requiring
initial phrases on the source side to satisfy the con-
straints in training process, we only perform chart
parsing on text spans which satisfy the constraints
in decoding process. Table 1 shows the results of
applying syntactic constraints with different experi-
mental settings. From the table, we have the follow-
ing observations.

• Consistent with the conclusion in Koehn et
al. (2003), using the basic constraints is harmful to
HPB. Fortunately, our constraints consistently work
better than the basic constraints.

• Relaxing maximum phrase length in training and
maximum char span length in decoding, we obtain
an average improvement of about 1.0∼1.2 BLEU
points for systems with both basic constraints and
our constraints. It is worth noting that after re-
laxing the lengths, the system with our constraints
performs on a par with the base HPB system (e.g.,
36.21 vs. 36.10).

System MT 02 MT 04 MT 05 Ave.
base HPB 40.00 35.33 32.97 36.10
+our constraints 40.01 36.24++ 33.65+ 36.71
with reorderable
glue rules

40.70+ 36.00+ 33.67+ 36.79

+PAS model 40.41+ 36.73++∗∗ 34.24++∗ 37.13

Table 2: Effects of reorderable glue rules and the PAS
reordering model. +/++: significant over base HPB at
0.05/0.01; */**: significant over the system with reorder-
able glue rules at 0.05/0.01.

• Flattening parse trees further improves 0.4∼0.5
BLEU points on average for systems with our syn-
tactic constraints. Our final system with constraints
outperforms the base HPB system with an average
of 0.6 BLEU points improvement (36.71 vs. 36.10).

Another advantage of applying syntactic constraints
is efficiency. By comparing the base HPB system
and the system with our syntactic constraints (i.e.,
the last row in Table 1), it is not surprising to ob-
serve that the size of rules extracted from training
data drops sharply from 193M in base HPB sys-
tem to 60M in the other. Moreover, the system
with constraints needs less decoding time than base
HPB does. Observation on 2002 NIST MT test data
(26 words per sentence on average) shows that basic
HPB system needs to fill 239 cells per sentence on
average in chart parsing while the other only needs
to fill 108 cells.

4.2 Effects of Reorderable Glue Rules
Based on the system with our syntactic constraints
and relaxed phrase lengths in training and decoding,
we replace traditional glue rules with reorderable
glue rules. Table 2 shows the results, from which
we find that the effect of reorderable glue rules is
elusive: surprisingly, it achieves 0.7 BLEU points
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sentence length 1-10 11-20 21-30 31-40 41+ all
sentence count 337 1001 1052 768 590 3748
base HPB 32.21 37.51 36.71 34.96 35.00 35.73
+our constraints 31.70 37.57 37.10 36.20++ 35.78++ 36.39++

Table 3: Experimental results over different sentence
length on the three test sets. +/++: significant over base
HPB at 0.05/0.01.

improvement on NIST MT 2002 test set while hav-
ing negligible or even slightly negative impact on the
other two test sets. The reason of reorderable glue
rules having limited influence on translation results
over monotonic only glue rules may be due to that
the monotonic reordering overwhelms the inverted
one: estimated from training data, the probability of
the monotonic glue rule is 95.5%.

4.3 Effects of the PAS Reordering Model

Based on the system with reorderable glue rules, we
examine whether the PAS reordering model is capa-
ble of improving translation performance. The last
row in Table 2 presents the results . It shows the sys-
tem with the PAS reordering model obtains an aver-
age of 0.34 BLEU points over the system without it
(e.g., 37.13 vs. 36.79). It is interesting to note that it
achieves significant improvement on NIST MT 2004
and 2005 test sets (p < 0.05) while slightly lowering
performance on NIST MT 2002 test set (p > 0.05):
the surprising improvement of applying reorderable
glue rules on NIST MT 2002 test set leaves less
room for further improvement. Finally, it shows we
obtain an average improvement of 1.03 BLEU points
on the three test sets over the base HPB system.

5 Discussion and Future Work

The results in Table 1 demonstrate that significant
and sometimes substantial gains over baseline can
be obtained by incorporating hard syntactic con-
straints into the HPB model. Due to the capability of
translation phrases of arbitrary length, we conjecture
that the improvement of our system over the baseline
HPB system mostly comes from long sentences. To
test the conjecture, we combine all test sentences in
the three test sets and group them in terms of sen-
tence length. Table 3 presents the sentence distri-
bution and BLEU scores over different length. The
results validate our assumption that the system with

constraints outperforms the base systems on long
sentences (e.g., sentences with 20+ words).

Figure 3 displays a translation example which
shows the difference between the base HPB
system and the system with constraints. The
inappropriate translation of the base HPB
system can be mainly blamed on the rule〈
X[2,5] → 的2发展3X[4,5], X[4,5] the development of

〉
,

where 的2 发展3 , a part of the subtree [0, 3] span-
ning from word 0 to 3, is translated immediately
to the right of X[2,5], making a direct impact that
subtree [0, 3] is translated discontinuously on the
target side. On the contrary, we can see that our
constraints are able to help select appropriate phrase
segments with respect to its syntactic structure.

Although our syntactic constraints apply on the
source side, they are completely ignorant of syn-
tax on the target side, which might result in ex-
cluding some useful translation rules. Let’s re-
visit the sentence in Figure 3, where we can see
that a transition rule spanning from word 0 to 5,
say

〈
X[0,5] → X[0,3]是4取决于5, X[0,3] depends on

〉
is intuitive: the syntactic structure on the target side
satisfies the constraints, although that of the source
side doesn’t. One natural extension of this work,
therefore, would be to relax the constraints by in-
cluding translation rules whose syntactic structure
of either the source side or the target side satisfies
the constraints.

To illustrate how the PAS reordering model im-
pacts translation output, Figure 4 displays two trans-
lation examples of systems with or without it. The
predicate 传递/convey in the first example has three
core arguments, i.e., A0, A2, and A1. The difference
between the two outputs is the reordering of A1 and
A2 while the PAS reordering model gives priority to
pattern VV A1 A2. In the second example, we clearly
observe two serious translation errors in the system
without PAS reordering model: 他们/themA1 is un-
translated; 中国/chinaA0 is moved to the immediate
right of predicate 允许/allow and plays as direct ob-
ject.

Including the PAS reordering model improves the
BLEU scores. One further direction to refine the ap-
proach is to alleviate verb sparsity via verb classes.
Another direction is to include useful context in es-
timating reordering probability. For example, the
content of a temporal argument AM-TMP can be a
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((((很多   事情)   的)   发展)   是   (取决于   (((世界    局势)   的)   发展))  。)
    0      1      2      3     4       5        6        7     8      9      10 

X[0,1]: lot X[4,5]: depends on

X[2,5]: X[4,5] the development of

X[6,9]: the devet. of the world sit. X[10,10]: . 

X[7,7]: sit.

X[6,7]: world X[7,7]

X[9,9]: devet.X[0,1]: lot 

X[0,3]: X[0,1] development 

X[5,9]: depends on X[9,9] of the X[6,7] 

X[0,10]: X[0,3] X[5,9] . 

Figure 3: A translation example of the base HPB system (above) and the system with constraints (below).

 

[韩]A0 [将]AM-ADVP [向 朝]A2 [传递]PRE 希望 [恢复 会谈 的 信息]A1  A01  AM-ADVP2  A23  VV4  A15 

[south korean] [will] [deliver] hope [resume talks message] [to the dprk]       X1  X2  X4  X5  X3 

[korean] [will] [convey] [to the] hope of [resuming talks information]         X1  X2  X4  X3  X5 

Source 

w/o 

with 

Ref. south korean conveys its desire to resume talking with north korean                  ---- 

[中国]A0 [星期五]AM-TMP [允许]PRE [他们]A1 [取道 前行 汉城]A2 。       A01 AM-TMP2 VV3 A14 A25 

[china] [friday] [allowed] [them] [to seoul through the philippines] .           X1  X2  X3  X4  X5 

[friday] [allowed] [china] [to seoul through the philippines] .                  X2  X3  X1  X5 

Source 

w/o 

with 

Ref. in friday, china allowed them to travel to seoul through philippines .                  ---- 

Figure 4: Two translation examples of the system with/without PAS reordering model

short/simple phrase (e.g., friday) or a long/complex
one (e.g., when I was 20 years old), which has im-
pact on its reordering in translation.

6 Related Work

While there has been substantial work on linguis-
tically motivated SMT, we limit ourselves here
to several approaches that leverage syntactic con-
straints yet still allow cross-constituent transla-
tions. In terms of tree-based SMT with cross-
constituent translations, Cowan et al. (2006) al-
lowed non-constituent sub phrases on the source
side and adopted phrase-based translation model for
modifiers in clauses. Marcu (2006) and Galley
et al. (2006) inserted artificial constituent nodes in
parsing tree as to capture useful but non-constituent
phrases. The parse tree binarization approach
(Wang et al., 2007; Marcu, 2007) and the forest-
based approach (Mi et al., 2008) would also cover
non-constituent phrases to some extent. Shen et
al. (2010) defined well-formed dependency struc-
ture to cover uncompleted dependency structure in

translation rules. In addition to the fact that the
constraints of Shen et al. (2010) and this paper
are based on different syntactic perspectives (i.e.,
dependency structure vs. constituency structure),
the major difference is that in this work we don’t
limit the length of phrases to a fixed maximum size
(e.g., 10 in Hiero). Consequently, we obtain some
translation rules that are not found in Hiero sys-
tems constrained by the length. In terms of (hi-
erarchical) phrase-based SMT with syntactic con-
straints, particular related to constituent boundaries,
Koehn et al. (2003) tested constraints allowing con-
stituent matched phrases only. Chiang (2005) and
Cherry (2008) used a soft constraint to award or pe-
nalize hypotheses which respect or violate syntactic
boundaries. Marton and Resnik (2008) further ex-
plored the idea of soft constraints by distinguishing
among constituent types. Xiong et al. (2009; 2010)
presented models that learn phrase boundaries from
aligned dataset.

On the other hand, semantics motivated SMT has
also seen an increase in activity recently. Wu and
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Fung (2009) re-ordered arguments on the target side
translation output, seeking to maximize the cross-
lingual match of the semantic frames of the re-
ordered translation to that of the source sentence.
Liu and Gildea (2010) added two types of semantic
role features into a tree-to-string translation model.
Although Xiong et al. (2012) and our work are both
focusing on source side PAS reordering, our model
differs from theirs in two main aspects: 1) we con-
sider reordering not only between an argument and
its predicate, but also between two arguments; and
2) our reordering model can naturally model cases
of untranslated arguments or predicates.

7 Conclusion

In this paper, we have presented an approach to
incorporating syntactic and semantic structures for
the HPB translation model. To accommodate the
close tie of semantic structures to syntax, we first
revisited the idea of hard syntactic constraints, and
we demonstrated that hard constraints can, in fact,
lead to significant improvement in translation qual-
ity when applied to Chiang’s HPB framework. Then
our PAS reordering model, thanks to the constraints
which guided translation phrases in favor of syntac-
tic boundaries, made further improvements by pre-
dicting reordering not only between an argument
and its predicate, but also between two arguments.
In the future work, we will extend the PAS reorder-
ing model to include useful context, e.g., the head
words and the syntactic categories of arguments.
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Abstract

This paper discusses the extension of a sys-
tem developed for automatic discovery of tree-
bank annotation inconsistencies over an entire
corpus to the particular case of evaluation of
inter-annotator agreement. This system makes
for a more informative IAA evaluation than
other systems because it pinpoints the incon-
sistencies and groups them by their structural
types. We evaluate the system on two corpora
- (1) a corpus of English web text, and (2) a
corpus of Modern British English.

1 Introduction

This paper discusses the extension of a system de-
veloped for automatic discovery of treebank annota-
tion inconsistencies over an entire corpus to the par-
ticular case of evaluation of inter-annotator agree-
ment (IAA). In IAA, two or more annotators anno-
tate the same sentences, and a comparison identi-
fies areas in which the annotators might need more
training, or the annotation guidelines some refine-
ment. Unlike other IAA evaluation systems, this
system application results in a precise pinpointing of
inconsistencies and the grouping of inconsistencies
by their structural types, making for a more infor-
mative IAA evaluation.

Treebank annotation, consisting of syntactic
structure with words as the terminals, is by its na-
ture more complex and therefore more prone to error
than many other annotation tasks. However, high an-
notation consistency is crucial to providing reliable
training and testing data for parsers and linguistic
research. Error detection is therefore an important

area of research, and the importance of work such as
Dickinson and Meurers (2003) is that errors and an-
notation inconsistencies might be automatically dis-
covered, and once discovered, be targeted for subse-
quent quality control.

A recent approach to this problem (Kulick et al.,
2011; Kulick et al., 2012) (which we will call the
KBM system) improves upon Dickinson and Meur-
ers (2003) by decomposing the full syntactic tree
into smaller units, using ideas from Tree Adjoining
Grammar (TAG) (Joshi and Schabes, 1997). This al-
lows the comparison to be based on small syntactic
units instead of string n-grams, improving the detec-
tion of inconsistent annotation.

The KBM system, like that of Dickinson and
Meurers (2003) before it, is based on the notion of
comparing identical strings. In the general case, this
is a problematic assumption, since annotation in-
consistencies are missed because of superficial word
differences between strings which one would want
to compare.1 However, this limitation is not present
for IAA evaluation, since the strings to compare are,
by definition, identical.2 The same is also true of
parser evaluation, since the parser output and the
gold standard are based on the same sentences.

We therefore take the logical step of applying the
KBM system developed for automatic discovery of
annotation inconsistency to the special case of IAA.3

1Boyd et al. (2007) and other current work tackles this prob-
lem. However, that is not the focus of this paper.

2Aside from possible tokenization differences by annotators.
3In this paper, we do not yet apply the system to parser eval-

uation, although it is conceptually the same problem as IAA
evaluation. We wanted to first refine the system using annota-
tor input for the IAA application before applying it to parser
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(1) a. NP-SBJ

NP

NP

The word

NP

renaissance

NP

-LRB- NP

Rinascimento

PP

in NP

Italian

-RRB-

b. NP-SBJ

The word renaissance PRN

-LRB- FRAG

NP

Rinascimento

PP

in NP

Italian

-RRB-

Figure 1: Two example trees showing a difference in IAA

To our knowledge, this work is the first to utilize
such a general system for this special case.

The advantages of the KBM system play out
somewhat differently in the context of IAA evalu-
ation than in the more general case. In this con-
text, the comparison of word sequences based on
syntactic units allows for a precise pinpointing of
differences. The system also retains the ability to
group inconsistencies together by their structural
type, which we have found to be useful for the more
general case. Together, these two properties make
for a useful and informative system for IAA evalua-
tion.

In Section 2 we describe the basic working of our
system. In Section 3 we discuss in more detail the
advantages of this approach. In Section 4 we evalu-
ate the system on two treebanks, a corpus of English
web text and a corpus of Modern British English.
Section 5 discusses future work.

2 System Overview

The basic idea of the KBM system is to detect word
sequences that are annotated in inconsistent ways by

evaluation.

word

NP

The

Rinascimento

NP

-RRB--LRB-

renaissance

NP

renaissance
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b1
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-RRB--LRB-
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PRN

a1

a2

a3

a4

a5

a8

b2

b3

b5

b4 b8

in

PPa6

Italian

NP a7

in

PP

b6

Italian

NP

b7

NP

A

A

A A

A A

A

A

M

M M

M M

A

(2) a.

b.

Figure 2: E-trees and derivation trees corresponding to
(1ab)

comparing local syntactic units. Following Dickin-
son and Meurers (2003), we refer to sequences ex-
amined for inconsistent annotation as nuclei. The
sentence excerpts (1ab) in Figure 1, from the test
corpora used in this work, illustrate an inconsistency
in the annotation of corresponding strings. We fo-
cus here on the difference in the annotation of the
nucleus The word renaissance, which in (1a) is an-
notated as an appositive structure, while in (1b) it is
flat.

Following the TAG approach, KBM decomposes
the full phrase structure into smaller chunks called
elementary trees (henceforth, e-trees). The relation-
ship of the e-trees underlying a full phrase struc-
ture to each other is recorded in a derivation tree,
in which each node is an e-tree, related to its par-
ent node by a composition operation, as shown in
(2ab).4

KBM uses two composition operations, each with
left and right variants, shown in Figure 3: (1) ad-

4The decomposition is based on head-finding heuristics,
with the result here that word is the head of (1a), while renais-
sance is the head of (1b), as reflected in their respective deriva-
tion trees (2a) and (2b). We omit the POS tags in (1ab) and
(2ab) to avoid clutter.
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Figure 3: Composition operations (left and right)

junction, which attaches one tree to a target node in
another tree by creating a copy of the target node,
and (2) sister adjunction, which attaches one tree as
a sister to a target node in another tree. Each arc in
Figure 2 is labeled by an “M” for adjunction and “A”
for sister-adjunction. 5

The system uses the tree decomposition and re-
sulting derivation tree for the comparison of differ-
ent instances of the same nucleus. The full deriva-
tion tree for a sentence is not used, but rather only
that slice of it having e-trees with words that are in
the nucleus being examined, which we call a deriva-
tion tree fragment. That is, for a given nucleus with
a set of instances, we compare the derivation frag-
ments for each instance.

For example, for the nucleus The word renais-
sance, the derivation tree fragment for the instance
in (1a) consists of the e-trees a1, a2, a3 (and their
arcs) in (2a), and likewise the derivation tree from
the instance in (1b) consists of the e-trees b1, b2, b3
in (2b). These derivation fragments have a differ-
ent structure, and so the two instances of The word
renaissance are recognized as inconsistent.

Two important aspects of the overall system re-
quire mention here: (1) Nuclei are identified by us-
ing sequences that occur as a constituent anywhere

5KBM is based on a variant of Spinal TAG (Shen et al.,
2008), and uses sister adjunction without substitution. Space
prohibits full discussion, but multiple adjunction to a single
node (e.g., a4, a6, a8 to a5 in (2a)) does not create multiple
levels of recursion, while a special specification handles the ex-
tra NP recursion for the apposition with a2, a3, and a5. For
reasons of space, we also leave aside a precise comparison to
Tree Insertion Grammar (Chiang, 2003) and Spinal TAG (Shen
et al., 2008).

in the corpus, even if other instances of the same
sequence are not constituents. Both instances of
The word renaissance are compared, because the
sequence occurs at least once as a constituent. (2)
We partition each comparison of the instances of a
nucleus by the lowest nonterminal in the derivation
tree fragment that covers the sequence. The two in-
stances of The word renaissance are compared be-
cause the lowest nonterminal is an NP in both in-
stances.

3 Advantages of this approach

As Kulick et al. (2012) stressed, using derivation
tree fragments allows the comparison to abstract
away from interference by irrelevant modifiers, an
issue with Dickinson and Meurers (2003). However,
in the context of IAA, this advantage of KBM plays
out in a different way, in that it allows for a pre-
cise pinpointing of the inconsistencies. For IAA,
the concern is not whether an inconsistent annota-
tion will be reported, since at some level higher in
the tree every difference will be found, even if the
context is the entire tree. KBM, however, will find
the inconsistencies in a more informative way, for
example reporting just The word renaissance, not
some larger unit. Likewise, it reports Rinascimento
in Italian as an inconsistently annotated sequence.6

A critical desirable property of KBM that carries
over from the more general case is that it allows for
different nuclei to be grouped together in the sys-
tem’s output if they have the same annotation in-
consistency type. As in Kulick et al. (2011), each
nucleus found to be inconsistent is categorized by
an inconsistency type, which is simply the collec-
tion of different derivation tree fragments used for
the comparison of its instances, including POS tags
but not the words. For example, the inconsistency
type of the nucleus The word renaissance in (1ab) is
the pair of derivation tree fragments (a1,a2,a3) and
(b1,b2,b3) from (2ab), with the POS tags. This nu-

6Note however that it does not report -LRB- Rinascimento
in Italian -RRB- which is also a constituent, and so might be
expected to be compared. The lowest nonterminal above this
substring in the two derivation trees in Figure 2 is the NP in a5
and the FRAG in b5, thus exempting them from comparison. It
is exactly this sort of case that motivated the “external check”
discussed in Kulick et al. (2012), which we have not yet imple-
mented for IAA.
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Inconsistency type # Found # Accurate
Function tags only 53 53
POS tags only 18 13
Structural 129 122

Table 1: Inconsistency types found for system evaluation

cleus is then reported together with other nuclei that
use the same derivation fragments. In this case, it
therefore also reports the nucleus The term renais-
sance, which appears elsewhere in the corpus with
the two annotations from the different annotators as
in (3):

(3) a. NP

NP

The term

NP

renaissance

b. NP

The term renaissance

KBM reports The word renaissance and The term
renaissance together because they are inconsistently
annotated in exactly the same way, in spite of the dif-
ference in words. This grouping together of incon-
sistencies based on structural characteristics of the
inconsistency is critically important for understand-
ing the nature of the annotation inconsistencies.

It is the combination of these two characteristics -
(1) pinpointing of errors and (2) grouping by struc-
ture - that makes the system so useful for IAA. This
is an improvement over alternatives such as using
evalb (Sekine and Collins, 2008) for IAA. No other
system to our knowledge groups inconsistencies by
structural type, as KBM does. The use of the deriva-
tion tree fragments greatly lessens the multiple re-
porting of a single annotation difference, which is
a difficulty for using evalb (Manning and Schuetze,
1999, p. 436) or Dickinson and Meurers (2003).

4 Evaluation

4.1 English web text

We applied our approach to pre-release subset of
(Bies et al., 2012), dually annotated and used for
annotator training, from which the examples in Sec-
tions 2 and 3 are taken. It is a small section of the
corpus, with 4,270 words dually annotated.

For this work, we also took the further step of
characterizing the inconsistency types themselves,

allowing for an even higher-level view of the incon-
sistencies found. In addition to grouping together
different strings as having the same inconsistent an-
notation, the types can also be grouped together for
comparison at a higher level. For this IAA sample,
we separated the inconsistency types into the three
groups in Table 1, with the derivation tree fragments
differing (1) only on function tags, (2) only on POS
tags7, and (3) on structural differences. We man-
ually examined each inconsistency group to deter-
mine if it was an actual inconsistency found, or a
spurious false positive. As shown in Table 1, the pre-
cision of the reported inconsistencies is very high.
It is in fact even higher than it appears, because
the seven (out of 129) instances incorrectly listed
as structural problems were actually either POS or
function tag inconsistencies, that were discovered
by the system only by a difference in the derivation
tree fragment, and so were categorized as structural
problems instead of POS or function tag inconsis-
tencies. 8

Because of the small size of the corpus, there
are relatively few nuclei grouped into inconsistency
types. The 129 structural inconsistency types in-
clude 130 nuclei, with the only inconsistency type
with more than one nucleus being the type with The
word renaissance and The term renaissance, as dis-
cussed above. There is more grouping together in
the “POS tags only” case (37 nuclei included in
the 18 inconsistency types), and the “function tags
only” case (56 nuclei included in the 53 inconsis-
tency types).

4.2 Modern British English corpus

We also applied our approach to a supplemental sec-
tion (Kroch and Santorini, in preparation) to a cor-
pus of modern British English (Kroch et al., 2010),
part of a series of corpora used for research into lan-
guage change. The annotation style is similar to that
of the Penn Treebank, although with some differ-
ences. In this case, because neither the function tags
nor part-of-speech tags were part of the IAA work,

7As mentioned in footnote 4, although POS tags were left
out of Figure 2 for readability, they are included in the actual e-
trees. This allows POS differences in a similar syntactic context
to be naturally captured within the overall KBM framework.

8A small percentage of inconsistencies are the result of lin-
guistic ambiguities and not an error by one of the annotators.

553



we do not separate out the inconsistency types, as
done in Section 4.1.

The supplement section consisted of 82,701
words dually annotated. The larger size, as com-
pared with the corpus in Section 4.1, results in some
differences in the system output. Because of the
larger size, there are more substantial cases of dif-
ferent nuclei grouped together as the same inconsis-
tency type than in Section 4.1. The first inconsis-
tency type (sorted by number of nuclei) has 88 nu-
clei, and the second has 37 nuclei. In total, there are
1,532 inconsistency types found, consisting of 2,194
nuclei in total. We manually examined the first 20
inconsistency types (sorted by number of nuclei),
consisting in total of 375 nuclei. All were found to
be true instances of inconsistent annotation.

(4) a. NP

the ADJP

only true

thing

b. NP

the only true thing

(5) a. NP

their ADJP

only actual

argument

b. NP

their only actual argument

The trees in (4) and (5) show two of the 88 nu-
clei grouped into the first inconsistency type. As
with The word renaissance and The term renais-
sance in the English web corpus, nuclei with similar
(although not identical) words are often grouped into
the same inconsistency type. To repeat the point,
this is not because of any search for similarity of
the words in the nuclei. It arises from the fact that
the nuclei are annotated inconstantly in the same
way. Of course not all nuclei in an inconsistency
type have the same words. Nuclei found in this in-
consistency type include only true and only actual
as shown above, and also nuclei such as new En-
glish, greatest possible, thin square, only necessary.
Taken together, they clearly indicate an issue with
the annotation of multi-word adjective phrases.9

9Note that the inconsistencies discussed throughout this pa-
per are not taken from the the published corpora. These results
are only from internal annotator training files.

5 Future work

There are several ways in which we plan to improve
the current approach. As mentioned above, there is
a certain class of inconsistencies which KBM will
not pinpoint precisely, which requires adopting the
“external check” from Kulick et al. (2012). The ab-
straction on inconsistency types described in Sec-
tion 4 can also be taken further. For example, one
might want to examine in particular inconsistency
types that arise from PP attachment or that have to
do with the PRN function tag.

One main area for future work is the application
of this work to parser evaluation as well as IAA. For
this area, there is some connection to the work of
Goldberg and Elhadad (2010) and Dickinson (2010),
which are both concerned with examining depen-
dency structures of more than one edge. The con-
nection is that those works are focused on depen-
dency representations, and ithe KBM system does
phrase structure analysis using a TAG-like deriva-
tion tree, which strongly resembles a dependency
tree (Rambow and Joshi, 1997). There is much in
this area of common concern that is worth examin-
ing further.
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Abstract

Word sense disambiguation aims to identify
which meaning of a word is present in a given
usage. Gathering word sense annotations is a
laborious and difficult task. Several methods
have been proposed to gather sense annota-
tions using large numbers of untrained anno-
tators, with mixed results. We propose three
new annotation methodologies for gathering
word senses where untrained annotators are
allowed to use multiple labels and weight the
senses. Our findings show that given the ap-
propriate annotation task, untrained workers
can obtain at least as high agreement as anno-
tators in a controlled setting, and in aggregate
generate equally as good of a sense labeling.

1 Introduction
Word sense annotation is regarded as one of the most
difficult annotation tasks (Artstein and Poesio, 2008)
and building manually-annotated corpora with high-
quality sense labels is often a time- and resource-
consuming task. As a result, nearly all sense-tagged
corpora in wide-spread use are created using trained
annotators (Hovy et al., 2006; Passonneau et al.,
2010), which results in a knowledge acquisition bot-
tleneck for training systems that require sense labels
(Gale et al., 1992). In other NLP areas, this bot-
tleneck has been addressed through gathering anno-
tations using many untrained workers on platforms
such as Amazon Mechanical Turk (MTurk), a task
commonly referred to as crowdsourcing. Recently,
several works have proposed gathering sense anno-
tations using crowdsourcing (Snow et al., 2008; Bie-
mann and Nygaard, 2010; Passonneau et al., 2012b;

Rumshisky et al., 2012). However, these meth-
ods produce sense labels that are different from the
commonly used sense inventories such as WordNet
(Fellbaum, 1998) or OntoNotes (Hovy et al., 2006).
Furthermore, while Passonneau et al. (2012b) did
use WordNet sense labels, they found the quality
was well below that of trained experts.

We revisit the task of crowdsourcing word sense
annotations, focusing on two key aspects: (1) the
annotation methodology itself, and (2) the restric-
tion to single sense assignment. First, the choice in
sense inventory plays an important role in gathering
high-quality annotations; fine-grained inventories
such as WordNet often contain several related senses
for polysemous words, which untrained annotators
find difficult to correctly apply in a given context
(Chugur et al., 2002; McCarthy, 2006; Palmer et
al., 2007; Rumshisky and Batiukova, 2008; Brown
et al., 2010). However, many agreement studies
have restricted annotators to using a single sense,
which can significantly lower inter-annotator agree-
ment (IAA) in the presence of ambiguous or poly-
semous usages; indeed, multiple studies have shown
that when allowed, annotators readily assign multi-
ple senses to a single usage (Véronis, 1998; Mur-
ray and Green, 2004; Erk et al., 2009; Passonneau
et al., 2012b). Therefore, we focus on annotation
methodologies that enable workers to use as many
labels as they feel appropriate, asking the question:
if allowed to make labeling ambiguity explicit, will
annotators agree? Furthermore, we adopt the goal
of Erk et al. (2009), which enabled annotators to
weight each sense by its applicability to the given
context, thereby quantifying the ambiguity.
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This paper provides the following contributions.
First, we demonstrate that the choice in annotation
setup can significantly improve IAA and that the la-
bels of untrained workers follow consistent patterns
that enable creating high quality labeling from their
aggregate. Second, we find that the sense labeling
from crowdsourcing matches performance with an-
notators in a controlled setting.

2 Related Work
Given the potential utility of a sense-labeled corpus,
multiple studies have examined how to efficiently
gather high quality sense annotations. Snow et al.
(2008) had MTurk workers, referred to as Turkers,
disambiguate uses of “president.” While they re-
ported extremely high IAA (0.952), their analysis
was only performed on a single word.

Biemann and Nygaard (2010) and Biemann
(2012) construct a sense-labeled corpus by concur-
rently constructing the sense inventory itself. Turk-
ers used a lexical substitution task to identify valid
substitutions of a target word. The contexts for the
resulting substitutions were clustered based on their
word overlap and the resulting clusters were labeled
as senses. Biemann and Nygaard (2010) showed that
the number of sense definitions for a word in their
inventory was correlated with the number in Word-
Net, often with their inventory having fewer senses
by combining related meanings and omitting rare
meanings.

Hong and Baker (2011) evaluated multiple anno-
tation strategies for gathering FrameNet sense anno-
tations, ultimately yielding high (>90%) accuracy
for most terms after filtering. They highlight am-
biguous and polysemous usages as a notable source
of errors, which the present work directly addresses.

In the most related work, Passonneau et al.
(2012b) had Turkers annotate contexts using one or
more senses, with the requirement that a worker la-
bels all contexts. While they found that agreement
between all workers was low, their annotations could
be combined using the GLAD model (Whitehill et
al., 2000) to obtain good performance, though not
as good as trained annotators.

3 Annotation Methodologies
We consider three methodologies for gathering
sense labels: (1) the methodology of Erk et al.

(2009) for gathering weighted labels, (2) a multi-
stage strategy that uses both binary and Likert rat-
ings, and (3) MaxDiff, a paired choice format.

Likert Ratings Likert rating scales provide the
most direct way of gathering weighted sense labels;
Turkers are presented with all senses of a word and
then asked to rate each on a numeric scale. We adopt
the annotation guidelines of Erk et al. (2009) which
used a five-point scale, ranging from 1 to 5, indicat-
ing the sense does not apply or that it matches the
contextual usage exactly, respectively.

Select and Rate Recent efforts in crowdsourc-
ing have proposed multi-stage processes for accom-
plishing complex tasks, where efforts by one group
of workers are used to create new subtasks for other
workers to complete (Bernstein et al., 2010; Kittur
et al., 2011; Kulkarni et al., 2012). We propose a
two-stage strategy that aims to reduce the complex-
ity of the annotation task, referred to as Select and
Rate (S+R). First, Turkers are presented with all the
senses and asked to make a binary choice of which
senses apply. Second, a Likert rating task is created
for only those senses whose selection frequency is
above a threshold, thereby concentrating worker fo-
cus on a potentially smaller set of senses.

Our motivation for S+R is two-fold. First, the
sense definitions of certain words may be unclear
or misinterpreted by a minority of the Turkers, who
then systematically rate inapplicable senses as appli-
cable. The Select task can potentially remove such
noise and therefore improve both IAA and rating
quality in the subsequent Rate task. Second, while
the present study analyzes words with 4–8 senses,
we are ultimately interested in annotating highly
polysemous words with tens of senses, which could
present a significant cognitive burden for an annota-
tor to rate concurrently. Here, the Select stage can
potentially reduce the number of senses presented,
leading to less cognitive burden in the Rate stage.
Furthermore, as a pragmatic benefit, removing in-
applicable senses reduces the visual space required
for displaying the questions on the MTurk platform,
which can improve annotation throughput.

MaxDiff MaxDiff is an alternative to scale-based
ratings in which Turkers are presented with a only
subset of all of a word’s senses and then asked to se-
lect (1) the sense option that best matches the mean-
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add.v ask.v win.v argument.n interest.n paper.n different.a important.a

Erk et al. (2009) IAA 0.470 0.354 0.072 0.497 0.320 0.403 0.212 0.466
MTurk Likert IAA 0.336 0.212 0.129 0.250 0.209 0.522 0.030 0.240
MTurk Select 0.309 0.127 0.179 0.192 0.164 0.449 0.024 0.111
MTurk Rate 0.204 0.076 0.026 0.005 0.081 0.108 0.005 0.116
MTurk MaxDiff 0.493 0.353 0.295 - 0.349 0.391 0.220 0.511

Likert Mode 0.500 0.369 0.083 0.445 0.388 0.518 0.124 0.516
S+R Median 0.473 0.394 0.149 0.497 0.390 0.497 0.103 0.416
MTurk MaxDiff 0.508 0.412 0.184 - 0.408 0.496 0.115 0.501

Sampled Baseline 0.238 0.178 0.042 0.254 0.162 0.205 0.100 0.221
Random Baseline 0.239 0.186 0.045 0.249 0.269 0.200 0.110 0.269

Table 1: IAA per word (top) and IAA between aggregate labelings and the GWS annotators (bottom)

ing in the example context and (2) the sense option
that least matches (Louviere, 1991). In our setting,
we presented three options at a time for words with
fewer than seven senses, and four options for those
with seven senses. For a single context, multiple
subsets of the senses are presented and then their rel-
ative ranking is used to produce the numeric rating.
The final applicability ratings were produced using
a modification of the counting procedure of Orme
(2009). First, all sense ratings are computed as the
number of times the sense was rated best minus the
number of times rated least. Second, all negatively-
rated senses are assigned score of 1, and all posi-
tively ratings are normalized to be (1, 5].

4 Experiments

For measuring the difference in methodologies, we
propose three experiments based on different anal-
yses of comparing Turker and non-Turker annota-
tions on the same dataset, the latter of which we re-
fer to as the reference labeling. First, we measure
the ability of the Turkers individually by evaluat-
ing their IAA with the reference labeling. Second,
many studies using crowdsourcing combine the re-
sults into a single answer, thereby leveraging the
wisdom of the crowds (Surowiecki, 2005) to smooth
over inconsistencies in the data. Therefore, in the
second experiment, we evaluate different methods
of combining Turker responses into a single sense
labeling, referred to as an aggregate labeling, and
comparing that with the reference labeling. Third,
we measure the replicability of the Turker annota-
tions (Kilgarriff, 1999) using a sampling methodol-

ogy. Two equally-sized sets of Turker annotations
are created by randomly sampling without replace-
ment from the full set of annotations for each item.
IAA is calculated between the aggregate labelings
computed from each set. This sampling is repeated
50 times and we report the mean IAA as a measure
of the expected degree of replicability when anno-
tating using different groups of Turkers.

For the reference sense labeling, we use a subset
of the GWS dataset of Erk et al. (2009), where three
annotators rated 50 instances each for eight words.
For clarity, we refer to these individuals as the GWS
annotators. Given a word usage in a sentence, GWS
annotators rated the applicability of all WordNet 3.0
senses using the same Likert scale as described in
Section 3. Contexts were drawn evenly from the
SemCor (Miller et al., 1993) and SENSEVAL-3 lex-
ical substitution (Mihalcea et al., 2004) corpora.
GWS annotators were apt to use multiple senses,
with nearly all instances having multiple labels.

For each annotation task, Turkers were presented
with an identical set of annotation guidelines, fol-
lowed by methodology-specific instructions.1 To in-
crease the familiarity with the task, four instances
were shown per task, with all instances using the
same target word. Unlike Passonneau et al. (2012b),
we did not require a Turker to annotate all contexts
for a single word; however many Turkers did com-
plete the majority of instances. Both the Likert, Se-
lect, and Rate tasks used ten Turkers each. Senses
were passed from Select to Rate if they received at

1Full guidelines are available at http://cs.ucla.
edu/˜jurgens/sense-annotation/
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least three votes. For MaxDiff, we gathered at least
3n annotations per context where n is the number of
senses of the target word, ensuring that each sense
appeared at least once. Due to resource limitations,
we omitted the evaluation of argument.n for MaxD-
iff. Following the recommendation of Kosinski et al.
(2012), Turkers were paid $0.05USD for each Lik-
ert, Select, and Rate task. For MaxDiff, due to their
shorter nature and comparably high volume, Turkers
were paid $0.03USD per task.

To ensure fluency in English as well as reduce the
potential for low-quality results, we prefaced each
task with a simple test question that asked the Turker
to pick out a definition of the target word from a list
of four options. The incorrect options were selected
so that they would be nonsensical for anyone famil-
iar with the target word. Additionally, we rejected
all Turker responses where more than one option
was missing a rating. In the case of missing ratings,
we infer a rating of 1. Approximately 20-30% of the
submissions were rejected by these criteria, under-
scoring the importance of filtering.

For measuring IAA, we selected Krippendorff’s
α (Krippendorff, 1980; Artstein and Poesio, 2008),
which is an agreement coefficient that handles miss-
ing data, as well as different levels of measurement,
e.g., nominal data (Select and MaxDiff) and interval
data (Likert and Rate).2 Krippendorff’s α adjusts for
chance, ranging between [−1, 1] for nominal data
and (−1, 1] for interval data, where 1 indicates per-
fect agreement and -1 indicates systematic disagree-
ment; random labels would have an expected α of
zero. We treat each sense and instance combination
as a separate item to rate.

5 Results
The results of the first experiment appear in the top
of Table 1. Two important aspects emerge. First, the
word itself plays a significant role in IAA. Though
Erk et al. (2009) reported a pair-wise IAA of the
GWS annotators between 0.466 and 0.506 using
Spearman’s ρ, the IAA varies considerably between
words for both Turkers and GWS annotators when
measured using Krippendorff’s α.

Second, the choice of annotation methodology

2We note that although the ratings are technically given on
an ordinal scale (ranks), we use the interval scale to allow com-
parison with rational ratings from the aggregate solutions.

significantly impacts IAA. While both the Likert and
S+R tasks have lower IAA than the GWS annota-
tors do, the MaxDiff annotators achieve higher IAA
for almost all words. We hypothesize that compar-
ing senses for applicability is an easier task for the
untrained worker, rather than having to construct a
mental scale of what constitutes the applicability of
each sense. Surprisingly, the binary Select task has
a lower IAA than the more complex the Likert task.
An analysis of the duration of median task comple-
tion times for the Likert and Select tasks showed lit-
tle difference (with the exception of paper.n, which
was on average 50 second faster for Likert ratings),
suggesting that both tasks are equally as cognitively
demanding. In addition, the Rate task has the lowest
IAA, despite its similarity to the Likert task. An in-
spection of the annotations shows that the full rating
scale was used, so the low value is not due to Turk-
ers always using the same rating, which would yield
an IAA near chance.

In the second experiment, we created a aggregate
sense labeling and compared its IAA with the GWS
annotators, shown in Table 1 (bottom). For scale-
based ratings, we considered three arithmetic oper-
ations for selecting the final rating: mode, median,
and mean. We found that the mode yielded the high-
est average IAA for the Likert ratings and median for
S+R; however, the differences in IAA using each op-
eration were often small. We compare the IAA with
GWS annotators against two baselines: one gener-
ated by sampling from the GWS annotators’ rating
distribution, and a second generated by uniformly
sampling in [1, 5]. By comparison, the aggregate la-
belings have a much larger IAA than the baselines,
which is often at least as high as the IAA amongst
the GWS annotators themselves, indicating that the
Turkers in aggregate are capable of producing equiv-
alent ratings. Of the three annotation methodolo-
gies, MaxDiff provides the highest IAA both within
its annotators and with its aggregate key. Surpris-
ingly, neither the Likert or S+R aggregate labeling
appears better than the other.

Based on the second experiment, we measured
the average IAA across all words between the ag-
gregate Likert and MaxDiff solutions, which was
0.472. However, this IAA is significantly affected by
the annotations for win.v and different.a, which had
the lowest IAA among Turkers (Table 1) and there-
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Corpus Sense Inventory IAA Measurement

SensEval-1
(Kilgarriff and Rosenzweig, 2000)

HECTOR 0.950 Replicability experiment
(Kilgarriff, 1999)

OntoNotes (Hovy et al., 2006) OntoNotes ≥ 0.90† Pair-wise agreement
SALSA (Burchardt et al., 2006) FrameNet 0.86 Percentage agreement
SensEval-2 Lexical Sample
(Kilgarriff, 2002)

WordNet 1.7 0.853, 0.710, 0.673‡ Adjudicated Agreement

GWS with MaxDiff Replicability� WordNet 3.0 0.815 Krippendorff’s α
SemCor (Fellbaum et al., 1998) WordNet 1.6 0.786, 0.57? Percentage agreement
SensEval-3 (Snyder and Palmer, 2004) WordNet 1.7 0.725 Percentage agreement
MASC (Passonneau et al., 2012a) WordNet 3.1 -0.02 to 0.88/ Krippendorff’s α

with MASI (Passonneau et al., 2006)
MASC, single phase reported
in Passonneau et al. (2010)

WordNet 3.1 0.515 Krippendorff’s α

GWS with Likert Replicability WordNet 3.0 0.409 Krippendorff’s α
GWS with Erk et al. (2009) annotators WordNet 3.0 0.349 Krippendorff’s α

† Not all words achieved this agreement.
‡ Kilgarriff (2002) uses a multi-stage agreement procedure where two annotators rate each item, and in the case of disagree-

ment, a third annotator is added. If the third annotator agrees with either of the first two, the instance is marked as a case
of agreement. However, the unadjudicated agreement for the dataset was 67.3 measured using pair-wise agreement. A
re-annotation by Palmer et al. (2004) produced a similar pair-wise agreement of 71.0.

? Tou et al. (1999) perform a re-annotation test of the same data using student annotators, finding substantially lower agreement
� Excludes agreement for argument.n, which was not annotated
/ IAA ranges for 37 words; no corpus-wide IAA is provided.

Table 2: IAA for sense-annotated corpora

fore produce noisy aggregate solutions. When win.v
and different.a are excluded, the agreement between
aggregate Likert and MaxDiff solutions is 0.649.
While this IAA is still moderate, it suggests that
Turkers can still produce similar annotations even
when using different annotation methodologies.

For the third experiment, replicability is reported
as the average IAA between the sampled aggregate
labelings for all annotated words. Table 2 shows this
IAA for Likert and MaxDiff methodologies in com-
parison to other sense annotation studies. Krippen-
dorff (2004) recommends that an α of 0.8 is nec-
essary to claim high-quality agreement, which is
achieved by the MaxDiff methodology. In contrast,
the average IAA between sampled Likert ratings is
significantly lower, though the methodology does
achieve an α of 0.812 for paper.n. However, when
the two words with the lowest IAA, win.v and differ-
ent.a, are excluded, the average α increases to 0.880
for MaxDiff and 0.649 for Likert. Overall, these re-
sults suggest that MaxDiff can generate highly repli-
cable annotations with agreement on par with that of
other high-quality sense-labeled corpora. Further-
more, the Likert methodology may in aggregate still

produce moderately replicable annotations in some
cases.

6 Conclusion and Future Work

Word sense disambiguation is a difficult task, both
for humans and algorithms, with an important bot-
tleneck in acquiring large sense annotated corpora.
As a potential solution, we proposed three annota-
tion methodologies for crowdsourcing sense labels.
Importantly, we relax the single sense assignment
restriction in order to let annotators explicitly note
ambiguity through weighted sense ratings. Our find-
ings reveal that moderate IAA can be obtained using
MaxDiff ratings, with IAA surpassing that of anno-
tators in a controlled setting. Furthermore, our find-
ings showed marked differences in rating difficulty
per word, even in the weighted rating setting. In
future work, we will investigate what factors influ-
ence annotation difficulty in order to improve IAA
to what is considered expert levels, drawing from
existing work analyzing difficulty in the single label
setting (Murray and Green, 2004; Passonneau et al.,
2009; Cinková et al., 2012).
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Abstract 

To solve data sparsity problem, recently there 
has been a trend in discriminative methods of 
NLP to use representations of lexical items 
learned from unlabeled data as features. In 
this paper, we investigated the usage of word 
representations learned by neural language 
models, i.e. word embeddings. The direct us-
age has disadvantages such as large amount of 
computation, inadequacy with dealing word 
ambiguity and rare-words, and the problem of 
linear non-separability. To overcome these 
problems, we instead built compound features 
from continuous word embeddings based on 
clustering. Experiments showed that the com-
pound features not only improved the perfor-
mances on several NLP tasks, but also ran 
faster, suggesting the potential of embeddings.  

1 Introduction 

Supervised learning methods have achieved great 
successes in the field of Natural Language Pro-
cessing (NLP). However, in practice most methods 
are usually limited by the problem of data sparsity, 
since it is impossible to obtain sufficient labeled 
data for all NLP tasks. In these situations semi-
supervised learning can help to make use of both 
labeled data and easy-to-obtain unlabeled data. 

The semi-supervised framework that is widely 
applied to NLP is to first learn word representa-
tions, which are feature vectors of lexical items, 
from unlabeled data and then plug them into a su-
pervised system. These methods are very effective 
in utilizing large-scale unlabeled data and have 
successfully improved performances of state-of-

the-art supervised systems on a variety of tasks 
(Koo et al., 2008; Huang and Yates, 2009; Täck-
ström et al., 2012).  

With the development of neural language mod-
els (NLM) (Bengio et al., 2003; Mnih and Hinton, 
2009), recently researchers become interested in 
word representations (also called word embed-
dings) learned by these models. Word embeddings 
are dense low dimensional real-valued vectors. 
They are composed of some latent features, which 
are expected to capture useful syntactic and seman-
tic properties. Word embeddings are usually served 
as the first layer in deep learning systems for NLP 
(Collobert and Weston, 2008; Socher et al., 2011a, 
2011b) and help these systems perform compara-
bly with the state-of-the-art models based on hand-
crafted features. They also have been directly 
added as features to the state-of-the-art models of 
chunking and NER, and have achieved significant 
improvements (Turian et al. 2010). 

Although the direct usage of continuous embed-
dings has been proved to be an effective method 
for enhancing the state-of-the-art supervised mod-
els, it has some disadvantages, which made them 
be out-performed by simpler Brown cluster fea-
tures (Turian et al, 2010) and made them computa-
tionally complicated. Firstly, embeddings of rare 
words are insufficiently trained since they are only 
updated few times and are close to their random 
initial values. As shown in (Turian et al, 2010), this 
is the main reason that models with embedding 
features made more errors than those with Brown 
cluster features. Secondly, in NLMs, each word 
has its unique representation, so it is difficult to 
represent different senses for ambiguous words. 
Thirdly, word embeddings are unsuitable for linear 
models in some tasks as will be proved in Section 
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4.2. This is possibly because in these tasks, either 
the target labels are correlated with combinations 
of different dimensions of word embeddings, or 
discriminative information may be coded in differ-
ent intervals in the same dimension. So treating 
embeddings directly as inputs to a linear model 
could not fully utilize them. Moreover, since em-
beddings are dense vectors, it will introduce large 
amount of computations when they are directly 
used as inputs, making the method impractical. 

In this paper, we first introduced the idea of 
clustering embeddings to overcome the last two 
disadvantages discussed above. The high-
dimensional cluster features make samples from 
different classes better separated by linear models. 
And models with these features can still run fast 
because the clusters are sparse and discrete.  

Second, we proposed the compound features 
based on clustering. Compound features, which are 
conjunctive features of neighboring words, have 
been widely used in NLP models for improving the 
performances because they are more discriminative. 
Compound features of embeddings can also help a 
model to better predict labels associated with rare-
words and ambiguous words, because compound 
features composed of embeddings of nearby words 
can help to better describe the property of these 
words. Compound features are difficult to build on 
dense embeddings. However they are easy to in-
duce from the sparse embedding clusters proposed 
in this paper.   

Experiments on chunking and NER showed that 
based on the same embeddings, the compound fea-
tures managed to achieve better performances. 
Moreover, we proposed analyses to reveal the rea-
sons for the improvements of embedding-clusters 
and compound features. They suggest that these 
features can better deal with rare-words and word 
ambiguity, and are more suitable for linear models. 

In addition, although Brown clustering was con-
sidered better in (Turian et al 2010), our experi-
ment results and comparisons showed that our 
compound features from embedding clustering is at 
least comparable with those from Brown clustering. 
Since embeddings can greatly benefit from the im-
provement and developing of deep learning in the 
future, we believe that our proposed method has a 
large space of performance growth and will benefit 
more applications in NLP. 

In the rest of the paper, Section 2 introduces 
how compound embedding features were obtained. 

Section 3 gives experimental results. In Section 4, 
we give analysis about the advantages of com-
pound features. Section 5 gives the conclusions. 

2 Clustering of Word Embeddings  

2.1 Learning Word Embeddings 

Word embeddings in this paper were trained by 
NLMs (Bengio et al., 2003). The model predicts 
the scores of probabilities of words given their 
context information in the sentences. It first con-
verts the current word and its context words (e.g. 
n-1 words before it as in n-gram models) into em-
beddings. Then these embeddings are put together 
and propagate forward on the network to compute 
the score of current word. After minimizing the 
loss on training data, embeddings are learned and 
can be further used as smoothing representations 
for words. 

2.2 Clustering of embeddings 

In order to get compound features of embeddings, 
we first induce discrete clusters from the embed-
dings. Concretely, the k-means clustering algo-
rithm is used. Each word is treated as a single 
sample. A cluster is represented as the mean of the 
embeddings of words assigned to it. Similarities 
between words and clusters are measured by Eu-
clidean distance. As discussed and experimented 
later, different numbers of ks contain information 
of different granularity. So we combine clustering 
results achieved by different ks as features to better 
utilize the embeddings. 

2.3 Compound features 

Based on embedding clusters, more powerful com-
pound features can be built. Compound features 
are conjunctions between basic features of words 
and their contexts, which are widely used in NLP. 
Koo et al. (2008) also observed that compound 
features of Brown clusters achieved more im-
provements on parsing. 
    It is also necessary to build compound embed-
ding features since they can better deal with rare-
words and ambiguous words. For example, alt-
hough embedding of a rare-word is not fully 
trained and hence inaccurate, embeddings of its 
context words can still be accurate as long as they 
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are not rare and are fully trained. So we could uti-
lize the combination of embeddings before and 
after the word to predict its tag correctly. We con-
ducted analysis to verify our theory in Section4. 

We combined the compound features together 
with other state-of-the-art human-craft features in 
supervised models. Examples of the resulted fea-
ture templates in chunking and NER are shown in 
Table 1 & 2. The feature 

1101 ccyy −−
 in the last 

row is an example of compound feature made up 
of the embedding clusters of words before and af-
ter current word. Compound feature extraction can 
similarly be applied to form compound features of 
Brown clusters. For example, Brown clusters can 
replace embedding clusters in 3th row of Table 1. 

Words }1,0{,1}2:2{, , ∈−−∈ iiiii www  

POS }2,1{,1}2:2{, , −∈−−∈ iiiii ppp  

Cluster 11}1,0{,1}2:2{, ,, ccccc iiiii −∈−−∈
 

Transition },,,{ 1100001 cccpwyy −−
 

Table 1: Chunking features. Cluster features are suitable 
for both Brown clusters and embedding clusters. Sym-

bol iy is the tag predicted on word iw . 

Words }1,0{,1}2:2{, , ∈−−∈ iiiii www  

Pre/suffix 1:
}4:1{,0

:1
}4:2{,0 , −−

∈∈
i
i

i
i ww  

Orthography ( ) ( )00 , wCapwHyp  
POS }2,1{,1}2:2{, , −∈−−∈ iiiii ppp  

Chunking }2,1{,1}2:2{, , −∈−−∈ iiiii bbb  

Cluster 11}1,0{,1}2:2{, ,, ccccc iiiii −∈−−∈
 

Transition },,,{ 1100001 cccpwyy −−
 

Table 2: NER features. Hyp indicates if word contains 
hyphen and Cap indicates if first letter is capitalized.  

3 Experiments 

3.1 Experimental settings 

We tested our compound features on the same 
chunking (CoNLL2000) and NER (CoNLL2003) 
tasks in (Turian et al., 2010). The Brown cluster 
features were used for comparison, which shared 
the same feature template used by clusters of em-
beddings. To compare with the work of (Turian et 
al, 2010), which aimed to solve the same problem 
but using embedding directly, we used the same 
word embeddings (CW 50) and Brown clusters 
(1000 clusters) they provided. The embeddings in 
(Turian et al, 2010) are trained on RCV corpus, 
while the CoNLL2000 data is a part of the WSJ 
corpus. Since we believe that word representations 

trained on similar domain may better help to im-
prove the results, we also used embeddings and 
Brown clusters trained on unlabeled WSJ data 
from (Nivre et al, 2007) for comparison. 

Moreover, we wish to find out whether our 
method extends well to languages other than Eng-
lish. So we conducted experiments on Chinese 
NER, where large amount of training data exists, 
which makes improving accuracies more difficult. 
We used data from People’s Daily (Jan.-Jun. 1998) 
and converted them following the style of Penn 
CTB (Xue et al, 2005). Data from April was cho-
sen as test set (1,309,616 words in 55,177 sentenc-
es), others for training (6,119,063 words in 
255,951 sentences). The Chinese word representa-
tions were trained on Chinese Wikipedia until 
March 2011. The features used in Chinese NER 
are similar to those in English, except for the or-
thography, pre/suffixes, and chunking features. 

We did little pre-processing work for the train-
ing of word representations on WSJ data. The da-
tasets were tokenized and capital words were kept. 
For training of Chinese Wikipedia, we retained the 
bodies of all articles and replaced words with fre-
quencies lower than 10 as an “UK_WORD” token. 
On each dataset, we induced embeddings with 64 
dimensions based on 7-gram models and 1000 
Brown clusters. The method in (Schwenk, 2007) 
was used to accelerate the training processes of 
NLMs. All the NLMs were trained for 5 epochs.  

For clustering of embeddings we choose k=500 
and 2500 since such combination performed best 
on development set as shown in the next section. 
We chose the Sofia-ml toolkit (Sculley 2010) for 
clustering of embeddings in order to save time. 

In the experiments CRF models were used and 
were optimized by ASGD (implemented by Léon 
Bottou). For comparison we re-implemented the 
direct usage of embeddings in (Turian et al, 2010) 
with CRFsuite (Okazaki, 2007) since their features 
contain continuous values. 

3.2 Performances 

Table 3 shows the chunking results. The results 
reported in (Turian et al. 2010) were denoted as 
“direct”. Based on the same word representations, 
our compound features got better performances in 
all cases. The embedding features trained on unla-
beled WSJ data yield further improvements, show-
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ing that word representations from similar domains 
can better help the supervised tasks. 

System Direct Compound 
Baseline 93.75 
+Embedding (RCV) 94.10 94.19 
+Brown (RCV) 94.11 94.24 
+Brown&Emb (RCV) 94.35 94.42 
+Embedding (WSJ) 94.20 94.37 
+Brown (WSJ) 94.25 94.36 
+Brown&Emb (WSJ) 94.43 94.58 

Table 3:  F1-scores of chunking 
In the experiments of NER, first we evaluated 

how the numbers of clusters k will affect the per-
formances on development set (Figure 1). The re-
sults showed that both the cluster features 
(excluding all compound embedding features) and 
compound features could achieve better results 
than direct usage of the same embeddings. It also 
showed that the performances did not vary much 
when k was between 500 and 3000. When k=2500, 
the result was a little higher than others. We finally 
chose combination of k=500 and 2500, which 
achieved best results on development set.  

 
Figure 1: Relation between numbers of clusters k and 

performances on development set. 
The performances of NER on test set are shown 

in Table 4. Our baseline is slightly lower than that 
in (Turian et al, 2010), because the first-order CRF 
cannot utilize context information of NE tags. 
Despite of this, same conclusions with chunking 
held.  

System Direct Compound 
Baseline 83.78 
+Embedding 87.38 88.46 
+Brown 88.14 88.23 
+Brown&Embedding 88.85 89.06 

Table 4:  F1-scores of English NER on test data 
Performances on Chinese NER are shown in 

Table 5. Similar results were observed as in Eng-
lish NER, showing that our method extends to oth-
er languages as well. 

System Direct Compound 
Baseline 88.24 
+Embedding 89.98 90.37 
+Brown 90.24 90.55 
+Brown&Embedding 90.66 90.96 

Table 5:  F1-scores of Chinese NER on test data 
Above results gave evidences that although clus-

tering embeddings may lose some information, the 
derived compound features did have better perfor-
mances. The compound features can also improve 
the performances of Brown clusters, but not as 
much as they did on embeddings. And the combi-
nation of embedding-clusters and Brown-clusters 
could further improve the performances, since they 
made use of different type of context information.  

The compound features also reduced the time 
cost of using embedding features. For example, the 
time for tagging one sentence in English NER was 
reduced from 5.6 ms to 1.6 ms, shown in Table 6. 

Embedding Time (ms) 
Baseline 1.2 
Embeddings (direct) 5.6 
Embeddings (compound) 1.6 
Table 6:  Running time of different features  

4 Analysis  

Our compound embedding features greatly out-
performed the direct usage of same embeddings on 
English NER. In this section we conducted anal-
yses to show the reasons for the improvements. 

4.1 Rare-words and ambiguous words 

To show the compound features have stronger abil-
ities to handle rare words, we counted the numbers 
of errors made on words with different frequencies 
on unlabeled data. Here the word frequencies are 
from the results of Brown clustering provided by 
(Turian et al. 2010). We compared our compound 
embedding features with direct usage of embed-
dings as well as Brown clusters, which is believed 
to work better on rare words. Figure 2(a) shows 
that the compound features indeed resulted in few-
er errors than the two baseline methods in most 
cases. Errors of embeddings occurred on words 
with frequencies lower than 2K and those in the 
range of 16 to 256 were reduced by 10.55% and 
24.44%, respectively. 

Our compound features also reduced the errors 
caused by ambiguous words, as shown in Figure 
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2(b), where the numbers of senses for a word are 
measured by the numbers of different POS tags it 
has in Penn Treebank. 12.1% of the errors on am-
biguous words were reduced, comparing to 8.4% 
of the errors on unambiguous ones. 

 
(a) 

 
(b) 

Figure 2: Errors incurred on words with different fre-
quencies (a) and ambiguous words (b) in NER. 

4.2 Linear separability of embeddings 

Another reason for the good performances of com-
pound features on NER is that they made linear 
models better separate named entities (NEs) and 
non-NEs, which are more difficult to be linearly 
separated when embeddings are directly used as 
features. Here we designed an experiment to prove 
this. Based on training data of CoNLL2003, a clas-
sification task was built to tell whether a word be-
longs to NE or not. Linear SVM and a non-linear 
model Multilayer Perceptron (MLP) were used to 
build the classifiers. As shown in Table 7, when 
embeddings were directly used as features, MLP 
performed much better than linear SVM. And the 
linear model was under-fitting on this task since it 
had similar accuracies on both training set and de-
velopment set. Above observations showed that 
linear models could not separate NEs and non-NEs 
well in the space of embeddings. 

When clusters of embeddings were used as fea-
tures, the accuracies of linear models increased 
even when there were only one or two non-zero 

features for each sample. At the same time the per-
formances of MLP decreased because of the loss of 
information during clustering. The gaps between 
accuracies of linear models and non-linear ones 
decreased in the spaces of clusters, showing that 
cluster features are more suitable for linear models. 
At last, the compound features made the linear 
model out-perform all non-linear ones, since extra 
context information could be utilized. 

Embeddings Models Accuracy  
 direct linear 94.38 
 direct MLP 96.87 
 cluster 1000 linear 95.31 
 cluster 1000 MLP 95.32 
 cluster 500+2500 linear 96.10 
 cluster 500+2500 MLP 96.02 
 compound linear 97.30 

Table 7:  Performances of linear and non-linear models 
on development set with different embedding features. 

5 Conclusion and perspectives 

In this paper, we first introduced the idea of clus-
tering embeddings and then proposed the com-
pound features based on clustering, in order to 
overcome the disadvantages of the direct usage of 
continuous embeddings. Experiments showed that 
the compound features built on the same original 
word representation features (either embeddings or 
Brown clusters) achieve better performances on the 
same tasks. Further analyses showed that the com-
pound features reduced errors on rare-words and 
ambiguous words and could be better utilized by 
linear models. 

The usage of word embeddings also has some 
limitations, e.g. they are weak in capturing struc-
tural information of languages, which is necessary 
in NLP. In the future, we will research on task-
specific representations for sub-structures, such as 
phrases and sub-trees based on word embeddings 
and documents representations (Xu et al., 2012). 
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Abstract

In the field of Intelligent User Interfaces, Spo-
ken Dialogue Systems (SDSs) play a key role
as speech represents a true intuitive means
of human communication. Deriving informa-
tion about its quality can help rendering SDSs
more user-adaptive. Work on automatic esti-
mation of subjective quality usually relies on
statistical models. To create those, manual
data annotation is required, which may be per-
formed by actual users or by experts. Here,
both variants have their advantages and draw-
backs. In this paper, we analyze the relation-
ship between user and expert ratings by in-
vestigating models which combine the advan-
tages of both types of ratings. We explore two
novel approaches using statistical classifica-
tion methods and evaluate those with a pre-
existing corpus providing user and expert rat-
ings. After analyzing the results, we eventu-
ally recommend to use expert ratings instead
of user ratings in general.

1 Introduction and Motivation

In human-machine interaction it is important that
user interfaces can adapt to the specific requirements
of its users. Handicapped persons or angry users, for
example, have specific needs and should be treated
differently than regular users.

Speech is a major component of modern user in-
terfaces as it is the natural means of human com-
munication. Therefore, it seems logical to use Spo-
ken Dialogue Systems (SDS) as part of Intelligent
User Interfaces enabling speech communication of
different complexity reaching from simple spoken

commands up to complex dialogues. Besides the
spoken words, the speech signal also may be used
to acquire information about the user state, e.g.,
about their emotional state (cf., e.g., (Polzehl et
al., 2011))). By additional analysis of the human-
computer-dialogues, even more abstract informa-
tion may be derived, e.g., the quality of the system
(cf., e.g., (Engelbrecht and Möller, 2010)). System
quality information may be used to adapt the sys-
tem’s behavior online during the ongoing dialogue
(cf. (Ultes et al., 2012)).

For determining the quality of Spoken Dialogue
Systems, several aspects are of interest. Möller et
al. (2009) presented a taxonomy of quality criteria.
They describe quality as a bipartite issue consisting
of Quality of Service (QoS) and Quality of Experi-
ence (QoE). Quality of Service describes objective
criteria like dialogue duration or number of turns.
While these are well-defined items that can be de-
termined easily, Quality of Experience, which de-
scribes the user experience with subjective criteria,
is more vague and without a sound definition, e.g.,
User Satisfaction (US).

Subjective aspects like US are either determined
by using questionnaires like SASSI (Hone and Gra-
ham, 2000) or the ITU-standard augmented frame-
work for questionnaires (Möller, 2003), or by us-
ing single-valued ratings, i.e., a rater only applies
one single score. In general, two major categories
of work on determining single-valued User Satisfac-
tion exist. The satisfaction ratings are applied either

• by users during or right after the dialogue or

• by experts by listening to recorded dialogues.

569



In this work, users or user raters are people who
actually perform a dialogue with the system and ap-
ply ratings while doing so. There is no constraint
about their expertise in the field of Human Com-
puter Interaction or Spoken Dialogue Systems: They
may be novices or have a high expertise. With ex-
perts or expert raters, we refer to people who are
not participating in the dialogue thus constituting
a completely different set of people. Expert raters
listen to recorded dialogues after the interactions
and rate them by assuming the point of view of the
actual person performing the dialogue. These ex-
perts are supposed to have some experience with di-
alogue systems. In this work, expert raters were “ad-
vanced students of computer science and engineer-
ing” (Schmitt et al., 2011a).

For User Satisfaction, ratings applied by the users
seem to be clearly the better choice over ratings ap-
plied by third persons. However, determining true
User Satisfaction is only possible by asking real
users interacting with the system. Ideally, the ratings
are applied by users talking to a system employed in
the field, e.g., commercial systems, as these users
have real concerns.

For such Spoken Dialogue Systems, though, it
is not easy to get users to apply quality ratings
to the dialogue – especially for each system-user-
exchange. The users would have to rate either by
pressing a button on the phone or by speech, which
would significantly influence the performance of the
dialogue. Longer dialogues imply longer call dura-
tions which cost money. Further, most callers only
want to quickly get some information from the sys-
tem. Therefore, it may be assumed that most users
do not want to engage in dialogues which are ar-
tificially made longer. This also inhabits the risk
that users who participated in long dialogues do
not want to call again. Therefore, collecting rat-
ings applied by users are considered to be expensive.
One possible way of overcoming the problem of rat-
ing input would be to use some special installation
which enables the users to provide ratings more eas-
ily (cf. (Schmitt et al., 2011b)). However, this is also
expensive and the system’s usability would be very
restricted. Further, this setup could most likely only
be used in a lab situation.

Expert raters, on the other hand, are able to simply
listen to the recorded dialogues and to apply ratings,

e.g., by using a specialized rating software. This
process is much easier and does not require the same
amount of effort needed for acquiring user ratings.
Further, as already pointed out, we refer to experts
as people who have some basic understanding of di-
alogue systems but are not required to be high-level
experts in the field. That is why we believe that these
people can be found easily.

As both categories of ratings have their advan-
tages and disadvantages, this contribution aims at
learning about the differences and similarities of
user and expert ratings with the ultimate goal of
either being able to predict user ratings more effi-
ciently or of advocating for replacing the use of user
ratings by using only expert ratings in general.

Therefore, this work analyzes the relation be-
tween quality ratings applied by user and expert
raters by analyzing approaches which take advan-
tage of both categories: Using the less expensive
rating process with expert raters and still predict-
ing real User Satisfaction ratings. Moreover, this
works’ goal is to shed light on the question whether
information about one rating (in this case the less
expensive expert ratings) may be used to predict the
other rating (the more expensive user ratings). For
this, we present two approaches applying two differ-
ent statistical classification methods for a showcase
corpus. Results of both methods are compared to a
given baseline.

The remainder of this paper is organized as fol-
lows. First, we give a brief overview of work done
in both categories (user ratings vs. expert ratings) in
Section 2 and present our choice of data the analy-
sis in this paper is based on in Section 3. Further,
evaluation metrics are illustrated in Section 4 and
approaches on facilitating prediction of user rater
scores by expert rater information are presented in
Section 5 followed by an evaluation and discussion
of the results in Section 6.

2 Significant Related Work

Predicting User Satisfaction for SDSs has been in
the focus of research for many years, most famously
the PARADISE framework by Walker et al. (1997).
The authors assume a linear dependency between
quantitative parameters derived from the dialogue
and US, modeling this dependency using linear re-
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gression. Unfortunately, for generating the regres-
sion model, weighting factors have to be computed
for each system anew. This generates high costs
as dialogues have to be performed with real users
where each user further has to complete a question-
naire after completing the dialogue. Moreover, in
the PARADISE framework, only quality measure-
ment for the whole dialogue (or system) is allowed.
However, this is not suitable for using quality infor-
mation for online adaption of the dialogue (cf. (Ultes
et al., 2012)). Furthermore, PARADISE relies on
questionnaires while we focus on work using single-
valued ratings.

Numerous work on predicting User Satisfaction
as a single-valued rating task for each system-user-
exchange has been performed in both categories.
This work is briefly presented in the following.

2.1 Expert Ratings

Higashinaka et al. (2010a) proposed a model to pre-
dict turn-wise ratings for human-human dialogues
(transcribed conversation) and human-machine di-
alogues (text from chat system). Ratings ranging
from 1-7 were applied by two expert raters label-
ing “Smoothness”, “Closeness”, and “Willingness”
not achieving a Match Rate per Rating (MR/R)1 of
more than 0.2-0.24. This results are only slightly
above the random baseline of 0.14. Further work
by Higashinaka et al. (2010b) uses ratings for over-
all dialogues to predict ratings for each system-
user-exchange. Again, evaluating in three user
satisfaction categories “Smoothness”, “Closeness”,
and “Willingness” with ratings ranging from 1-7
achieved best performance of 0.19 MR/R.

Interaction Quality (IQ) has been introduced by
Schmitt et al. (2011a) as an alternative performance
measure to User Satisfaction. In their terminology,
US ratings are only applied by users. As their pre-
sented measure uses ratings applied by expert raters,
a different term is used. Each system-user exchange
was annotated by three different raters using strict
guidelines. The ratings ranging from 1-5 are used
as target variable for statistical classifiers using a set
of automatically derivable interaction parameters as
input. They achieve a MR/R of 0.58.

1MR/R is equal to Unweighted Average Recall (UAR)
which is explained in Section 4.

2.2 User Ratings

An approach presented by Engelbrecht et al. (2009)
uses Hidden Markov Models (HMMs) to model the
SDS as a process evolving over time. User Satisfac-
tion was predicted at any point within the dialogue
on a 5 point scale. Evaluation was performed based
on labels the users applied themselves during the di-
alogue.

Hara et al. (2010) derived turn level ratings from
an overall score applied by the users after the dia-
logue. Using n-gram models reflecting the dialogue
history, the achieved results for recognizing User
Satisfaction on a 5 point scale showed to be hardly
above chance.

Work by Schmitt et al. (2011b) deals with deter-
mining User Satisfaction from ratings applied by the
users themselves during the dialogues. A statistical
classification model was trained using automatically
derived interaction parameter to predict User Satis-
faction for each system-user-exchange on a 5-point
scale achieving an MR/R of 0.49.

3 Corpus

The corpus used by Schmitt et al. (2011b) not only
contains user ratings but also expert ratings which
makes it a perfect candidate for our research pre-
sented in this paper. Adopting the terminology by
Schmitt et al., user ratings are described as User Sat-
isfaction (US) whereas expert ratings are referred to
with the term Interaction Quality (IQ) (cf. (Schmitt
et al., 2011a)). The data used for all experiments
of this work was collected by Schmitt et al. (2011b)
during a lab user study with 38 users in the domain
of the “Let’s Go Bus Information” system (Raux et
al., 2006) of the Carnegie Mellon University in Pitts-
burgh. 128 calls were collected consisting of a total
of 2,897 system-user exchanges. Both ratings, IQ
and US, are at a scale from 1 to 5 where 1 stands for
“extremely unsatisfied” and 5 for “satisfied”. Each
dialogue starts with a rating of 5 as the user is ex-
pected to be satisfied in the beginning because noth-
ing unsatisfying has happened yet.

Further, the corpus also provides interaction pa-
rameters which may be used as input variables
for the IQ and US recognition models. These
parameters have been derived automatically from
three dialogue modules: Automatic Speech Recog-
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Figure 1: The three different modeling levels representing the interaction at exchange en: The most detailed exchange
level, comprising parameters of the current exchange; the window level, capturing important parameters from the
previous n dialog steps (here n = 3); the dialog level, measuring overall performance values from the entire previous
interaction.

nition, Spoken Language Understanding, and Dia-
logue Management. Furthermore, the parameters
are modeled on three different levels (see Figure 1):

• Exchange level parameters can be derived di-
rectly from the respective dialogue modules,
e.g., ASRConfidence.

• Dialogue level parameters consist of counts (#),
means (Mean), etc. of the exchange level pa-
rameters calculated from all exchanges of the
whole dialogue up to the current exchange, e.g.,
MeanASRConfidence.

• Window level parameters consist of counts
({#}), means ({Mean}), etc. of the exchange
level parameters calculated from the last three
exchanges, e.g., {Mean}ASRConfidence.

4 Evaluation metrics

For measuring the performance of the classification
algorithms, we rely on Unweighted Average Recall
(UAR), Cohen’s Kappa and Spearman’s Rho. The
latter two also represent a measure for similarity of
paired data. All measures will be briefly described
in the following:

Unweighted Average Recall The Unweighted Av-
erage Recall (UAR) is defined as the sum of all
class-wise recalls rc divided by the number of
classes |C|:

UAR =
1

|C|
∑
c∈C

rc . (1)

Recall rc for class c is defined as

rc =
1

|Rc|

|Rc|∑
i=1

δhiri
, (2)

where δ is the Kronecker-delta, hi and ri rep-
resent the corresponding hypothesis-reference-
pair of rating i, and |Rc| the total number of
all ratings of class c. In other words, UAR
for multi-class classification problems is the ac-
curacy corrected by the effects of unbalanced
data.

Cohen’s Kappa To measure the relative agreement
between two corresponding sets of ratings, the
number of label agreements corrected by the
chance level of agreement divided by the max-
imum proportion of times the labelers could
agree is computed. κ is defined as

κ =
p0 − pc

1− pc
, (3)

where p0 is the rate of agreement and pc is the
chance agreement (Cohen, 1960). As US and
IQ are on an ordinal scale, a weighting factor w
is introduced reducing the discount of disagree-
ments the smaller the difference is between two
ratings (Cohen, 1968):

w =
|r1 − r2|

|rmax − rmin|
. (4)

Here, r1 and r2 denote the rating pair and rmax

and rmin the maximal and minimal rating. This
results inw = 0 for agreement andw = 1 if the
ratings have maximal difference.

Spearman’s Rho The correlation of two variables
describes the degree by that one variable can be
expressed by the other. Spearman’s Rank Cor-
relation Coefficient is a non-parametric method
assuming a monotonic function between the
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two variables (Spearman, 1904). It is defined
by

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
, (5)

where xi and yi are corresponding ranked rat-
ings and x̄ and ȳ the mean ranks. Thus, two
sets of ratings can have total correlation even if
they never agree. This would happen if all rat-
ings are shifted by the same value, for example.

5 Recognition of US Using IQ Information

As discussed in Section 1, automatic recognition of
ratings applied by users as performed by Schmitt et
al. (2011b) for User Satisfaction is time-consuming
and expensive. Therefore, approaches are presented
which facilitate expert ratings, i.e., Interaction Qual-
ity, with the hope of making US recognition more
feasible. IQ an US are strongly related as both met-
rics represent the same quantity applied by differ-
ent rater groups. Results of the Mann-Whitney U
test, which is used to test for significant difference
between Interaction Quality and User Satisfaction,
show their difference (p < 0.05) but values for Co-
hen’s Kappa (Cohen, 1960) and Spearman’s Rank
Correlation Coefficient (Spearman, 1904) empha-
size the that IQ and US are quite similar. Achieving
κ = 0.5 can be considered as a moderate agreement
according to Landis and Koch’s Kappa Benchmark
Scale (Landis and Koch, 1977). Furthermore, a cor-
relation of ρ = 0.66 (p < 0.01) indicates a strong
relationship between IQ and US (Cohen, 1988).

While it has been shown that user and expert rat-
ings are similar, it is desirable nonetheless to being
able to predict real user ratings. These ratings are the
desired kind of ratings when it comes to subjective
dialogue system assessment. Only users can give a
rating about their satisfaction level, i.e., how they
like the system and the interaction with the system.
However, user ratings are expensive as elaborated in
Section 1. Therefore, we investigate approaches to
recognize US which rely on means of IQ recogni-
tion.

5.1 Belief-Based Sequential Recognition
Methods used for IQ and US recognition by Schmitt
et al. (2011b; 2011a) suffer from the fact that the

sequential character of the data is modeled inade-
quately as they assume statistical independence be-
tween the single exchanges (recognition of IQ and
US does not depend on the respective value of the
previous exchange). Hence, we present a Marko-
vian approach overcoming these issues. A probabil-
ity distribution over all US states, called belief state,
is updated after each system-user-exchange taking
also into account the belief state of the previous ex-
change. This belief update2 is equivalent to the For-
ward Algorithm known from Hidden Markov Mod-
els (cf. (Rabiner, 1989)). In doing so, the new US
probabilities also depend on the US values of the
previous exchange. Moreover, a latent variable is
introduced in order to decouple the target variable
US with the variable the observation probability de-
pends on IQ. This results in an indirect approach
for recognizing User Satisfaction that is based on the
more affordable recognition of Interaction Quality
assuming that a universal mapping between IQ and
US exists.

Thus, to determine the probability b(US) of hav-
ing the true User Satisfaction label US after the cur-
rent system-user-exchange, we rely on Interaction
Quality recognition, whose observation probability
is depicted as P (o|IQ). Furthermore, for coupling
both quantities, we introduce a coherence probabil-
ity P (IQ|US). Belief update for estimating the new
values for b′(US′) is as follows:

b′(US′) = α ·
∑
IQ′

P (o′|IQ′) · P (IQ′|US′)

·
∑
US

P (US′|US)b(US) (6)

The observation probability P (o′|IQ′) is modeled
using confidence scores of classifiers applied for IQ
recognition. Further, we compute the sum over all
previous US beliefs b(US) weighted by the transi-
tion probability P (US′|US). Both, transition and
coherence probability have been computed by tak-
ing the frequency of their occurrences in the training
data. The α factor is used for normalization only.

Since we are aiming at generating an estimate ÛS

2Terminology is taken from Partially Observable Markov
Decision Processes, cf. (Kaelbling et al., 1998)
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at each exchange, it is calculated by

ÛS = arg max
US′

b′(US′) (7)

generating a sequence of estimates for each dia-
logue.

As the action of the system a can be expected to
influence the satisfaction level of the user, action-
dependency is added to Equation 6 resulting in

b′(US′) = α ·
∑
IQ′

P (o′|IQ′) · P (IQ′|US′, a)

·
∑
US

P (US′|US, a)b(US). (8)

Hence, each system action a influences coherence
and transition probabilities. It should be noted that
action-dependency can only be introduced as in a
SDS each turn a system action is selected and ex-
ecuted by the dialogue manager.

5.2 Model Exchange
While in Belief-Based Sequential Recognition, prob-
ability models are used for coupling expert and user
ratings explicitly, a simpler approach has also been
examined. A statistical classifier trained on the tar-
get variable IQ is used to evaluate classification of
the target variable US. This seems to be reasonable
as the set of scores and meaning of the scores of both
metrics are equivalent. Furthermore, necessary pre-
requisites are fulfilled: the sample corpus contains
both labels, the labels for US and IQ correspond, and
both recognition approaches are based on the same
feature set.

6 Experiments and Results

For evaluating Belief-Based Sequential Recognition,
not only the absolute performance is of interest but
also how this performance is influenced by the char-
acteristics of the observation probability, i.e., the
performance of the applied statistical classification
approach and the variance of their confidence scores.
In order to obtain different confidence characteris-
tics, multiple classification algorithms, or algorithm
variants respectively, are needed. Hence, five statis-
tical classifiers have been chosen arbitrarily to pro-
duce the observation probabilities for Belief-Based
Sequential Recognition:

• SVM3 with cubic kernel

• SVM with RBF-kernel

• Naive Bayes

• Naive Bayes with kernel

• Rule Induction

In contrast to Schmitt et al. (2011b; 2011a), a re-
duced feature set was used consisting of 43 parame-
ters as some textual parameters were removed which
are very specific and take many different values, e.g.,
UTTERANCE (the system utterance) or INTERPRE-
TATION (the interpretation of the speech input).

The resulting feature set consists of the following
parameters (parameter names are in accordance with
the parameter names of the LEGO corpus (Schmitt
et al., 2012)):

Exchange Level ACTIVITY, ACTIVITYTYPE,
UTD, BARGED-IN?, ASRCONFIDENCE,
MEANASRCONFIDENCE, TURNNUMBER,
MODALITY, LOOPNAME, ASRRECOGNI-
TIONSTATUS, ROLEINDEX, ROLENAME,
NOISE?, HELPREQUEST?, REPROMPT?,
WPST, WPUT

Dialogue Level #BARGEINS #ASRSUCCESS,
#HELPREQUESTS, #TIMEOUTS, #TIME-
OUTS ASRREJECTIONS, #ASRREJEC-
TIONS, #REPROMPTS, #SYSTEMQUES-
TIONS, #SYSTEMTURNS, #USERTURNS,
%BARGEINS, %ASRSUCCESS, %HEL-
PREQUESTS, %TIMEOUTS, %TIME-
OUTS ASRREJECTIONS, %ASRREJEC-
TIONS, %REPROMPTS

Window Level {#}TIMEOUTS ASRREJCTIONS,
{#}HELPREQUESTS, {#}ASRREJECTIONS,
{MEAN}ASRCONFIDENCE, {#}TIMEOUTS,
{#}REPROMPTS, {#}SYSTEMQUESTIONS,
{#}ASRSUCCESS, {#}BARGEINS

All results are evaluated with respect to the ref-
erence experiment of direct US recognition (US
recognition using models trained on US). This is
performed in accordance to Schmitt et al. (2011b)
using the statistical classification algorithms stated

3Support Vector Machine, cf. (Vapnik, 1995)
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Table 1: Results (UAR, Cohen’s Kappa, and Spearman’s
Rho) of 10-fold cross-validation for US recognition of US
recognition using models trained on US

Classifier UAR κ ρ

SVM (cubic Kernel) 0.39 0.33 0.48
SVM (RBF-Kernel) 0.39 0.42 0.55

Naive Bayes 0.36 0.40 0.55
Naive Bayes (Kernel) 0.42 0.44 0.59

Rule Induction 0.50 0.51 0.61

Table 2: Results (UAR, Cohen’s Kappa, and Spearman’s
Rho) of 10-fold cross-validation for US recognition of the
Model Exchange approach (trained on IQ, evaluated on
US)

Classifier UAR κ ρ

SVM (cubic Kernel) 0.34 0.42 0.55
SVM (RBF-Kernel) 0.34 0.42 0.58

Naive Bayes 0.35 0.40 0.57
Naive Bayes (Kernel) 0.34 0.37 0.60

Rule Induction 0.34 0.42 0.59

above. The performance of the reference experiment
is shown in Table 1.

Using the same feature set, these classification al-
gorithms are also applied for the evaluation of the
Model Exchange approach using 10-fold cross val-
idation. Note that the parameters of the classifiers
also remained the same. The data was partitioned
randomly on exchange level, i.e., without regarding
their belonging to a specific dialogue. The measured
results of the Model Exchange approach for the five
classification methods can be seen in Table 2.

While the results are significantly above chance4,
comparing them to the reference experiment reveals
that in terms of UAR the reference experiment out-
performs Model Exchange for all five classifiers.
The achieved κ and ρ values show similar scores
for both the reference experiment and the Model Ex-
change approach. However, in the data used for the
experiments, the amount of occurrences of the rat-
ings was not balanced (equal for all classes) which
has been identified as the most likely reason for this
effect.

Experiments for Belief-Based Sequential Recog-
nition have also been performed using 10-fold cross
validation. As complete dialogues and the order

4UAR of 0.2 for five classes

Table 3: Results (UAR, Cohen’s Kappa, and Spearman’s
Rho) of 10-fold cross-validation for US recognition of
action-independent Belief-Based Sequential Recognition

Classifier UAR κ ρ

SVM (cubic Kernel) 0.28 0.36 0.48
SVM (RBF-Kernel) 0.30 0.40 0.54

Naive Bayes 0.32 0.39 0.54
Naive Bayes (Kernel) 0.33 0.45 0.61

Rule Induction 0.33 0.47 0.63

Table 4: Results (UAR, Cohen’s Kappa, and Spearman’s
Rho) of 10-fold cross-validation for US recognition of
action-dependent Belief-Based Sequential Recognition

Classifier UAR κ ρ

SVM (cubic Kernel) 0.28 0.35 0.48
SVM (RBF-Kernel) 0.29 0.40 0.54

Naive Bayes 0.32 0.40 0.55
Naive Bayes (Kernel) 0.34 0.44 0.60

Rule Induction 0.35 0.47 0.62

of exchanges within the dialogues are important for
this approach, the data was partitioned randomly on
the dialogue level. As previously explained, for the
probability distributions of the observation proba-
bility model, classification results of IQ recognition
with 10-fold cross validation has been used in order
to get good estimates for the whole data set. Re-
sults for the action-independent version can be seen
in Table 3.

For the action-dependent version, four different
basic actions ANNOUNCEMENT, CONFIRMATION,
QUESTION, and WAIT have been used, generat-
ing results presented in Table 4. The results il-
lustrate that neither action-independent nor action-
dependent Belief-Based Sequential Recognition can
outperform the reference experiment (cf. Table 1).
Still, both variants achieve results clearly above
chance. Again, the unbalanced data causes κ and
ρ to be similar to the reference experiment.

A comparison of the action-independent with the
action-dependent approach shows almost no differ-
ences in their performances. Only a slight tendency
towards better UARs for action-dependency can be
spotted.

Figure 2 displays the performances of both vari-
ants of Belief-Based Sequential Recognition along
with performance of IQ recognition and the vari-
ance σ2 of the corresponding confidence distribu-
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Figure 2: UAR of IQ recognition and Belief-Based Se-
quential Recognition along with σ2 of confidence distri-
butions of IQ recognition

Table 5: Recognition performance and variance of confi-
dence distributions for IQ recognition

Classifier σ2 UAR κ ρ

SVM (cubic Kernel) 0.03 0.38 0.54 0.69
SVM (RBF-Kernel) 0.05 0.48 0.65 0.77

Naive Bayes 0.13 0.49 0.57 0.71
Naive Bayes (Kernel) 0.12 0.52 0.59 0.73

Rule Induction 0.13 0.55 0.68 0.79

tion (cf. Table 5). It can easily be seen that with
rising UAR for IQ recognition, σ2 also rises. This
directly transfers to the performance of the Belief-
Based Sequential Recognition. The more accu-
rate the observation performance, the more accurate
the belief prediction. Furthermore, when compar-
ing the action-dependent to the action-independent
variant of Belief-Based Sequential Recognition, bet-
ter IQ performance and therefore a higher variance
also causes slightly better results for the action-
dependent variant. These differences, however, are
only marginally. Therefore, they do not allow for
drawing a conclusion.

7 Conclusions

For estimating User Satisfaction-like ratings, two
categories exist: work relying on user ratings and
work relying on expert ratings. To learn something
about their differences and similarities, we explored
the possibility of using the information encoded in
the expert ratings to predict user ratings with the
hope to get acceptable user rating prediction results.
Therefore, we investigated if it is possible to de-
termine the preferred true User Satisfaction value

based on less expensive expert ratings. For this, a
corpus containing both kinds of ratings was chosen,
i.e., User Satisfaction (US) and Interaction Qual-
ity (IQ) ratings. Furthermore, interaction parame-
ters were used to create statistical recognition mod-
els for predicting IQ and US, respectively. Two ap-
proaches have been investigated: Belief-Based Se-
quential Recognition, which is based on an HMM-
like structure with IQ as an additional latent variable,
and Model Exchange, which uses statistical models
trained on IQ to recognize US. Unfortunately, nei-
ther Belief-Based Sequential Recognition nor Model
Exchange achieved results with an acceptable UAR.

The high correlation between expert and user rat-
ings, depicted by high values for Cohen’s κ and
Spearman’s ρ, already allow the conclusion that ex-
pert ratings can be used as a good replacement for
user ratings. Moreover, the presented recognition re-
sults of the Model Exchange approach being clearly
above chance underpin the strong similarity of IQ
and US. Furthermore, IQ recognition is much more
reliable and accurate than US recognition (shown by
higher UAR, κ and ρ values).

While the experiments disproved the hope of get-
ting acceptable user rating prediction results, the ob-
tained results confirmed the similarity between both
kinds of ratings. And as it is not necessary to use
user ratings for most applications, e.g., for using the
quality information to automatically improve the in-
teraction (cf. (Ultes et al., 2012)), we believe that it
suffices to use expert ratings as those can be acquired
easier and less expensively and are similar enough
to user ratings. Prompting the user to apply quality
ratings in everyday situations with real-life systems
will always be annoying to the user while recording
of such interactions are always much easier to rate.

By providing a study for determining quality rat-
ings of dialogues, we hope to encourage other re-
searchers to look into this research for other param-
eters, e.g., emotion recognition.
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Abstract

Large unsupervised latent variable models
(LVMs) of text, such as Latent Dirichlet Al-
location models or Hidden Markov Models
(HMMs), are constructed using parallel train-
ing algorithms on computational clusters. The
memory required to hold LVM parameters
forms a bottleneck in training more powerful
models. In this paper, we show how the mem-
ory required for parallel LVM training can
be reduced by partitioning the training corpus
to minimize the number of unique words on
any computational node. We present a greedy
document partitioning technique for the task.
For large corpora, our approach reduces mem-
ory consumption by over 50%, and trains the
same models up to three times faster, when
compared with existing approaches for paral-
lel LVM training.

1 Introduction

Unsupervised latent variable models (LVMs) of text
are utilized extensively in natural language process-
ing (Griffiths and Steyvers, 2004; Ritter et al., 2010;
Downey et al., 2007; Huang and Yates, 2009; Li and
McCallum, 2005). LVM techniques include Latent
Dirichlet Allocation (LDA) (Blei et al., 2003), Hid-
den Markov Models (HMMs) (Rabiner, 1989), and
Probabilistic Latent Semantic Analysis (Hofmann,
1999), among others.

LVMs become more predictive as they are trained
on more text. However, training LVMs on mas-
sive corpora introduces computational challenges, in
terms of both time and space complexity. The time
complexity of LVM training has been addressed

through parallel training algorithms (Wolfe et al.,
2008; Chu et al., 2006; Das et al., 2007; Newman
et al., 2009; Ahmed et al., 2012; Asuncion et al.,
2011), which reduce LVM training time through the
use of large computational clusters.

However, the memory cost for training LVMs re-
mains a bottleneck. While LVM training makes se-
quential scans of the corpus (which can be stored on
disk), it requires consistent random access to model
parameters. Thus, the model parameters must be
stored in memory on each node. Because LVMs in-
clude a multinomial distribution over words for each
latent variable value, the model parameter space in-
creases with the number of latent variable values
times the vocabulary size. For large models (i.e.,
with many latent variable values) and large cor-
pora (with large vocabularies), the memory required
for training can exceed the limits of the commod-
ity servers comprising modern computational clus-
ters. Because model accuracy tends to increase with
both corpus size and model size (Ahuja and Downey,
2010; Huang and Yates, 2010), training accurate lan-
guage models requires that we overcome the mem-
ory bottleneck.

We present a simple technique for mitigating the
memory bottleneck in parallel LVM training. Ex-
isting parallelization schemes begin by partitioning
the training corpus arbitrarily across computational
nodes. In this paper, we show how to reduce mem-
ory footprint by instead partitioning the corpus to
minimize the number of unique words on each node
(and thereby minimize the number of parameters the
node must store). Because corpus partitioning is
a pre-processing step in parallel LVM training, our
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technique can be applied to reduce the memory foot-
print of essentially any existing LVM or training ap-
proach. The accuracy of LVM training for a fixed
model size and corpus remains unchanged, but in-
telligent corpus partitioning allows us to train larger
and typically more accurate models using the same
memory capacity.

While the general minimization problem we en-
counter is NP-hard, we develop greedy approxima-
tions that work well. In experiments with both
HMM and LDA models, we show that our technique
offers large advantages over existing approaches in
terms of both memory footprint and execution time.
On a large corpus using 50 nodes in parallel, our best
partitioning method can reduce the memory required
per node to less than 1/10th that when training with-
out corpus partitioning, and to half that of a random
partitioning. Further, our approach reduces the train-
ing time of an existing parallel HMM codebase by
3x. Our work includes the release of our partitioning
codebase, and an associated codebase for the paral-
lel training of HMMs.1

2 Problem Formulation

In a distributed LVM system, a training corpus D =
{d1, d2, . . . , dN} of documents is distributed across
T computational nodes. We first formalize the mem-
ory footprint on each node nt, where t = {1, ..., T}.
Let Dt ⊂ D denote the document collection on node
nt, and Vt be the number of word types (i.e., the
number of unique words) in Dt. Let K be the num-
ber of latent variable values in the LVM.

With these quantities, we can express how many
parameters must be held in memory on each com-
putational node for training LVMs in a distributed
environment. In practice, the LVM parameter space
is dominated by an observation model: a condi-
tional distribution over words given the latent vari-
able value. Thus, the observation model includes
K(Vt− 1) parameters. Different LVMs include var-
ious other parameters to specify the complete model.
For example, a first-order HMM includes additional
distributions for the initial latent variable and latent
variable transitions, for a total of K(Vt − 1) + K2

parameters. LDA, on the other hand, includes just a

1https://code.google.com/p/
corpus-partition/

single multinomial over the latent variables, making
a total of K(Vt − 1) + K − 1 parameters.

The LVM parameters comprise almost all of the
memory footprint for LVM training. Further, as the
examples above illustrate, the number of parame-
ters on each node tends to vary almost linearly with
Vt (in practice, Vt is typically larger than K by an
order of magnitude or more). Thus, in this paper
we attempt to minimize memory footprint by lim-
iting Vt on each computational node. We assume
the typical case in a distributed environment where
nodes are homogeneous, and thus our goal is to par-
tition the corpus such that the maximum vocabulary
size Vmax = maxT

t=1Vt on any single node is mini-
mized. We define this task formally as follows.

Definition CORPUSPART : Given a corpus of
N documents D = {d1, d2, . . . , dN}, and T nodes,
partition D into T subsets D1, D2, . . . , DT , such
that Vmax is minimized.

For illustration, consider the following small ex-
ample. Let corpus C contain three short docu-
ments {c1=“I live in Chicago”, c2=“I am studying
physics”, c3=“Chicago is a city in Illinois”}, and
consider partitioning C into 2 non-empty subsets,
i.e., T = 2. There are a total of three possibilities:
• {{c1, c2}, {c3}}. Vmax = 7

• {{c1, c3}, {c2}}. Vmax = 8

• {{c2, c3}, {c1}}. Vmax = 10

The decision problem version of
CORPUSPART is NP-Complete, by a re-
duction from independent task scheduling (Zhu and
Ibarra, 1999). In this paper, we develop greedy
algorithms for the task that are effective in practice.

We note that CORPUSPART has a submodu-
lar problem structure, where greedy algorithms are
often effective. Specifically, let |S| denote the vo-
cabulary size of a set of documents S, and let S′ ⊆
S. Then for any document c the following inequality
holds.

|S′ ∪ c| − |S′| ≥ |S ∪ c| − |S|

That is, adding a document c to the subset S′ in-
creases vocabulary size at least as much as adding
c to S; the vocabulary size function is submodular.
The CORPUSPART task thus seeks a partition
of the data that minimizes the maximum of a set of
submodular functions. While formal approximation
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guarantees exist for similar problems, to our knowl-
edge none apply directly in our case. For example,
(Krause et al., 2007) considers maximizing the mini-
mum over a set of monotonic submodular functions,
which is the opposite of our problem. The distinct
task of minimizing a single submodular function has
been investigated in e.g. (Iwata et al., 2001).

It is important to emphasize that data partition-
ing is a pre-processing step, after which we can em-
ploy precisely the same Expectation-Maximization
(EM), sampling, or variational parameter learning
techniques as utilized in previous work. In fact,
for popular learning techniques including EM for
HMMs (Rabiner, 1989) and variational EM for LDA
(Wolfe et al., 2008), it can be shown that the param-
eter updates are independent of how the corpus is
partitioned. Thus, for those approaches our parti-
tioning is guaranteed to produce the same models as
any other partitioning method; i.e., model accuracy
is unchanged.

Lastly, we note that we target synchronized LVM
training, in which all nodes must finish each train-
ing iteration before any node can proceed to the
next iteration. Thus, we desire balanced partitions to
help ensure iterations have similar durations across
nodes. We achieve this in practice by constraining
each node to hold at most 3% more than Z/T to-
kens, where Z is the corpus size in tokens.

3 Corpus Partitioning Methods

Our high-level greedy partitioning framework is
given in Algorithm 1. The algorithm requires an-
swering two key questions: How do we select which
document to allocate next? And, given a document,
on which node should it be placed? We present al-
ternative approaches to each question below.

Algorithm 1 Greedy Partitioning Framework

INPUT: {D, T}
OUTPUT: {D1, . . . , DT }
Objective: Minimize Vmax

Initialize each subset Dt = ∅ for T nodes
repeat

document selection:Select document d from D
node selection: Select node nt, and add d to Dt

Remove d from D
until all documents are allocated

A baseline partitioning method commonly used
in practice simply distributes documents across
nodes randomly. As our experiments show, this
baseline approach can be improved significantly.

In the following, set operations are interpreted as
applying to the set of unique words in a document.
For example, |d∪Dt| indicates the number of unique
word types in node nt after document d is added to
its document collection Dt.

3.1 Document Selection
For document selection, previous work (Zhu and
Ibarra, 1999) proposed a heuristic DISSIMILARITY
method that selects the document d that is least sim-
ilar to any of the node document collections Dt,
where the similarity of d and Dt is calculated as:
Sim(d, DT ) = |d ∩ Dt|. The intuition behind the
heuristic is that dissimilar documents are more likely
to impact future node selection decisions. Assigning
the dissimilar documents earlier helps ensure that
more greedy node selections are informed by these
impactful assignments.

However, DISSIMILARITY has a prohibitive time
complexity of O(TN2), because we must compare
T nodes to an order of N documents for a total of
N iterations. To scale to large corpora, we propose
a novel BATCH DISSIMILARITY method. In BATCH

DISSIMILARITY, we select the top L most dissim-
ilar documents in each iteration, instead of just the
most dissimilar. Importantly, L is altered dynami-
cally: we begin with L = 1, and then increase L by
one for iteration i+1 iff using a batch size of L+1 in
iteration i would not have altered the algorithm’s ul-
timate selections (that is, if the most dissimilar doc-
ument in iteration i + 1 is in fact the L + 1st most
dissimilar in iteration i). In the ideal case where L
is incremented each iteration, BATCH DISSIMILAR

will have a reduced time complexity of O(TN3/2).
Our experiments revealed two key findings re-

garding document selection. First, BATCH DISSIM-
ILARITY provides a memory reduction within 0.1%
of that of DISSIMILARITY (on small corpora where
running DISSIMILARITY is tractable), but partitions
an estimated 2,600 times faster on our largest eval-
uation corpus. Second, we found that document se-
lection has relatively minor impact on memory foot-
print, providing a roughly 5% incremental benefit
over random document selection. Thus, although
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we utilize BATCH DISSIMILARITY in the final sys-
tem we evaluate, simple random document selection
may be preferable in some practical settings.

3.2 Node Selection

Given a selected document d, the MINIMUM
method proposed in previous work selects node nt

having the minimum number of word types after al-
location of d to nt (Zhu and Ibarra, 1999). That is,
MINIMUM minimizes |d ∪Dt|. Here, we introduce
an alternative node selection method JACCARD that
selects node nt maximizing the Jaccard index, de-
fined here as |d ∩Dt|/|d ∪Dt|.

Our experiments showed that our JACCARD node
selection method outperforms the MINIMUM selec-
tion method. In fact, for the largest corpora used
in our experiments, JACCARD offered an 12.9%
larger reduction in Vmax than MINIMUM. Our
proposed system, referred to as BJAC, utilizes
our best-performing strategies for document selec-
tion (BATCH DISSIMILARITY) and node selection
(JACCARD).

4 Evaluation of Partitioning Methods

We evaluate our partitioning method against the
baseline and Z&I, the best performing scalable
method from previous work, which uses random
document selection and MINIMUM node selection
(Zhu and Ibarra, 1999). We evaluate on three cor-
pora (Table 1): the Brown corpus of newswire text
(Kucera and Francis, 1967), the Reuters Corpus Vol-
ume1 (RCV1) (Lewis et al., 2004), and a larger Web-
Sent corpus of sentences gathered from the Web
(Downey et al., 2007).

Corpus N V Z
Brown 57339 56058 1161183
RCV1 804414 288062 99702278

Web-Sent 2747282 214588 58666983

Table 1: Characteristics of the three corpora. N = #
of documents, V = # of word types, Z = # of tokens.
We treat each sentence as a document in the Brown
and Web-Sent corpora.

Table 2 shows how the maximum word type size
Vmax varies for each method and corpus, for T = 50
nodes. BJAC significantly decreases Vmax over the

Corpus baseline Z&I BJAC

Brown 6368 5714 4369
RCV1 49344 32136 24923

Web-Sent 72626 45989 34754

Table 2: Maximum word type size Vmax for each
partitioning method, for each corpus. For the larger
corpora, BJAC reduces Vmax by over 50% compared
to the baseline, and by 23% compared to Z&I.

random partitioning baseline typically employed in
practice. Furthermore, the advantage of BJAC over
the baseline is maintained as more computational
nodes are utilized, as illustrated in Figure 1. BJac
reduces Vmax by a larger factor over the baseline as
more computational nodes are employed.
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Figure 1: Effects of partitioning as the number of
computational nodes increases (Web-Sent corpus).
With 100 nodes, BJac’s Vmax is half that of the base-
line, and 1/10th of the full corpus vocabulary size.

5 Evaluation in Parallel LVM Systems
We now turn to an evaluation of our corpus parti-
tioning within parallel LVM training systems.

Table 3 shows the memory footprint required for
HMM and LDA training for three different partition-
ing methods. We compare BJAC with the random
partitioning baseline, Zhu’s method, and with all-
words, the straightforward approach of simply stor-
ing parameters for the entire corpus vocabulary on
every node (Ahuja and Downey, 2010; Asuncion et
al., 2011). All-words has the same memory footprint
as when training on a single node.

For large corpora, BJAC reduces memory size
per node by approximately a factor of two over the
random baseline, and by a factor of 8-11 over all-
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LVM Corpus all-words baseline BJAC

HMM
Brown 435.3 56.2 40.9
RCV1 2205.4 384.1 197.8

Web-Sent 1644.8 561.7 269.7

LDA
Brown 427.7 48.6 33.3
RCV1 2197.7 376.5 190.1

Web-Sent 1637.2 554.1 262.1

Table 3: Memory footprint of computational nodes
in megabytes(MB), using 50 computational nodes.
Both models utilize 1000 latent variable values.

words. The results demonstrate that in addition to
the well-known savings in computation time offered
by parallel LVM training, distributed computation
also significantly reduces the memory footprint on
each node. In fact, for the RCV1 corpus, BJAC re-
duces memory footprint to less than 1/10th that of
training with all words on each computational node.

We next evaluate the execution time for an itera-
tion of model training. Here, we use a parallel im-
plementation of HMMs, and measure iteration time
for training on the Web-sent corpus with 50 hidden
states as the number of computational nodes varies.
We compare against the random baseline and against
the all-words approach utilized in an existing paral-
lel HMM codebase (Ahuja and Downey, 2010). The
results are shown in Table 4. Moving beyond the all-
words method to exploit corpus partitioning reduces
training iteration time, by a factor of two to three.
However, differences in partitioning methods have
only small effects in iteration time: BJAC has essen-
tially the same iteration time as the random baseline
in this experiment.

It is also important to consider the additional time
required to execute the partitioning methods them-
selves. However, in practice this additional time
is negligible. For example, BJAC can partition the
Web-sent corpus in 368 seconds, using a single com-
putational node. By contrast, training a 200-state
HMM on the same corpus requires over a hundred
CPU-days. Thus, BJAC’s time to partition has a neg-
ligible impact on total training time.

6 Related Work

The CORPUSPART task has some similarities
to the graph partitioning task investigated in other

T all-words baseline BJAC

25 4510 1295 1289
50 2248 740 735
100 1104 365 364
200 394 196 192

Table 4: Average iteration time(sec) for training an
HMM with 50 hidden states on Web-Sent. Partition-
ing with BJAC outperforms all-words, which stores
parameters for all word types on each node.

parallelization research (Hendrickson and Kolda,
2000). However, our LVM training task differs sig-
nificantly from those in which graph partitioning is
typically employed. Specifically, graph partitioning
tends to be used for scientific computing applica-
tions where communication is the bottleneck. The
graph algorithms focus on creating balanced parti-
tions that minimize the cut edge weight, because
edge weights represent communication costs to be
minimized. By contrast, in our LVM training task,
memory consumption is the bottleneck and commu-
nication costs are less significant.

Zhu & Ibarra (1999) present theoretical results
and propose techniques for the general partitioning
task we address. In contrast to that work, we fo-
cus on the case where the data to be partitioned is a
large corpus of text. In this setting, we show that our
heuristics partition faster and provide smaller mem-
ory footprint than those of (Zhu and Ibarra, 1999).

7 Conclusion

We presented a general corpus partitioning tech-
nique which can be exploited in LVM training to re-
duce memory footprint and training time. We eval-
uated the partitioning method’s performance, and
showed that for large corpora, our approach reduces
memory consumption by over 50% and learns mod-
els up to three times faster when compared with ex-
isting implementations for parallel LVM training.
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Abstract

In cases in which there is no standard or-
thography for a language or language vari-
ant, written texts will display a variety of or-
thographic choices. This is problematic for
natural language processing (NLP) because it
creates spurious data sparseness. We study
the transformation of spontaneously spelled
Egyptian Arabic into a conventionalized or-
thography which we have previously proposed
for NLP purposes. We show that a two-stage
process can reduce divergences from this stan-
dard by 69%, making subsequent processing
of Egyptian Arabic easier.

1 Introduction

In areas with diglossia, vernacular spoken variants
(“low”) of a language family co-exist with a largely
written variant (“high”), which is often not spoken
as a native language. Traditionally, the low variants
have not been written: written language is reserved
for formal occasions and in those formal occasions
only the high variant is used. Prototypical exam-
ples of diglossia are the German speaking parts of
Switzerland, and the Arab world. The advent of the
internet has changed linguistic behavior: it is now
common to find written informal conversations, in
the form of email exchanges, text messages, Twit-
ter exchanges, and interactions on blogs and in web
forums. These written conversations are typically
written in the low variants (or in a mixture of low and
high), since conversations in the high variant seem
unnatural to the discourse participants. For natural
language processing (NLP), this poses many chal-
lenges, one of which is the fact that the low vari-
ants have not been written much in the past and

do not have a standard orthography which is gen-
erally agreed on by the linguistic community (and
perhaps sanctioned by an authoritative institution).
Instead, each discourse participant devises a spon-
taneous orthography, in which she chooses among
conventions from the high variant to render the spo-
ken language. We are thus faced with a large number
of ways to spell the same word, none of which can
be assumed as “standard” since there is no standard.
As a result, the increased data sparseness adds to the
challenges of NLP tasks such as machine transla-
tion, compared to languages for which orthography
is standardized.

In this paper, we work on Egyptian Arabic
(EGY). We follow the conventions which we have
previously proposed for the normalized orthogra-
phy for EGY (Habash et al., 2012), called CODA
(Conventional Orthography for Dialectal Arabic). In
this paper, we investigate how easy it is to con-
vert spontaneous orthography of EGY written in
Arabic script into CODA orthography automatically.
We will refer to this process as “normalization” or
“codafication”. We present a freely available system
called CODAFY, which we propose as a preproces-
sor for NLP modules for EGY. We show that a “do
nothing” baseline achieves a normalization perfor-
mance of 75.5%, and CODAFY achieves a normal-
ization performance of 92.4%, an error reduction of
69.2% over this baseline on an unseen test set.

The paper is structured as follows. We first re-
view relevant linguistic facts in Section 2 and then
present the conventionalized orthography we use in
this paper. After reviewing related work in Sec-
tion 4, we present our data (Section 5), our approach
(Section 6), and our results (Section 7). We conclude
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with a discussion of future work.

2 Linguistic Facts

2.1 Writing without a Standard Orthography
An orthography is a specification of how the words
of a language are mapped to and from a particular
script (in our case, the Arabic script). In cases when
a standard orthography is absent, writers make deci-
sions about spontaneous orthography based on vari-
ous criteria. Most prominent among them is phonol-
ogy: how can my pronunciation of the word be
rendered in the chosen writing system, given some
(language-specific) assumptions about grapheme-to-
phoneme mapping? Often, these assumptions come
from the “high” variant of the language, or some re-
lated language. Another criterion for choosing or-
thography is a cognate in a related language or lan-
guage variant (Modern Standard Arabic or MSA,
the high variant for EGY), where a cognate pair is
a pair of words (or morphemes) in two languages
or language variants which are related by etymol-
ogy (in some unspecified manner) and which have
roughly the same meaning. Finally, the chosen
spontaneous orthography can be altered to reflect
speech effects, notably the lengthening of syllables
to represent emphasis or other effects (such as Q�
J
J
�


�
J»

ktyyyyr1 ‘very’).
It is important to distinguish typos from sponta-

neous orthography. We define spontaneous orthog-
raphy to be an intentional choice of graphemes to
render the words in a language or language variant.
We define a typographical error (typo) to be an un-
intended sequence of graphemes. For example, @Y»

kdA and èY» kdh can be intended spellings for EGY
/kida/ ‘like this’, while @Q» krA is not a plausible in-
tentional spelling since it neither relates /kida/ to an
MSA cognate, nor does the sequence of graphemes
represent the phonology of EGY using standard as-
sumptions. Instead, we can explain the spelling by
assuming that the writer accidentally substituted the
grapheme P for the grapheme X, which look some-
what alike and are near each other on some Arabic
keyboard layouts. Of course, when we encounter

1Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007): (in alphabetical or-
der) AbtθjHxdðrzsšSDTĎςγfqklmnhwy and the additional sym-
bols: ’ Z, Â


@, Ǎ @


, Ā

�
@, ŵ 

ð', ŷ Zø', h̄ �
è, ý ø.

a specific spelling in a corpus, it can be, in certain
cases, difficult to determine whether it is a conscious
choice or a typo.

2.2 Relevant Differences between EGY and
MSA

Lexical Variations Lexically, the number of differ-
ences is quite significant. For example, EGY �

H@QÓ

mrAt ‘wife [of]’ corresponds to MSA �
ék. ð 	P zwjh̄. In

such cases of lexical difference, no cognate spelling
is available.

Phonological Variations There is an extensive
literature on the phonology of Arabic dialects (Wat-
son, 2002; Holes, 2004; Habash, 2010). Several
phonological differences exist between EGY and
MSA which relate to orthography. Here, we dis-
cuss one representative difference. The MSA con-
sonant �

H /θ/ is pronounced as /t/ in EGY (or /s/
in more recent borrowings from MSA). For exam-
ple, MSA Q�

�ºK
 ykθr ‘increase (imperfective)’ is pro-
nounced /yakθur/ in MSA versus /yiktar/ in EGY,
giving rise to the EGY phonological spelling Q�

�ºK


yktr.
Morphological Variations There are a lot of

morphological differences between MSA and EGY.
For orthography, two differences are most relevant.
The MSA future proclitic /sa/+ (spelled +� s+) ap-
pears in EGY as /ha/+ or /Ha/+. The two forms ap-
pear in free variation, and we have not been able
to find a variable that predicts which form is used
when. This variation is not a general phonological
variation between /h/ and /H/, we find it only in this
morpheme. Predictably, this leads to two spellings
in EGY: +h H+ and +�ë h+. Negation in EGY is
realized as the circum-clitic /mā/+ . . . +/š/. The prin-
cipal orthographic question is whether the prefix is
a separate word or is part of the main word; both
variants are found.

3 CODA

CODA is a conventionalized orthography for Arabic
dialects (Habash et al., 2012). In this section, we
summarize CODA so that the reader can understand
the goals of this paper. CODA has five key proper-
ties.

1. CODA is an internally consistent and coherent
convention for writing DA: every word has a
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single orthographic rendering.

2. CODA is created for computational purposes.

3. CODA uses the Arabic script as used for MSA,
with no extra symbols from, for example, Per-
sian or Urdu.

4. CODA is intended as a unified framework for
writing all dialects. In this paper, we only dis-
cuss the instantiation of CODA for EGY.

5. CODA aims to maintain a level of dialectal
uniqueness while using conventions based on
similarities between MSA and the dialects.

We list some features of CODA relevant to this
paper.

Phonological Spelling CODA generally uses
phonological spelling for EGY (as MSA spelling
does for MSA).

Etymologically Spelled Consonants A limited
number of consonants may be spelled differently
from their phonology if the following two conditions
are met: (1) the consonant must be an EGY root
radical and (2) the EGY root must have a cognate
MSA root. If the conditions are met, then we spell
the consonant using the corresponding radical from
the cognate MSA root of the dialectal word’s root.
One such example is the spelling of the EGY verb
pronounced /kitir/ as Q�

�» kθr ‘ it increased’.
Morphologically Faithful CODA preserves di-

alectal morphology and spells the dialectal mor-
phemes (clitics and inflections) phonologically. For
example, for the attachable future marker clitic, the
variant +h is chosen, not the MSA +�, so that
EGY /Hatiktar/ (and its variant /hatiktar/) are both
spelled Q�

�º
�
Jk Htkθr. The negation prefix and indi-

rect object pronoun (l+pronoun) suffixes are sepa-
rated, e.g., �

�AêË
�

IÊ
�
¯ AÓ mA qlt lhAš /ma’ultilhāš/ ‘I

did not tell her’.
Alif-Maqsura The letter ø ý is often used in

Egypt to write word-final ø



y and vice versa (even
when writing MSA). In CODA, all rules for us-
ing Alif-Maqsura are the same as MSA. For exam-
ple, EGY /maSrı̄/ ‘Egyptian’ can be seen in sponta-
neous orthography as øQå�Ó mSrý, but in CODA it
is ø



Qå�Ó mSry.

Ta-Marbuta As in MSA, the Ta-Marbuta ( �
è h̄) is

used morphemically in CODA. The Ta-Marbuta is

always written as �
è h̄ in CODA, e.g., /’arbaςa/ ‘four’

is �
éªK. P


@ Ârbςh̄ in CODA, though it can be found as

éªK. P

@ Ârbςh (or éªK. P@ Arbςh) in spontaneous orthog-

raphy.
Lexical Exceptions EGY CODA guidelines in-

clude a word list specifying ad hoc spellings of EGY
words that may be inconsistent with the default map-
ping outlined above. An example is /kida/ ‘like this’,
which we find as both @Y» kdA and èY» kdh in spon-
taneous orthography; the CODA spelling is èY» kdh.

4 Related Work

To our knowledge, this paper is the first to discuss
the task of automatically providing a conventional-
ized spelling for a written Arabic dialect text. While
there is no direct precedent, we discuss here some
related research.

Our proposed work has some similarity to auto-
matic spelling correction (ASC) and related tasks
such as post editing for optical character recogni-
tion (OCR). Our task is different from ASC since
ASC work assumes a standard orthography that the
writer is also assumed to aim for. Both supervised
and unsupervised approaches to this task have been
explored. Unsupervised approaches rely on improv-
ing the fluency of the text and reducing the percent-
age of out-of-vocabulary words using NLP tools, re-
sources, and heuristics, e.g., morphological analyz-
ers, language models, and edit-distance measure, re-
spectively (Kukich, 1992; Oflazer, 1996; Ben Oth-
mane Zribi and Ben Ahmed, 2003; Shaalan et al.,
2003; Haddad and Yaseen, 2007; Hassan et al.,
2008; Shaalan et al., 2010; Alkanhal et al., 2012).
Supervised approaches learn models of correction
by training on paired examples of errors and their
corrections. This data is hard to come by nat-
urally, though for applications such as OCR cor-
pora can be created from the application itself (Ko-
lak and Resnik, 2002; Magdy and Darwish, 2006;
Abuhakema et al., 2008; Habash and Roth, 2011).

There has been some work on conversion of di-
alectal Arabic to MSA. Al-Gaphari and Al-Yadoumi
(2010) introduced a rule-based method to convert
Sanaani dialect to MSA, and Shaalan et al. (2007)
used a rule-based lexical transfer approach to trans-
form from EGY to MSA. Similarly, both Sawaf
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(2010) and Salloum and Habash (2011) showed
that translating dialectal Arabic to MSA can im-
prove dialectal Arabic machine translation into En-
glish by pivoting on MSA. A common feature across
these conversion efforts is the use of morphological
analysis and morphosyntactic transformation rules
(for example, Al-Gaphari and Al-Yadoumi (2010)).
While all this work is similar to ours in that dialec-
tal input is processed, our output is still dialectal,
while the work on conversion aims for a transforma-
tion into MSA.

The work most closely related to ours is that of
Dasigi and Diab (2011). They identify the spelling
variants in a given document and normalize them.
However, they do not present a system that con-
verts spontaneous spelling to a pre-existing conven-
tion such as CODA, and thus their results cannot
be directly related to ours. Furthermore, their tech-
nique is different. First, similarity metrics based on
string difference are used to identify if two strings
are similar. Also, a contextual string similarity is
used based on the fact that if two words are ortho-
graphic variants of each other, then they are bound
to appear in similar contexts. After identifying the
similar strings, the strings of interest are modeled in
a vector space and clustered according to the simi-
larity of their vectors.

5 Data

In this work, we use a manually annotated
EGY Arabic corpus, developed by the Linguis-
tic Data Consortium (LDC), and labeled as “ARZ”
(Maamouri et al., 2012), parts 1, 2, 3, 4 and 5.
The corpus consists of about 160K words (excluding
numbers and punctuations), and follows the part-of-
speech (POS) guidelines used by the LDC for Egyp-
tian Arabic. The corpus contains a full analysis of
Egyptian Arabic text in spontaneous orthography.
The analysis includes the correct CODA orthogra-
phy of the raw text, in addition to the full morpho-
logical/POS annotations.

Data Preparation We divide the ARZ corpus into
three parts: training, development and test, which
are of about 122K, 19K and 19K words, respec-
tively. We only consider the orthographic informa-
tion in the ARZ corpus: for every word in the cor-
pus, we retain the spontaneous orthographic form

and its CODA-compliant form.
We manually checked the CODA-compliant an-

notations for about 500 words in the development
corpus. We found that the accuracy of the gold an-
notations in this subset is about 93%. We performed
next an error analysis for the erroneous gold annota-
tions. About one half of the gold errors are CODA
phonological and orthographical errors. Examples
of the CODA phonological errors include wrong ad-
ditions and deletions of @ A and ø



y, in addition to

the �
H/ �

H t/θ transformations, and the transforma-
tions that correspond to the different phonological
forms of pronouncing the letter è h. The CODA or-
thographical errors are those errors where a word or-
thography looks the same as its pronunciation, while
it should not be, such as the è/ �

è h/h̄ transformations.
One fifth of the gold errors are annotation typos,
such as writing �

H@Pñ¢
�
¯ qTwrAt instead of �

H@PA¢
�
¯

qTArAt ‘trains’. Moreover, 9% of the gold errors are
wrong merges for the negation particle AÓ mA and
the indirect object pronouns (l+pronouns). Since we
use the gold in our study, and given the error analy-
sis for the gold, we expect a qualitatively better gold
standard to yield better results.

Transformation Statistics We observe two types
of transformations when converting from sponta-
neous orthography to CODA: character substitu-
tions that do not affect the word length, and charac-
ter additions/deletions that change the word length.
Tables 1 and 2 show the most common character
substitution and addition/deletion transformations,
respectively, as they appear in the training corpus,
associated with their frequencies relative to the oc-
currence of transformations. The character sub-
stitutions are dominant, and constitute about 84%
of all the transformations in the training corpus.
While the classification of the character substitu-
tions is automatically generated, the classification of
the character additions/deletions is done manually
using a random sample of 400 additions/deletions
in the training corpus. This is because many addi-
tions/deletions are ambiguous.

6 Approach

We describe next the various approaches for spon-
taneous orthography codafication. Our codafication
techniques fall into two main categories: contex-
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Transformation Frequency %
@/


@/ @


/
�
@ A/Â/Ǎ/Ā⇔ @/


@/ @


/
�
@ A/Â/Ǎ/Ā 38.5

ø



y⇔ ø ý 29.7

è h⇔ �
è h̄ 16.9

è h⇔ h H 2.5
�

H θ⇔ �
H/� t/s 1.0

@ A⇔ è h 0.7
�

� q⇔ @/

@/ @


/
�
@/Z/ 

ð'/Zø' A/Â/Ǎ/Ā/’/ŵ/ŷ 0.4
ð w⇔ è h 0.3

	
X ð⇔ X/ 	P d/z 0.3

�
è h̄⇔ �

H t 0.3
@ A⇔ �

è h̄ 0.2
	

� D⇔ X/ 	P/ 	
  d/z/Ď 0.2

Table 1: Spontaneous to CODA character substitu-
tion transformations

Transformation Frequency %
Errors in closed class words 22.0

Missing space after AÓ/B/ AK
 mA/lA/yA 19.0
@ A additions & deletions 16.8

Gold errors 10.3
Speech effects 8.5

Missing space before È l (+pron) 8.5
ð/ è/ @ð w/h/wA⇔ ð/ è/ @ð w/h/wA 8.3

ø



y additions & deletions 3.0

Table 2: Spontaneous to CODA character addi-
tion/deletion transformations

tual and non-contextual, where the non-contextual
approaches are a lot faster than the contextual ones.

6.1 Speech Effect Handling

Before applying any codafication techniques, we
perform a special preprocessing step for speech ef-
fects, which represent redundant repetitions of some
letter in sequence. Sometimes people intend these
repetitions to show affirmation or intensification.
This is simply handled by removing the repetitions
when a letter is repeated more than twice in a row,
except for some letters whose repetitions for more
than once indicates a speech effect; these letters
are @ A,

�
@ Ā, Z ’, Zø' ŷ, ø ý and �

è h̄. Handling
speech effects on its own corrects about 2% of the
non-CODA spontaneous orthography to its CODA-
compliant form, without introducing any new errors.
In all experiments we report in this paper, we have
initially processed speech effects.

6.2 Character Edit Classification (CEC)

In this approach, a set of transformations is applied
on a character level, where a character may receive
a change or not. As a result, a word changes if one
or more of its characters is changed. The output of
these transformations is what constitutes the CODA
orthography. This is a surface modeling technique
that does not depend on the word context (though it
does depend on character context inside the word).

First, we train classifiers for the most frequent
transformations from EGY spontaneous orthogra-
phy to the corresponding CODA, listed in Tables 1
and 2 in Section 5. Second, we apply the trained
classifiers to generate the CODA output.

Training the classifiers For each transformation
listed in the data section, we train a separate classi-
fier. The classifiers are trained on our training cor-
pus using the k-nearest neighbor algorithm (k-NN)
(Wang et al., 2000), which is a method for classi-
fying objects based on the closest training examples
in the feature space. We did experiments using the
other classification methods included in the WEKA
machine learning tool (Hall et al., 2009), including
SVMs, Naïve Bayes, and decision trees. However,
k-NN gives the best results for our problem.

In the training process, a set of nine static features
is applied, which are the character that is queried for
the transformation with its preceding and following
two characters (a special token indicates a character
position that does not exist because it is beyond the
word boundary), along with the first two and the last
two characters in the underlying word.

In this model, each data point is a character, where
a classifier determines whether a character should
receive a substitution, deletion, or addition of an-
other character. The effect of each classifier is ex-
amined separately on the development set. We then
determine for each classification whether it helps or
weakens the process by comparing its effect to the
baseline which is doing nothing, i.e., no change to
a word occurs. Those classifiers that on their own
perform worse than the baseline are eliminated. For
eliminating the classifiers, we examine them in a de-
scending order according to the frequencies of their
corresponding transformations. We now discuss the
seven classifiers we retain in our system:
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1. The different @ A form ( @/

@/ @


/
�
@ A/Â /Ǎ/Ā) classifier.

The classifier can change any @ A form into any
other @ A form. The arbitrary selection of the
different @ A forms represents the most frequent
divergence from CODA in Arabic spontaneous
orthography.

2. The ø



/ø y/ý classifier. The classifier handles

transformations between ø



y and ø ý in both
directions, as their selection is mostly arbitrary
in EGY spontaneous orthography.

3. The è/ �
è/ð h/h̄/w classifier. The classifier han-

dles transformations between è h, �
è h̄ and ð w

in both directions. These transformations are
likely to happen at word endings, since they
represent common misspellings in writing è h,
�
è h̄ and ð w, where è h is often substituted for
the graphically similar �

è h̄, and è h and ð w can
both be used to represent the 3rd person mascu-
line singular accusative or genitive clitic. (Note
that in Table 1, we list transformations between
è h and �

è h̄ as well as between è h and ð w; the
remaining transformations are not frequent.)

4. The è/h h/H classifier. The transformation

from è h to h H is likely to happen at word
beginnings, since it represents a common devi-
ation in writing the h H future particle.

5. The @ A deletion classifier. The classifier han-
dles the deletion of extra @ A at some positions,
which is a common deviation in EGY sponta-
neous orthography, where the CODA orthog-
raphy requires only short vowels instead.

6. The @ A addition classifier. The classifier han-
dles the addition of @ A in some positions, where
it is mostly omitted in EGY spontaneous or-
thography, such as adding @ A after the h H fu-

ture particle and the H. b progressive particle
(when used with the 1st person singular imper-
fective), as well as the ð w plural pronoun at
word endings. When training this classifier, we
target the letter after which the @ A should be
added.

7. The space addition classifier. The classifier
handles the addition of spaces in the middle

of words, i.e., splitting a word into two words.
This is required to add spaces after AÓ/B/ AK


mA/lA/yA for negation and vocation, and be-
fore the indirect object l+pronoun, so that the
text becomes CODA-compliant.

Generating CODA Orthography Next, we ap-
ply the trained classifiers on the spontaneous-
orthography text. Each classifier determines a set
of character corrections, where the characters may
receive transformations corresponding to those on
which the classifier is trained. The classifiers are
independent of one another, so their order of appli-
cation is irrelevant.

By way of example, we apply the classifiers on the
word éªK. P@ Arbςh, ‘four’. The first classifier, corre-
sponding to the different @ A forms, determines the

transformation of @ A to

@ Â, while the è/ �

è h/h̄ clas-
sifier determines the correction of è h to �

è h̄. The
other classifiers are either not involved since they do
not work on any of the word characters, or they de-
termine that no character transformation should hap-
pen for this word. Thus applying the CEC tech-
nique in this case changes the word éªK. P@ Arbςh to
�
éªK. P


@ Ârbςh̄, which is the correct CODA form.

6.3 Maximum Likelihood Estimate (MLE)

Another surface modeling approach for spontaneous
orthography codafication is to use a maximum like-
lihood model that operates on the word level. In this
approach, we build a unigram model that replaces
every word in the spontaneous orthography with its
most likely CODA form as seen in the training data.
This assumes that the underlying word exists in the
training corpus. For unseen words, the technique
keeps them with no change.

The MLE approach chooses the correct CODA
form for most of the words seen in training, making
this approach highly dependent on the training data.
It is efficient at correcting common misspellings in
frequent words, especially those that are from closed
classes.

6.4 Morphological Tagger

In addition to the approaches discussed above, we
use a morphological tagger, MADAARZ (Mor-
phological Analysis and Disambiguation for Egyp-

590



tian Arabic) (Habash et al., 2013). Although
MADAARZ is originally developed to work as a
morphological tagger, it still can help the codafica-
tion process, since the choice of a full morpholog-
ical analysis for a word in context determines its
CODA spelling. Therefore, MADAARZ is able to
correct many word misspellings that are common in
spontaneous orthography. These corrections include
( @/


@/ @


/
�
@ A/Â/Ǎ/Ā), ø



/ø y/ý and è/ �

è h/h̄ transforma-
tions. However, MADAARZ , as a codafication tech-
nique, uses the context of the word, which makes
it a contextual modeling approach unlike CEC and
MLE. It is much slower than they are.

6.5 Combined Techniques

The CEC and MLE techniques can be applied
alone, or they can be applied together in a pipeline in
either order. This gives a total of four possible com-
binations. Next, we conducted experiments with
MADAARZ , running alone and as a pre- or postpro-
cessor for a combination of CEC and/or MLE. In
all cases, when we first apply one module and then
another on the output of the first, we train the sec-
ond module on the training corpus which has been
passed through the first module. The results of run-
ning the different codafication approaches are dis-
cussed next.

7 Evaluation

7.1 Accuracy Evaluation

The different codafication approaches, discussed in
the previous section, are tested against the develop-
ment set, which was not used as part of our train-
ing. The evaluation metric we use is a word accuracy
metric, i.e., we evaluate how well we can correctly
predict the CODA form of the input spontaneous or-
thography.

Table 3 lists the effects of using the different
codafication approaches. For each approach, two
numbers are reported; exact and normalized. In
the exact evaluation, the output of the codafica-
tion approach is exactly matched against the correct
CODA orthography, while in the normalized eval-
uation, the match is relaxed for the ( @/


@/ @


/
�
@ A/Â/Ǎ/Ā)

and ø



/ø y/ý alternations, i.e., these differences do
not count as errors. In many NLP applications (such

as machine translation), the input is normalized for
these two phenomena, so that the normalized evalu-
ation gives a sense of the relevance of codafication
to downstream processes which normalize.

In this evaluation we compare our different
codafication techniques, CEC, MLE, CEC+MLE
and MLE+CEC, against the baseline. We also show
the effect of using MADAARZ as a codafication sys-
tem. We see that MLE on its own outperforms CEC.
Running CEC first and then MLE gives us our best
result using surface techniques, namely 91.5%, for
an error reduction of 63.4% against the baseline.
This configuration also gives the highest normalized
accuracy of 95.2%, for an error reduction of 49.5%
against the baseline.

We now turn to deep modeling techniques.
The performance of MADAARZ on its own as a
codafication system is close to the performance of
CEC+MLE, by which it is outperformed in the
exact-match accuracy by 0.4%.

The best deep modeling (and the best overall)
performance is achieved when running MADAARZ

on top of MLE. This gives the highest accuracy
of 92.6% (exact) and 95.8% (normalized), for er-
ror reductions of 68.1% (exact) and 55.8% (nor-
malized) against the baseline, respectively. Note
that the non-contextual modeling techniques CEC
(5,584 words/sec) and MLE (6,698 words/sec)
are a lot faster than the deep modeling tech-
nique MADAARZ (53 words/sec), while their com-
bination CEC+MLE+MADAARZ is the slowest
among all the approaches, operating at a rate of 52
words/sec. Thus, a small drop in accuracy results in
a large increase in speed.

We also evaluated using MADAMSA (v 3.2)
(Morphological Analysis and Disambiguation for
MSA) (Habash and Rambow, 2005; Habash et al.,
2010). MADAMSA is able to do some codafication,
but it performs far worse than our codafication ap-
proaches.

Table 4 lists the results of the best perform-
ing codafication surface approach, CEC+MLE, and
deep approach, MLE+MADAARZ , when applied
on the test set, which was not used as part of our
training or development, i.e., a completely blind
test. We see that on the test set, the addition
of MADAARZ improves results relatively more as
compared to the development set.
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Approach Exact Match Norm Match w/sAcc% ER% Acc% ER%
Baseline 76.8 90.5

MADAMSA 83.6 29.3 91.7 12.6 70
CEC 90.0 56.9 93.9 35.8 5,584
MLE 90.5 59.1 94.6 43.2 6,698

CEC+MLE 91.5 63.4 95.2 49.5 4,284
MLE+CEC 90.7 59.9 94.7 44.2 4,284
MADAARZ 91.1 61.6 95.2 49.5 53

MADAARZ+CEC 91.5 63.4 95.4 51.6 53
MADAARZ+MLE 91.9 65.1 95.8 55.8 53
CEC+MADAARZ 92.2 66.4 95.6 53.7 53
MLE+MADAARZ 92.6 68.1 95.8 55.8 53

MADAARZ+CEC+MLE 91.8 64.7 95.6 53.7 52
CEC+MLE+MADAARZ 92.0 65.5 95.8 55.8 52

Table 3: Comparison of the performance of the different codafication approaches on the development corpus.
Acc stands for Accuracy; ER is error reduction against the Baseline. w/s is speed (words/sec).

Approach Exact Match Norm Match
Acc% ER% Acc% ER%

Baseline 75.5 89.7
CEC+MLE 91.3 64.5 94.8 49.5

MLE+MADAARZ 92.9 71.0 95.5 56.3

Table 4: Comparison of the performance of the
different codafication approaches on the test cor-
pus. Acc stands for Accuracy; ER is error reduction
against the Baseline.

7.2 Extrinsic Evaluation

Morphological Analysis We tested the effect of
codafication on morphological tagging, specifically
full POS and lemma determination in context by
the morphological tagger MADAARZ . Here, we
are evaluating MADAARZ not on its conversion
to CODA (as above), but on its core functional-
ity, namely morphological tagging. We compare
the performance of MADAARZ against running
CEC+MLE+MADAARZ . When tested on the de-
velopment set, the initial CEC+MLE codafication
step helps MADAARZ improve the identification
of the complete Arabic (Buckwalter) POS tag from
84% to 85.3%, for an error reduction of 8.1%, while
the correct lemma choice increases from 85.2% to
85.7%, for an error reduction of 3.4%. When tested
on the test set, we get improvements on the choice

of the complete Buckwalter POS tag and lemma
from 84.5% to 85.4% (5.8% error reduction) and
from 86.3% to 86.7% (2.9% error reduction), re-
spectively.

Arabic to English MT The goal of this exper-
iment is to test the effect of codafication on ma-
chine translation from dialectal Arabic to English.
We use the open-source Moses toolkit (Koehn et
al., 2007) to build a phrase-based SMT system. We
use MGIZA++ for word alignment (Gao and Vogel,
2008). Phrase translations of up to 8 words are ex-
tracted in the phrase table. We use SRILM (Stol-
cke, 2002) with modified Kneser-Ney smoothing to
build two 4-gram language models. The first model
is trained on the English side of the bitext, while
the other is trained on the English Gigaword data.
Feature weights are tuned to maximize BLEU (Pap-
ineni et al., 2002) on a development set using MERT
(Och, 2003). We perform case-insensitive evalua-
tion in terms of the BLEU metric.

We train the system on dialectal Arabic-English
parallel data, obtained from several LDC corpora,
which amounts to∼500k sentences with 3.8M unto-
kenized words on the Arabic side. The development
set, used for tuning the parameters of the MT sys-
tem, has 1,547 sentences with 15,585 untokenized
Arabic words. The test set has 1,065 sentences with
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12,116 untokenized Arabic words. Both develop-
ment and test sets have two reference translations
each. The English data is lower-cased and tokenized
using simple punctuation-based rules.

We build two systems which vary in preprocess-
ing of the Arabic text. The baseline system ap-
plies only simple punctuation-based rules. The sec-
ond system applies our codafication in addition to
punctuation separation. The Arabic text is Alif/Ya
normalized and is kept untokenized in both set-
tings. The baseline system achieves a BLEU score
of 22.1%. The system using codafication obtains a
BLEU score of 22.6%, and outperforms the baseline
by 0.5% absolute BLEU points. This result shows
that improvements observed in intrinsic evaluation
of codafication carry on to the extrinsic task of ma-
chine translation.

7.3 Error Analysis

We conducted an error analysis for the best perform-
ing codafication approach on the development set.
The most frequent error types are listed in Table 5.
About two thirds of the errors are CODA phonolog-
ical and orthographical errors, denoted by CODA-
Phon and CODA-Orth, respectively. The wrong ad-
ditions and deletions of @ A and ø



y and the �

H/ �
H t/θ

transformations are examples of CODA phonologi-
cal errors. The CODA orthographic errors include
cases such as the ø



/ø y/ý transformations. 21% of

the errors are not real errors in the codafication out-
put, but result from gold errors. Finally, about 13%
of the errors are wrong merges and splits for the the
negation particle AÓ mA, the vocative particle AK
 yA
and the indirect-object l+pronouns.

8 Conclusion and Future Work

We have presented the problem of transforming
spontaneous orthography of the Egyptian Arabic di-
alect into a conventionalized form, CODA. Our best
technique involves a combination of character trans-
formations, whole-word transformations, and the
use of a full morphological tagger. The tagger can
be omitted for a small decrease in performance and
a large increase in speed.2 In future work, we plan
to extend our approach to other Arabic dialects. We

2Our system will be freely available. Please contact the au-
thors for more information.

Error Type Description Percentage
Gold Error Annotation Error 21.0

CODA-Orth è h⇔ �
è h̄ 13.7

CODA-Phon @ A→ ε 8.7
Merge AÓ mA/NEG_PART 7.3

CODA-Phon ε→ ø



y 6.8

CODA-Phon ε→ @ A 5.9
CODA-Orth ø



y⇔ ø ý 4.1

Merge AK
 yA/VOC_PART 3.7
CODA-Phon è h⇔ h H 3.2

CODA-Phon ø



y⇔ ø ý 3.2

Table 5: System Error Analysis: the most frequent
error types.

will also investigate incorporating the unsupervised
work of Dasigi and Diab (2011) into our algorithm,
as well as other unsupervised techniques.
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Abstract

Bibliometric measures are commonly used to
estimate the popularity and the impact of pub-
lished research. Existing bibliometric mea-
sures provide “quantitative” indicators of how
good a published paper is. This does not nec-
essarily reflect the “quality” of the work pre-
sented in the paper. For example, when h-
index is computed for a researcher, all incom-
ing citations are treated equally, ignoring the
fact that some of these citations might be neg-
ative. In this paper, we propose using NLP
to add a “qualitative” aspect to biblometrics.
We analyze the text that accompanies citations
in scientific articles (which we term citation
context). We propose supervised methods for
identifying citation text and analyzing it to de-
termine the purpose (i.e. author intention) and
the polarity (i.e. author sentiment) of citation.

1 Introduction

An objective and fair evaluation of the impact
of published research requires both quantitative
and qualitative assessment. Existing bibliometric
measures such as H-Index (Hirsch, 2005; Hirsch,
2010), G-index (Egghe, 2006), and Impact Fac-
tor (Garfield, 1994) focus on the quantitative aspect
of this evaluation which dose not always correlate
with the qualitative aspect.

For example, the number of papers published by
a researcher only tells how productive she or he is.
It does not say anything about the quality or the im-
pact of the work. Similarly, the number of citations
that a paper receives should not be used to gauge
the quality of the work as it really only measures
the popularity of the work and the interest of other
researchers in it (Garfield, 1979). Controversial pa-
pers or those based on fabricated data or experiments
may receive a large number of citations. A popular

example of fraudulent research that deceived many
researchers and caught media attention was the case
of a South Korean research scientist, Hwang Woo-
suk, who was found to have faked his research re-
sults in the area of human stem cell cloning. His re-
search was published in Science and received close
to 200 citations after the fraud was discovered. The
vast majority of those citations were negative.

This suggests that the purpose of citation should
be taken into consideration when biblometric mea-
sures are computed. Negative citations should be
weighted less than positive or neutral citations. This
motivates the need to automatically distinguish be-
tween positive, negative, and neutral citations and to
identify the purpose of a citation; i.e. the author’s in-
tention behind choosing a published article and cit-
ing it.

This analysis of citation purpose and polarity can
be useful for many applications. For example, it can
be used to build systems that help funding agencies
and hiring committees at universities and research
institutions evaluate researchers’ work more accu-
rately. It can also be used as a preprocessing step in
systems that process scholarly data. For example,
citation-based summarization systems (Qazvinian
and Radev, 2008; Qazvinian et al., 2010; Abu-
Jbara and Radev, 2011) and survey generation sys-
tems (Mohammad et al., 2009; Qazvinian et al.,
2013) can benefit from citation purpose and polar-
ity analysis to improve paper and content selection.

In this paper, we investigate the use of linguis-
tic analysis techniques to automatically identify the
purpose of citing a paper and the polarity of this cita-
tion. We first present a sequence labeling method for
extracting the text that cites a given target reference;
i.e. the text that appears in a scientific article and
refers to another article and comments on it. We use
the term citation context to refer to this text. Next,
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we use supervised classification techniques to ana-
lyze this text and identify the purpose and polarity
of citation.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the related work. We present our ap-
proach in Section 3. We then describe the data and
experiments in Section 4. Finally, Section 5 con-
cludes the paper and suggests directions for future
work.

2 Related Work

Our work is related to a large body of research
on citations. Studying citation patterns and ref-
erencing practices has interested researchers for
many years (Hodges, 1972; Garfield et al., 1984).
White (2004) provides a good survey of the differ-
ent research directions that study or use citations. In
the following subsections, we review three lines of
research that are closely related to our work.

2.1 Citation Context Identification

The first line of related research addresses the prob-
lem of identifying citation context. The context of a
citation that cites a given target paper can be a set of
sentences, one sentence, or a fragment of a sentence.

Nanba and Okumura (1999) use the term citing
area to refer to the same concept. They define the
citing area as the succession of sentences that ap-
pear around the location of a given reference in a
scientific paper and have connection to it. Their al-
gorithm starts by adding the sentence that contains
the target reference as the first member sentence in
the citing area. Then, they use a set of cue words
and hand-crafted rules to determine whether the sur-
rounding sentences should be added to the citing
area or not. In (Nanba et al., 2000), they use their
algorithm to improve citation type classification and
automatic survey generation.

Qazvinian and Radev (2010) addressed a simi-
lar problem. They proposed a method based on
probabilistic inference to extract non-explicit cit-
ing sentences; i.e., sentences that appear around
the sentence that contains the target reference and
are related to it. They showed experimentally that
citation-based survey generation produces better re-
sults when using both explicit and non-explicit cit-
ing sentences rather than using the explicit ones
alone.

In previous work, we addressed the issue of iden-
tifying the scope of a given target reference in citing
sentences that contain multiple references (2012).
Our definition of reference scope was limited to
fragments of the explicit citing sentence (i.e. the
sentence in which actual citation appears). That
method does not identify related text in surrounding
sentences.

In this work, we propose a supervised sequence
labeling method for identifying the citation context
of given reference which includes the explicit citing
sentence and the related surrounding sentences.

2.2 Citation Purpose Classification

Several research efforts have focused on studying
the different purposes for citing a paper (Garfield,
1964; Weinstock, 1971; Moravcsik and Muruge-
san, 1975; and Moitra, 1975; Bonzi, 1982).
Bonzi (1982) studied the characteristics of citing
and cited works that may aid in determining the re-
latedness between them. Garfield (1964) enumer-
ated several reasons why authors cite other publi-
cations, including “alerting researchers to forthcom-
ing work”, paying homage to the leading scholars
in the area, and citations which provide pointers to
background readings. Weinstock (1971) adopted the
same scheme that Garfield proposed in her study of
citations.

Spiegel-Rosing (1977) proposed 13 categories for
citation purpose based on her analysis of the first
four volumes of Science Studies. Some of them are:
Cited source is the specific point of departure for
the research question investigated, Cited source con-
tains the concepts, definitions, interpretations used,
Cited source contains the data used by the citing pa-
per. Nanba and Okumura (1999) came up with a
simple schema composed of only three categories:
Basis, Comparison, and other Other. They pro-
posed a rule-based method that uses a set of statis-
tically selected cue words to determine the category
of a citation. They used this classification as a first
step for scientific paper summarization. Teufel et
al. (2006), in their work on citation function classifi-
cation, adopted 12 categories from Spiegel-Rosing’s
taxonomy. They trained an SVM classifier and used
it to label each citing sentence with exactly one cat-
egory. Further, they mapped the twelve categories to
four top level categories namely: weakness, contrast
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(4 categories), positive (6 categories) and neutral.
The taxonomy that we use in this work is based

on previous work. We adopt a scheme that contains
six categories. We selected the six categories after
studying all the previously used citation taxonomies.
We included the ones we believed are important for
improving bibliometric measures and for the appli-
cations that we are planning to pursue in the future
(Section 5).

2.3 Citation Polarity Classification

The polarity (or sentiment) of a citation has also
been studied previously. Previous work showed
that positive and negative citations are common, al-
though negative citations might be expressed indi-
rectly or in an implicit way (Ziman, 1968; Mac-
Roberts and MacRoberts, 1984; THOMPSON and
YIYUN, 1991). Athar (2011) addressed the prob-
lem of identifying sentiment in citing sentences. He
used a set of structure-based features to train a ma-
chine learning classifier using annotated data. This
work uses the citing sentence only to predict senti-
ment. Context sentences were ignored. Athar and
Teufel (2012a) observed that taking the context into
consideration when judging sentiment in citations
increases the number of negative citations by a fac-
tor of 3. They proposed two methods for utilizing
the context. In the first method, they treat the citing
sentence and a fixed context (a window of four sen-
tences around the citing sentence) as if they were
a single sentence. They extract features from the
merged text and train a classifier similar to what they
did in their 2011 paper. In the second method, they
use a four-class annotation scheme. Each sentence
in a window of four sentences around the citation
is labeled as positive, negative, neutral, or excluded
(unrelated to the cited work). There experiments
surprisingly gave negative results and showed that
classifying sentiment without considering the con-
text achieves better results. They attributed this to
the small size of their training data and to the noise
that including the context text introduces to the data.
In (Athar and Teufel, 2012b), the authors present a
method for automatically identifying all the men-
tions of the cited paper in the citing paper. They
show that considering all the mentions improves the
performance of detecting sentiment in citations.

In our work, we propose a sequence labeling

method for identifying the citation context first, and
then use a supervised approach to determine the po-
larity of a given citation.

3 Approach

In this section, we describe our approach to three
tasks: citation context identification, citation pur-
pose classification, and citation polarity identifica-
tion. We also describe a preprocessing stage that is
applied to the citation text before performing any of
the three tasks.

3.1 Preprocessing

The goal of the preprocessing stage is to clean and
prepare the citation text for part-of-speech tagging
and parsing. The available POS taggers and parsers
are not trained on citation text. Citation text is dif-
ferent from normal text in that it contains references
written in a special format (e.g., author names and
publication year written in parentheses; or reference
indices written in square brackets). Many citing sen-
tences contain multiple references, some of which
might be grouped together in a pair of parentheses
and separated by a comma or a semi-colons. These
references are usually not syntactic nor semantic
constituents of the sentences they appear in. This
results in many POS tagging and parsing errors. We
address this issue in the pre-processing stage to im-
prove the performance of the feature extraction com-
ponent. We perform three pre-processing steps:

a. Reference Tagging: In the first step, we find
and tag all the references that appear in the text. We
use a regular expression to find references and re-
place each reference with a placeholder. The ref-
erence to the target paper is replaced by the place-
holder TREF. Each other reference is replaced by
REF.

b. Reference Grouping: In this step, we identify
grouped references (i.e. multiple references listed
between one pair of parentheses separated by semi-
colons). Each such group is replaced by a place-
holder, GREF. If the target reference is a member of
the group, we use a different placeholder: GTREF.

c. Non-syntactic Reference Removal: A refer-
ence or a group of references could either be a syn-
tactic constituent and has a semantic role in the sen-
tence or not (Whidby, 2012; Abu Jbara and Radev,
2012). If the reference is not a syntactic compo-
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Feature Description
Demonstrative determiners Takes a value of 1 if the current sentence contains contains a demonstrative determiner (this, these,

etc.), and 0 otherwise.
Conjunctive adverbs Takes a value of 1 if the current sentence starts with a conjunctive adverb (However, Furthermore,

Accordingly, etc.), and 0 otherwise.
Position Position of the current sentence with respect to the citing sentence. This feature takes one of four

values: -1, 0, 1, and 2.
Contains Closest Noun Phrase Takes a value of 1 if the current sentence contains closest noun phrase (if any) immediately before

the reference position in the citing sentence, and 0 otherwise. This noun phrase often is the name of
a method, a tool, or corpus originating from the cited reference.

2-3 grams The first bigram and trigram in the sentence (This approach, One problem with, etc.).
Contains Other references Takes a value of 1 if the current sentence contains references other than the target, and 0 otherwise.
Contains a Mention of target reference Takes a value of 1 if the current sentence contains a mention (explicit or anaphoric) of the target

reference, and 0 otherwise.
Multiple references Takes a value of 1 if the citing sentence contains multiple references, and 0 otherwise. If the cit-

ing sentence contains multiple references, it becomes less likely that the surrounding sentences are
related.

Table 1: Features used for citation context identification

nent in the sentence, we remove it to reduce pars-
ing errors. Following our previous work (Abu Jbara
and Radev, 2012), we use a rule-based algorithm to
determine whether a reference should be removed
from the sentence or kept. The algorithm uses stylis-
tic and linguistic features such as the style of the
reference, the position of the reference, and the sur-
rounding words to make the decision. When a ref-
erence is removed, the head of the closest noun
phrase (NP) immediately before the position of the
removed reference is used as a representative of the
reference. This is needed for feature extraction as
shown later in the paper.

3.2 Citation Context Identification

The task of identifying the citation context of a given
target reference can be formally defined as follows.
Given a scientific article A that cites another article
B, find a set of sentences in A that talk about the
work done in B such that at least one of these sen-
tences contains an explicit reference to B.

We treat this problem as a sequence labeling prob-
lem. The goal is to find the globally best sequence
of labels for all the sentences that appear within a
window around the citing sentence. The citing sen-
tence is the one that contains an explicit reference
to the cited paper. Each sentence within the window
is labeled as INCLUDED or EXCLUDED from the
citation context of the given target paper. To deter-
mine the size of the window, we examined a devel-
opment set of 300 sentences. We noticed that the re-
lated context almost always falls within a window of

four sentences. The window includes the citing sen-
tence, one sentence before the citing sentence, and
two sentences after the citing sentence.

We use Conditional Random Fields (CRFs) for
sequence labeling. In particular, we use a first-order
chain-structured CRF. The chain consists of two sets
of nodes: 1) a set of hidden nodes Y which represent
the context labels of sentences (INCLUDED or EX-
CLUDED), and 2) a set of observed nodes X which
represent the features extracted from the sentences.
The task is to estimate the probability of a sequence
of labels Y given the sequence of observed features
X: P (Y|X)

Lafferty et al. (2001) define this probability to be
a normalized product of potential functions ψ:

P (y|x) =
∏

t

ψk(yt, yt−1, x) (1)

Where ψk(yt, yt−1, x) is defined as

ψk(yt, yt−1, x) = exp(
∑

k

λkf(yt, yt−1, x)) (2)

where f(yt, yt−1, x) is a transition feature func-
tion of the label at positions i − 1 and i and the ob-
servation sequence x; and λj is a parameter that the
algorithm estimates from training data.

The features we use to train the CRF model in-
clude structural and lexical features that attempt to
capture indicators of relatedness to the given target
reference. The features that we used and their de-
scriptions are listed in table 1.
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Category Description Example
Criticizing Criticism can be positive or negative. A citing sentence is classi-

fied as ”criticizing” when it mentions the weakness/strengths of
the cited approach, negatively/positively criticizes the cited ap-
proach, negatively/positively evaluates the cited source.

Chiang (2005) introduced a constituent feature to reward
phrases that match a syntactic tree but did not yield signif-
icant improvement.

Comparison A citing sentence is classified as ”comparison” when it compares
or contrasts the work in the cited paper to the author’s work. It
overlaps with the first category when the citing sentence says one
approach is not as good as the other approach. In this case we use
the first category.

Our approach permits an alternative to minimum error-rate
training (MERT; Och, 2003);

Use A citing sentence is classified as ”use” when the citing paper uses
the method, idea or tool of the cited paper.

We perform the MERT training (Och, 2003) to tune the
optimal feature weights on the development set.

Substantiating A citing sentence is classified as ”substantiating” when the re-
sults, claims of the citing work substantiate, verify the cited paper
and support each other.

It was found to produce automated scores, which strongly
correlate with human judgements about translation flu-
ency (Papineni et al. , 2002).

Basis A citing sentence is classified as ”basis” when the author uses the
cited work as starting point or motivation and extends on the cited
work.

Our model is derived from the hidden-markov model for
word alignment (Vogel et al., 1996; Och and Ney, 2000).

Neutral (Other) A citing sentence is classified as ”neutral” when it is a neutral
description of the cited work or if it doesn’t come under any of
the above categories.

The solutions of these problems depend heavily on the
quality of the word alignment (Och and Ney, 2000).

Table 2: Annotation scheme for citation purpose. Motivated by the work of (Spiegel-Rösing, 1977) and (Teufel et al.,
2006)

3.3 Citation Purpose Classification

In this section, we describe the citation purpose clas-
sification task. Given a target paper B and its cita-
tion context (extracted using the method described
above) in a given article A, we want to determine
the purpose of citing B by A. The purpose is de-
fined as intention behind selecting B and citing it by
the author of A (Garfield, 1964).

We use a taxonomy that consists of six categories.
We designed this taxonomy based on our study of
similar taxonomies proposed in previous work. We
selected the categories that we believe are more im-
portant and useful from a bibliometric point of view,
and the ones that can be detected through citation
text analysis. We also tried to limit the number of
categories by grouping similar categories proposed
in previous work under one category. The six cate-
gories, their descriptions, and an example for each
category are listed in Table 2.

We use a supervised approach whereby a classifi-
cation model is trained on a number of lexical and
structural features extracted from a set of labeled ci-
tation contexts. Some of the features that we use to
train the classifier are listed in table 3.

3.4 Citation Polarity Identification

In this section, we describe the citation polarity iden-
tification task. Given a target paper B and its citation

context in a given article A, we want to determine
the polarity of the citation text with respect to B.
The polarity can be: positive, negative, or neutral
(objective). Positive, negative, and neutral in this
context are defined in a slightly different way than
their usual sense. A citation is marked positive if it
either explicitly states a strength of the target paper
or indicates that the work done in the target paper
has been used either by the author or a third-party. It
is also marked as positive if it is compared to another
paper (possibly by the same authors) and deemed
better in some way. A citation is marked negative
if it explicitly points to a weakness of the target pa-
per. It is also marked as negative if it is compared
to another paper and deemed worse in some way. A
citation is marked as neutral if it is only descriptive.

Similar to citation purpose classification, we use
a supervised approach for this problem. We train a
classification model using the same features listed in
Table 3. Due to the high skewness in the data (more
than half of the citations are neutral), we use two
setups for binary classification. In the first setup,
the citation is classified as Polarized (Subjective) or
(Neutral) Objective. In the second one, Subjective
citations are classified as Positive or Negative. We
find that this method gives more intuitive results than
using a 3-way classifier.
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Feature Description
Reference count The number of references that appear in the citation context.
Is Separate Whether the target reference appears within a group of references or separate (i.e. single reference).
Closest Verb / Adjective / Adverb The lemmatized form of the closest verb/adjective/adverb to the target reference or its representative or any mention

of it. Distance is measure based on the shortest path in the dependency tree.
Self Citation Whether the citation from the source paper to the target reference is a self citation.
Contains 1st/3rd PP Whether the citation context contains a first/third person pronoun.
Negation Whether the citation context contains a negation cue. The list of negation cues is taken from the training data of

the *SEM 2012 negation detection shared task (Morante and Blanco, 2012).
Speculation Whether the citation context contains a speculation cue. The list is taken from Quirk et al. (1985)
Closest Subjectivity Cue The closest subjectivity cue to the target reference or its representative or any anaphoric mention of it. The list of

cues is taken from OpinionFinder (Wilson et al., 2005)
Contrary Expressions Whether the citation context contains a contrary expression. The list is taken from Biber (1988)
Section The headline of the section in which the citation appears. We identify five title categorizes: 1) Introduction,

Motivation, etc. 2) Background, Prior Work, Previous Work, etc. 3) Experiments, Data, Results, Evaluation, etc.
4) Discussion, Conclusion, Future work, etc.. 5) All other section headlines. Headlines are identified using regular
expressions.

Dependency Relations All the dependency relations that appear in the citation context. For example, nsubj(outperform, algorithm)
is one of the relations extracted from ”This algorithm outperforms the one proposed by...”. The arguments of the
dependency relation are replaced by their lemmatized forms. This type of features has been shown to give good
results in similar tasks (Athar and Teufel, 2012a).

Table 3: The features used for citation purpose and polarity classification

4 Evaluation

In this section, we describe the data that we used for
evaluation and the experiments that we conducted.

4.1 Data

We use the ACL Anthology Network corpus
(AAN) (Radev et al., 2009; Radev et al., 2013) in
our evaluation. AAN is a publicly available collec-
tion of more than 19,000 NLP papers. It includes
a manually curated citation network of its papers
as well as the full text of the papers and the cit-
ing sentences associated with each edge in the ci-
tation network. From this set, we selected 30 pa-
pers that have different numbers of incoming cita-
tions and that were consistently cited since they were
published. These 30 papers received a total of about
3,500 citations from within AAN (average = 115 ci-
tation/paper, Min = 30, and Max = 338). These ci-
tations come from 1,493 unique papers. For each
of these citations, we extracted a window of 4 sen-
tences around the reference position. This brings
the number of sentences in our dataset to a total of
roughly 14,000 sentences. We refer to this dataset as
training/testing dataset.

In addition to this dataset, we created another
dataset that contains 300 citations that cite 5 papers
from AAN. We refer to this dataset as the develop-
ment dataset. This dataset was used to determine the

size of the citation context window, and to develop
the feature sets used in the three tasks described in
Section 3 above.

4.2 Annotation

In this section, we describe the annotation process.
We asked graduate students with good background
in NLP (the topic of the annotated sentences) to pro-
vide three annotations for each citation example (a
window of 4 sentences around the reference anchor)
in the training/testing dataset. We asked them to
mark the sentences that are related to a given tar-
get reference. In addition, we asked them to deter-
mine the purpose of citing the target reference by
choosing from the six purpose categories that we
described earlier. We also asked them to determine
whether the citation is negative, positive, or neutral.

To estimate the inter-annotator agreement, we
picked 400 sentences from the training/testing
dataset and assigned them to two different annota-
tors. We use the Kappa coefficient (Cohen, 1968)
to measure the agreement. The Kappa coefficient is
defined as follows:

K =
P (A)− P (E)

1− P (E)
(3)

where P(A) is the relative observed agreement
among annotators and P(E) is the hypothetical prob-
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ability of chance agreement. The agreement be-
tween the two annotators on the context identifica-
tion task wasK = 0.89. On Landis and Kochs (Lan-
dis and Koch, 1977) scale, this value indicates al-
most perfect agreement. The agreement on the pur-
pose and the polarity classification task were K =
0.61 and K = 0.66, respectively; which indicates
substantial agreement on the same scale.

The annotation shows that in 22% of the citation
examples, the citation context consists of 2 or more
sentences. The distribution of the purpose categories
in the data was: 14.7% criticism, 8.5% comparison,
17.7% use, 7% substantiation, 5% basis, and 47%
other. The distribution of the polarity categories
was: 30% positive, 12% negative, and 58% neutral.

4.3 Experimental Setup

We use the CRF++1 toolkit for CRF training and
testing. We use the Stanford parser to parse the ci-
tation text and generate the dependency parse trees
of sentences. We use Weka for classification experi-
ments. We experimented with several classifiers in-
cluding: SVM, Logistic Regression (LR), and Naive
Bayes. All the experiments that we conducted used
the training/testing dataset in a 10-fold cross vali-
dation mode. All the results have been tested for
statistical significance using a 2-tailed paired t-test.

4.4 Evaluation of Citation Context
Identification

We compare the CRF approach to three baselines.
The first baseline (ALL) labels all the sentences in
the citation window of size 4 as INCLUDED in the
citation context. The second baseline (CS-ONLY)
labels the citing sentence only as INCLUDED in the
citation context. In the third baseline, we use a su-
pervised classification method instead of sequence
labeling. We use Support Vector Machines (SVM)
to train a model using the same set of features as in
the CRF approach.

Table 4 shows the precision, recall, and F1 score
of the CRF approach and the baselines. The re-
sults show that our CRF approach outperforms all
the baselines. It also asserts our expectation that ad-
dressing this problem as a sequence labeling prob-
lem leads to better performance than individual sen-

1http://crfpp.googlecode.com/svn/trunk/doc/index.html

Precision Recall F1
CRFs 98.5% 82.0% 89.5%
ALL 30.7% 100.0% 46.9%
CS-ONLY 88.0% 74.0% 80.4%
SVM 92.0% 76.4% 83.5%

Table 4: Results of citation context identification

tence classification, which is also clear from the na-
ture of the task.

Feature Analysis: We evaluated the importance
of the features listed in Table 1 by computing the
chi-squared statistic for every feature with respect to
the class. We found that the lexical features (such as
determiners and conjunction adverbs) are generally
more important than the structural features (such as
position and reference count). The features shown
in Table 1 are listed in the order of their importance
based on this analysis.

4.5 Evaluation of Citation Purpose
Classification

Our experiments with several classification algo-
rithms showed that the SVM classifier outperforms
Logistic Regression and Naive Bayes classifiers.
Due to space limitations, we only show the results
for SVM. Table 5 shows the precision, recall, and
F1 for each of the six categories. It also shows the
overall accuracy and the Macro-F measure.

Feature Analysis: The chi-squared evaluation of
the features listed in Table 3 shows that both lexical
and structural features are important. It also shows
that among lexical features, the ones that are limited
to the existence of a direct relation to the target ref-
erence (such as closest verb, adjective, adverb, sub-
jective cue, etc.) are most useful. This can be ex-
plained by the fact that the restricting the features to
having direct dependency relation introduces much
less noise than other features (such as Dependency
Triplets). Among the structural features, the num-
ber of references in the citation context showed to
be more useful.

4.6 Evaluation of Citation Polarity
Identification

Similar to the case of citation purpose classification,
our experiments showed that the SVM classifier out-
performs the other classifiers that we experimented
with. Table 6 shows the precision, recall, and F1 for
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Criticism Comparison Use Substantiating Basis Other

Precision 53.0% 55.2% 60.0% 50.1% 47.3% 64.0%

Recall 77.4% 43.1% 73.0% 57.3% 39.1% 85.1%

F1 63.0% 48.4% 66.0% 53.5% 42.1% 73.1%

Accuracy: 70.5%

Macro-F: 58.0%

Table 5: Summary of Citation Purpose Classification Results (10-fold cross validation, SVM: Linear Kernel, c = 1.0)

each of the three categories. It also shows the over-
all accuracy and the Macro-F measure. The analysis
of the features used to train this classifier using chi-
squared analysis leads to the same conclusions about
the relative importance of the features as described
in the previous subsection. However, we noticed that
features that are related to subjectivity (Subjectiv-
ity Cues, Negation, Speculation) are ranked higher
which makes sense in the case of polarity classifica-
tion.

4.7 Impact of Context on Classification
Accuracy

To study the impact of using citation context in ad-
dition to the citing sentence on classification per-
formance, we ran two polarity classification exper-
iments. In the first experiment, we used the citing
sentence only to extract the features that are used
to train the classifiers. In the second experiment,
we used the gold context sentences (the ones la-
beled INCLUDED by human annotators). Table 6
shows the results of the first experiment between
rounded parentheses and the results of the second
experiments in square brackets. The results show
that adding citation context improves the classifica-
tion accuracy especially in the subjective categories,
specially in the negative category if we want to be
more specific. This supports our intuition about po-
larized citations that authors start their review of the
cited work with an objective (neutral) sentence and
then follow it with their criticism if they have any.
We also reached to similar conclusions with purpose
classification, but we are not showing the numbers
due to space limitations.

4.8 Other Experiments
4.8.1 Can We Do Better?

In this section, we investigate whether it is possi-
ble to improve the performance in the two classifica-
tion tasks. One factor that we believe could have an

Negative % Positive % Neutral %
Precision 68.7 (66.4) [69.8] 54.9 (52.1) [55.4] 83.6 (82.8) [84.2]
Recall 79.2 (71.1) [81.1] 48.1 (45.6) [46.3] 95.5 (95.1) [95.3]
F1 73.6 (68.7) [75.0] 51.3 (48.6) [50.4] 89.1 (88.5) [89.4]
Accuracy: 81.4 (74.2) [84.2] %
Macro-F: 71.3 (62.1) [74.2] %

Table 6: Summary of Citation Polarity Classification Re-
sults (10-fold cross validation, SVM: Linear Kernel, c =
1.0). Numbers between rounded parentheses are when
only the explicit citing sentence is used (i.e. no context).
Numbers in square brackets are when the gold standard
context is used.

impact on the result is the size of the training data.
To examine this hypothesis, we ran the experiment
on different sizes of data. Figure 1 shows the learn-
ing curve of the two classifiers for different sizes of
training data. The accuracy increases as more train-
ing data is available so we can expect that with even
more data, we can do even better.

4.8.2 Relation Between Citation
Purpose/Polarity and Citation Count

The main motivation of this work is our hypothet-
ical assumption that using NLP for analyzing cita-
tions gives a clearer picture of the impact of the cited
work. As a way to check the validity of this assump-
tion, we study the correlation between the counts of
the different purpose and polarity categories. We
also study the correlation between these categories
and the total number of citations that a paper re-
ceived since it was published. We use the train-
ing/testing dataset and the gold annotations for this
study.

We compute the Pearson correlation coefficient
between the counts of citations from the different
categories that a paper received per year since its
publication. We found that, on average, the correla-
tion between positive and negative citations is neg-
ative (AVG P = -0.194) and that the correlation be-
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Figure 1: The effect of size of the data set size on the
classifiers accuracy.

tween the count of positive citations and the total
number of citations is higher than the correlation be-
tween negative citations and total citations (AVG P =
0.531 for positive vs. AVG P = 0.054 for negative).

Similarly, we noticed that there is a higher posi-
tive correlation between Use citations and total ci-
tations than in the case of both Substantiation and
Basis. This can be explained by the intuition that
publications that present new algorithms, tools, or
corpora that are used by the research community be-
come more and more popular with time and thus re-
ceive more and more citations.

Figure 2 shows the result of running our pur-
pose classifier on all the citations to Papineni et
al.’s (2002) paper about Bleu, an automatic metric
for evaluating Machine Translation (MT) systems.
The figure shows that this paper receives a high
number of Use citations. This makes sense for a pa-
per that describes an evaluation metric that has been
widely used in the MT area. The figure also shows
that in the recent years, this metric started to receive
some Criticizing citations that resulted in a slight de-
crease in the number of Use citations. Such a tempo-
ral analysis of citation purpose and polarity is useful
for studying the dynamics of research. It can also
be used to detect the emergence or de-emergence of
research techniques.
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Figure 2: Change in the purpose of the citations to Pap-
ineni et al. (2002)

5 Conclusion

In this paper, we presented methods for three tasks:
citation context identification, citation purpose clas-
sification, and citation polarity classification. This
work is motivated by the need for more accurate
bibliometric measures that evaluates the impact of
research both qualitatively and quantitatively. Our
experiments showed that we can classify the pur-
pose and polarity of citation with a good accuracy. It
also showed that using the citation context improves
the classification accuracy and increases the num-
ber of polarized citations detected. For future work,
we plan to use the output of this research in several
applications such as predicting future prominence of
publications, studying the dynamics of research, and
designing more accurate bibliometric measures.
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Abstract

Most NLP tools are applied to text that is dif-
ferent from the kind of text they were eval-
uated on. Common evaluation practice pre-
scribes significance testing across data points
in available test data, but typically we only
have a single test sample. This short paper
argues that in order to assess the robustness
of NLP tools we need to evaluate them on
diverse samples, and we consider the prob-
lem of finding the most appropriate way to es-
timate the true effect size across datasets of
our systems over their baselines. We apply
meta-analysis and show experimentally – by
comparing estimated error reduction over ob-
served error reduction on held-out datasets –
that this method is significantly more predic-
tive of success than the usual practice of using
macro- or micro-averages. Finally, we present
a new parametric meta-analysis based on non-
standard assumptions that seems superior to
standard parametric meta-analysis.

1 Introduction

NLP tools and online services such as the Stanford
Parser or Google Translate are used for a wide va-
riety of purposes and therefore also on very differ-
ent kinds of data. Some use the Stanford Parser
to parse literature (van Cranenburgh, 2012), while
others use it for processing social media content
(Brown, 2011). The parser, however, was not neces-
sarily evaluated on literature or social media content
during development. Still, users typically expect
reasonable performance on any natural language in-
put. This paper asks what we as developers can do

to estimate the effect of a change to our system – not
on the labeled test data that happens to be available
to us, but on future, still unseen datasets provided by
our end users.

The usual practice in NLP is to evaluate a sys-
tem on a small sample of held-out labeled data.
The observed effect size on this sample is then val-
idated by significance testing across data points,
testing whether the observed difference in perfor-
mance means is likely to be due to mere chance.
The preferred significance test is probably the non-
parametric paired bootstrap (Efron and Tibshirani,
1993; Berg-Kirkpatrick et al., 2012), but many re-
searchers also resort to Student’st-test for depen-
dent means relying on the assumption that their met-
ric scores are normally distributed.

Such significance tests tell us nothing about how
likely our change to our system is to lead to improve-
ments on new datasets. The significance tests all rely
on the assumption that our datapoints are sampled
i.i.d. at random. The significance tests only tell us
how likely it is that the observed difference in per-
formance means would change if we sampled a big-
ger test sample the same way we sampled the one
we have available to us right now.

In standard machine learning papers a similar sit-
uation arises. If we are developing a new percep-
tron learning algorithm, for example, we are inter-
ested in how likely the new learning algorithm is to
perform better than other perceptron learning algo-
rithms across datasets, and we may for that reason
evaluate it on a large set of repository datasets.

Demsar (2006) presents motivation for using non-
parametric methods such as the Wilcoxon signed
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rank test to estimate significance across datasets.
The t-test is based on means, and typically results
across datasets are not commensurable. Thet-
test is also extremely sentitive to outliers. Notice
also that typically we do not have enough datasets
to do paired bootstrapping (van den Noortgate and
Onghena, 2005).

In this paper we will assume that the Wilcoxon
signed rank test provides a reasonable estimate of
the significance of an observed difference in perfor-
mance means across datasets, or of the significance
of observed error reductions, but note that this still
depends on the assumption that datasets are sampled
i.i.d. at random. More importantly, a non-parametric
test across data sets does not provide an actual esti-
mate of the effect size. Estimating effect size is im-
portant, e.g. when there is a trade-off between per-
formance gains and computational efficiency.

In evaluations across datasets in NLP we typically
use the macro-average as an estimate of effect size,
but in other fields such as psychology or medicine it
is more common to use a weighted mean obtained
using what is known as thefixed effects modelor
therandom effects modelfor meta-analysis.

The experiments reported on in this paper fo-
cus on estimating error reduction and show that
meta-analysis is generally superior to macro- and
micro-average in terms of predicting future error re-
ductions. Parametric meta-analysis, however, over-
parameterizes the distribution of error reductions,
leading to some instability. While meta-analysis is
generally superior to macro-average, it is sometimes
off by a large margin. We therefore introduce a new
parametric meta-analysis that seems better suited to
predicting error reductions. In our experiments test
set sizes are balanced, so micro-averages will be
near-identical to macro-averages.

2 Meta-analysis

Meta-analysis is the statistical analysis of the ef-
fect sizes of several studies and is very popular
in fields such as psychology or medicine. Meta-
analysis has not been applied very often to NLP.
In NLP most people work on applyingnew meth-
ods toold datasets, and meta-analysis is designed
to analyze series of studies applyingold methods to
new datasets, e.g. running the same experiments on

new subjects. However, meta-analysisis applicable
to experiments with multiple datasets.

In psychology or medicine you often see stud-
ies running similar experiments on different sam-
ples with very different results. Meta-analysis stems
from the observation that if we want to estimate an
effect from a large set of studies, the average ef-
fect across all the studies will put too much weight
on results obtained on small datasets in which you
typically see more variance. The most popular ap-
proaches to meta-analysis are the fixed effects and
the random effects model. The fixed effects model is
applicable when you assume a true effect size (esti-
mated by the individual studies). If you cannot make
that assumption because the studies may differ in
various aspects, leading the within-study estimates
to be estimates of slightly different effect sizes, you
need to use the random effects model. Both ap-
proaches to meta-analysis are parametric and rely on
the effect sizes to be normally distributed.

2.1 Fixed effects model

In the fixed effects model we weight the effect sizes
T1, . . . , TM – or error reductions, in our case – by
the inverse of the variancevi in the study, i.e.wi =
1
vi

. The combined effect sizeT is then:

T̂ =
ΣM

i≥1wiTi
∑M

i≥1 wi

The variance of the combined effect is now:

v =
1

∑M
i≥1 wi

and the 95% confidence interval is then̂T ±
1.96

√
v.

2.2 Random effects model

In the random effects model we replace the variance
vi with the variance plus between-studies variance
τ2:

τ2 =

∑k
i≥1 wiT

2
i −

(
∑

k

i≥1
wiTi)2

∑
k

i≥1
wi

− df

∑k
i≥1 wi −

∑
k

i≥1
w2

i
∑

k

i≥1
wi

(1)

with df = N − 1, except all negative values are
replaced by 0.
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Figure 1: Hierarchical structure of 20 Newsgroups. (a) IBM,MAC, (b) GRAPHICS, MS-WINDOWS, X-W INDOWS,
(c) BASEBALL, HOCKEY, (d) AUTOS, MOTORCYCLES, (e) CRYPTOGRAPHY, ELECTRONICS, MEDICINE, SPACE,
(f) GUNS, M IDEAST, M ISCELLANEOUS, (g) ATHEISM, CHRISTIANITY , M ISCELLANEOUS, (h) FORSALE

macro-av fixed random gumbel
k = 5
err. -0.1656 -0.0350 -0.0428 -0.0400
p-value - < 0.001 < 0.001 < 0.001
k = 10
err. -0.1402 -0.0329 -0.0413 -0.0359
p-value - < 0.001 < 0.001 < 0.001
k = 15
err. -0.0809 -0.0799 -0.0804 -0.0704
p-value - < 0.001 < 0.001 < 0.001

Figure 2: Using macro-average and meta-analysis to pre-
dict error reductions on document classification datasets
based onk observations. The scores are averages across
20 experiments. Thep-values were computed using
Wilcoxon signed rank tests.

The random effects model is obviously more con-
servative in its confidence intervals, and often we
will not be able to obtain significance across datasets
using a random effects model. If, for example, we
apply a fixed effects model to test whether Bernoulli
naive Bayes (NB) fairs better than a perceptron (P)
model on 25 randomly extracted cross-domain doc-
ument classification problem instances from the 20
Newsgroups dataset (see Sect. 4), the 95% confi-
dence interval is[3.9%, 5.2%]. The weighted mean
is 4.6% (macro-average 3.9%). Using a random
effects model on the same 25 datasets, the 95%
confidence interval becomes[−6.5%, 6.6%]. The
weighted mean estimate is also slighly different
from that of a fixed effects model. The first question
we ask is which of these models provides the best es-
timate of effect size as observed on future datasets?

2.3 The error reductions distribution

Both the fixed effects and the random effects model
assume that effect sizes are normally distributed. We

can apply Darling-Anderson tests to test whether er-
ror reductions in 20 Newsgroups are in fact normally
distributed. Even a small sample of ten 20 News-
groups datasets provides enough evidence to reject
the hypothesis that error reductions (of NB over
P) are normally distributed. The Darling-Anderson
tests consistently tell us that the chance that our sam-
ple distribtutions of error reductions are normally
distributed is below 1%. The over-paramaterization
means that the estimates we get are unstable. While
both models are superior to macro-average esti-
mates, they may provide ’far-off’ estimates.

Using Darling-Anderson tests we could also re-
ject the hypothesis that error reductions were lo-
gistically distributed, but we did not find evidence
for rejecting the hypothesis that error reductions are
Gumbel-distributed.1 Gumbel distributions are used
to model error distributions in the latent variable for-
mulation of multinomial logit regression. A para-
metric meta-analysis model based on the assumption
that error reductions are Gumbel distributed is an in-
teresting alternative to non-parametric meta-analysis
(Hedges and Olkin, 1984; van den Noortgate and
Onghena, 2005), since there seems to be little con-
sensus in the literature about the best way to ap-
proach non-parametric meta-analysis.

Gumbel distributions take the following form:

1

β
ez−e−z

wherez = x−α
β

with α the location, andβ the
scale. We fit a Gumbel distribution to our weighted
error reductions (wiTi) and compute the combined

1Abidin et al. (2012) has shown that Darling-Anderson is
superior to other goodness-of-fit tests for Gumbel distributions.
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macro-av fixed random gumbel
k = 5
err. 0.0531 0.0525 0.0526 0.0489
p-value - ∼ 0.98 ∼ 0.98 ∼ 0.79
k = 7
err. 0.0928 0.0852 0.0852 0.0858
p-value - < 0.001 < 0.001 < 0.001
k = 9
err. 0.0587 0.05743 0.05743 0.0532
p-value - ∼ 0.68 ∼ 0.68 ∼ 0.13

Figure 3: Using macro-average and meta-analysis to pre-
dict error reductions in cross-lingual dependency parsing.
See text for details.

effect

T̂ =
α + 0.57721β

1
M

∑M
i≥1 wi

where 0.57721 is the Euler-Mascheroni constant,
and the variance of the combined effectv = π2

6 β2.

3 Experiments in document classification
and dependency parsing

Our first experiment makes use of the 20 News-
groups document classification dataset.2 The top-
ics in 20 Newsgroups are hierarchically structured,
which enables us to extract a large set of binary
classification problems with considerable bias be-
tween source and target data (Chen et al., 2009;
Sun et al., 2011). See the hierarchy in Figure 1.
We extract 20 high-level binary classification prob-
lems by considering all pairs of top-level cate-
gories, e.g. COMPUTERS-RECREATIVE (comp-rec).
For each of these 20 problems, we have differ-
ent possible datasets, e.g. IBM-BASEBALL, MAC-
MOTORCYCLES, etc. A problem instance takes
training and test data from twodifferent datasets be-
long to the same high-level problem. For exam-
ple a problem instance could be learning to dis-
tinguish articles about Macintosh and motorcycles
MAC-MOTORCYCLES (evaluated on the 20 News-
groups test section) using labeled data from IBM-
BASEBALL (the training section). In total we have
288 available problem instances in the 20 News-
groups dataset.

In our first experiment we are interested in pre-
dicting the error reductions of a naive Bayes learner

2http://people.csail.mit.edu/jrennie/20Newsgroups/

over a perceptron model. We use publicly available
implementations with default parameters.3 In each
experiment we randomly selectk datasets and es-
timate the true effect size using macro-average, a
fixed effects model, a random effects model, and
a corrected random effects model. In order to es-
timate the within-study variance we take 50 paired
bootstrap samples of the system outputs. We evalu-
ate our estimates against the observed average effect
across 5 new randomly extracted datasets. For each
k we repeat the experiment 20 times and report aver-
age error. We varyk to see how many observations
are needed for our estimates to be reliable.

The results are presented in Figure 2. We note that
meta-analysis provides much better estimates than
macro-averages across the board. Our parametric
meta-analysis based on the assumption that error re-
ductions are Gumbel distributed performs best with
more observations.

Our second experiment repeats the same proce-
dure using available data from cross-lingual depen-
dency parsing. We use the submitted results by par-
ticipants in the CoNLL-X shared task (Buchholz and
Marsi, 2006) and try to predict the error reduction of
one system over another givenk many observations.
Given that we only have 12 submissions per system
we usek ∈ {5, 7, 9} randomly extracted datasets
for observations and test on another five randomly
extracted datasets. While results (Figure 3) are only
statistically significant withk = 7, we see that meta-
analysis estimates effect size across data sets better
than macro-average in all cases.

4 Conclusions

We have argued that evaluation across datasets is
important for developing robust NLP tools, and
that meta-analysis can provide better estimates
of effect size across datasets than macro-average.
We also noted that parametric meta-analysis over-
parameterizes error reduction distributions and sug-
gested a new parametric method for estimating ef-
fect size across datasets.
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Abstract

We present a systematic study of the effect of
crowdsourced translations on Machine Trans-
lation performance. We compare Machine
Translation systems trained on the same data
but with translations obtained using Amazon’s
Mechanical Turk vs. professional translations,
and show that the same performance is ob-
tained from Mechanical Turk translations at
1/5th the cost. We also show that adding a Me-
chanical Turk reference translation of the de-
velopment set improves parameter tuning and
output evaluation.

1 Introduction

Online crowdsourcing services have been shown to
be a cheap and effective data annotation resource
for various Natural Language Processing (NLP)
tasks (Callison-Burch and Dredze, 2010; Zaidan and
Callison-Burch, 2011a; Zaidan and Callison-Burch,
2011b). The resulting quality of annotations is high
enough to be used for training statistical NLP mod-
els, with a saving in cost and time of up to an or-
der of magnitude. Statistical Machine Translation
(SMT) is one of the NLP tasks that can benefit from
crowdsourced annotations. With appropriate quality
control mechanisms, reference translations collected
by crowdsourcing have been successfully used for
training and evaluating SMT systems (Zbib et al.,
2012; Zaidan and Callison-Burch, 2011b).

In this work, we used Amazon’s Mechanical Turk
(MTurk) to obtain alternative reference translations
of four Arabic-English parallel corpora previously
released by the Linguistic Data Consortium (LDC)

for the DARPA BOLT program. This data, totaling
over 500K Arabic tokens, was originally collected
from web discussion forums and translated profes-
sionally to English. We used alternative MTurk
translations of the same data to train and evalua-
tion MT systems; and conducted the first systematic
study that quantifies the effect of the reference trans-
lation process on MT output. We found that:

• Mechanical Turk can be used to translate
enough data for training an MT system at
1/10th the price of professional translation, and
at a much faster rate.

• Training MT systems on MTurk reference
translations gives the same performance as
training with professional translations at 20%
of the cost.

• A second translation of the development set ob-
tained via MTurk improves parameter tuning
and output evaluation.

2 Previous Work

There have been several publications on crowd-
sourcing data annotation for NLP. Callison-Burch
and Dredze (2010) give an overview of the NAACL-
2010 Workshop on using Mechanical Turk for data
annotation. They describe tasks for which MTurk
can be used, and summarize a set of best practices.
They also include references to the workshop con-
tributions.

Zaidan and Callison-Burch (2011a) created a
monolingual Arabic data set rich in dialectal con-
tent from user commentaries on newspaper web-
sites. They hired native Arabic speakers on MTurk
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to identify the dialect level and used the collected la-
bels to train automatic dialect identification systems.
They did not translate the collected data, however.
Zaidan and Callison-Burch (2011b) obtained mul-
tiple translations of the NIST 2009 Urdu-English
evaluation set using MTurk. They trained a statis-
tical model on a set of features to select among the
multiple translations. They showed that the MTurk
translations selected by their model approached the
range of quality of professional translations, and that
the selected MTurk translations can be used reliably
to score the outputs of different MT systems submit-
ted to the NIST evaluation. Unlike our work, they
did not investigate the use of crowdsourced trans-
lations for training or parameter tuning. Zbib et al.
(2012) trained a Dialectal Arabic to English MT sys-
tem using Mechanical Turk translations. But the
data they translated on MTurk does not have profes-
sional translations to conduct the systematic com-
parison we do in this paper.

It is well known that scoring MT output against
multiple references improves MT scores such as
BLEU significantly, since it increases the chance of
matching n-grams between the MT output and the
references. Tuning system parameter with multi-
ple references also improves machine translation for
the same reason Madnani et al. (2007) and Madnani
et al. (2008) showed that tuning on additional ref-
erences obtained by automatic paraphrasing helps
when only few tuning references are available.

3 Data Translation

The data we used are Arabic-English parallel cor-
pora released by the LDC for the DARPA BOLT
Phase 1 program1. The data was collected from
Egyptian online discussion forums, and consists of
separate discussion threads, each composed of an
initial user posting and multiple reply postings. The
data tends to be bimodal: the first posting in the
thread is often formal and expressed in Modern
Standard Arabic, while the subsequent threads use
a less formal style, and contain colloquial Egyptian
dialect. The data was manually segmented into sen-
tence units, and translated professionally.

We used non-professional translators hired on
MTurk to get second translations. We used several

1Corpora: LDC2012E15, LDC2012E19, LDC2012E55

measures to control the quality of translations and
detect cheaters. Those include the rendering of Ara-
bic sentences as images, comparing the output to
Google Translate and Bing Translator, and other au-
tomatic checks. The quality of individual worker’s
translations was quantified by asking a native Ara-
bic speaker judge to score a sample of the Turker’s
translations. The translation task unit (aka Human
Intelligence Task or HIT) consisted of a sequence
of contiguous sentences from a discussion thread
amounting to between 40 and 60 words. The in-
structions were simply to translate the Arabic source
fully and accurately, and to take surrounding sen-
tence segments into account to help resolve ambigu-
ities. The HIT rewards were set to 2.5¢ per word.

At the end of the effort, we had 26 different work-
ers translate 567K Arabic tokens in 4 weeks. The
resulting translations were less fluent than their pro-
fessional counterparts, and 10% shorter on average.
The following section presents results of MT exper-
iments using the MTurk translations.

4 MT Experiments

The MT system used is based on a string-to-
dependency-tree hierarchical model of Shen et
al. (2008). Sentence alignment was done using
GIZA++ (Och and Ney, 2003). Decoder fea-
tures include translation probabilities, smoothed lex-
ical probabilities, and a dependency tree language
model. Additionally, we used 50,000 sparse, binary-
valued source and target features based on Chiang
et al. (2009). The English language model was
trained on 7 billion words from the LDC Gigaword
corpus and from a web crawl. We used expected
BLEU maximization (Devlin, 2009) to tune feature
weights.

We defined a tuning set (3581 segments, 43.3K
tokens) and a test set (4166 segments, 47.7K to-
kens) using LDC2012E30, the corpus designated
as a development set by the LDC, augmented with
around 50K Words held out from LDC2012E15
and LDC2012E19, to make a development set large
enough to tune the large number of feature weights2.
The remaining data was used for training. We de-
fined three nested training sets containing 100K,
200K and 400K Arabic tokens respectively, with

2Only full forum threads were held out
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Training Web-forum Only Newswire(10MW)+Web-forum
100KW 200KW 400KW 0KW 100KW 200KW 400KW

Prof. refs 17.71 20.23 22.61 22.82 24.05 24.85 25.19
MTurk refs 16.41 18.43 20.08 22.82 23.79 24.20 24.51
Two Training refs 19.03 21.19 23.06 22.82 24.26 25.19 25.38
Add’l Training data - 19.80 21.53 22.82 - 24.31 25.16

Table 1: Comparison of the effect of web forum training data when using professional and MTurk reference transla-
tions. All results use professional references for the tuning and test sets.

two versions of each set: one with the professional
reference translations for the target, and the other
with the same source data, but the MTurk transla-
tions. We defined two versions of the test and tuning
sets similarly. We report translation results in terms
of lower-case BLEU scores (Papineni et al., 2002).

4.1 Training Data References

We first study the effect of training data refer-
ences, varying the amount of training data and type
of translations, while using the same professional
translation references for tuning and scoring. The
first set of baseline experiments were trained on
web forum data only, using professional transla-
tions. The first line of Table 1 shows that doubling of
the training data adds 2.5 then 2.3 BLEU points. We
repeated the experiments, but with MTurk training
references, and saw that the scores are lower by 1.3-
2.5 BLEU points, depending on the size of training
data, and that the gain obtained from doubling the
training data decreases to 2.0 and 1.6 BLEU points.

The lower MT scores and slower learning curve of
the MTurk systems are both due to the lower quality
of the translations, and to the mismatch with the pro-
fessional development set translations (we discuss
this issue further in §4.3). However, by interpolation
of the MT scores, we find that the same MT perfor-
mance can be obtained by using twice the amount of
MTurk translated data as professional data. Consid-
ering that the MTurk translations is 10 times cheaper
than professional translations (2.5¢ versus 25-30¢),
this constitutes a cost ratio of 5x.

We repeated the above experiments, but this time
added 10 million words of parallel data from the
NIST MT 2012 corpora (mostly news) for training.
We weighted the web forum part of the training data
by a factor of 5. Note from the results in the right
half of Table 1 that the newswire data improves the

BLEU score by 2.5 to 6.3 BLEU points, depend-
ing on the size of the web forum data. This signif-
icant improvement is because some of the web fo-
rum user postings are formal and written in MSA
(§3). More relevant to our aims is the comparison
when we vary the web forum training references in
the presence of the newswire training. The differ-
ence between the MTurk translation systems and the
professional translation drops to 0.26-0.68 points.
We conclude that in a domain adaptation scenario,
where out-of-domain training data (i.e. newswire)
already exists, crowdsourced translations for the in-
domain (i.e. web forum) training data can be used
with little to no loss in MT performance.

4.2 More Data vs. Multiple Translations

To our knowledge no previous work has compared
using multiple reference translations for training
data versus using additional training data of the same
size. We studied this question by using both transla-
tions on the target side of the training data. Using the
MTurk translations in addition to the professional
translations in training gave a gain of 0.4 to 1.3
BLEU points (bottom half of Table 1). The gain was
smaller in the presence of the GALE newswire data.
When we compared with using the same amount of
different training data instead of multiple references,
we saw that training on new data with crowdsourced
translations is better: training on two translations of
100KW gives 19.03, compared to 19.80 when train-
ing on a single translation of 200KW. The advantage
of different-source data drops to 0.34 points when
we start with 200KW. With a larger initial corpus,
the additional source coverage of new data is not as
critical, and the advantage of more variety on the
target-side of the extracted translation rules becomes
more competitive. This coverage is even less criti-
cal in the presence of the news data, where the ad-
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Training Tuning Test Training Data Size
100KW 200KW 400KW 400KW(no lex)

Prof. Prof. Prof. 17.71 20.23 22.61 20.01
Prof. Prof. Prof.+MTurk 22.53 25.75 28.38 25.42
Prof. Prof. (len=0.95) Prof.+MTurk 23.63 26.84 29.54 26.17
Prof. Prof.+MTurk Prof.+MTurk 25.26 28.44 30.94 27.22
MTurk MTurk MTurk 16.66 18.47 20.35 17.75
MTurk MTurk Prof.+MTurk 23.83 26.45 28.66 25.44
MTurk MTurk (len=1.05) Prof.+MTurk 23.73 26.19 28.74 25.87
MTurk Prof.+MTurk Prof.+MTurk 24.91 27.66 29.78 26.45

Table 2: Effect of Tuning and Scoring References on MT.

vantage of new web forum source data disappears
(lower-right quadrant of Table 1).

4.3 Development Data References
So far, we have focused on varying training data
conditions, and kept the tuning and evaluation con-
ditions fixed. But since we have re-translated the
tuning and test sets on MTurk as well, we can study
the effect of their reference translations on MT. As
Table 2 shows, scoring the MT output using both
reference translations, the BLEU scores increase by
over 5 points (and more for the MTurk-trained sys-
tem). This increase by itself is not remarkable. What
is important to note is that the gain obtained by dou-
bling the amount of training data is larger when mea-
sured using the multiple reference test set. We also
ran experiments with 400KW training data, but with
the lexical smoothing features (Koehn et al., 2003;
Devlin, 2009) turned off. The bigger gains show that
improvements in the MT output (from additional
training or new features) can be better measured us-
ing a second MTurk reference of the test set.

Finally, we study the effect of tuning the system
parameters using both translation references. Look-
ing at the system trained on the professional trans-
lations, we see a gain of 2.5 to 2.7 BLEU points
from adding the MTurk references to the tuning set.
But as we mentioned earlier, the MTurk transla-
tions are shorter than the professional translations
by around 10% on average. Tuning on both ref-
erences, therefore, shortens the system output by
around 5%. To neutralize the effect of length mis-
match, we compared to a fairer baseline tuned on
the professional references only, but we tuned the
output-to-reference length ratio to be 0.95 (thus pro-

ducing a shorter output). In this case, we see a gain
of 1.4 points from adding the MTurk references to
the tuning set.

We also used the multiple-reference tuning set
to retune the systems trained on MTurk transla-
tions. Comparing that to a baseline that is tuned and
scored using MTurk references only, we see a gain
of around 1%. Note, however, that in this case the
length mismach is reversed, and the output of the
multiple-reference system is around 5% longer than
that of the baseline. If we compare with a baseline
that is tuned with a length ratio of 1.05 (to produce a
longer output), we see the gain shrink only slightly.

To sum up this section, a second set of refer-
ence translations obtained via MTurk makes mea-
surements of improvement on the test set more re-
liable. Also, a second set of references for tuning
improves the output of the MT systems trained on
either professional or MTurk references.

5 Conclusion

We compared professional and crowdsourced trans-
lations of the same data for training, tuning and scor-
ing Arabic-English SMT systems. We showed that
the crowdsourced translations yield the same MT
performance as professional translations for as lit-
tle as 20% of the cost. We also showed that a sec-
ond crowsourced reference translation of the devel-
opment set allows for a more accurate evaluation of
MT output.

Acknowledgments

This work was supported in part by DARPA/IPTO
Contract No. HR0011-12-C-0014 under the BOLT

615



Program. The views expressed are those of the au-
thors and do not reflect the official policy or position
of the Department of Defense or the U.S. Govern-
ment. Distribution Statement A (Approved for Pub-
lic Release, Distribution Unlimited).

References

Chris Callison-Burch and Mark Dredze. 2010. Creating
speech and language data with Amazon’s Mechanical
Turk. In Proceedings of the NAACL HLT 2010 Work-
shop on Creating Speech and Language Data with
Amazon’s Mechanical Turk, pages 1–12, Los Angeles,
June.

David Chiang, Kevin Knight, and Wei Wang. 2009.
11,001 new features for statistical machine translation.
In NAACL ’09: Proceedings of the 2009 Human Lan-
guage Technology Conference of the North American
Chapter of the Association for Computational Linguis-
tics, Boulder, Colorado.

Jacob Devlin. 2009. Lexical features for statistical ma-
chine translation. Master’s thesis, University of Mary-
land, December.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical
phrase-based translation. In Proceedings of the 2003
Human Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 48–54, Edmonton, Canada.

Nitin Madnani, Necip Fazil, Ayan, Philip Resnik, and
Bonnie Dorr. 2007. Using paraphrases for parameter
tuning in statistical machine translation. In Proceed-
ings of the Second Workshop on Statistical Machine
Translation, pages 120–127, Prague, Czech Republic.
Association for Computational Linguistics.

Nitin Madnani, Philip Resnik, Bonnie Dorr, and Richard
Schwartz. 2008. Are multiple reference transla-
tions necessary? investigating the value of paraphrased
reference translations in parameter optimization. In
Proceedings of the 8th Conf. of the Association for
Machine Translation in the Americas (AMTA 2008),
Waikiki, Hawaii, USA.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In Proceedings of the 40th
Annual Meeting of the Association for Computational
Linguistics (ACL), Philadelphia, PA.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A
new string-to-dependency machine translation algo-
rithm with a target dependency language model. In

Proceedings of the 46th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
577–585, Columbus, Ohio.

Omar F. Zaidan and Chris Callison-Burch. 2011a.
The Arabic online commentary dataset: an annotated
dataset of informal Arabic with high dialectal content.
In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 37–41, Portland, Oregon,
June.

Omar F. Zaidan and Chris Callison-Burch. 2011b.
Crowdsourcing translation: Professional quality from
non-professionals. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1220–
1229, Portland, Oregon, June.

Rabih Zbib, Erika Malchiodi, Jacob Devlin, David
Stallard, Spyros Matsoukas, Richard Schwartz, John
Makhoul, Omar F. Zaidan, and Chris Callison-Burch.
2012. Machine translation of arabic dialects. In The
2012 Conference of the North American Chapter of the
Association for Computational Linguistics, Montreal,
June. Association for Computational Linguistics.

616



Proceedings of NAACL-HLT 2013, pages 617–626,
Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

Down-stream effects of tree-to-dependency conversions

Jakob Elming, Anders Johannsen, Sigrid Klerke, Emanuele Lapponi†,
Hector Martinez, Anders Søgaard

Center for Language Technology, University of Copenhagen
†Institute for Informatics, University of Oslo

Abstract

Dependency analysis relies on morphosyntac-
tic evidence, as well as semantic evidence.
In some cases, however, morphosyntactic ev-
idence seems to be in conflict with seman-
tic evidence. For this reason dependency
grammar theories, annotation guidelines and
tree-to-dependency conversion schemes often
differ in how they analyze various syntactic
constructions. Most experiments for which
constituent-based treebanks such as the Penn
Treebank are converted into dependency tree-
banks rely blindly on one of four-five widely
used tree-to-dependency conversion schemes.
This paper evaluates the down-stream effect of
choice of conversion scheme, showing that it
has dramatic impact on end results.

1 Introduction

Annotation guidelines used in modern depen-
dency treebanks and tree-to-dependency conversion
schemes for converting constituent-based treebanks
into dependency treebanks are typically based on
a specific dependency grammar theory, such as the
Prague School’s Functional Generative Description,
Meaning-Text Theory, or Hudson’s Word Grammar.
In practice most parsers constrain dependency struc-
tures to be tree-like structures such that each word
has a single syntactic head, limiting diversity be-
tween annotation a bit; but while many dependency
treebanks taking this format agree on how to an-
alyze many syntactic constructions, there are still
many constructions these treebanks analyze differ-
ently. See Figure 1 for a standard overview of clear
and more difficult cases.

The difficult cases in Figure 1 are difficult for
the following reason. In the easy cases morphosyn-
tactic and semantic evidence cohere. Verbs gov-
ern subjects morpho-syntactically and seem seman-
tically more important. In the difficult cases, how-
ever, morpho-syntactic evidence isin conflict with
the semantic evidence. While auxiliary verbs have
the same distribution as finite verbs in head position
and share morpho-syntactic properties with them,
and govern the infinite main verbs, main verbs seem
semantically superior, expressing the main predi-
cate. There may be distributional evidence that com-
plementizers head verbs syntactically, but the verbs
seem more important from a semantic point of view.

Tree-to-dependency conversion schemes used
to convert constituent-based treebanks into
dependency-based ones also take different stands on
the difficult cases. In this paper we consider four dif-
ferent conversion schemes: the Yamada-Matsumoto
conversion schemeyamada,1 the CoNLL 2007
formatconll07,2 the conversion schemeewt used in
the English Web Treebank (Petrov and McDonald,
2012),3 and thelth conversion scheme (Johansson

1The Yamada-Matsumoto scheme can be
replicated by running penn2malt.jar available at
http://w3.msi.vxu.se/∼nivre/research/Penn2Malt.html. We
used Malt dependency labels (see website). The Yamada-
Matsumoto scheme is an elaboration of the Collins scheme
(Collins, 1999), which is not included in our experiments.

2The CoNLL 2007 conversion scheme can be
obtained by running pennconverter.jar available at
http://nlp.cs.lth.se/software/treebankconverter/with the
’conll07’ flag set.

3The EWT conversion scheme can be repli-
cated using the Stanford converter available at
http://nlp.stanford.edu/software/stanford-dependencies.shtml
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Clear cases Difficult cases
Head Dependent ? ?
Verb Subject Auxiliary Main verb
Verb Object Complementizer Verb
Noun Attribute Coordinator Conjuncts
Verb Adverbial Preposition Nominal

Punctuation

Figure 1: Clear and difficult cases in dependency annotation.

and Nugues, 2007).4 We list the differences in
Figure 2. An example of differences in analysis is
presented in Figure 3.

In order to access the impact of these conversion
schemes on down-stream performance, we need ex-
trinsic rather than intrinsic evaluation. In general
it is important to remember that while researchers
developing learning algorithms for part-of-speech
(POS) tagging and dependency parsing seem ob-
sessed with accuracies, POS sequences or depen-
dency structures have no interest on their own. The
accuracies reported in the literature are only inter-
esting insofar they correlate with the usefulness of
the structures predicted by our systems. Fortunately,
POS sequences and dependency structuresare use-
ful in many applications. When we consider tree-to-
dependency conversion schemes, down-stream eval-
uation becomes particularly important since some
schemes are more fine-grained than others, leading
to lower performance as measured by intrinsic eval-
uation metrics.

Approach in this work

In our experiments below we apply a state-of-the-art
parser to five different natural language processing
(NLP) tasks where syntactic features are known to
be effective: negation resolution, semantic role la-
beling (SRL), statistical machine translation (SMT),
sentence compression and perspective classification.
In all five tasks we use the four tree-to-dependency
conversion schemes mentioned above and evaluate
them in terms of down-stream performance. We also
compare our systems to baseline systems not rely-

4The LTH conversion scheme can be ob-
tained by running pennconverter.jar available at
http://nlp.cs.lth.se/software/treebankconverter/ with the
’oldLTH’ flag set.

ing on syntactic features, when possible, and to re-
sults in the literature, when comparable results exist.
Note that negation resolution and SRL are not end
applications. It is not easy to generalize across five
very different tasks, but the tasks will serve to show
that the choice of conversion scheme has significant
impact on down-stream performance.

We used the most recent release of the Mate parser
first described in Bohnet (2010),5 trained on Sec-
tions 2–21 of the Wall Street Journal section of the
English Treebank (Marcus et al., 1993). The graph-
based parser is similar to, except much faster, and
performs slightly better than the MSTParser (Mc-
Donald et al., 2005), which is known to perform
well on long-distance dependencies often important
for down-stream applications (McDonald and Nivre,
2007; Galley and Manning, 2009; Bender et al.,
2011). This choice may of course have an effect on
what conversion schemes seem superior (Johansson
and Nugues, 2007). Sentence splitting was done us-
ing splitta,6, and the sentences were then tokenized
using PTB-style tokenization7 and tagged using the
in-built Mate POS tagger.

Previous work

There has been considerable work on down-stream
evaluation of syntactic parsers in the literature, but
most previous work has focused on evaluating pars-
ing models rather than linguistic theories. No one
has, to the best of our knowledge, compared the
impact of choice of tree-to-dependency conversion
scheme across several NLP tasks.

Johansson and Nugues (2007) compare the im-
pact of yamada and lth on semantic role labeling

5http://code.google.com/p/mate-tools/
6http://code.google.com/p/splitta/
7http://www.cis.upenn.edu/∼treebank/tokenizer.sed
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FORM1 FORM2 yamada conll07 ewt lth
Auxiliary Main verb 1 1 2 2
Complementizer Verb 1 2 2 2
Coordinator Conjuncts 2 1 2 2
Preposition Nominal 1 1 1 2

Figure 2: Head decisions in conversions. Note: yamada also differ from CoNLL 2007 in proper names.

Figure 3: CoNLL 2007 (blue) and LTH (red) dependency conversions.

performance, showing thatlth leads to superior per-
formance.

Miyao et al. (2008) measure the impact of syntac-
tic parsers in an information extraction system iden-
tifying protein-protein interactions in biomedical re-
search articles. They evaluate dependency parsers,
constituent-based parsers and deep parsers.

Miwa et al. (2010) evaluate down-stream per-
formance of linguistic representations and parsing
models in biomedical event extraction, but do not
evaluate linguistic representations directly, evaluat-
ing representations and models jointly.

Bender et al. (2011) compare several parsers
across linguistic representations on a carefully de-
signed evaluation set of hard, but relatively frequent
syntactic constructions. They compare dependency
parsers, constituent-based parsers and deep parsers.
The authors argue in favor of evaluating parsers on
diverse and richly annotated data. Others have dis-
cussed various ways of evaluating across annotation
guidelines or translating structures to a common for-
mat (Schwartz et al., 2011; Tsarfaty et al., 2012).

Hall et al. (2011) discuss optimizing parsers for
specific down-stream applications, but consider only
a single annotation scheme.

Yuret et al. (2012) present an overview of the
SemEval-2010 Evaluation Exercises on Semantic

Evaluation track on recognition textual entailment
using dependency parsing. They also compare sev-
eral parsers using the heuristics of the winning sys-
tem for inference. While the shared task is an
example of down-stream evaluation of dependency
parsers, the evaluation examples only cover a subset
of the textual entailments relevant for practical ap-
plications, and the heuristics used in the experiments
assume a fixed set of dependency labels (ewt labels).

Finally, Schwartz et al. (2012) compare the
above conversion schemes and several combinations
thereof in terms of learnability. This is very different
from what is done here. While learnability may be
a theoretically motivated parameter, our results indi-
cate that learnability and downstream performance
do not correlate well.

2 Applications

Dependency parsing has proven useful for a wide
range of NLP applications, including statistical ma-
chine translation (Galley and Manning, 2009; Xu et
al., 2009; Elming and Haulrich, 2011) and sentiment
analysis (Joshi and Penstein-Rose, 2009; Johansson
and Moschitti, 2010). This section describes the ap-
plications and experimental set-ups included in this
study.

In the five applications considered below we
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use syntactic features in slightly different ways.
While our statistical machine translation and sen-
tence compression systems use dependency rela-
tions as additional information about words andon
a parwith POS, our negation resolution system uses
dependency paths, conditioning decisions on both
dependency arcs and labels. In perspective classifi-
cation, we use dependency triples (e.g. SUBJ(John,
snore)) as features, while the semantic role labeling
system conditions on a lot of information, including
the word form of the head, the dependent and the ar-
gument candidates, the concatenation of the depen-
dency labels of the predicate, and the labeled depen-
dency relations between predicate and its head, its
arguments, dependents or siblings.

2.1 Negation resolution

Negation resolution (NR) is the task of finding nega-
tion cues, e.g. the wordnot, and determining their
scope, i.e. the tokens they affect. NR has recently
seen considerable interest in the NLP community
(Morante and Sporleder, 2012; Velldal et al., 2012)
and was the topic of the 2012 *SEM shared task
(Morante and Blanco, 2012).

The data set used in this work, the Conan Doyle
corpus (CD),8 was released in conjunction with the
*SEM shared task. The annotations in CD extend
on cues and scopes by introducing annotations for
in-scope events that are negated in factual contexts.
The following is an example from the corpus show-
ing the annotations for cues (bold), scopes (under-
lined) and negated events (italicized):

(1) Since we have been so
unfortunateas to miss him[. . . ]

CD-style scopes can be discontinuous and overlap-
ping. Events are a portion of the scope that is se-
mantically negated, with its truth value reversed by
the negation cue.

The NR system used in this work (Lapponi et al.,
2012), one of the best performing systems in the
*SEM shared task, is a CRF model for scope resolu-
tion that relies heavily on features extracted from de-
pendency graphs. The feature model contains token
distance, direction,n-grams of word forms, lemmas,
POS and combinations thereof, as well as the syntac-
tic features presented in Figure 4. The results in our

8http://www.clips.ua.ac.be/sem2012-st-neg/data.html

Syntactic

constituent
dependency relation
parent head POS
grand parent head POS
word form+dependency relation
POS+dependency relation

Cue-dependent

directed dependency distance
bidirectional dependency distance
dependency path
lexicalized dependency path

Figure 4: Features used to train the conditional random
field models

experiments are obtained from configurations that
differ only in terms of tree-to-dependency conver-
sions, and are trained on the training set and tested
on the development set of CD. Since the negation
cue classification component of the system does not
rely on dependency features at all, the models are
tested using gold cues.

Table 1 shows F1 scores for scopes, events and
full negations, where a true positive correctly as-
signs both scope tokens and events to the rightful
cue. The scores are produced using the evaluation
script provided by the *SEM organizers.

2.2 Semantic role labeling

Semantic role labeling (SRL) is the attempt to de-
termine semantic predicates in running text and la-
bel their arguments with semantic roles. In our
experiments we have reproduced the second best-
performing system in the CoNLL 2008 shared task
in syntactic and semantic parsing (Johansson and
Nugues, 2008).9

The English training data for the CoNLL 2008
shared task were obtained from PropBank and
NomBank. For licensing reasons, we used
OntoNotes 4.0, which includes PropBank, but not
NomBank. This means that our system is only
trained to classify verbal predicates. We used
the Clearparser conversion tool10 to convert the
OntoNotes 4.0 and subsequently supplied syntac-
tic dependency trees using our different conversion
schemes. We rely on gold standard argument identi-
fication and focus solely on the performance metric
semantic labeled F1.

9http://nlp.cs.lth.se/software/semanticparsing:propbank
nombankframes

10http://code.google.com/p/clearparser/
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2.3 Statistical machine translation

The effect of the different conversion schemes was
also evaluated on SMT. We used thereordering
by parsing framework described by Elming and
Haulrich (2011). This approach integrates a syn-
tactically informed reordering model into a phrase-
based SMT system. The model learns to predict the
word order of the translation based on source sen-
tence information such as syntactic dependency re-
lations. Syntax-informed SMT is known to be use-
ful for translating between languages with different
word orders (Galley and Manning, 2009; Xu et al.,
2009), e.g. English and German.

The baseline SMT system is created as described
in the guidelines from the original shared task.11

Only modifications are that we use truecasing in-
stead of lowercasing and recasing, and allow train-
ing sentences of up to 80 words. We used data
from the English-German restricted task:∼3M par-
allel words of news,∼46M parallel words of Eu-
roparl, and∼309M words of monolingual Europarl
and news. We use newstest2008 for tuning, new-
stest2009 for development, and newstest2010 for
testing. Distortion limit was set to 10, which is
also where the baseline system performed best. The
phrase table and the lexical reordering model is
trained on the union of all parallel data with a max
phrase length of 7, and the 5-gram language model
is trained on the entire monolingual data set.

We test four different experimental systems that
only differ with the baseline in the addition of a syn-
tactically informed reordering model. The baseline
system was one of the tied best performing system
in the WMT 2011 shared task on this dataset. The
four experimental systems have reordering models
that are trained on the first 25,000 sentences of the
parallel news data that have been parsed with each
of the tree-to-dependency conversion schemes. The
reordering models condition reordering on the word
forms, POS, and syntactic dependency relations of
the words to be reordered, as described in Elming
and Haulrich (2011). The paper shows that while
reordering by parsing leads to significant improve-
ments in standard metrics such as BLEU (Papineni
et al., 2002) and METEOR (Lavie and Agarwal,
2007), improvements are more spelled out with hu-

11 http://www.statmt.org/wmt11/translation-task.html

man judgements. All SMT results reported below
are averages based on 5 MERT runs following Clark
et al. (2011).

2.4 Sentence compression

Sentence compression is a restricted form of sen-
tence simplification with numerous usages, includ-
ing text simplification, summarization and recogniz-
ing textual entailment. The most commonly used
dataset in the literature is the Ziff-Davis corpus.12 A
widely used baseline for sentence compression ex-
periments is Knight and Marcu (2002), who intro-
duce two models: the noisy-channel model and a de-
cision tree-based model. Both are tree-based meth-
ods that find the most likely compressed syntactic
tree and outputs the yield of this tree. McDonald et
al. (2006) instead use syntactic features to directly
find the most likely compressed sentence.

Here we learn a discriminative HMM model
(Collins, 2002) of sentence compression using
MIRA (Crammer and Singer, 2003), comparable to
previously explored models of noun phrase chunk-
ing. Our model is thus neither tree-based nor
sentence-based. Instead we think of sentence com-
pression as a sequence labeling problem. We com-
pare a model informed by word forms and predicted
POS with models also informed by predicted depen-
dency labels. The baseline feature model conditions
emission probabilities on word forms and POS us-
ing a±2 window and combinations thereoff. The
augmented syntactic feature model simply adds de-
pendency labels within the same window.

2.5 Perspective classification

Finally, we include a document classification dataset
from Lin and Hauptmann (2006).13 The dataset con-
sists of blog posts posted at bitterlemons.org by Is-
raelis and Palestinians. The bitterlemons.org web-
site is set up to ”contribute to mutual understanding
through the open exchange of ideas.” In the dataset,
each blog post is labeled as either Israeli or Pales-
tinian. Our baseline model is just a standard bag-
of-words model, and the system adds dependency
triplets to the bag-of-words model in a way similar
to Joshi and Penstein-Rose (2009). We do not re-
move stop words, since perspective classification is

12LDC Catalog No.: LDC93T3A.
13https://sites.google.com/site/weihaolinatcmu/data

621



bl yamada conll07 ewt lth
DEPRELS - 12 21 47 41

PTB-23 (LAS) - 88.99 88.52 81.36∗ 87.52
PTB-23 (UAS) - 90.21 90.12 84.22∗ 90.29

Neg: scope F1 - 81.27 80.43 78.70 79.57
Neg: event F1 - 76.19 72.90 73.15 76.24
Neg: full negation F1 - 67.94 63.24 61.60 64.31
SentCompF1 68.47 72.07 64.29 71.56 71.56
SMT-dev-Meteor 35.80 36.06 36.06 36.16 36.08
SMT-test-Meteor 37.25 37.48 37.50 37.58 37.51
SMT-dev-BLEU 13.66 14.14 14.09 14.04 14.06
SMT-test-BLEU 14.67 15.04 15.04 14.96 15.11
SRL-22-gold - 81.35 83.22 84.72 84.01
SRL-23-gold - 79.09 80.85 80.39 82.01
SRL-22-pred - 74.41 76.22 78.29 66.32
SRL-23-pred - 73.42 74.34 75.80 64.06
bitterlemons.org 96.08 97.06 95.58 96.08 96.57

Table 1: Results.∗: Low parsing results on PTB-23 usingewt are explained by changes between the PTB-III and the
Ontonotes 4.0 release of the English Treebank.

similar to authorship attribution, where stop words
are known to be informative. We evaluate perfor-
mance doing cross-validation over the official train-
ing data, setting the parameters of our learning algo-
rithm for each fold doing cross-validation over the
actual training data. We used soft-margin support
vector machine learning (Cortes and Vapnik, 1995),
tuning the kernel (linear or polynomial with degree
3) andC = {0.1, 1, 5, 10}.

3 Results and discussion

Our results are presented in Table 1. The parsing
results are obtained relying on predicted POS rather
than, as often done in the dependency parsing liter-
ature, relying on gold-standard POS. Note that they
comply with the result in Schwartz et al. (2012) that
Yamada-Matsumoto-style annotation is more easily
learnable.

Thenegation resolution results are significantly
better using syntactic features inyamada annota-
tion. It is not surprising that a syntactically ori-
ented conversion scheme performs well in this task.
Since Lapponi et al. (2012) used Maltparser (Nivre
et al., 2007) with the freely available pre-trained
parsing model for English,14 we decided to also
run that parser with the gold-standard cues, in ad-

14http://www.maltparser.org/mco/englishparser/engmalt.html

dition to Mate. The pre-trained model was trained
on Sections 2–21 of the Wall Street Journal sec-
tion of the English Treebank (Marcus et al., 1993),
augmented with 4000 sentences from the Question-
Bank,15 which was converted using the Stanford
converter and thus similar to theewt annotations
used here. The results were better than usingewt
with Mate trained on Sections 2–21 alone, but worse
than the results obtained here withyamadaconver-
sion scheme.F1 score on full negation was 66.92%.

The case-sensitive BLEU evaluation of the
SMT systems indicates that choice of conversion
scheme has no significant impact on overall perfor-
mance. The difference to the baseline system is
significant (p < 0.01), showing that the reorder-
ing model leads to improvement using any of the
schemes. However, the conversion schemes lead to
very different translations. This can be seen, for
example, by the fact that the relative tree edit dis-
tance between translations of different syntactically
informed SMT systems is 12% higher than within
each system (across different MERT optimizations).

The reordering approach puts a lot of weight on
the syntactic dependency relations. As a conse-
quence, the number of relation types used in the
conversion schemes proves important. Consider the

15http://www.computing.dcu.ie/∼jjudge/qtreebank/
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REFERENCE: Zum Glück kam ich beim Strassenbahnfahren an die richtigeStelle .
SOURCE: Luckily , on the way to the tram , I found the right place .
yamada: Glücklicherweise hat auf dem Weg zur S-Bahn , stellte ich fest , dass der richtige Ort .
conll07: Glücklicherweise hat auf dem Weg zur S-Bahn , stellte ich fest , dass der richtige Ort .
ewt: Zum Glück fand ich auf dem Weg zur S-Bahn , am richtigen Platz .
lth: Zum Glück fand ich auf dem Weg zur S-Bahn , am richtigen Platz.
BASELINE: Zum Glück hat auf dem Weg zur S-Bahn , ich fand den richtigenPlatz .

Figure 5: Examples of SMT output.

ORIGINAL : * 68000 sweden ab of uppsala , sweden , introduced the teleserve , an integrated answering
machine and voice-message handler that links a macintosh totouch-tone phones .

BASELINE: 68000 sweden ab introduced the teleserve an integrated answering
machine and voice-message handler .

yamada 68000 sweden ab introduced the teleserve integrated answering
machine and voice-message handler .

conll07 68000 sweden abswedenintroduced the teleserve integrated answering
machine and voice-message handler .

ewt 68000 sweden ab introduced the teleserve integrated answering
machine and voice-message handler .

lth 68000 sweden ab introduced the teleservean integrated answering
machine and voice-message handler .

HUMAN : 68000 sweden ab introduced the teleserve integrated answering
machine and voice-message handler .

Figure 6: Examples of sentence compression output.

example in Figure 5. German requires the verb in
second position, which is obeyed in the much bet-
ter translations produced by theewt and lth sys-
tems. Interestingly, the four schemes produce virtu-
ally identical structures for the source sentence, but
they differ in their labeling. Whereconll07 andya-
mada use the same relation for the first two con-
stituents (ADV and vMOD, respectively),ewt and
lth distinguish between them (ADVMOD/PREP and
ADV/LOC). This distinction may be what enables
the better translation, since the model may learn to
move the verb after the sentence adverbial. In the
other schemes, sentence adverbials are not distin-
guished from locational adverbials. Generally,ewt
andlth have more than twice as many relation types
as the other schemes.

The schemesewt and lth lead to betterSRL
performance thanconll07 and yamada when re-
lying on gold-standard syntactic dependency trees.
This supports the claims put forward in Johansson
and Nugues (2007). These annotations also hap-
pen to use a larger set of dependency labels, how-
ever, and syntactic structures may be harder to re-
construct, as reflected by labeled attachment scores

(LAS) in syntactic parsing. The biggest drop in
SRL performance going from gold-standard to pre-
dicted syntactic trees is clearly for thelth scheme,
at an average 17.8% absolute loss (yamada 5.8%;
conll07 6.8%;ewt 5.5%;lth 17.8%).

The ewt scheme resembleslth in most respects,
but in preposition-noun dependencies it marks the
preposition as the head rather than the noun. This
is an important difference for SRL, because seman-
tic arguments are often nouns embedded in preposi-
tional phrases, like agents in passive constructions.
It may also be that the difference in performance is
simply explained by the syntactic analysis of prepo-
sitional phrases being easier to reconstruct.

The sentence compressionresults are generally
much better than the models proposed in Knight and
Marcu (2002). Their noisy channel model obtains
an F1 compression score of 14.58%, whereas the
decision tree-based model obtains anF1 compres-
sion score of 31.71%. WhileF1 scores should be
complemented by human judgements, as there are
typically many good sentence compressions of any
source sentence, we believe that error reductions of
more than 50% indicate that the models used here
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Figure 7: Distributions of dependency labels in the
Yamada-Matsumoto scheme

(though previously unexplored in the literature) are
fully competitive with state-of-the-art models.

We also see that the models using syntactic fea-
tures perform better than our baseline model, except
for the model usingconll07 dependency annotation.
This may be surprising to some, since distributional
information is often considered important in sen-
tence compression (Knight and Marcu, 2002). Some
output examples are presented in Figure 6. Un-
surprisingly, it is seen that the baseline model pro-
duces grammatically incorrect output, and that most
of our syntactic models correct the error leading to
ungrammaticality. The model usingewt annotation
is an exception. We also see thatconll07 introduces
another error. We believe that this is due to the way
the conll07 tree-to-dependency conversion scheme
handles coordination. While the wordSwedenis not
coordinated, it occurs in a context, surrounded by
commas, that is very similar to coordinated items.

In perspective classificationwe see that syntactic
features based onyamadaand lth annotations lead
to improvements, withyamada leading to slightly
better results thanlth . The fact that a syntactically
oriented conversion scheme leads to the best results
may reflect that perspective classification, like au-
thorship attribution, is less about content than stylis-
tics.

While lth seems to lead to the overall best re-
sults, we stress the fact that the five tasks considered
here are incommensurable. What is more interest-
ing is that, task to task, results are so different. The
semantically oriented conversion schemes,ewt and
lth , lead to the best results in SRL, but with a signif-
icant drop forlth when relying on predicted parses,
while theyamadascheme is competitive in the other

four tasks. This may be because distributional infor-
mation is more important in these tasks than in SRL.

The distribution of dependency labels seems rel-
atively stable across applications, but differences in
data may of course also affect the usefulness of dif-
ferent annotations. Note thatconll07 leads to very
good results for negation resolution, but bad results
for SRL. See Figure 7 for the distribution of labels
in the conll07 conversion scheme on the SRL and
negation scope resolution data. Many differences
relate to differences in sentence length. The nega-
tion resolution data is literary text with shorter sen-
tences, which therefore uses more punctuation and
has more root dependencies than newspaper articles.
On the other hand we do see very few predicate de-
pendencies in the SRL data. This may affect down-
stream results when classifying verbal predicates in
SRL. We also note that the number of dependency
labels have less impact on results in general than we
would have expected. The number of dependency
labels and the lack of support for some of them may
explain the drop with predicted syntactic parses in
our SRL results, but generally we obtain our best re-
sults withyamadaand lth annotations, which have
12 and 41 dependency labels, respectively.

4 Conclusions

We evaluated four different tree-to-dependency con-
version schemes, putting more or less emphasis on
syntactic or semantic evidence, in five down-stream
applications, including SMT and negation resolu-
tion. Our results show why it is important to be
precise about exactly what tree-to-dependency con-
version scheme is used. Tools like pennconverter.jar
gives us a wide range of options when converting
constituent-based treebanks, and even small differ-
ences may have significant impact on down-stream
performance. The small differences are also impor-
tant for more linguistic comparisons that also tend to
gloss over exactly what conversion scheme is used,
e.g. Ivanova et al. (2012).
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Abstract

A discourse typically involves numerous en-
tities, but few are mentioned more than once.
Distinguishing discourse entities that die out
after just one mention (singletons) from those
that lead longer lives (coreferent) would ben-
efit NLP applications such as coreference res-
olution, protagonist identification, topic mod-
eling, and discourse coherence. We build a lo-
gistic regression model for predicting the sin-
gleton/coreferent distinction, drawing on lin-
guistic insights about how discourse entity
lifespans are affected by syntactic and seman-
tic features. The model is effective in its own
right (78% accuracy), and incorporating it into
a state-of-the-art coreference resolution sys-
tem yields a significant improvement.

1 Introduction

Not all discourse entities are created equal. Some
lead long lives and appear in a variety of discourse
contexts (coreferent), whereas others never escape
their birthplaces, dying out after just one mention
(singletons). The ability to make this distinction
based on properties of the NPs used to identify these
referents (mentions) would benefit not only corefer-
ence resolution, but also topic analysis, textual en-
tailment, and discourse coherence.

The existing literature provides numerous gen-
eralizations relevant to answering the question of
whether a given discourse entity will be singleton
or coreferent. These involve the internal syntax and
morphology of the target NP (Prince, 1981a; Prince,
1981b; Wang et al., 2006), the grammatical function

and discourse role of that NP (Chafe, 1976; Hobbs,
1979; Walker et al., 1997; Beaver, 2004), and the in-
teraction of all of those features with semantic oper-
ators like negation, modals, and attitude predicates
(Karttunen, 1973; Karttunen, 1976; Kamp, 1981;
Heim, 1982; Heim, 1992; Roberts, 1990; Groe-
nendijk and Stokhof, 1991; Bittner, 2001).

The first step in our analysis is to bring these
insights together into a single logistic regression
model — the lifespan model — and assess their
predictive power on real data. We show that the
features generally behave as the existing literature
leads us to expect, and that the model itself is highly
effective at predicting whether a given mention is
singleton or coreferent. We then provide an initial
assessment of the engineering value of making the
singleton/coreferent distinction by incorporating our
lifespan model into the Stanford coreference resolu-
tion system (Lee et al., 2011). This addition results
in a significant improvement on the CoNLL-2012
Shared Task data, across the MUC, B3, CEAF, and
CoNLL scoring algorithms.

2 Data

All the data used throughout the paper come from
the CoNLL-2012 Shared Task (Pradhan et al.,
2012), which included the 1.6M English words from
OntoNotes v5.0 (Hovy et al., 2006) that have been
annotated with different layers of annotation (coref-
erence, parse trees, etc.). We used the training, de-
velopment (dev), and test splits as defined in the
shared task (Table 1). Since the OntoNotes corefer-
ence annotations do not contain singleton mentions,
we automatically marked as singletons all the NPs

627



MENTIONS

Dataset Docs Tokens Coreferent Singletons

Training 2,802 1.3M 152,828 192,248
Dev 343 160K 18,815 24,170
Test 348 170K 19,392 24,921

Table 1: CoNLL-2012 Shared Task data statistics. We
added singletons (NPs not annotated as coreferent).

not annotated as coreferent. Thus, our singletons in-
clude non-referential NPs but not verbal mentions.

3 Predicting lifespans

Our lifespan model makes a binary distinction be-
tween discourse referents that are not part of a coref-
erence chain (singletons) and items that are part of
one (coreferent). The distribution of lifespans in our
data (Figure 1) suggests that this is a natural divi-
sion. The propensity of singletons also highlights
the relevance of detecting singletons for a coref-
erence system. We fit a binary logistic regression
model in R (R Core Team, 2012) on the training
data, coding singletons as “0” and coreferent men-
tions as “1”. Throughout the following tables of co-
efficient estimates, positive values favor coreferents
and negative ones favor singletons. We turn now to
describing and motivating the features of this model.

Singleton 2 3 4 5 6-10 11-15 16-20 >20

0
5K

15
K

25
K

Figure 1: Distribution of lifespans in the dev set. Single-
tons account for 56% of the data.

Internal morphosyntax of the mention Table 2
summarizes the features from our model that con-
cern the internal morphology and syntactic structure
of the mention. Many are common in coreference
systems (Recasens and Hovy, 2009), but our model
highlights their influence on lifespans. The picture
is expected on the taxonomy of given and new de-
fined by Prince (1981b) and assumed throughout dy-
namic semantics (Kamp, 1981; Heim, 1982): pro-
nouns depend on anaphoric connections to previous

mentions for disambiguation and thus are very likely
to be coreferent. This is corroborated by the pos-
itive coefficient estimate for ‘Type = pronoun’ in
Table 2. Few quantified phrases easily participate
in discourse anaphora (Partee, 1987; Wang et al.,
2006), accounting for the association between quan-
tifiers and singletons (negative coefficient estimate
for ‘Quantifier = quantified’ in Table 2). The one
surprise is the negative coefficient for indefinites. In
theories stretching back to Karttunen (1976), indef-
inites function primarily to establish new discourse
entities, and should be able to participate in coref-
erence chains, but here the association with such
chains is negative. However, interactions explain
this fact (see Table 4 and our discussion of it).

The person, number, and animacy values suggest
that singular animates are excellent coreferent NPs,
a previous finding of Centering Theory (Grosz et al.,
1995; Walker et al., 1998) and of cross-linguistic
work on obviative case-marking (Aissen, 1997).

Our model also includes named-entity features for
all of the eighteen OntoNotes entity-types (omitted
from Table 2 for space and clarity reasons). As a
rule, they behave like ‘Type = proper noun’ in asso-
ciating with coreferents. The exceptions are ORDI-
NAL, PERCENT, and QUANTITY, which seem intu-
itively unlikely to participate in coreference chains.

Estimate P-value

Type = pronoun 1.21 < 0.001
Type = proper noun 1.88 < 0.001
Animacy = inanimate −1.36 < 0.001
Animacy = unknown −0.38 < 0.001
Person = 1 1.05 < 0.001
Person = 2 0.13 < 0.001
Person = 3 1.62 < 0.001
Number = singular 0.61 < 0.001
Number = unknown 0.17 < 0.001
Quantifier = indefinite −1.49 < 0.001
Quantifier = quantified −1.23 < 0.001
Number of modifiers −0.39 < 0.001

Table 2: Internal morphosyntactic features.

Grammatical role of the mention Synthesizing
much work in Centering Theory and information
structuring, we conclude that coreferent mentions
are likely to appear as core verbal arguments and
will favor sentence-initial (topic-tracking) positions
(Ward and Birner, 2004). The coefficient estimates
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Estimate P-value

Sentence Position = end −0.22 < 0.001
Sentence Position = first 0.04 0.07
Sentence Position = last −0.31 < 0.001
Sentence Position = middle −0.11 < 0.001
Relation = noun argument 0.56 < 0.001
Relation = other −0.67 < 0.001
Relation = root −0.61 < 0.001
Relation = subject 0.65 < 0.001
Relation = verb argument 0.32 < 0.001
In coordination −0.48 < 0.001

Table 3: Grammatical role features.

in Table 3 corroborate these conclusions. To de-
fine the ‘Relation’ and ‘In coordination’ features, we
used the Stanford dependencies (de Marneffe et al.,
2006) on the gold constituents.

Semantic environment of the mention Table 4
highlights the complex interactions between dis-
course anaphora and semantic operators. These
interactions have been a focus of logical seman-
tics since Karttunen (1976), whose guiding obser-
vation is semantic: an indefinite interpreted inside
the scope of a negation, modal, or attitude predicate
is generally unavailable for anaphoric reference out-
side of the scope of that operator, as in Kim didn’t
understand [an exam question]i. #Iti was too hard.
Of course, such discourses cohere if the indefinite
is interpreted as taking wide scope (‘there is a ques-
tion Kim didn’t understand’). Such readings are of-
ten disfavored, but they become more salient when
modifiers like certain are included (Schwarzschild,
2002) or when the determiner is sensitive to the po-
larity or intensionality of its environment (Baker,
1970; Ladusaw, 1980; van der Wouden, 1997; Is-
rael, 1996; Israel, 2001; Giannakidou, 1999). Sub-
sequent research identified many other factors that
further extend or restrict the anaphoric potential of
an indefinite (Roberts, 1996).

We do not have direct access to semantic scope,
but we expect syntactic scope to correlate strongly
with semantic scope, so we used dependency rep-
resentations to define features capturing syntactic
scope for negation, modal auxiliaries, and a broad
range of attitude predicates. These features tend to
bias in favor of singletons because they so radically
restrict the possibilities for intersentential anaphora.

Interacting these features with those for the inter-
nal syntax of mentions is also informative. Since
proper names and pronouns are not scope-taking,
they are largely unaffected by the environment fea-
tures, whereas indefinites emerge as even more re-
stricted, just as Karttunen and others would predict.

Attitude predicates seem initially anomalous,
though. They share the relevant semantic proper-
ties with negation and modals, and yet they seem
to facilitate coreference. Here, the findings of de
Marneffe et al. (2012) seem informative. Those au-
thors find that, in texts of the sort we are studying,
attitude predicates are used predominantly to mark
the source of information that is effectively asserted
despite being embedded (Rooryck, 2001; Simons,
2007). That is, though X said p does not semanti-
cally entail p, it is often interpreted as a commitment
to p, which correspondingly elevates mentions in p
to main-clause status (Harris and Potts, 2009).

Estimate P-value

Presence of negation −0.18 < 0.001
Presence of modality −0.22 < 0.001
Under an attitude verb 0.03 0.01
AttitudeVerb * (Type = pronoun) 0.29 < 0.001
AttitudeVerb * (Type = proper noun) 0.14 < 0.001
Modal * (Type = pronoun) 0.12 0.04
Modal * (Type = proper noun) 0.35 < 0.001
Negation * (Type = pronoun) 1.07 < 0.001
Negation * (Type = proper noun) 0.30 < 0.001
Negation * (Quantifier = indefinite) −0.37 < 0.001
Negation * (Quantifier = quantified) −0.36 0.23
Negation * (Number of modifiers) 0.11 < 0.001

Table 4: Semantic environment features and interactions.

Results The model successfully learns to tease
singletons and coreferent mentions apart. Table 5
summarizes its performance on the dev set. The
STANDARD model uses 0.5 as the decision bound-
ary, with 78% accuracy. The CONFIDENT model
predicts singleton if Pr < .2 and coreferent if Pr > .8,
which increases precision (P) at a cost to recall (R).

STANDARD CONFIDENT

Prediction R P F1 R P F1

Singleton 82.3 79.2 80.7 50.5 89.6 64.6
Coreferent 72.2 76.1 74.1 41.3 86.8 55.9

Table 5: Recall, precision, and F1 for the lifespan model.
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MUC B3 CEAF-φ3 CEAF-φ4 CoNLL
System R P F1 R P F1 R / P / F1 R P F1 F1

Baseline 66.64* 64.72 65.67 68.05* 71.58 69.77* 58.31 45.49 47.55* 46.50 60.65
w/ Lifespan 66.08 67.33* 66.70* 66.40 73.14* 69.61 58.83* 47.77* 46.38 47.07* 61.13*

Table 6: Performance on the test set according to the official CoNLL-2012 scorer. Scores are on automatically pre-
dicted mentions. Stars indicate a statistically significant difference (paired Mann-Whitney U-test, p < 0.05).

B3 CEAF-φ3 CoNLL
System R P F1 R P F1 F1

Baseline 58.53* 71.58 64.40 63.71* 58.31 60.89 58.86
w/ Lifespan 58.14 73.14* 64.78* 63.38 58.83* 61.02 59.52*

Table 7: B3, CEAF-φ3 and CoNLL measures on the test set according to a modified CoNLL-2012 scorer that follows
Cai and Strube (2010). Scores are on automatically predicted mentions.

4 Application to coreference resolution

To assess the usefulness of the lifespan model in an
NLP application, we incorporate it into the Stanford
coreference resolution system (Lee et al., 2011),
which we take as our baseline. This was the highest-
scoring system in the CoNLL-2011 Shared Task,
and was also part of the highest-scoring system in
the CoNLL-2012 Shared Task (Fernandes et al.,
2012). It is a rule-based system that includes a to-
tal of ten rules (or “sieves”) for entity coreference,
such as exact string match and pronominal resolu-
tion. The sieves are applied from highest to lowest
precision, each rule adding coreference links.

Incorporating the lifespan model The lifespan
model can improve coreference resolution in two
different ways: (i) mentions classified as singletons
should not be considered as either antecedents or
coreferent, and (ii) mentions classified as coreferent
should be linked with another mention(s). By suc-
cessfully predicting singletons (i), we can enhance
the system’s precision; by successfully predicting
coreferent mentions (ii), we can improve the sys-
tem’s recall. Here we focus on (i) and use the lifes-
pan model for detecting singletons. This decision
is motivated by two factors. First, given the large
number of singletons (Figure 1), we are more likely
to see a gain in performance from discarding sin-
gletons. Second, the multi-sieve nature of the Stan-
ford coreference system does not make it straightfor-
ward to decide which antecedent a mention should
be linked to even if we know that it is coreferent.

We leave the incorporation of coreferent predictions
for future work.

To integrate the singleton model into the Stanford
coreference system, we let a sieve consider whether
a pair of mentions is coreferent only if neither of
the two mentions are classified as singletons by our
CONFIDENT model. Experiments on the dev set
showed that the model often made wrong predic-
tions for NEs. We do not trust the model for NE
mentions. Performance on coreference (on the dev
set) was higher with the CONFIDENT model than
with the STANDARD model.

Results and discussion To evaluate the corefer-
ence system with and without the lifespan model, we
used the English dev and test sets from the CoNLL-
2012 Shared Task, presented in Section 2. Although
the CoNLL shared task evaluated systems on only
multi-mention (i.e., non-singleton) entities, by stop-
ping singletons from being linked to multi-mention
entities, we expected the lifespan model to increase
the system’s precision. Our evaluation uses five
of the measures given by the CoNLL-2012 scorer:
MUC (Vilain et al., 1995), B3 (Bagga and Baldwin,
1998), CEAF-φ3 and CEAF-φ4 (Luo, 2005), and the
CoNLL official score (Denis and Baldridge, 2009).
We do not include BLANC (Recasens and Hovy,
2011) because it assumes gold mentions and so is
not suited for the scenario considered in this paper,
which uses automatically predicted mentions.

Table 6 summarizes the test set performance. All
the scores are on automatically predicted mentions.
We use gold POS, parse trees, and NEs. The base-
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line is the Stanford system, and ‘w/ Lifespan’ is the
same system extended with our lifespan model to
discard singletons, as explained above.

As expected, the lifespan model increases preci-
sion but decreases recall. Overall, however, we ob-
tain a significant improvement of 0.5–1 points in the
F1 score of MUC, CEAF-φ3, CEAF-φ4 and CoNLL.
The drop in B3 traces to a bug in the CoNLL scorer’s
implementation of Cai and Strube (2010)’s algo-
rithm for aligning gold and automatically predicted
mentions, which affects the computation of B3 and
CEAF-φ3.1 Table 7 presents the results after mod-
ifying the CoNLL-2012 scorer to compute B3 and
CEAF-φ3 according to Cai and Strube (2010).2 We
do see an improvement in the precision and F1
scores of B3, and the overall CoNLL score remains
significant. The CEAF-φ3 F1 score is no longer sig-
nificant, but is still in the expected direction.

5 Conclusion

We built a model to predict the lifespan of discourse
referents, teasing apart singletons from coreferent
mentions. The model validates existing linguistic
insights and performs well in its own right. This
alone has ramifications for tracking topics, identify-
ing protagonists, and modeling coreference and dis-
course coherence. We applied the lifespan model to
coreference resolution, showing how to incorporate
it effectively into a state-of-the-art rule-based coref-
erence system. We expect similar improvements
with machine-learning-based coreference systems,
where incorporating all the power of the lifespan
model would be easier.

Our lifespan model has been integrated into the
latest version of the Stanford coreference resolution
system.3

1At present, if the system links two mentions that do not
exist in the gold standard, the scorer adds two singletons to the
gold standard. This results in a higher B3 F1 score (when it
should be lower) because recall increases instead of staying the
same (precision goes up).

2In the modified scorer, twinless predicted mentions are
added to the gold standard to compute precision but not to com-
pute recall.

3http://nlp.stanford.edu/software/
dcoref.shtml
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Abstract

A respelling is an alternative spelling of a
word in the same writing system, intended to
clarify pronunciation. We introduce the task
of automatic generation of a respelling from
the word’s phonemic representation. Our ap-
proach combines machine learning with lin-
guistic constraints and electronic resources.
We evaluate our system both intrinsically
through a human judgment experiment, and
extrinsically by passing its output to a letter-
to-phoneme converter. The results show that
the respellings generated by our system are
better on average than those found on the Web,
and approach the quality of respellings de-
signed by an expert.

1 Introduction

Respellings are a widely employed method of con-
veying the pronunciation of English and foreign
words, both in print and on the Web. For example,
Huatulco, the name of a Mexican resort, is respelled
as ‘wah-tool-koh’ in a travel guide (Noble, 2012).
The advantage of using respellings lies in removing
the need for a separately defined phonetic transcrip-
tion system. Since they contain only the letters of
the Latin alphabet, their phonetic interpretation re-
lies exclusively on orthographic intuitions of read-
ers. For this reason, respellings are widely used in
travel phrase books, medical compendia, and drug
name pronunciation guides, among others.

Despite their utility, good respellings are not easy
to create. Respellings found on the Web often con-
tain errors or ambiguities. For example, Henoch-
Schoenlein purpura, a skin disease, is respelled both

as ‘heh-nok shoon-line purr-puh-ruh’ and ‘hen-awk
sher-line purr-purr-ah’. Does ‘heh’ rhyme with eh
[e] or with Nineveh [@], or is it the same vowel as
in hen [E]? Clearly, if both respellings refer to the
same pronunciation, at least one of them must be
wrong. In addition, converting the pronunciation of
a foreign name to English phonemes is in itself a
non-trivial task.

In this paper, we focus on the task of generating
respellings from the intended pronunciation given as
a sequence of phonemes. We develop a stand-alone
system that combines linguistic knowledge and re-
sources with machine learning models trained on
data mined from the Web and electronic dictionar-
ies. One of our ultimate objectives is to aid writ-
ers by evaluating their respellings, improving them,
or generating new candidates. Accordingly, we en-
deavour to maintain the generation and the evalua-
tion stages as separate modules in our system.

The evaluation of respellings is a challenging
problem. Since English spelling conventions are no-
toriously inconsistent, there is no algorithm for ac-
curately predicting the pronunciation of an out-of-
vocabulary word. The current state-of-the-art letter-
to-phoneme (L2P) converters are typically reported
with 10-30% error rates on dictionary words (Bisani
and Ney, 2008). On the other hand, human read-
ers often disagree on the details of the pronunciation
implied by a respelling. In this paper, we conduct
two kinds of evaluations: an automated verification
with an independent L2P system, and an experiment
with human participants that pass judgments on dif-
ferent respellings of the same word. We interpret
the results as evidence that the output of our system
compares favourably with typical respellings found
on the Web.
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2 Definitions and Conventions

Although Chomsky and Halle (1968) characterize
English orthography as close to optimal, Kominek
and Black (2006) estimate that it is about 3 times
more complex than German, and 40 times more
complex than Spanish. This is confirmed by
lower accuracy of letter-to-phoneme systems on En-
glish (Bisani and Ney, 2008). A survey of English
spelling (Carney, 1994) devotes 120 pages to de-
scribe phoneme-to-letter correspondences, and lists
226 letter-to-phoneme rules, almost all of which ad-
mit exceptions.

There is no consensus on how to best convey the
pronunciation of an uncommon word in English.
Most dictionaries employ either the International
Phonetic Alphabet (IPA), or their own transcription
schemes that incorporate special symbols and dia-
critics. Unfortunately, many readers are unfamiliar
with phonetic transcription. Instead, respellings are
often preferred by writers in the news and on the
Web. In this section, we define the respelling task in
detail.

2.1 Form of Respellings

A respelling is a non-standard spelling of a word,
that is intended to better convey its pronunciation.
We assume that the pronunciation is defined as a se-
quence of English phonemes, and that the respelling
contains only the 26 letters of the alphabet, with
optional hyphenation. Some transcription schemes
combine respellings with special symbols for repre-
senting certain phonemes. For example, an other-
wise purely alphabetic Wikipedia scheme employs
the symbol @ for the vowel schwa. In our opin-
ion, such devices destroy the main advantage of re-
spellings, which is their universality, without attain-
ing the precision of a true phonetic transcription. In
fact, Fraser (1997) identifies the schwa symbol as
the cause of many pronunciation errors.

In our system, we consistently use hyphens to
segment multi-syllable respellings. Each syllable-
size segment contains the representation of exactly
one vowel phoneme, so that the number of segments
matches the number of syllables.1 However, the hy-
phenation need not correspond exactly to the actual

1Henceforth, we refer to “syllable-size segments” simply as
“syllables”.

syllable breaks. This approach has several advan-
tages. First, individual syllables are easier to pro-
nounce than an entire unfamiliar word. Second, hy-
phens limit the context that affects the pronuncia-
tion of a given letter (e.g. th in Beethoven ‘bayt-
hoe-ven’). Finally, hyphens indicate whether adja-
cent vowel letters, such as oe in ‘hoe’, represent one
vowel phoneme or two.

Some respellings explicitly indicate the stressed
syllable by expressing it in a different font. This is
potentially helpful because unstressed vowels tend
to be reduced, which changes their pronunciation.
However, since the vowel reduction phenomenon is
by no means universal, the readers may be unsure
whether to apply it to, e.g. the final o in ‘KWAT-
ro’. In this paper, we make no distinction between
stressed and unstressed syllables; instead, we follow
the principle that each syllable is to be pronounced
as if it was a separate word. Nonetheless, it would be
straightforward to project the stress indicators onto
the appropriate syllables in the respellings generated
by our system.

2.2 Quality of Respellings

There is no clear-cut distinction between good and
bad respellings. The quality of a respelling is more
of a subjective opinion rather than a verifiable fact.
We propose to evaluate it according to the follow-
ing three criteria: ambiguity, correctness, and pref-
erence.

A respelling is ambiguous if it is perceived as
compatible with more than one pronunciation. Be-
cause most of the rules of English spelling have ex-
ceptions, it is rarely possible to demonstrate that
a respelling is completely unambiguous. How-
ever, some respellings are clearly more ambiguous
than others. For example, the digraph ee almost
always represents the vowel [i], whereas the let-
ter sequence ough can represent several different
phonemes.2 Respellings that contain highly ambigu-
ous letter-phoneme mappings can be expected to be
ambiguous themselves. Ambiguity is a property of a
respelling itself, regardless of the intended pronun-
ciation.

A respelling is correct if it accurately conveys the
intended pronunciation to the reader. Unlike the am-

2Compare bough, cough, dough, tough, lough, through.
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biguity, correctness can be verified objectively for
a particular reader, by comparing the intended pro-
nunciation with the pronunciation inferred by the
reader. A respelling that is judged correct with re-
spect to one pronunciation cannot be judged correct
with respect to a different pronunciation. Never-
theless, it is entirely possible that different readers
will derive different pronunciations from the same
respelling.

A respelling can be classified as unambiguous
and yet incorrect by a given reader, but it cannot
be judged as simultaneously ambiguous and cor-
rect. Indeed, an ambiguous respelling is compatible
with at least two pronunciations, only one of which
can be the intended pronunciation. Therefore, for
a given reader, unambiguity is a necessary but not
sufficient condition for correctness.

Given two unambiguous and correct respellings,
a reader may prefer one over the other, perhaps be-
cause of the ease of inferring the intended pronun-
ciation. For example, ‘rode-ease-yew’ may be pre-
ferred to ‘roh-dee-zyoo’ because the former is en-
tirely composed of actual English words with unique
pronunciation, whereas the latter contains an un-
usual consonant cluster zy. Preference is also ex-
pressed implicitly if only one of the alternative re-
spellings is judged as unambiguous (or correct),

3 Related Work

Fraser (1997) describes an experiment in which 15
human subjects were asked to pronounce uncom-
mon words after being shown a representation of
their pronunciation. The respellings designed by the
author were much more effective for that purpose
than either the IPA phonetic transcription or phone-
mic respelling (Section 4.3). However, the creation
of respellings was described as labour-intensive, and
at least one of them was found to be sub-optimal dur-
ing the experiment.

Williams and Jones (2008) propose respellings as
a way of extending pronunciation lexicons by infor-
mants who lack linguistic training. Galescu (2009)
reports that the addition of respellings of medical
terms from an on-line dictionary improves the ac-
curacy of an L2P system. The author identifies an
automatic pronunciation-to-respelling system as fu-
ture work.

Ghoshal et al. (2009) extract a large number of re-
spellings from the Web, and show that they can be
exploited to improve the accuracy of the L2P con-
version by supplementing the data in pronunciation
dictionaries. Can et al. (2009) further analyze the ef-
fect of using respellings on the accuracy of spoken-
term detection (STD) systems.

4 Direct Methods

In this section, we discuss three direct methods of
generating respellings: manual design, dictionary
lookup, and phonemic respelling.

4.1 Manual Design

Respellings found on the Web and in news articles
are usually ad-hoc creations of the authors of those
texts. Respellings designed by different writers for
the same word are rarely identical.3 The quality of
Web respellings vary.

The respellings found in specialized lexicons are
more likely to be designed by experts, and are of-
ten guided by a set of respelling rules. Nevertheless,
such respelling guides may also be ambiguous.4 Re-
gardless of the source, since respellings are often
used for names and foreign words, no lexicon can
be expected to provide a complete coverage.

4.2 Dictionary Lookup

Pronunciation dictionaries can be helpful in gener-
ating respellings. Assuming that we have a method
of dividing pronunciations into syllables, a complete
respelling of an out-of-dictionary word can in some
cases be automatically derived from the list of syl-
lable pronunciations. For example, hyphy can be re-
spelled as ‘high-fee’ by following such a procedure.
If each of the syllables has a unique pronunciation,
such respellings are arguably both unambiguous and
correct.

Unfortunately, only a subset of potential phone-
mic syllables actually occur in a lexicon. Consider-
ing only the syllables of the CVC type (consonant-
vowel-consonant), there are over ten thousand dis-
tinct possibilities (e.g., [bEb], [bES], etc.), of which

3For example, the word capoeira is represented by 99 dif-
ferent respellings in the corpus of Ghoshal et al. (2009).

4For an example of a confusing respelling guide see http:
//www.ama-assn.org/go/usan.
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fewer than three thousand can be found in the Com-
bilex pronunciation dictionary (Richmond et al.,
2009). While the dictionary lookup may produce
attractive respellings, it is not sufficient for a stand-
alone use.

4.3 Phonemic Respelling

A simple method that can produce a respelling for
any word is to directly map each phoneme to a par-
ticular letter or a letter sequence that is frequently
used to represent that phoneme. Phonemes such as
[m], [d] and [f] are indeed closely associated with in-
dividual letters. This is not surprising since the Ro-
man letters were originally created to represent sin-
gle phonemes in Latin, and some of those phonemes
also exist in English. However, many phonemes, es-
pecially vowels, have no obvious orthographic rep-
resentation. One solution is to use digraphs such as
ee and aw, but a number of phonemes, such as [aU]
as in loud, have no mappings that work in all con-
texts.

The principal weakness of a phonemic respelling
is its inflexibility, which often results in counter-
intuitive respellings. For example, many readers are
baffled by respelling such as ‘gee’ for ghee or ‘john’
for Joan. Phonemic respelling tends to fail in cases
where it generates a sequence of letters that is inher-
ently ambiguous, or which pronunciation changes
because of the context. On the other hand, mappings
such as uu for [U] and ahy for [aI], which never oc-
cur in real English words, are difficult to interpret
for some readers.

In this paper, we adopt a context-free phonemic
respelling scheme as the baseline, with the mappings
from the online dictionary Dictionary.com, which
differs from the system used in Wikipedia only in
a few details.

5 Candidate Generation

In this section, we present our syllabification ap-
proach, as well as two generation modules: a trained
phoneme-to-letter (P2L) model and a rule-based re-
speller.

5.1 Syllabification

Our respelling generation process is for the most
part performed on the level of individual syllables.

VOWEL ONSET LAX CODA

nt *
nd@n *
bæ *

d@nm *
bæn

Table 1: Examples of syllables that violate phonotactic
constraints.

Correct syllabification is by itself a non-trivial prob-
lem, but even if it was provided by an oracle, it might
not correspond to the optimal segmentation of a re-
spelling. For example, the word trigonal [trIg@n@l]
is usually syllabified as tri-go-nal, but a better seg-
mentation for the purposes of respelling is trig-on-
al. We adopt an overgenerate-and-rank approach,
whereby instead of committing to a specific word
segmentation at the start of the process, we process
multiple syllabification alternatives in parallel, one
of which is ultimately selected at the respelling eval-
uation stage.

Ideally, syllabification should conform to the
phonotactic constraints of English, so that the result-
ing respellings are easy to pronounce. The conso-
nant sonority should be rising in onsets, and falling
in codas (Kenstowicz, 1994). We verify that sylla-
bles follow the sonority principle by following the
formulation of Bartlett et al. (2009). The sonor-
ity constraints are not tested at the boundaries of
the word, which are independent of the syllabifica-
tion choice. We also incorporate another important
principle of English phonotactics that asserts that
lax vowels do not occur in open syllables (Rogers,
2000).

In our implementation, each candidate syllable is
tested with respect to the following sequence of four
violable constraints, ordered from the strongest to
the weakest: (1) the syllable contains exactly one
vowel phoneme; (2) the onset satisfies the sonority
principle; (3) if the nucleus contains a lax vowel (ex-
cept @), the coda is non-empty; (4) the coda satis-
fies the sonority principle. For a syllabification to be
accepted, all its syllables must satisfy the four con-
straints. However, if this results in rejection of all
possible syllabifications, the constraints are gradu-
ally relaxed starting from the weakest.
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As an example, consider the word abandonment
[@bænd@nm@nt], which has 18 different syllabifica-
tions satisfying the VOWEL constraint (Table 1). 8
of the 18 satisfy the ONSET constraint as well, but
only two syllabifications satisfy all four constraints:
[@b-æn-d@n-m@nt] and [@-bæn-d@n-m@nt].

5.2 P2L Generator
The respelling problem can be viewed as a string
transduction problem, with the transduction occur-
ring between phonemes and letters. As such, it is di-
rectly related to the well-studied letter-to-phoneme
conversion task. The difference is that the letters
may not conform to the standard orthography of
English. If we had a sufficiently large training set
of pronunciation-respelling pairs, we could train a
machine learning algorithm to directly generate re-
spellings for any strings of English phonemes. How-
ever, such a training set is not readily available. The
respellings in the corpus collected by Ghoshal et al.
(2009) are not easily matched to the phonetic tran-
scriptions, and few of them can be found in elec-
tronic pronunciation dictionaries. In addition, the
quality of Web respellings vary greatly.

In place of a direct pronunciation-to-respelling
model, we aim to model the orthographic intuitions
of readers by deriving a phoneme-to-letter (P2L)
transduction model from an English pronunciation
dictionary. A possible criticism of such an approach
is that our model may create ambiguous respellings,
which abound in English orthography. However, we
rely on a separate evaluation module to identify and
filter ambiguous respellings at a later stage.

Our systems utilizes the DIRECTL+ program (Ji-
ampojamarn et al., 2008), which was originally de-
signed for L2P conversion. Since our basic unit is
the syllable, rather than the word, we train our P2L
model on a set of of 4215 pairs of monosyllabic
words and their pronunciations extracted from the
Combilex dictionary. We exclude syllables in multi-
syllabic words from training because their pronunci-
ation is often affected by context. This is consistent
with our expectation that the reader will pronounce
each hyphen-delimited segment of the respelling as
if it was an individual word.

Since the P2L training data consists of a relatively
small set of syllables, we ensure that the phoneme-
letter alignment is highly accurate. As a preprocess-

ing step, we replace the letter x with ks, and we con-
vert digraphs, such as ch and th, to single symbols.
The alignment is performed by M2M-ALIGNER (Ji-
ampojamarn et al., 2007), under the restriction that
each phoneme is matched to either one or two letter
symbols.

5.3 Context-Sensitive Respeller

A hand-crafted context-sensitive respeller is in-
tended to complement the trained P2L model de-
scribed in the previous section. It is similar to to
the phonemic respelling approach described in Sec-
tion 4.3 in that it converts each phoneme to a letter
sequence. However, the mappings depend on adja-
cent phonemes, as well as on the CV pattern of the
current syllable. In addition, more than one map-
ping for a phoneme can be proposed. We designed
the mappings by analyzing their frequency and con-
sistency in pronunciation dictionaries.

The process of candidate generation involves es-
tablishing the pattern of consonants in the input syl-
lable. The consonant mappings are the same as in
the baseline, except for [ě] and [T], while the vowels
yield up to three different letter sequences. For ex-
ample, [o] is mapped to oh as a default, but also to o
if both onset and coda are empty, or to o followed by
a consonant and a silent e if the coda is composed of
a single consonant. So, given the syllable [tok] as in-
put, the respeller produces two candidates: tohk and
toke.

We make no claims about the completeness or op-
timality of the mappings, but in our development
experiments we observed that the context-sensitive
respeller contributes to the robustness of our sys-
tem, and in some cases produces more attractive re-
spellings that the P2L model.

6 Candidate Selection

We aim at developing a stand-alone method for the
assessment of respellings that could be applied re-
gardless of their origin. We consider two criteria:
correctness, which is evaluated against the intended
pronunciation, and ambiguity, which is a property of
the respelling itself. As was the case in the genera-
tion stage, the evaluation is performed at the level of
syllables.
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6.1 L2P Correctness Filter

The principal method of verifying the correctness
of a respelling involves the application of a letter-
to-phoneme (L2P) model trained on the word-
pronunciation pairs extracted from an English dic-
tionary. The generated pronunciation of each sylla-
ble is compared against its intended pronunciation;
if any of the syllables fail the test, the entire re-
spelling is rejected.

The L2P model is derived using the DIRECTL+
system. The main difference between the L2P model
described in this section and the P2L model from
Section 5.2 is that the input and output data are re-
versed. However, the L2P model is not simply a mir-
ror image of the P2L model. Often the phonemic
output of the composition of the two models is dif-
ferent from the initial phonemic input; e.g., [ro] →
row→ [raU]. This is because the intermediate ortho-
graphic string may be ambiguous. Furthermore, the
L2P model is also intended to test the correctness of
respellings that were generated with other methods.

Other differences between the two models per-
tain to the preprocessing of the training data, and
the letter-to-phoneme alignment. As with the P2L
model, the training data consists of a set of mono-
syllabic words from the Combilex dictionary. How-
ever, in order to make our correctness filter more
conservative, we also remove all words that con-
tain diacritics (e.g., crêpe), non-English phonemes
(e.g., avant), or silent consonants (e.g., limn). The
alignment is restricted to matching each letter sym-
bol to at most one phoneme, and is derived with
the ALINE phonetic aligner (Kondrak, 2000), which
has been shown to outperform other 1-1 alignment
methods (Jiampojamarn and Kondrak, 2010).

6.2 Vowel Counter

Syllables that contain multiple vowel groups may be
confusing to readers even if they correctly represent
the intended pronunciation. For example, readers
might be unsure whether takess represents one or
two syllables. A simple vowel counter is provided
to filter out such syllables. The vowel filter accepts
a syllable only if (a) it contains exactly one vowel
group (e.g., moe), or (b) the second vowel group
consists of a single e at the end of the syllable (e.g.,
zake).

6.3 SVM Ambiguity Classifier

This module is designed to compute a score that re-
flects the ambiguity of an orthographic syllable. The
ambiguity score of a respelling is defined as the av-
erage of scores assigned to each of its syllables. The
score can then be used to select the best respelling
from a number of candidates generated by our sys-
tem, or to rate a respelling from another source.

Since we have no explicit ambiguity annotations
for respellings, we attempt instead to exploit ambi-
guity judgments that are implicitly made when re-
spellings are created by human authors. We ap-
proach ambiguity as a binary classification task. For
any given syllable, we wish to determine whether it
is ambiguous (a negative instance), or unambiguous
(a positive instance). Our assumption is that a sylla-
ble will not be respelled unless it is necessary due
to ambiguity. For each observed word-respelling
pair, we take all syllables from the respelling as pos-
itive instances, and all syllables in the original word
that are not preserved in the respelling as negative
instances. For example, the pair consisting of the
word cec-il-y respelled as ‘sehs-il-ee’ provides three
positive instances: sehs, il and ee; and two negative
instances: cec and y.

We extracted word-respelling pairs from the Web-
derived corpora of Ghoshal et al. (2009). The syl-
lable breaks in the respellings were mapped onto
the original words using ALINE. In order to im-
prove the quality of the data, we applied a letter-
to-phoneme model to both the original words and
their respellings, and removed pairs with divergent
pronunciations (computed as normalized edit dis-
tance ≤ 0.8). After the filtering, we were left a
set of 25067 word-respelling pairs containing 78411
training syllables, which yielded 47270 positive and
31141 negative instances.

For the classification task we utilize the SVM-
light software package (Joachims, 1999). Each in-
stance is represented by a set of binary indicator fea-
tures. The features correspond to character n-grams
(including syllable boundary markers) with the val-
ues of n ranging from 1 to 5. For example, the syl-
lable -il- turns on the following features: i, l, -i, il,
l-, -il, il-, -il-. The model learns which n-grams are
characteristic of ambiguous or unambiguous sylla-
bles. For example, it classifies both le and li as am-
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biguous, and lee as unambiguous. Apart from the
binary classification, the classifier also provides a
real-valued score for each syllable.

6.4 Lexical Reviser

Since the use of familiar English letter sequences
makes the respellings easier to interpret (Fraser,
1997), we incorporate dictionary lookup (Section
4.2) into our system. When the pronunciation of a
syllable happens to correspond to the pronunciation
an actual dictionary word, the syllable may be re-
spelled using that word. This is done as the final step
in the generation process because dictionary words
often receive poor scores from the SVM classifier on
the account of their n-gram composition. The lexi-
cal reviser is restricted to optionally improving the
top-ranked word respelling candidate as determined
by the SVM classifier without altering its syllabifi-
cation. For example, the respelling ‘surr-sin-uss’ of
circinus is modified to ‘sir-sin-us’. If more than one
word can be used, we let the SVM classifier select
the least ambiguous one.

7 System Overview

Our respelling generation system is a multi-stage
process. The input is a sequence of phonemes rep-
resenting the pronunciation of the word. We start by
identifying acceptable syllabifications of phonemes
as described in Section 5.1. For each syllable, we
take up to five respelling candidates produced by
the P2L model (Section 5.2), and between one and
three candidates proposed by the context-sensitive
respeller (Section 5.3). The next stage involves fil-
tering the candidate respellings with the L2P model
(Section 6.1), and the vowel counter (Section 6.2).
If all candidates happen to be rejected, we retain the
first output of the context-sensitive respeller as the
default. The candidate respellings are then scored
by the SVM model (Section 6.3). At this point the
syllables are combined into word respellings, which
are ranked according to their syllable score average.
Finally, the lexical reviser described in Section 6.4 is
applied to the top candidate in an attempt to further
improve the result.

8 Evaluation

In this section, after describing our test sets, we
present the results of two evaluation experiments:
direct human judgment, and indirect validation with
an L2P system.

8.1 Test Sets

Our two test sets were defined after the development
of our system had been completed. There is no over-
lap between the test sets and any of our training sets.
The first test set consists of 27 out of 30 words com-
piled by Fraser (1997) — 3 words from the origi-
nal set were excluded because the corresponding re-
spellings assume a non-rhotic variety of English. We
refer to Fraser’s respellings as expert, and consider
them as the upper bound in terms of quality.

The second test set of 231 words (henceforth re-
ferred to as the Web set) was extracted from the
corpus of Ghoshal et al. (2009) after performing
additional data clean-up described in Section 6.3.
We identified a subset of words for which we
could find phonetic transcriptions composed of En-
glish phonemes on Wikipedia. In order to ensure
that the respellings and the corresponding transcrip-
tions reflect the same pronunciation, we adapted the
Soundex algorithm to apply to phonetic transcrip-
tions, and retained only the respelling/transcription
pairs that yielded identical Soundex codes. We re-
moved words that are found in the Combilex dic-
tionary as those could be familiar to human judges.
Since longer words are more challenging to respell,
and more likely to exhibit variation in respellings
from different sources, we retained only words con-
taining at least eight phonemes.

8.2 Human Judgment

We conducted an experiment with human evalua-
tors using a specially developed graphical annota-
tion program with synthesized word pronunciations.
The evaluators were students enrolled in an intro-
ductory linguistic course, who were not involved in
our project. 13 out of 20 evaluators declared them-
selves as native speakers of English.

The evaluation process involves 40 randomly se-
lected words: 10 from Fraser’s set, and 30 from the
Web set. For each word, the program displays in a
random sequence three respellings, which are from
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Source Web set Fraser’s set
U U&C U U&C

Baseline 43.0 25.5 41.0 20.0
Web 68.0 32.6 —
Expert — 72.0 46.0
Our system 70.0 41.3 67.0 38.5

Table 2: Human judgments on respellings in %: U -
unambiguous; U&C - unambiguous & correct.

the following sources: (1) the Baseline approach de-
scribed in Section 4.3, (2) our system, and (3) ei-
ther expert design (for Fraser’s set) or the Web (for
the Web set). In order to reduce bias, the origi-
nal spelling of the word is not shown. Each re-
spelling is judged separately with regards to ambi-
guity, and those that are judged ambiguous are re-
moved from further consideration. Next, an audio
clip synthesized from the phonemic sequence repre-
senting the intended pronunciation is played through
headphones. For each of the remaining respellings,
the evaluators decide whether it is correct with re-
spect to the recorded pronunciation. Finally, if more
than one respelling have been judged both unam-
biguous and correct, the evaluators are asked to iden-
tify the one that they prefer.

The results of the experiment are shown in Ta-
ble 2. Our system significantly outperforms both
Web respellings and the Baseline approach in terms
of unambiguity and correctness. In addition, the re-
spellings produced by our system are more likely to
be preferred over the Web respellings, and more than
twice as likely to be preferred over the baseline re-
spellings than vice versa. The results on the small
Fraser’s set are less conclusive, but suggest that in
terms of overall quality our system is much closer to
the upper bound than to the baseline.

8.3 Automated Appraisal

Human evaluation is expensive and limited in terms
of the number of variant respellings. Moreover, hu-
man judgements may be biased by previously seen
respellings or by the familiarity with the standard
spelling of a word. An automated evaluation is much
less constrained, and facilitates an ablation study to
determine the relative importance of various compo-
nents of our system.

Source Web set Fraser’s set
WA PA WA PA

No respelling 13.0 76.2 14.8 76.3
Baseline 8.2 78.9 7.4 71.0
Web 14.3 77.9 —
Expert — 37.0 85.6
Our system 58.0 93.0 70.4 95.6

Table 4: Word accuracy (WA) and phoneme accuracy
(PA) of eSpeak on respellings.

Source Web set
WA PA

Full system 58.0 93.0
w/o lexical reviser 57.6 93.1
w/o context-sensitive respeller 56.7 92.8
w/o P2L generator 51.9 92.1
w/o L2P correctness filter 33.8 88.0
w/o syllable breaks 20.8 83.9

Table 5: Accuracy of eSpeak on respellings produced by
variants of our system.

eSpeak is a publicly available speech synthesizer5

that can also convert text into phonemic sequences.
The letter-to-phoneme component for English uti-
lizes about five thousand rules, and a dictionary of
about three thousand words, names, and abbrevia-
tions. In our evaluation, we treat eSpeak as a “black
box” which translates a respelling into its most likely
pronunciation. By determining if there is a match
between the output of eSpeak and the intended pro-
nunciation, we directly test the correctness of the re-
spelling, and indirectly also its ambiguity.

The results of the automated evaluation are shown
in Table 4. The accuracy on the original orthogra-
phy is low, which is unsurprising since the test sets
contain mostly rare, unusually spelled words. Nei-
ther the baseline nor the Web respellings are sig-
nificantly easier for eSpeak than the original words.
On the other hand, respellings generated by our sys-
tem make a massive difference, boosting phoneme
accuracy to well over 90% on both sets. They are
also significantly more effective than the expert re-
spellings.

Table 5 shows the results of our system on the

5http://espeak.sourceforge.net
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No. Spelling IPA Web/HF respelling Score System respelling Score
1 Incirlik [inÃirlik] injirlik 1/6 een-jeer-leek 4/6
2 Captopril [kæpt@prIl] kap-toh-pril 1/6 cap-tuh-prill 4/6
3 Coquitlam [kokwItl@m] ko-kwit-lam 1/6 koh-quit-lumb 4/6
4 Karolina [kArOlinA] karo-leena 4/6 car-awl-ee-nah 1/6
5 subluxation [s@bl@kseS@n] sub-luck-say-shun 3/5 suh-bluck-say-shun 1/5
6 swingle [swINg@l] swing-gl 0/5 swing-gull 2/5
7 cockatrice [kAk@traIs] kok-a-trice 0/7 cock-uh-trice 4/7
8 recalesce [rik@lEs] ree-ka-less 1/5 re-cull-ess 3/5
9 jongleur [ZANgl@r] jong-gler 7/9 zhahng-gler 0/9
10 ylang-ylang [ilæNilæN] ee-lang-ee-lang 5/5 eel-ang-eel-ang 1/5

Table 3: Examples of respellings.

Web set with various modules disabled, which pro-
vides an estimate of their importance. Neither
the context-sensitive respeller nor dictionary lookup
seem to contribute much to eSpeak’s performance.
On the other hand, disabling the P2L generator pro-
duces a significant drop in word accuracy, while re-
moving the L2P correctness filter almost doubles the
phoneme error rate. Interestingly, removing syllable
breaks from the output of the full system has an even
greater negative impact.

8.4 Analysis
Each of 20 evaluators judged 3 variant respellings
of 40 different words. The average number of judg-
ments per word was 7.4 for the 27 words in Fraser’s
set, and 2.8 for the 212 words in the Web set (due to
random selection, 19 words from the Web set were
not judged). Table 3 shows examples of respellings
that were judged by at least five evaluators. The
score columns indicate the proportion of the evalu-
ators that judged a particular respellings as unam-
biguous and correct. The baseline respellings are
not included as their scores were rarely higher than
the scores of the other respellings for a given word.
An interesting exception is palimpsest, for which the
baseline respelling is identical to the actual spelling
of the word.

Examples 1-5 in Table 3 come from the Web set,
while examples 6-10 are from Fraser’s set. The
low scores of the first three Web respellings can be
attributed to specific letter-to-phoneme mappings:
[i]→i, [@]→oh, and [@]→a. Each of the examples
3-5 indicate the evaluators’ acceptance of a partic-
ular respelling device: silent letters, multi-syllable

units, and dictionary words. In examples 6-8, the
syllables immediately after the first hyphen in Helen
Fraser’s respellings seem to be problematic. The ex-
pert respelling of jongleur is considered correct even
though the initial j suggests [Ã], not [Z]. Finally,
the last example demonstrates that the hyphenation
choice can result in very different judgments.

9 Conclusion

In this paper, we introduced the task of automati-
cally generating respellings from the given pronun-
ciation. We investigated the characteristics of good
respellings, and discussed three direct methods of
their creation. We proposed a system that combines
supervised and unsupervised learning with phonetic
and orthographic principles. The evaluation experi-
ment involving human participants indicates that the
respellings produced by our system are better on av-
erage than those found on the Web. The automated
verification demonstrates that they are also much
easier to interpret for a rule-based text-to-speech
converter. In the future we plan to address the re-
lated tasks of improving existing respellings, and as-
sisting writers in creating respellings without direct
access to the phonemic representations.
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Abstract

We present a simple log-linear reparame-
terization of IBM Model 2 that overcomes
problems arising from Model 1’s strong
assumptions and Model 2’s overparame-
terization. Efficient inference, likelihood
evaluation, and parameter estimation algo-
rithms are provided. Training the model is
consistently ten times faster than Model 4.
On three large-scale translation tasks, systems
built using our alignment model outperform
IBM Model 4.

An open-source implementation of the align-
ment model described in this paper is available
from http://github.com/clab/fast align .

1 Introduction

Word alignment is a fundamental problem in statis-
tical machine translation. While the search for more
sophisticated models that provide more nuanced ex-
planations of parallel corpora is a key research activ-
ity, simple and effective models that scale well are
also important. These play a crucial role in many
scenarios such as parallel data mining and rapid
large scale experimentation, and as subcomponents
of other models or training and inference algorithms.
For these reasons, IBM Models 1 and 2, which sup-
port exact inference in time Θ(|f| · |e|), continue to
be widely used.

This paper argues that both of these models are
suboptimal, even in the space of models that per-
mit such computationally cheap inference. Model
1 assumes all alignment structures are uniformly

likely (a problematic assumption, particularly for
frequent word types), and Model 2 is vastly overpa-
rameterized, making it prone to degenerate behav-
ior on account of overfitting.1 We present a simple
log-linear reparameterization of Model 2 that avoids
both problems (§2). While inference in log-linear
models is generally computationally more expen-
sive than in their multinomial counterparts, we show
how the quantities needed for alignment inference,
likelihood evaluation, and parameter estimation us-
ing EM and related methods can be computed using
two simple algebraic identities (§3), thereby defus-
ing this objection. We provide results showing our
model is an order of magnitude faster to train than
Model 4, that it requires no staged initialization, and
that it produces alignments that lead to significantly
better translation quality on downstream translation
tasks (§4).

2 Model

Our model is a variation of the lexical translation
models proposed by Brown et al. (1993). Lexical
translation works as follows. Given a source sen-
tence f with length n, first generate the length of
the target sentence, m. Next, generate an alignment,
a = 〈a1, a2, . . . , am〉, that indicates which source
word (or null token) each target word will be a trans-
lation of. Last, generate the m output words, where
each ei depends only on fai .

The model of alignment configurations we pro-
pose is a log-linear reparameterization of Model 2.

1Model 2 has independent parameters for every alignment
position, conditioned on the source length, target length, and
current target index.
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Given : f, n = |f|, m = |e|, p0, λ, θ

h(i, j,m, n) = −
∣∣∣∣ im − j

n

∣∣∣∣
δ(ai = j | i,m, n) =


p0 j = 0

(1− p0)× eλh(i,j,m,n)

Zλ(i,m,n) 0 < j ≤ n
0 otherwise

ai | i,m, n ∼ δ(· | i,m, n) 1 ≤ i ≤ m
ei | ai, fai ∼ θ(· | fai) 1 ≤ i ≤ m
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Figure 1: Our proposed generative process yielding a translation e and its alignment a to a source sentence f, given the
source sentence f, alignment parameters p0 and λ, and lexical translation probabilities θ (left); an example visualization
of the distribution of alignment probability mass under this model (right).

Our formulation, which we write as δ(ai = j |
i,m, n), is shown in Fig. 1.2 The distribution over
alignments is parameterized by a null alignment
probability p0 and a precision λ ≥ 0 which con-
trols how strongly the model favors alignment points
close to the diagonal. In the limiting case as λ→ 0,
the distribution approaches that of Model 1, and, as
it gets larger, the model is less and less likely to de-
viate from a perfectly diagonal alignment. The right
side of Fig. 1 shows a graphical illustration of the
alignment distribution in which darker squares indi-
cate higher probability.

3 Inference

We now discuss two inference problems and give ef-
ficient techniques for solving them. First, given a
sentence pair and parameters, compute the marginal
likelihood and the marginal alignment probabilities.
Second, given a corpus of training data, estimate
likelihood maximizing model parameters using EM.

3.1 Marginals

Under our model, the marginal likelihood of a sen-
tence pair 〈f, e〉 can be computed exactly in time

2Vogel et al. (1996) hint at a similar reparameterization of
Model 2; however, its likelihood and its gradient are not effi-
cient to evaluate, making it impractical to train and use. Och
and Ney (2003) likewise remark on the overparameterization
issue, removing a single variable of the original conditioning
context, which only slightly improves matters.

Θ(|f| · |e|). This can be seen as follows. For
each position in the sentence being generated, i ∈
[1, 2, . . . ,m], the alignment to the source and its
translation is independent of all other translation and
alignment decisions. Thus, the probability that the
ith word of e is ei can be computed as:

p(ei, ai | f,m, n) = δ(ai | i,m, n)× θ(ei | fai)

p(ei | f,m, n) =
n∑
j=0

p(ei, ai = j | f,m, n).

We can also compute the posterior probability over
alignments using the above probabilities,

p(ai | ei, f,m, n) =
p(ei, ai | f,m, n)

p(ei | f,m, n)
. (1)

Finally, since all words in e (and their alignments)
are conditionally independent,3

p(e | f) =

m∏
i=1

p(ei | f,m, n)

=

m∏
i=1

n∑
j=0

δ(ai | i,m, n)× θ(ei | fai).

3We note here that Brown et al. (1993) derive their variant
of this expression by starting with the joint probability of an
alignment and translation, marginalizing, and then reorganizing
common terms. While identical in implication, we find the di-
rect probabilistic argument far more intuitive.
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3.2 Efficient Partition Function Evaluation

Evaluating and maximizing the data likelihood un-
der log-linear models can be computationally ex-
pensive since this requires evaluation of normalizing
partition functions. In our case,

Zλ(i,m, n) =

n∑
j′=1

expλh(i, j′,m, n).

While computing this sum is obviously possible
in Θ(|f|) operations, our formulation permits exact
computation in Θ(1), meaning our model can be ap-
plied even in applications where computational ef-
ficiency is paramount (e.g., MCMC simulations).
The key insight is that the partition function is the
(partial) sum of two geometric series of unnormal-
ized probabilities that extend up and down from the
probability-maximizing diagonal. The closest point
on or above the diagonal j↑, and the next point down
j↓ (see the right side of Fig. 1 for an illustration), is
computed as follows:

j↑ =

⌊
i× n
m

⌋
, j↓ = j↑ + 1.

Starting at j↑ and moving up the alignment col-
umn, as well as starting at j↓ and moving down, the
unnormalized probabilities decrease by a factor of
r = exp −λn per step.

To compute the value of the partition, we only
need to evaluate the unnormalized probabilities at
j↑ and j↓ and then use the following identity, which
gives the sum of the first ` terms of a geometric se-
ries (Courant and Robbins, 1996):

s`(g1, r) =
∑̀
k=1

g1r
k−1 = g1

1− r`
1− r .

Using this identity, Zλ(i,m, n) can be computed as

sj↑(e
λh(i,j↑,m,n), r) + sn−j↓(e

λh(i,j↓,m,n), r).

3.3 Parameter Optimization

To optimize the likelihood of a sample of parallel
data under our model, one can use EM. In the E-step,
the posterior probabilities over alignments are com-
puted using Eq. 1. In the M-step, the lexical trans-
lation probabilities are updated by aggregating these

as counts and normalizing (Brown et al., 1993). In
the experiments reported in this paper, we make the
further assumption that θf ∼ Dirichlet(µ) where
µi = 0.01 and approximate the posterior distribu-
tion over the θf ’s using a mean-field approximation
(Riley and Gildea, 2012).4

During the M-step, the λ parameter must also
be updated to make the E-step posterior distribu-
tion over alignment points maximally probable un-
der δ(· | i,m, n). This maximizing value cannot
be computed analytically, but a gradient-based op-
timization can be used, where the first derivative
(here, for a single target word) is:

∇λL = Ep(ai|ei,f,m,n) [h(i, ai,m, n)]

− Eδ(j′|i,m,n)

[
h(i, j′,m, n)

]
(2)

The first term in this expression (the expected value
of h under the E-step posterior) is fixed for the du-
ration of each M-step, but the second term’s value
(the derivative of the log-partition function) changes
many times as λ is optimized.

3.4 Efficient Gradient Evaluation
Fortunately, like the partition function, the deriva-
tive of the log-partition function (i.e., the second
term in Eq. 2) can be computed in constant time us-
ing an algebraic identity. To derive this, we observe
that the values of h(i, j′,m, n) form an arithmetic
sequence about the diagonal, with common differ-
ence d = −1/n. Thus, the quantity we seek is the
sum of a series whose elements are the products of
terms from an arithmetic sequence and those of the
geometric sequence above, divided by the partition
function value. This construction is referred to as
an arithmetico-geometric series, and its sum may be
computed as follows (Fernandez et al., 2006):

t`(g1,a1, r, d) =
∑̀
k=1

[a1 + d(k − 1)] g1r
k−1

=
a`g`+1 − a1g1

1− r +
d (g`+1 − g1r)

(1− r)2 .

In this expression r, the g1’s and the `’s have the
same values as above, d = −1/n and the a1’s are

4The µi value was fixed at the beginning of experimentation
by minimizing the AER on the 10k sentence French-English cor-
pus discussed below.
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equal to the value of h evaluated at the starting in-
dices, j↑ and j↓; thus, the derivative we seek at each
optimization iteration inside the M-step is:

∇λL =Ep(ai|ei,f,m,n) [h(i, ai,m, n)]

− 1

Zλ
(tj↑(e

λh(i,j↑,m,n), h(i, j↑,m, n), r, d)

+ tn−j↓(e
λh(i,j↓,m,n), h(i, j↑,m, n), r, d)).

4 Experiments

In this section we evaluate the performance of
our proposed model empirically. Experiments are
conducted on three datasets representing different
language typologies and dataset sizes: the FBIS
Chinese-English corpus (LDC2003E14); a French-
English corpus consisting of version 7 of the Eu-
roparl and news-commentary corpora;5 and a large
Arabic-English corpus consisting of all parallel data
made available for the NIST 2012 Open MT evalua-
tion. Table 1 gives token counts.

We begin with several preliminary results. First,
we quantify the benefit of using the geometric series
trick (§3.2) for computing the partition function rel-
ative to naı̈ve summation. Our method requires only
0.62 seconds to compute all partition function values
for 0 < i,m, n < 150, whereas the naı̈ve algorithm
requires 6.49 seconds for the same.6

Second, using a 10k sample of the French-English
data set (only 0.5% of the corpus), we determined
1) whether p0 should be optimized; 2) what the op-
timal Dirichlet parameters µi are; and 3) whether
the commonly used “staged initialization” procedure
(in which Model 1 parameters are used to initialize
Model 2, etc.) is necessary for our model. First,
like Och and Ney (2003) who explored this issue for
training Model 3, we found that EM tended to find
poor values for p0, producing alignments that were
overly sparse. By fixing the value at p0 = 0.08,
we obtained minimal AER. Second, like Riley and
Gildea (2012), we found that small values of α im-
proved the alignment error rate, although the im-
pact was not particularly strong over large ranges of

5http://www.statmt.org/wmt12
6While this computational effort is a small relative to the

total cost in EM training, in algorithms where λ changes more
rapidly, for example in Bayesian posterior inference with Monte
Carlo methods (Chahuneau et al., 2013), this savings can have
substantial value.

Table 1: CPU time (hours) required to train alignment
models in one direction.

Language Pair Tokens Model 4 Log-linear
Chinese-English 17.6M 2.7 0.2
French-English 117M 17.2 1.7
Arabic-English 368M 63.2 6.0

Table 2: Alignment quality (AER) on the WMT 2012
French-English and FBIS Chinese-English. Rows with
EM use expectation maximization to estimate the θf , and
∼Dir use variational Bayes.

Model Estimator FR-EN ZH-EN

Model 1 EM 29.0 56.2
Model 1 ∼Dir 26.6 53.6
Model 2 EM 21.4 53.3

Log-linear EM 18.5 46.5
Log-linear ∼Dir 16.6 44.1

Model 4 EM 10.4 45.8

Table 3: Translation quality (BLEU) as a function of
alignment type.

Language Pair Model 4 Log-linear
Chinese-English 34.1 34.7
French-English 27.4 27.7
Arabic-English 54.5 55.7

α. Finally, we (perhaps surprisingly) found that the
standard staged initialization procedure was less ef-
fective in terms of AER than simply initializing our
model with uniform translation probabilities and a
small value of λ and running EM. Based on these
observations, we fixed p0 = 0.08, µi = 0.01, and
set the initial value of λ to 4 for the remaining ex-
periments.7

We next compare the alignments produced by our
model to the Giza++ implementation of the standard
IBM models using the default training procedure
and parameters reported in Och and Ney (2003).
Our model is trained for 5 iterations using the pro-
cedure described above (§3.3). The algorithms are

7As an anonymous reviewer pointed out, it is a near certainty
that tuning of these hyperparameters for each alignment task
would improve results; however, optimizing hyperparameters of
alignment models is quite expensive. Our intention is to show
that it is possible to obtain reasonable (if not optimal) results
without careful tuning.
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compared in terms of (1) time required for training;
(2) alignment error rate (AER, lower is better);8 and
(3) translation quality (BLEU, higher is better) of hi-
erarchical phrase-based translation system that used
the alignments (Chiang, 2007). Table 1 shows the
CPU time in hours required for training (one direc-
tion, English is generated). Our model is at least
10× faster to train than Model 4. Table 3 reports
the differences in BLEU on a held-out test set. Our
model’s alignments lead to consistently better scores
than Model 4’s do.9

5 Conclusion

We have presented a fast and effective reparameteri-
zation of IBM Model 2 that is a compelling replace-
ment for for the standard Model 4. Although the
alignment quality results measured in terms of AER

are mixed, the alignments were shown to work ex-
ceptionally well in downstream translation systems
on a variety of language pairs.
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Abstract
We present a novel approach for translation
model (TM) adaptation using phrase train-
ing. The proposed adaptation procedure is ini-
tialized with a standard general-domain TM,
which is then used to perform phrase training
on a smaller in-domain set. This way, we bias
the probabilities of the general TM towards
the in-domain distribution. Experimental re-
sults on two different lectures translation tasks
show significant improvements of the adapted
systems over the general ones. Additionally,
we compare our results to mixture modeling,
where we report gains when using the sug-
gested phrase training adaptation method.

1 Introduction

The task of domain-adaptation attempts to exploit
data mainly drawn from one domain (e.g. news,
parliamentary discussion) to maximize the perfor-
mance on the test domain (e.g. lectures, web fo-
rums). In this work, we focus on translation model
(TM) adaptation. A prominent approach in recent
work is weighting at different levels of granularity.
Foster and Kuhn (2007) perform weighting at the
corpus level, where different corpora receive differ-
ent weights and are then combined using mixture
modeling. A finer grained weighting is that of Mat-
soukas et al. (2009), who weight each sentence in the
bitexts using features of meta-information and opti-
mize a mapping from the feature vectors to weights
using a translation quality measure.

In this work, we propose to perform TM adapta-
tion using phrase training. We start from a general-
domain phrase table and adapt the probabilities by

training on an in-domain data. Thus, we achieve
direct phrase probabilities adaptation as opposed to
weighting. Foster et al. (2010) perform weighting
at the phrase level, assigning each phrase pair a
weight according to its relevance to the test domain.
They compare phrase weighting to a “flat” model,
where the weight directly approximates the phrase
probability. In their experiments, the weighting
method performs better than the flat model, there-
fore, they conclude that retaining the original rela-
tive frequency probabilities of the TM is important
for good performance. The “flat” model of Foster
et al. (2010) is similar to our work. We differ in
the following points: (i) we use the same procedure
to perform the phrase training based adaptation and
the search thus avoiding inconsistencies between the
two; (ii) we do not directly interpolate the original
statistics with the new ones, but use a training pro-
cedure to manipulate the original statistics. We per-
form experiments on the publicly available IWSLT
TED task, on both Arabic-to-English and German-
to-English lectures translation tracks. We compare
our suggested phrase training adaptation method to
a variety of baselines and show its effectiveness. Fi-
nally, we experiment with mixture modeling based
adaptation. We compare mixture modeling to our
adaptation method, and apply our method within a
mixture modeling framework.

In Section 2, we present the phrase training
method and explain how it is utilized for adaptation.
Experimental setup including corpora statistics and
the SMT system are described in Section 3. Sec-
tion 4 summarizes the phrase training adaptation re-
sults ending with a comparison to mixture modeling.
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2 Phrase Training

The standard phrase extraction procedure in SMT
consists of two phases: (i) word-alignment training
(e.g., IBM alignment models), (ii) heuristic phrase
extraction and relative frequency based phrase trans-
lation probability estimation. In this work, we utilize
phrase training for the task of adaptation. We use
the forced alignment (FA) method (Wuebker et al.,
2010) to perform the phrase alignment training and
probability estimation. We perform phrase training
by running a normal SMT decoder on the training
data and constrain the translation to the given target
instance. Using n-best possible phrase segmentation
for each training instance, the phrase probabilities
are re-estimated over the output. Leaving-one-out is
used during the forced alignment procedure phase to
avoid over-fitting (Wuebker et al., 2010).

In the standard phrase training procedure, we
are given a training set y, from which an initial
heuristics-based phrase table p0

y is generated. FA
training is then done over the training set y using the
phrases and probabilities in p0

y (possibly updated by
the leaving-one-out method). Finally, re-estimation
of the phrase probabilities is done over the decoder
output, generating the FA phrase table p1. We ex-
plain next how to utilize FA training for adaptation.

2.1 Adaptation

In this work, we utilize phrase training for the task
of adaptation. The main idea is to generate the initial
phrase table required for FA using a general-domain
training data y′, thus resulting in p0

y′ , and perform
the FA training over yIN , the in-domain training
data (instead of y′ in the standard procedure). This
way, we bias the probabilities of p0

y′ towards the in-
domain distribution. We denote this new procedure
by Y’-FA-IN. This differs from the standard IN-FA-
IN by that we have more phrase pairs to use for FA.
Thus, we obtain phrase pairs relevant to IN in ad-
dition to “general” phrase pairs which were not ex-
tracted from IN, perhaps due to faulty word align-
ments. The probabilities of the general phrase table
will be tailored towards IN. In practice, we usually
have in-domain IN and other-domain OD data. We
denote by ALL the concatenation of IN and OD. To
adapt the ALL phrase table, we perform the FA pro-
cedure ALL-FA-IN. We also utilize leaving-one-out

to avoid over-fitting.
Another procedure we experimented with is

adapting the OD phrase table using FA over IN,
without leaving-one-out. We denote it by OD-FA0-
IN. In this FA scenario, we do not use leaving-one-
out as IN is not contained in OD, therefore, over-
fitting will not occur. By this procedure, we train
phrases from OD that are relevant for both OD and
IN, while the probabilities will be tailored to IN. In
this case, we do not expect improvements over the
IN based phrase table, but, improvements over OD
and reduction in the phrase table size.

We compare our suggested FA based adaptation
to the standard FA procedure.

3 Experimental Setup

3.1 Training Corpora

To evaluate the introduced methods experimentally,
we use the IWSLT 2011 TED Arabic-to-English and
German-to-English translation tasks. The IWSLT
2011 evaluation campaign focuses on the transla-
tion of TED talks, a collection of lectures on a
variety of topics ranging from science to culture.
For Arabic-to-English, the bilingual data consists
of roughly 100K sentences of in-domain TED talks
data and 8M sentences of “other”-domain United
Nations (UN) data. For the German-to-English task,
the data consists of 130K TED sentences and 2.1M
sentences of “other”-domain data assembled from
the news-commentary and the europarl corpora. For
language model training purposes, we use an addi-
tional 1.4 billion words (supplied as part of the cam-
paign monolingual training data).

The bilingual training and test data for the Arabic-
to-English and German-to-English tasks are sum-
marized in Table 11. The English data was tok-
enized and lowercased while the Arabic data was
tokenized and segmented using MADA v3.1 (Roth
et al., 2008) with the ATB scheme. The German
source is decompounded (Koehn and Knight, 2003)
and part-of-speech-based long-range verb reorder-
ing rules (Popović and Ney, 2006) are applied.

From Table 1, we note that using the general
data considerably reduces the number of out-of-

1For a list of the IWSLT TED 2011 training cor-
pora, see http://www.iwslt2011.org/doku.php?
id=06_evaluation
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Set Sen Tok OOV/IN OOV/ALL
German-to-English

IN 130K 2.5M
OD 2.1M 55M
dev 883 20K 398 (2.0%) 215 (1.1%)
test 1565 32K 483 (1.5%) 227 (0.7%)
eval 1436 27K 490 (1.8%) 271 (1.0%)

Arabic-to-English
IN 90K 1.6M
OD 7.9M 228M
dev 934 19K 408 (2.2%) 184 (1.0%)
test 1664 31K 495 (1.6%) 228 (0.8%)
eval 1450 27K 513 (1.9%) 163 (0.6%)

Table 1: IWSLT 2011 TED bilingual corpora statistics:
the number of tokens is given for the source side. OOV/X
denotes the number of OOV words in relation to corpus
X (the percentage is given in parentheses). IN is the TED
in-domain data, OD denotes other-domain data, ALL de-
notes the concatenation of IN and OD.

vocabulary (OOV) words. This comes with the price
of increasing the size of the training data by a factor
of more than 20. A simple concatenation of the cor-
pora might mask the phrase probabilities obtained
from the in-domain corpus, causing a deterioration
in performance. One way to avoid this contamina-
tion is by filtering the general corpus, but this dis-
cards phrase translations completely from the phrase
model. A more principled way is by adapting the
phrase probabilities of the full system to the domain
being tackled. We perform this by phrase training
the full phrase table over the in-domain training set.

3.2 Translation System

The baseline system is built using the open-source
SMT toolkit Jane 2.0, which provides a state-of-
the-art phrase-based SMT system (Wuebker et al.,
2012a). In addition to the phrase based decoder,
Jane 2.0 implements the forced alignment procedure
used in this work for the purpose of adaptation. We
use the standard set of models with phrase transla-
tion probabilities for source-to-target and target-to-
source directions, smoothing with lexical weights,
a word and phrase penalty, distance-based reorder-
ing and an n-gram target language model. The SMT
systems are tuned on the dev (dev2010) development
set with minimum error rate training (Och, 2003) us-

ing BLEU (Papineni et al., 2002) accuracy measure
as the optimization criterion. We test the perfor-
mance of our system on the test (tst2010) and eval
(tst2011) sets using the BLEU and translation edit
rate (TER) (Snover et al., 2006) measures. We use
TER as an additional measure to verify the consis-
tency of our improvements and avoid over-tuning.
The Arabic-English results are case sensitive while
the German-English results are case insensitive.

4 Results

For TM training, we define three different sets: in-
domain (IN) which is the TED corpus, other-domain
(OD) which consists of the UN corpus for Arabic-
English and a concatenation of news-commentary
and europarl for German-English, and ALL which
consists of the concatenation of IN and OD. We ex-
periment with the following extraction methods:

• Heuristics: standard phrase extraction using
word-alignment training and heuristic phrase
extraction over the word alignment. The ex-
traction is performed for the three different
training data, IN, OD and ALL.

• FA standard: standard FA phrase training
where the same training set is used for initial
phrase table generation as well as the FA pro-
cedure. We perform the training on the three
different training sets and denote the resulting
systems by IN-FA, OD-FA and ALL-FA.

• FA adaptation: FA based adaptation phrase
training, where the initial table is generated
from some general data and the FA training is
performed on the IN data to achieve adapta-
tion. We perform two experiments, OD-FA0-
IN without leaving-one-out and ALL-FA-IN
with leaving-one-out.

The results of the various experiments over both
Arabic-English and German-English tasks are sum-
marized in Table 2. The usefulness of the OD
data differs between the Arabic-to-English and the
German-to-English translation tasks. For Arabic-to-
English, the OD system is 2.5%-4.3% BLEU worse
than the IN system, whereas for the German-to-
English task the differences between IN and OD are
smaller and range from 0.9% to 1.6% BLEU. The
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Phrase training System Rules dev test eval
method number BLEU TER BLEU TER BLEU TER

Arabic-to-English

Heuristics
IN 1.1M 27.2 54.1 25.3 57.1 24.3 59.9
OD 36.3M 24.7 57.7 21.2 62.6 21.0 64.7
ALL 36.9M 27.1 54.8 24.4 58.6 23.8 61.1

FA standard
IN-FA 1.0M 27.0 54.4 25.0 57.5 23.8 60.3
OD-FA 1.8M 24.5 57.7 21.0 62.4 21.2 64.3
ALL-FA 2.0M 27.2 54.2 24.5 58.1 23.8 60.6

FA adaptation
OD-FA0-IN 0.3M 25.8 55.8 23.6 59.4 22.7 61.7
ALL-FA-IN 0.5M 27.7 53.7 25.3 56.9 24.7 59.3

German-to-English

Heuristics
IN 1.3M 31.0 48.9 29.3 51.0 32.7 46.8
OD 7.3M 29.8 49.2 27.7 51.5 31.8 47.5
ALL 7.8M 31.2 48.3 29.5 50.5 33.6 46.1

FA standard
IN-FA 0.5M 31.6 48.2 29.7 50.5 33.3 46.4
OD-FA 3.0M 29.1 51.0 27.6 53.0 30.7 49.6
ALL-FA 3.2M 31.4 48.3 29.4 50.8 33.6 46.2

FA adaptation
OD-FA0-IN 0.9M 31.2 48.7 29.1 50.9 32.7 46.9
ALL-FA-IN 0.9M 31.8 47.4 29.7 49.7 33.6 45.5

Table 2: TED 2011 translation results. BLEU and TER are given in percentages. IN denotes the TED lectures in-
domain corpus, OD denotes the other-domain corpus, ALL is the concatenation of IN and OD. FA0 denotes forced
alignment training without leaving-one-out (otherwise, leaving-one-out is used).

inferior performance of the OD system can be re-
lated to noisy data or bigger discrepancy between
the OD data domain distribution and the IN distri-
bution. The ALL system performs according to the
usefulness of the OD training set, where for Arabic-
to-English we observe deterioration in performance
for all test sets and up-to -0.9% BLEU on the test
set. On the other hand, for German-to-English, the
ALL system is improving over IN where the biggest
improvement is observed on the eval set with +0.9%
BLEU improvement.

The standard FA procedure achieves mixed re-
sults, where IN-FA deteriorates the results over the
IN counterpart for Arabic-English, while improving
for German-English. ALL-FA performs comparably
to the ALL system on both tasks, while reducing the
phrase table size considerably. The OD-FA system
deteriorates the results in comparison to the OD sys-
tem in most cases, which is expected as training over
the OD set fits the phrase model on the OD domain,
making it perform worse on IN. (Wuebker et al.,
2012b) also report mixed results with FA training.

The FA adaptation results are summarized in the
last block of the experiments. The OD-FA0-IN im-
proves over the OD system, which means that the
training procedure was able to modify the OD prob-
abilities to perform well on the IN data. On the
German-to-English task, the OD-FA0-IN performs
comparably to the IN system, whereas for Arabic-
to-English OD-FA0-IN was able to close around half
of the gap between OD and IN.

The FA adapted ALL system (ALL-FA-IN) per-
forms best in our experiments, improving on both
BLEU and TER measures. In comparison to the
best heuristics system (IN for Arabic-English and
ALL for German-English), +0.4% BLEU and -0.6%
TER improvements are observed on the eval set for
Arabic-English. For German-English, the biggest
improvements are observed on TER with -0.8% on
test and -0.5% on eval. The results suggest that ALL-
FA-IN is able to learn more useful phrases than the
IN system and adjust the ALL phrase probabilities
towards the in-domain distribution.
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System dev test
BLEU TER BLEU TER

Arabic-to-English
Heuristicsbest 27.2 54.1 25.3 57.1
IN,OD 28.2 53.1 25.5 56.8
IN,OD-FA0-IN 28.4 52.9 25.7 56.5

German-to-English
Heuristicsbest 31.2 48.3 29.5 50.5
IN,OD 31.6 48.2 29.9 50.5
IN,OD-FA0-IN 31.8 47.8 30.0 50.0

Table 3: TED 2011 mixture modeling results.
Heuristicsbest is the best heuristics based system, IN for
Arabic-English and ALL for German-English. X,Y de-
notes linear interpolation between X and Y phrase tables.

4.1 Mixture Modeling

In this section, we compare our method to mixture
modeling based adaptation, in addition to applying
mixture modeling on top of our method. We focus
on linear interpolation (Foster and Kuhn, 2007) of
the in-domain (IN) and other-domain phrase tables,
where we vary the latter between the heuristically
extracted phrase table (OD) and the FA adapted one
(OD-FA0-IN). The interpolation weight is uniform
for the interpolated phrase tables (0.5). The results
of mixture modeling are summarized in Table 3. In
this table, we include the best heuristics based sys-
tem (Heuristicsbest) from Table 2 as a reference sys-
tem. The results on the eval set are omitted as they
show similar tendencies to the test set results.

Linear interpolation of IN and OD (IN,OD) is per-
forming well in our experiments, with big improve-
ments over the dev set, +1.0% BLEU for Arabic-to-
English and +0.4% BLEU for German-to-English.
On the test set, we observe smaller improvements.
Interpolating IN with the phrase training adapted
system OD-FA0-IN (IN,OD-FA0-IN) achieves ad-
ditional gains over the IN,OD system, the biggest
are observed on TER for German-to-English, with
-0.4% and -0.5% improvements on the dev and test
sets correspondingly.

Comparing heuristics based interpolation
(IN,OD) to our best phrase training adapted system
(ALL-FA-IN) shows mixed results. For Arabic-to-
English, the systems are comparable, while for the
German-to-English test set, IN,OD is +0.2% BLEU

better and +0.8% TER worse than ALL-FA-IN. We
hypothesize that for Arabic-to-English interpolation
is important due to the larger size of the OD data,
where it could reduce the masking of the IN training
data by the much larger OD data. Nevertheless,
as mentioned previously, using phrase training
adapted phrase table in a mixture setup consistently
improves over using heuristically extracted tables.

5 Conclusions

In this work, we propose a phrase training procedure
for adaptation. The phrase training is implemented
using the FA method. First, we extract a standard
phrase table using the whole available training data.
Using this table, we initialize the FA procedure and
perform training on the in-domain set.

Experiments are done on the Arabic-to-English
and German-to-English TED lectures translation
tasks. We show that the suggested procedure is im-
proving over unadapted baselines. On the Arabic-
to-English task, the FA adapted system is +0.9%
BLEU better than the full unadapted counterpart on
both test sets. Unlike the Arabic-to-English setup,
the German-to-English OD data is helpful and pro-
duces a strong unadapted baseline in concatenation
with IN. In this case, the FA adapted system achieves
BLEU improvements mainly on the development set
with +0.6% BLEU, on the test and eval sets, im-
provements of -0.8% and -0.6% TER are observed
correspondingly. As a side effect of the FA training
process, the size of the adapted phrase table is less
than 10% of the size of the full table.

Finally, we experimented with mixture model-
ing where improvements are observed over the un-
adapted baselines. The results show that using our
phrase training adapted OD table yields better per-
formance than using the heuristically extracted OD
in a mixture framework.
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Abstract

We propose a new method for translation ac-
quisition which uses a set of synonyms to ac-
quire translations from comparable corpora.
The motivation is that, given a certain query
term, it is often possible for a user to specify
one or more synonyms. Using the resulting
set of query terms has the advantage that we
can overcome the problem that a single query
term’s context vector does not always reliably
represent a terms meaning due to the context
vector’s sparsity. Our proposed method uses
a weighted average of the synonyms’ context
vectors, that is derived by inferring the mean
vector of the von Mises-Fisher distribution.
We evaluate our method, using the synsets
from the cross-lingually aligned Japanese and
English WordNet. The experiments show that
our proposed method significantly improves
translation accuracy when compared to a pre-
vious method for smoothing context vectors.

1 Introduction

Automatic translation acquisition is an important
task for various applications. For example, finding
term translations can be used to automatically up-
date existing bilingual dictionaries, which are an in-
dispensable resource for tasks such as cross-lingual
information retrieval and text mining.

Various previous research like (Rapp, 1999; Fung,
1998) has shown that it is possible to acquire word
translations from comparable corpora.

We suggest here an extension of this approach
which uses several query terms instead of a single
query term. A user who searches a translation for

a query term that is not listed in an existing bilin-
gual dictionary, might first try to find a synonym
of that term. For example, the user might look up
a synonym in a thesaurus1 or might use methods
for automatic synonym acquisition like described
in (Grefenstette, 1994). If the synonym is listed in
the bilingual dictionary, we can consider the syn-
onym’s translations as the translations of the query
term. Otherwise, if the synonym is not listed in the
dictionary either, we use the synonym together with
the original query term to find a translation.

We claim that using a set of synonymous query
terms to find a translation is better than using a single
query term. The reason is that a single query term’s
context vector is, in general, unreliable due to spar-
sity. For example, a low frequent query term tends to
have many zero entries in its context vector. To mit-
igate this problem it has been proposed to smooth
a query’s context vector by its nearest neighbors
(Pekar et al., 2006). However, nearest neighbors,
which context vectors are close the query’s context
vector, can have different meanings and therefore
might introduce noise.

The contributions of this paper are two-fold. First,
we confirm experimentally that smoothing a query’s
context vector with its synonyms leads in deed to
higher translation accuracy, compared to smoothing
with nearest neighbors. Second, we propose a sim-
ple method to combine a set of context vectors that
performs in this setting better than a method previ-
ously proposed by (Pekar et al., 2006).

Our approach to combine a set of context vec-
1Monolingual thesauri are, arguably, easier to construct than

bilingual dictionaries.
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tors is derived by learning the mean vector of a von
Mises-Fisher distribution. The combined context
vector is a weighted-average of the original context-
vectors, where the weights are determined by the
word occurrence frequencies.

In the following section we briefly show the rela-
tion to other previous work. In Section 3, we explain
our method in detail, followed by an empirical eval-
uation in Section 4. We summarize our results in
Section 6.

2 Related Work

There are several previous works on extract-
ing translations from comparable corpora ranging
from (Rapp, 1999; Fung, 1998), and more re-
cently (Haghighi et al., 2008; Laroche and Langlais,
2010), among others. Essentially, all these meth-
ods calculate the similarity of a query term’s context
vector with each translation candidate’s context vec-
tor. The context vectors are extracted from the com-
parable corpora, and mapped to a common vector
space with the help of an existing bilingual dictio-
nary.

The work in (Déjean et al., 2002) uses cross-
lingually aligned classes in a multilingual thesaurus
to improve the translation accuracy. Their method
uses the probability that the query term and a trans-
lation candidate are assigned to the same class. In
contrast, our method does not need cross-lingually
aligned classes.

Ismail and Manandhar (2010) proposes a method
that tries to improve a query’s context vector by us-
ing in-domain terms. In-domain terms are the terms
that are highly associated to the query, as well as
highly associated to one of the query’s highly asso-
ciated terms. Their method makes it necessary that
the query term has enough highly associated context
terms.2 However, a low-frequent query term might
not have enough highly associated terms.

In general if a query term has a low-frequency in
the corpus, then its context vector is sparse. In that
case, the chance of finding a correct translation is
reduced (Pekar et al., 2006). Therefore, Pekar et al.
(2006) suggest to use distance-based averaging to
smooth the context vector of a low-frequent query

2In their experiments, they require that a query word has at
least 100 associated terms.

term. Their smoothing strategy is dependent on the
occurrence frequency of a query term and its close
neighbors. Let us denote q the context vector of the
query word, and K be the set of its close neighbors.
The smoothed context vector q′ is then derived by
using:

q′ = γ · q + (1 − γ) ·
∑
x∈K

wx · x , (1)

where wx is the weight of neighbor x, and all
weights sum to one. The context vectors q and x
are interpreted as probability vectors and therefore
L1-normalized. The weight wx is a function of the
distance between neighbor x and query q. The pa-
rameter γ determines the degree of smoothing, and
is a function of the frequency of the query term and
its neighbors:

γ =
log f(q)

log maxx∈K∪{q} f(x)
(2)

where f(x) is the frequency of term x. Their method
forms the baseline for our proposed method.

3 Proposed Method

Our goal is to combine the context vectors to one
context vector which is less sparse and more reli-
able than the original context vector of query word
q. We assume that for each occurrence of a word,
its corresponding context vector was generated by
a probabilistic model. Furthermore, we assume that
synonyms are generated by the same probability dis-
tribution. Finally we use the mean vector of that dis-
tribution to represent the combined context vector.
By using the assumption that each occurrence of a
word corresponds to one sample of the probability
distribution, our model places more weight on syn-
onyms that are highly-frequent than synonyms that
occur infrequently. This is motivated by the assump-
tion that context vectors of synonyms that occur with
high frequency in the corpus, are more reliable than
the ones of low-frequency synonyms.

When comparing context vectors, work
like Laroche and Langlais (2010) observed
that often the cosine similarity performs superior
to other distance-measures, like, for example, the
euclidean distance. This suggests that context
vectors tend to lie in the spherical vector space,
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and therefore the von Mises-Fisher distribution is
a natural choice for our probabilistic model. The
von Mises-Fisher distribution was also successfully
used in the work of (Basu et al., 2004) to cluster
text data.

The von Mises-Fisher distribution with location
parameter µ, and concentration parameter κ is de-
fined as:

p(x|µ, κ) = c(κ) · eκ·x·µT
,

where c(κ) is a normalization constant, and ||x|| =
||µ|| = 1, and κ ≥ 0. || denotes here the L2-norm.
The cosine-similarity measures the angle between
two vectors, and the von Mises distribution defines
a probability distribution over the possible angles.
The parameter µ of the von Mises distribution is es-
timated as follows (Jammalamadaka and Sengupta,
2001): Given the words x1, ..., xn, we denote the
corresponding context vectors as x1, ...,xn, and as-
sume that each context vector is L2-normalized.
Then, the mean vector µ is calculated as:

µ =
1
Z

n∑
i=1

xi

n

where Z ensures that the resulting context vector is
L2-normalized, i.e. Z is ||

∑n
i=1

xi
n ||. For our pur-

pose, κ is irrelevant and is assumed to be any fixed
positive constant.

Since we assume that each occurrence of a word x
in the corpus corresponds to one observation of the
corresponding word’s context vector x, we get the
following formula:

µ =
1
Z ′ ·

n∑
i=1

f(xi)∑n
j=1 f(xj)

· xi

where Z ′ is now ||
∑n

i=1
f(xi)∑n

j=1 f(xj)
· xi||. We then

use the vector µ as the combined vector of the
words’ context vectors xi.

Our proposed procedure to combine the context
vector of query word q and its synonyms can be sum-
marized as follows:

1. Denote the context vectors of q and its syn-
onyms as x1, ...,xn, and L2-normalize each
context vector.

2. Calculate the weighted average of the vectors
x1, ...,xn, whereas the weights correspond to
the frequencies of each word xi.

3. L2-normalize the weighted average.

4 Experiments

As source and target language corpora we use a cor-
pus extracted from a collection of complaints con-
cerning automobiles compiled by the Japanese Min-
istry of Land, Infrastructure, Transport and Tourism
(MLIT)3 and the USA National Highway Traffic
Safety Administration (NHTSA)4, respectively. The
Japanese corpus contains 24090 sentences that were
POS tagged using MeCab (Kudo et al., 2004). The
English corpus contains 47613 sentences, that were
POS tagged using Stepp Tagger (Tsuruoka et al.,
2005), and use the Lemmatizer (Okazaki et al.,
2008) to extract and stem content words (nouns,
verbs, adjectives, adverbs).

For creating the context vectors, we calculate the
association between two content words occurring
in the same sentence, using the log-odds-ratio (Ev-
ert, 2004). It was shown in (Laroche and Langlais,
2010) that the log-odds-ratio in combination with
the cosine-similarity performs superior to several
other methods like PMI5 and LLR6. For comparing
two context vectors we use the cosine similarity.

To transform the Japanese and English context
vectors into the same vector space, we use a bilin-
gual dictionary with around 1.6 million entries.7

To express all context vectors in the same vector
space, we map the context vectors in English to con-
text vectors in Japanese.8 First, for all the words
which are listed in the bilingual dictionary we calcu-
late word translation probabilities. These translation
probabilities are calculated using the EM-algorithm
described in (Koehn and Knight, 2000). We then
create a translation matrix T which contains in each

3http://www.mlit.go.jp/jidosha/carinf/rcl/defects.html
4http://www-odi.nhtsa.dot.gov/downloads/index.cfm
5point-wise mutual information
6log-likelihood ratio
7The bilingual dictionary was developed in the course of our

Japanese language processing efforts described in (Sato et al.,
2003).

8Alternatively, we could, for example, use canonical corre-
lation analysis to match the vectors to a common latent vector
space, like described in (Haghighi et al., 2008).
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column the translation probabilities for a word in
English into any word in Japanese. Each context
vector in English is then mapped into Japanese us-
ing the linear transformation described by the trans-
lation matrix T . For word x with context vector x in
English, let x′ be its context vector after transforma-
tion into Japanese, i.e. x′ = T · x.

The gold-standard was created by considering
all nouns in the Japanese and English WordNet
where synsets are aligned cross-lingually. This way
we were able to create a gold-standard with 215
Japanese nouns, and their respective English trans-
lations that occur in our comparable corpora.9 Note
that the cross-lingual alignment is needed only for
evaluation. For evaluation, we consider only the
translations that occur in the corresponding English
synset as correct.

Because all methods return a ranked list of trans-
lation candidates, the accuracy is measured using the
rank of the translation listed in the gold-standard.
The inverse rank is the sum of the inverse ranks of
each translation in the gold-standard.

In Table 1, the first row shows the results when us-
ing no smoothing. Next, we smooth the query’s con-
text vector by using Equation (1) and (2). The set of
neighbors K is defined as the k-terms in the source
language that are closest to the query word, with re-
spect to the cosine similarity (sim). The weight wx

for a neighbor x is set to wx = 100.13·sim(x,q) in
accordance to (Pekar et al., 2006). For k we tried
values between 1 and 100, and got the best inverse
rank when using k=19. The resulting method (Top-
k Smoothing) performs consistently better than the
method using no smoothing, see Table 1, second
row. Next, instead of smoothing the query word with
its nearest neighbors, we use as the set K the set of
synonyms of the query word (Syn Smoothing). Ta-
ble 1 shows a clear improvement over the method
that uses nearest neighbor-smoothing. This confirms
our claim that using synonyms for smoothing can
lead to better translation accuracy than using nearest
neighbors. In the last row of Table 1, we compare
our proposed method to combine context vectors of
synonyms (Syn Mises-Combination), with the pre-

9The resulting synsets in Japanese and English, contain in
average 2.2 and 2.8 words, respectively. The ambiguity of a
query term in our gold-standard is low, since, in average, a
query term belongs to only 1.2 different synsets.

vious method (Syn Smoothing). A pair-wise com-
parison of our proposed method with Syn Smooth-
ing shows a statistically significant improvement (p
< 0.01).10

Finally, we also show the result when simply
adding each synonym vector to the query’s context
vector to form a new combined context vector (Syn
Sum).11 Even though, this approach does not use the
frequency information of a word, it performs bet-
ter than Syn Smoothing. We suppose that this is
due to the fact that it actually indirectly uses fre-
quency information, since the log-odds-ratio tends
to be higher for words which occur with high fre-
quency in the corpus.

Method Top1 Top5 Top10 MIR
No Smoothing 0.14 0.30 0.36 0.23
Top-k Smoothing 0.16 0.33 0.43 0.26
Syn Smoothing 0.18 0.35 0.46 0.28
Syn Sum 0.23 0.46 0.57 0.35
Syn Mises-Combination 0.31 0.46 0.55 0.40

Table 1: Shows Top-n accuracy and mean inverse rank
(MIR) for baseline methods which use no synonyms
(No Smoothing, Top-k Smoothing), the proposed method
(Syn Mises-Combination) which uses synonyms, and al-
ternative methods that also use synonyms (Syn Smooth-
ing, Syn Sum).

5 Discussion

We first discuss an example where the query terms
areクルーズ (cruise) and巡航 (cruise). Both words
can have the same meaning. The resulting trans-
lation candidates suggested by the baseline meth-
ods and the proposed method is shown in Table 2.
Using no smoothing, the baseline method outputs
the correct translation for クルーズ (cruise) and 巡
航 (cruise) at rank 10 and 15, respectively. When
combining both queries to form one context vector
our proposed method (Syn Mises-Combination) re-
trieves the correct translation at rank 2. Note that we
considered all nouns that occur three or more times
as possible translation candidates. As can be seen
in Table 2, this also includes spelling mistakes like
”sevice” and ”infromation”.

10We use the sign-test (Wilcox, 2009) to test the hypothesis
that the proposed method ranks higher than the baseline.

11No normalization is performed before adding the context
vectors.
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Method Query Output Rank
No Smoothing クルーズ ..., affinity, delco, cruise, sevice, sentrum,... 10
No Smoothing 巡航 ..., denali, attendant, cruise, abs, tactic,... 15
Top-k Smoothing クルーズ pillar, multi, cruise, star, affinity,... 3
Top-k Smoothing 巡航 ..., burnout, dipstick, cruise, infromation, speed, ... 8
Syn Smoothing クルーズ smoothed with巡航 ..., affinity, delco, cruise, sevice, sentrum,... 10
Syn Smoothing 巡航 smoothed withクルーズ ..., alldata, mode, cruise, expectancy, mph,... 8
Syn Sum クルーズ,巡航 assumption, level, cruise, reimbursment, infromation,... 3
Syn Mises-Combination クルーズ,巡航 pillar, cruise, assumption, level, speed,... 2

Table 2: Shows the results for クルーズ and 巡航 which both have the same meaning ”cruise”. The third column
shows part of the ranked translation candidates separated by comma. The last column shows the rank of the correct
translation ”cruise”. Syn Smoothing uses Equation (1) with q corresponding to the context vector of the query word,
and K contains only the context vector of the term that is used for smoothing.

Finally, we note that some terms in our test set
are ambiguous, and the ambiguity is not resolved by
using the synonyms of only one synset. For exam-
ple, the term 操舵 (steering, guidance) belongs to
the synset ”steering, guidance” which includes the
terms舵取り (steering, guidance) andガイド (guid-
ance), 案内 (guidance). Despite this conflation of
senses in one synset, our proposed method can im-
prove the finding of (one) correct translation. The
baseline system using only操舵 (steering, guidance)
outputs the correct translation ”steering” at rank 4,
whereas our method using all four terms outputs it
at rank 2.

6 Conclusions

We proposed a new method for translation acquisi-
tion which uses a set of synonyms to acquire transla-
tions. Our approach combines the query term’s con-
text vector with all the context vectors of its syn-
onyms. In order to combine the vectors we use a
weighted average of each context vector, where the
weights are determined by a term’s occurrence fre-
quency.

Our experiments, using the Japanese and English
WordNet (Bond et al., 2009; Fellbaum, 1998), show
that our proposed method can increase the transla-
tion accuracy, when compared to using only a single
query term, or smoothing with nearest neighbours.
Our results suggest that instead of directly search-
ing for a translation, it is worth first looking for syn-
onyms, for example by considering spelling varia-
tions or monolingual resources.
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Abstract

We consider the task of tagging Arabic nouns
with WordNet supersenses. Three approaches
are evaluated. The first uses an expert-
crafted but limited-coverage lexicon, Arabic
WordNet, and heuristics. The second uses un-
supervised sequence modeling. The third and
most successful approach uses machine trans-
lation to translate the Arabic into English,
which is automatically tagged with English
supersenses, the results of which are then pro-
jected back into Arabic. Analysis shows gains
and remaining obstacles in four Wikipedia
topical domains.

1 Introduction

A taxonomic view of lexical semantics groups word
senses/usages into categories of varying granulari-
ties. WordNet supersense tags denote coarse seman-
tic classes, including person and artifact (for nouns)
and motion andweather (for verbs); these categories
can be taken as the top level of a taxonomy. Nominal
supersense tagging (Ciaramita and Johnson, 2003)
is the task of identifying lexical chunks in the sen-
tence for common as well as proper nouns, and la-
beling each with one of the 25 nominal supersense
categories. Figure 1 illustrates two such labelings of
an Arabic sentence. Like the narrower problem of
named entity recognition, supersense tagging of text
holds attraction as a way of inferring representations
that move toward language independence. Here we
consider the problem of nominal supersense tagging
for Arabic, a language with ca. 300 million speak-
ers and moderate linguistic resources, including a
WordNet (Elkateb et al., 2006), annotated datasets
(Maamouri et al., 2004; Hovy et al., 2006), monolin-
gual corpora, and large amounts of Arabic-English
parallel data.

The supervised learning approach that is used
in state-of-the-art English supersense taggers (Cia-
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‘The window manager controls the configuration and

layout of application windows.’
Figure 1: A sentence from the “X Window System” ar-
ticle with supersense taggings from two annotators and
post hoc English glosses and translation.

ramita and Altun, 2006) is problematic for Ara-
bic, since there are supersense annotations for only
a small amount of Arabic text (65,000 words by
Schneider et al., 2012, versus the 360,000 words that
are annotated for English). Here, we reserve that
corpus for development and evaluation, not training.

We explore several approaches in this paper, the
most effective of which is to (1) translate the Arabic
sentence into English, returning the alignment struc-
ture between the source and target, (2) apply En-
glish supersense tagging to the target sentence, and
(3) heuristically project the tags back to the Arabic
sentence across these alignments. This “MT-in-the-
middle” approach has also been successfully used
for mention detection (Zitouni and Florian, 2008)
and coreference resolution (Rahman and Ng, 2012).

We first discuss the task and relevant resources
(§2), then the approaches we explored (§3), and fi-
nally present experimental results and analysis in §4.

2 Task and Resources

A gold standard corpus of sentences annotated
with nominal supersenses (as in figure 1) fa-
cilitates automatic evaluation of supersense tag-
gers. For development and evaluation we use

661



the AQMAR Arabic Wikipedia Supersense Corpus1

(Schneider et al., 2012), which augmented a named
entity corpus (Mohit et al., 2012) with nominal
supersense tags. The corpus consists of 28 ar-
ticles selected from four topical areas: history
(e.g., “Islamic Golden Age”), science (“Atom”),
sports (“Real Madrid”), and technology (“Linux”).
Schneider et al. (2012) found the distributions of
supersense categories in these four topical domains
to be markedly different; e.g., most instances of
communication (which includes kinds of software)
occurred in the technology domain, whereas most
substances were found in the science domain.

The 18 test articles have 1,393 sentences (39,916
tokens) annotated at least once.2 As the corpus
was released with two annotators’ (partially overlap-
ping) taggings, rather than a single gold standard,
we treat the output of each annotator as a separate
test set. Both annotated some of every article; the
first (Ann-A) annotated 759 sentences, the second
(Ann-B) 811 sentences.
Lexicon. What became known as “supersense
tags” arose from a high-level partitioning of synsets
in the original English WordNet (Fellbaum, 1998)
into lexicographer files. Arabic WordNet (AWN)
(Elkateb et al., 2006) allows us to recover super-
sense categories for some 10,500 Arabic nominal
types, since many of the synsets in AWN are cross-
referenced to English WordNet, and can therefore
be associated with supersense categories. Further,
OntoNotes contains named entity annotations for
Arabic (Hovy et al., 2006).

From these, we construct an Arabic supersense
lexicon, mapping Arabic noun lemmas to supersense
tags. This lexicon contains 23,000 types, of which
11,000 are multiword units. Token coverage of the
test set is 18% (see table 1). Lexical units encoun-
tered in the test data were up to 9-ways supersense-
ambiguous; the average ambiguity of in-vocabulary
tokens was 2.0 supersenses.
Unlabeled Arabic text. For unsupervised learn-
ing we collected 100,000 words of Arabic Wikipedia
text, not constrained by topic. The articles in this
sample were subject to a minimum length threshold

1http://www.ark.cs.cmu.edu/ArabicSST
2Our development/test split of the data follows Mohit et al.

(2012), but we exclude two test set documents—“Light” and
“Ibn Tolun Mosque”—due to preprocessing issues.

and are all cross-linked to corresponding articles in
English, Chinese, and German.

Arabic→English machine translation. We used
two independently developed Arabic-English MT
systems. One (QCRI) is a phrase-based system
(Koehn et al., 2003), similar to Moses (Koehn et
al., 2007); the other (cdec) is a hierarchical phrase-
based system (Chiang, 2007), as implemented in
cdec (Dyer et al., 2010). Both were trained on
about 370M tokens of parallel data provided by the
LDC (by volume, mostly newswire and UN data).
Each system includes preprocessing for Arabic mor-
phological segmentation and orthographic normal-
ization.3 The QCRI system used a 5-gram modi-
fied Kneser-Ney language model that generated full-
cased forms (Chen and Goodman, 1999). cdec
used a 4-gram KN language model over lowercase
forms and was recased in a post-processing step.
Both language models were trained using the Giga-
word v. 4 corpus. Both systems were tuned to opti-
mize BLEU on a held-out development set (Papineni
et al., 2002).

English supersense tagger. For English super-
sense tagging, an open-source reimplementation of
the approach of Ciaramita and Altun (2006) was
released by Michael Heilman.4 This tagger was
trained on the SemCor corpus (Miller et al., 1993)
and achieves 77% F1 in-domain.

3 Methods

We explored 3 approaches to the supersense tagging
of Arabic: heuristic tagging with a lexicon, unsuper-
vised sequence tagging, and MT-in-the-middle.

3.1 Heuristic Tagging with a Lexicon

Using the lexicon built from AWN and OntoNotes
(see §2), our heuristic approach works as follows:

1. Stem and vocalize; we used MADA (Habash
and Rambow, 2005; Roth et al., 2008).

2. Greedily detect word sequences matching lexi-
con entries from left to right.

3. If a lexicon entry has more than one associated
supersense, Arabic WordNet synsets are

3QCRI accomplishes this using MADA (Habash and Ram-
bow, 2005; Roth et al., 2008). cdec includes a custom CRF-
based segmenter and standard normalization rules.

4http://www.ark.cs.cmu.edu/mheilman/questions
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Ê person location artifact substance Automatic English supersense tagging
ê 1 2 3 4 5 6 7 8 9 English sentence
a 1 2 3 4 5 6 Arabic sentence (e.g., token 6 aligns to English tokens 7–9)

N P N A N N Arabic POS tagging
Â person location artifact Projected supersense tagging

Figure 2: A hypothetical aligned sentence pair of 9 English words (with their supersense tags) and 6 Ara-
bic words (with their POS tags). Step 4 of the projection procedure constructs the Arabic-to-English mapping
{1→person1

1, 4→location
4
3, {5, 6}→artifact

7
6}, resulting in the tagging shown in the bottom row.

weighted to favor earlier senses (presumed
by lexicographers to be more frequent) and
then the supersense with the greatest aggregate
weight is selected. Formally: Let senses(w) be
the ordered list of AWN senses of lemma w.
Let senses(w, s) ⊆ senses(w) be those senses
that map to a given supersense s. We choose
arg maxs(|senses(w, s)|/mini:senses(w)i∈senses(w,s) i).

3.2 Unsupervised Sequence Models

Unsupervised sequence labeling is our second ap-
proach (Merialdo, 1994). Although it was largely
developed for part-of-speech tagging, the hope is
to use in-domain Arabic data (the unannotated
Wikipedia corpus discussed in §2) to infer clus-
ters that correlate well with supersense groupings.
We applied the generative, feature-based model of
Berg-Kirkpatrick et al. (2010), replicating a feature-
set used previously for NER (Mohit et al., 2012)—
including context tokens, character n-grams, and
POS—and adding the vocalized stem and several
stem shape features: 1) ContainsDigit?; 2) dig-
its replaced by #; 3) digit sequences replaced by
# (for stems mixing digits with other characters);
4) YearLike?—true for 4-digit numerals starting with
19 or 20; 5) LatinWord?, per the morphological an-
alysis; 6) the shape feature of Ciaramita and Al-
tun (2006) (Latin words only). We used 50 itera-
tions of learning (tuned on dev data). For evaluation,
a many-to-one mapping from unsupervised clusters
to supersense tags is greedily induced to maximize
their correspondence on evaluation data.

3.3 MT-in-the-Middle

A standard approach to using supervised linguistic
resources in a second language is cross-lingual pro-
jection (Yarowsky and Ngai, 2001; Yarowsky et al.,
2001; Smith and Smith, 2004; Hwa et al., 2005; Mi-
halcea et al., 2007; Burkett and Klein, 2008; Burkett
et al., 2010; Das and Petrov, 2011; Kim et al., 2012,

who use parallel sentences extracted from Wikipedia
for NER). The simplest such approach starts with an
aligned parallel corpus, applies supersense tagging
to the English side, and projects the labels through
the word alignments. A supervised monolingual tag-
ger is then trained on the projected labels. Prelimi-
nary experiments, however, showed that this under-
performed even the simple heuristic baseline above
(likely due to domain mismatch), so it was aban-
doned in favor of a technique that we call MT-in-
the-middle projection.

This approach does not depend on having par-
allel data in the training domain, but rather on an
Arabic→English machine translation system that
can be applied to the sentences we wish to tag. The
approach is inspired by token-level pseudo-parallel
data methods of previous work (Zitouni and Flo-
rian, 2008; Rahman and Ng, 2012). MT output for
this language pair is far from perfect—especially for
Wikipedia text, which is distant from the domain
of the translation system’s training data—but, in the
spirit of Church and Hovy (1993), we conjecture that
it may still be useful. The method is as follows:

1. Preprocess the input Arabic sentence a to
match the decoder’s model of Arabic.

2. Translate the sentence, recovering not just
the English output ê but also the deriva-
tion/alignment structure z relating words and/or
phrases of the English output to words and/or
phrases of the Arabic input.

3. Apply the English supersense tagger to the En-
glish translation, discarding any verbal super-
sense tags. Call the tagger output Ê.

4. Project the supersense tags back to the Ara-
bic sentence, yielding Â: Each Arabic token
a ∈ a that is (a) a noun, or (b) an adjec-
tive following 0 or more adjectives following a
noun is mapped to the first English supersense
mention in Ê containing some word aligned
to a. Then, for each English supersense men-

663



Coverage Ann-A Ann-B
Nouns All Tokens Mentions P R F1 P R F1

Lexicon heuristics (§3.1) 8,058 33% 8,465 18% 8,407 32 55 16 29 21.6 37.9 29 53 15 27 19.4 35.6
Unsupervised (§3.2) 20 59 16 48 17.5 52.6 14 56 10 39 11.6 45.9

MT-in-the-middle
(§3.3)

QCRI 14,401 59% 16,461 35% 12,861 34 65 27 50 29.9 56.4 36 64 28 51 31.6 56.6
cdec 14,270 58% 15,542 33% 13,704 37 69 31 57 33.8 62.4 38 67 32 56 34.6 61.0

MTitM + Lex. cdec 16,798 68% 18,461 40% 16,623 35 64 36 65 35.5 64.6 36 63 36 63 36.0 63.2

Table 1: Supersense tagging results on the test set: coverage measures5 and gold-standard evaluation—exact la-
beled/unlabeled6 mention precision, recall, and F-score against each annotator. The last row is a hybrid: MT-in-the-
middle followed by lexicon heuristics to improve recall. Best single-technique and best hybrid results are bolded.

tion, all its mapped Arabic words are grouped
into a single mention and the supersense cat-
egory for that mention is projected. Figure 2
illustrates this procedure. The cdec system
provides word alignments for its translations
derived from the training data; whereas QCRI
only produces phrase-level alignments, so for
every aligned phrase pair 〈ā, ē〉 ∈ z, we con-
sider every word in ā as aligned to every word
in ē (introducing noise when English super-
sense mention boundaries do not line up with
phrase boundaries).

4 Experiments and Analysis

Table 1 compares the techniques (§3) for full Arabic
supersense tagging.7 The number of nouns, tokens,
and mentions covered by the automatic tagging is
reported, as is the mention-level evaluation against
human annotations. The evaluation is reported sep-
arately for the two annotators in the dataset.

With heuristic lexicon lookup, 18% of the tokens
are marked as part of a nominal supersense mention.
Both labeled and unlabeled mention recall with this
method are below 30%; labeled precision is about
30%, and unlabeled mention precision is above
50%. From this we conclude that the biggest prob-
lems are (a) out-of-vocabulary items and (b) poor
semantic disambiguation of in-vocabulary items.

The unsupervised sequence tagger does even
worse on the labeled evaluation. It has some success
at detecting supersense mentions—unlabeled recall
is substantially improved, and unlabeled precision is

5The unsupervised evaluation greedily maps clusters to tags,
separately for each version of the test set; coverage numbers
thus differ and are not shown here.

6Unlabeled tagging refers to noun chunk detection only.
7It was produced in part using the chunkeval.py script: see

https://github.com/nschneid/pyutil

slightly improved. But it seems to be much worse
at assigning semantic categories; the number of la-
beled true positive mentions is actually lower than
with the lexicon-based approach.

MT-in-the-middle is by far the most success-
ful single approach: both systems outperform the
lexicon-only baseline by about 10 F1 points, de-
spite many errors in the automatic translation, En-
glish tagging, and projection, as well as underlying
linguistic differences between English and Arabic.
The baseline’s unlabeled recall is doubled, indicat-
ing substantially more nominal expressions are de-
tected, in addition to the improved labeled scores.

We further tested simple hybrids combining the
lexicon-based and MT-based approaches. Applying
MT-in-the-middle first, then expanding token cover-
age with the lexicon improves recall at a small cost
to precision (table 1, last row). Combining the tech-
niques in the reverse order is slightly worse than MT-
based projection without consulting the lexicon.

MT-in-the middle improves upon the lexicon-only
baseline, yet performance is still dwarfed by the su-
pervised English tagger (at least in the SemCor eval-
uation; see §2), and also well below the 70% inter-
annotator F1 reported by Schneider et al. (2012). We
therefore examine the weaknesses of our approach
for Arabic.

4.1 MT for Projection
In analyzing our projection framework, we per-
formed a small-scale MT evaluation with the
Wikipedia data. Reference English translations for
140 Arabic Wikipedia sentences—5 per article in
the corpus—were elicited from a bilingual linguist.
Table 2 compares the two systems under three stan-
dard metrics of overall sentence translation quality.8

8BLEU (Papineni et al., 2002); METEOR (Banerjee and
Lavie, 2005; Lavie and Denkowski, 2009), with default options;
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QCRI: Portugal qualified for the finals very easily , Portugal defeated throughout the ............mission ..................liquidations . (3/5)
cdec: Portugal qualified easily for the finals , Portugal unbeaten throughout the ...........journey . (3/4)

Figure 3: Example Arabic inputs and the outputs of the two MT systems, with lexical projection precision ratios.

While the resulting number of sentences with refer-
ences is far from ideal and there is only one refer-
ence translation for each, all three measures favor
QCRI.

For a targeted measure of lexical translation qual-
ity of noun expressions, we elicited acceptability
judgments from a bilingual annotator for translated
and supersense-projected phrases. Given each MT
system output (for the same 140 sentences) in which
mentions predicted by the English supervised tagger
were highlighted, along with the Arabic source sen-
tence, the judge was asked for each English mention
whether it was a valid translation.9 We call this lexi-
cal projection precision. Figure 3 shows examples,
and the last column of table 2 gives overall statistics.
Upwards of 90% of the lexical translations were ac-
cepted; as with the automatic MT measures, QCRI
slightly outperforms cdec (especially in the technol-
ogy and sports domains10). Of the problematic lex-
ical translations, some are almost certainly domain
effects: e.g., corn or maize instead of atom. Others
are more nuanced, e.g., shipments for charges and
electronics for electrons. Transliteration errors in-
cluded IMAX in place of EMACS and genoa lynx for
GNU Linux. However, lexical projection precision
seems to be a relatively small part of the problem,
especially considering that not all translation errors
lead to supersense tagging errors.

Lexical projection recall was not measured, but
noun token coverage (see table 1) is instructive.
Most noun tokens ought to be tagged; 77% is the
noun coverage rate in the gold standard. In table 1,

and translation edit rate (TER) (Snover et al., 2006)
9The judge did not see alignments or supersense categories.

10For technology articles, the differences in F1 scores be-
tween the two systems were 6.1 and 4.2 for Ann-A and Ann-B,
respectively. For sports the respective differences were 4.3 and
4.4. In the other domains the differences never exceeded 3.3. In-
terestingly, this is the only generalization about topical domain
performance we were able to find that holds across annotators
and systems, in contrast with the stark topical effects observed
by Mohit et al. (2012) for NER.

BLEU METEOR TER Lex. Prec.
QCRI 32.86 32.10 0.46 91.9%
cdec 28.84 31.38 0.49 90.0%

Table 2: MT quality measures comparing the two sys-
tems over 140 sentences. The first three are automatic
measures with 1 reference translation. For the fourth, a
bilingual judged the translation acceptability of phrases
that were identified as supersense mentions by the En-
glish tagger (lexical projection precision).
noun coverage gains track overall improvements.

If QCRI produces better translations, why is cdec
more useful for supersense tagging? As noted in
§3.3, cdec gives word-level alignments (even when
the decoder uses large phrasal units for translation),
allowing for more precise projections.11 We suspect
this is especially important in light of findings that
larger phrase sizes are indicative of better transla-
tions (Gamon et al., 2005), so these are exactly the
cases where we expect the translations to be valu-
able.

5 Conclusion

To our knowledge, this is the first study of automatic
Arabic supersense tagging. We have shown empiri-
cally that an MT-in-the-middle technique is most ef-
fective of several approaches that do not require la-
beled training data. Analysis sheds light on several
challenges that would need to be overcome for better
Arabic lexical semantic tagging.
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Abstract

Inspired by robust generalization and adver-
sarial learning we describe a novel approach
to learning structured perceptrons for part-of-
speech (POS) tagging that is less sensitive to
domain shifts. The objective of our method is
to minimize average loss under random distri-
bution shifts. We restrict the possible target
distributions to mixtures of the source distri-
bution and random Zipfian distributions. Our
algorithm is used for POS tagging and eval-
uated on the English Web Treebank and the
Danish Dependency Treebank with an average
4.4% error reduction in tagging accuracy.

1 Introduction

Supervised learning approaches have advanced the
state of the art on a variety of tasks in natural lan-
guage processing, often resulting in systems ap-
proaching the level of inter-annotator agreement on
in-domain data, e.g. in POS tagging, where Shen
et al. (2007) report a tagging accuracy of 97.3%.
However, performance of state-of-the-art supervised
systems is known to drop considerably on out-of-
domain data. State-of-the-art POS taggers trained
on the Penn Treebank (Marcus et al., 1993) mapped
to Google’s universal tag set (Petrov et al., 2011)
achieve tagging accuracies in the range of 89–91%
on Web 2.0 data (Petrov and McDonald, 2012) .

To bridge this gap we may consider using semi-
supervised or transfer learning methods to adjust to
new target domains (Blitzer et al., 2006; Daume III,
2007), pooling unlabeled data from those domains.
However, in many applications this is not possible.

If we want to provide an online service or design a
piece of software with many potential users covering
a wide range of use cases, we do not know the target
domain in advance. This is the usual problem of ro-
bust learning, but in this paper we describe a novel
learning algorithm that goes beyond robust learning
by making various assumptions about the difference
between the source domain and the (unknown) target
domain. Under these assumptions we can minimize
average loss under (all possible or a representative
sample of) domain shifts. We evaluate our approach
on two recently introduced cross-domain POS tag-
ging datasets.

Our approach is inspired by work in robust gen-
eralization (Ben-Tal and Nemirovski, 1998; Trafalis
and Gilbert, 2007) and adversarial learning (Glober-
son and Roweis, 2006; Dekel and Shamir, 2008;
Søgaard and Johannsen, 2012). Our approach also
bears similarities to feature bagging (Sutton et al.,
2006). Sutton et al. (2006) noted that in learning of
linear models useful features are often swamped by
correlating, but more indicative features. If the more
indicative features are absent in the target domain
due to out-of-vocabulary (OOV) effects, we are left
with the swamped features which were not updated
properly. This is, indirectly, the problem solved in
adversarial learning with corrupted data points. Ad-
versarial learning can also be seen as a way of av-
eraging exponentially many models (Hinton et al.,
2012).

Adversarial learning techniques have been devel-
oped for security-related learning tasks, e.g. where
systems need to be robust to failing sensors. We also
show how we can do better than straight-forward ap-
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plication of adversarial learning techniques by mak-
ing a second assumption about our data, namely that
domains are mixtures of Zipfian distributions over
our features. Similar assumptions have been made
before in computational linguistics, e.g. by Goldberg
and Elhadad (2008).

2 Approach overview

In this paper we consider the structured perceptron
(Collins, 2002) – with POS tagging as our practical
application. The structured perceptron is prone to
feature swamping (Sutton et al., 2006), and we want
to prevent that using a technique inspired by adver-
sarial learning (Globerson and Roweis, 2006; Dekel
and Shamir, 2008). The modification presented here
to the structured perceptron only affects a single line
of code in a publicly available implementation (see
below), but the consequences are significant.

Online adversarial learning (Søgaard and Jo-
hannsen, 2012), briefly, works by sampling random
corruptions of our data, or random feature deletions,
in the learning phase. A discriminative learner see-
ing corrupted data points with missing features will
not update part of the model and will thus try to
find a decision boundary classifying the training data
correctly relying on the remaining features. This de-
cision boundary may be very different from the deci-
sion boundary found otherwise by the discriminative
learner. If we sample enough corruptions, the model
learned from the corrupted data will converge on the
model minimizing average loss over all corruptions
(Dekel and Shamir, 2008).

Example Consider the plot in Figure 1. The solid
line with no stars (2d-fit) is the SVM fit in two
dimensions, while the dashed line is what that fit
amounts to if the feature x is missing in the tar-
get. The solid line with stars (1d-fit) is our fit if we
could predict the missing feature, training an SVM
only with the y feature. The 1d-fit decision bound-
ary only misclassifies a single data point compared
to the original fit which misclassifies more than 15
negatives with the x feature missing.

The plot thus shows that the best fit in m dimen-
sions is often not the best in < m dimensions. Con-
sequently, if we think there is a risk that features will
be missing in the target, finding the best fit in m di-
mensions is not necessarily the best we can do. Of
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Figure 1: The best fit in m dimensions is often not the
best in < m dimensions.

course we do not know what features will be miss-
ing in advance. The intuition in adversarial learning
is that we may obtain more robust decision bound-
aries by minimizing loss over a set of possible fea-
ture deletions. We extend this idea below, modeling
not only OOV effects, but a broader class of distri-
butional shifts.

3 Structured perceptron

The structured perceptron (Collins, 2002) models
sequences as Markov chains of unobserved variables
(POS), each emitting an observed variable (a word
form). The structured perceptron is similar to the av-
eraged perceptron (Freund and Schapire, 1999), ex-
cept data points are sequences of vectors rather than
just vectors. Consequently, the structured percep-
tron does not predict a class label but a sequence of
labels (using Viterbi decoding). In learning we up-
date the features at the positions where the predicted
labels are different from the true labels. We do this
by adding weight to features present in the correct
solution and subtracting weight from features only
present in the predicted solution. The generic aver-
aged perceptron learning algorithm is presented in
Figure 2. A publicly available and easy-to-modify
Python reimplementation of the structured percep-
tron can be found in the LXMLS toolkit.1 We use
the LXMLS toolkit as our baseline with the default
feature model, but use the PTB tagset rather than the
Google tagset (Petrov et al., 2011) used by default
in the LXMLS toolkit.

1https://github.com/gracaninja/lxmls-toolkit
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1: X = {〈yi,xi〉}Ni=1

2: w0 = 0,v = 0, i = 0
3: for k ∈ K do
4: for n ∈ N do
5: if sign(w · x) 6= yn then
6: wi+1 ← update(wi)
7: i← i+ 1
8: end if
9: v← v + wi

10: end for
11: end for
12: return w = v/(N ×K)

Figure 2: Generic averaged perceptron

4 Minimizing loss under OOV effects

We will think of domain shifts as data point corrup-
tions. Søgaard and Johannsen (2012) model domain
shifts using binary vectors of length m where m is
the size of of our feature representation. Each vector
then represents an expected OOV effect by encoding
what features are (predicted to be) missing in the tar-
get data, i.e. the ith feature will be missing if the ith
element of the binary vector is 0. However, since
we are minimizing average loss under OOV effects
it makes sense to restrict the class of vectors to en-
code OOV effects that we are likely to observe. This
could, for example, involve fixing an expected rate
of missing features or bounding it by some interval,
or it could involve distinguishing between features
that are likely to be missing in the target and fea-
tures that are not. Here is what we do in this paper:

Rather than thinking of domain shifts as some-
thing that deletes features, we propose to see do-
main shifts as something making certain features
less likely to occur in our data. We will in other
words simulate soft OOV effects, rather than hard
OOV effects. One way to think of this is as an im-
portance weighting of our features. This section pro-
vides some intuition for using inverse Zipfian distri-
butions as weight functions.

Say we are interested in making a model θD1

learned from a known distribution D1 robust against
the distributional differences betweenD1 and an un-
known distribution D2. These two distributions are
somehow related to a distributionD0 (the underlying
language distribution from which the domain distri-
butions are sampled).

It is common to assume that linguistic distribu-

1: X = {〈yi,xi〉}Ni=1

2: w0 = 0,v = 0, i = 0
3: for k ∈ K do
4: for n ∈ N do
5: ξ ← random.zipf(3,M)
6: if sign(w · x ◦ ξ) 6= yn then
7: wi+1 ← update(wi)
8: i← i+ 1
9: end if

10: v← v + wi

11: end for
12: end for
13: return w = v/(N ×K)

Figure 3: Z3SP

tions follow power laws (Zipf, 1935; Goldberg and
Elhadad, 2008). We will assume thatD1 = D0×Z1

whereZ1 is some Zipfian distribution. SayD0 ∼ Z0

is the master Zipfian distribution of language L0. If
we assume that (otherwise independent) domainsL1

and L2 follow products of Zipfians Z0 × Z1 and
Z0 ×Z2, we derive the following:

Say w = θZ0×Z1 is the model learned from the
source data. The ideal model is w′ = θZ0×Z2 , but
both Zipfians Z1 and Z2 are unknown. Since Z2

is unknown (and in many applications, we want to
model several Zi), the overall best model we can
hope for is w′ = θZ0 . Z0 is also unknown, but we
can observe a finite sample Z0 ×Z1. Since the den-
sity of Z1 is directly related to the weights in w, a
crude estimate of θZ0 would be w′ ∼ w 1

Z1
. Since

we cannot observe Z1, we instead try to minimize
average loss under all hypotheses about Z1.

In practice, we implement the idea of reweight-
ing by random inverse Zipfian distributitons (instead
of binary vectors) in the following way: Passing
through the data in averaged perceptron learning
(Figure 2), we consider one data point at a time. In
order to minize loss in all possible domains, we need
to consider all possible inverse Zipfian reweightings.
This would be possible if we provided a convex
formulation of the minimization problem along the
lines of Dekel and Shamir (2008), but instead we
randomly sample from a Zipfian and factor its in-
verse into our dataset. The parameter of the Zipfians
is set (to 3) on development data (the EWT-email de-
velopment data). The modified learning algorithm,
Z3SP, is presented in Figure 3.
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5 POS tagging

POS tagging is the problem of assigning syntactic
categories or POS to tokenized word forms in run-
ning text. Most approaches to POS tagging use su-
pervised learning to learn sequence labeling models
from annotated ressources. The major ressource for
English is the Wall Street Journal (WSJ) sections of
the English Treebank (Marcus et al., 1993). POS
taggers are usually trained on Sect. 0–18 and eval-
uated on Sect. 22–24. In this paper we are not in-
terested in in-domain performance on WSJ data, but
rather in developing a robust POS tagger that is less
sensitive to domain shifts than current state-of-the-
art POS taggers and use the splits from a recent pars-
ing shared task rather than the standard POS tagging
ones.

6 Experiments

We train our tagger on Sections 2–21 of the WSJ
sections of the English Treebank, in the Ontotes
4.0 release. This was also the training data used
in the experiments in the Parsing the Web (PTW)
shared task at NAACL 2012.2 In the shared task
they used the coarse-grained Google tagset (Petrov
et al., 2011). We believe this tagset is too coarse-
grained for most purposes (Manning, 2011) and do
experiments with the original PTB tagset instead.

Our evaluation data comes from the English Web
Treebank (EWT),3 which was also used in the PTW
shared task. The EWT contains development and
evaluation data for five domains: answers (from Ya-
hoo!), emails (from the Enron corpus), BBC news-
groups, Amazon reviews, and weblogs. In order not
to optimize on in-domain data, we tune on the Email
development data and evaluate on the remaining do-
mains (the test sections).

The Web 2.0 data used for evaluation contains a
lot of non-canonical language use. An example is
the sentence you r retarded. from the Email section.
The POS tagger finds no support for r as a verb in the
training data, but needs to infer this from the context.

We also include experiments on the Danish De-
pendency Treebank (DDT) (Buch-Kromann, 2003),
which comes with meta-data enabling us to single
out four domains: newspaper, law, literature and

2https://sites.google.com/site/sancl2012/home/shared-task
3LDC Catalog No.: LDC2012T13.

SP BSP Z3SP
EWT-answers 85.22 85.45 85.59
EWT-newsgroups 86.82 86.94 87.42
EWT-reviews 84.92 85.14 85.67
EWT-weblogs 87.00 87.06 87.39
DDT-law 92.38 92.80 93.35
DDT-lit 93.61 93.80 93.85
DDT-mag 94.71 94.44 94.68

Table 1: Results. BSP samples binary vectors with prob-
abilities {0 : 0.1, 1 : 0.9}

magazines. We train our tagger on the newspaper
data and evaluate on the remaining three sections.

6.1 Results
The results are presented in Table 1. We first note
that improvements over the structured perceptron
are statistically significant with p < 0.01 across all
domains, except DDT-mag. We also note that us-
ing inverse Zipfian reweightings is better than using
binary vectors in almost all cases. We believe that
these are strong results given that we are assuming
no knowledge of the target domain, and our mod-
ification of the learning algorithm does not affect
computational efficiency at training or test time. The
average error reduction of Z3SP over the structured
perceptron (SP) is 8%. Since using inverse Zipfian
reweightings seems more motivated for node poten-
tials than for edge potentials, we also tried using
BSP for edge potentials and Z3SP for node poten-
tials. This mixed model acchieved 93.70, 93.91 and
94.35 on the DDT data, which on average is slightly
better than Z3SP.

7 Conclusions

Inspired by robust generalization and adversarial
learning we introduced a novel approach to learning
structured perceptrons for sequential labeling, which
is less sensitive to OOV effects. We evaluated our
approach on POS tagging data from the EWT and
the DDT with an average 4.4% error reduction over
the structured perceptron.
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Abstract

We adapt the popular LDA topic model (Blei
et al., 2003) to the representation of stylistic
lexical information, evaluating our model on
the basis of human-interpretability at the word
and text level. We show, in particular, that this
model can be applied to the task of inducing
stylistic lexicons, and that a multi-dimensional
approach is warranted given the correlations
among stylistic dimensions.

1 Introduction

In language, stylistic variation is a reflection of var-
ious contextual factors, including the backgrounds
of and relationship between the parties involved.
Although in the context of prescriptive linguistics
(Strunk and White, 1979), style is often assumed to
be a matter of aesthetics, the stylistic intuitions of
language users are inextricably linked to the conven-
tions of register and genre (Biber and Conrad, 2009).
Intentional or not, stylistic differences play a role
in numerous NLP tasks. Examples include genre
classification (Kessler et al., 1997), author profil-
ing (Garera and Yarowsky, 2009; Rosenthal and Mc-
Keown, 2011), social relationship classification (Pe-
terson et al., 2011), sentiment analysis (Wilson et al.,
2005), readability classification (Collins-Thompson
and Callan, 2005), and text generation (Hovy, 1990;
Inkpen and Hirst, 2006). Following the classic work
of Biber (1988), computational modeling of style
has often focused on textual statistics and the fre-
quency of function words and syntactic categories.
When content words are considered, they are of-
ten limited to manually-constructed lists (Argamon

et al., 2007), or used as individual features for su-
pervised classification, which can be confounded by
topic (Petrenz and Webber, 2011) or fail in the face
of lexical variety. Our interest is models that offer
broad lexical coverage of human-identifiable stylis-
tic variation.

Research most similar to ours has focused on clas-
sifying the lexicon in terms of individual aspects rel-
evant to style (e.g. formality, specificity, readability)
(Brooke et al., 2010; Pan and Yang, 2010; Kidwell
et al., 2009) and a large body of research on the in-
duction of polarity lexicons, in particular from large
corpora (Turney, 2002; Kaji and Kitsuregawa, 2007;
Velikovich et al., 2010). Our work is the first to rep-
resent multiple dimensions of style in a single statis-
tical model, adapting latent Dirichlet allocation (Blei
et al., 2003), a Bayesian ‘topic’ model, to our stylis-
tic purposes; as such, our approach also follows on
recent interest in the interpretability of topic-model
topics (Chang et al., 2009; Newman et al., 2011).
We show that our model can be used for acquisition
of stylistic lexicons, and we also evaluate the model
relative to theories of register variation and the ex-
pected stylistic character of particular genres.

2 Model

2.1 Linguistic foundations

In English manuals of style and other prescriptivist
texts (Fowler and Fowler, 1906; Gunning, 1952;
Follett, 1966; Strunk and White, 1979; Kane, 1983;
Hayakawa, 1994), writers are urged to pay atten-
tion to various aspects of lexical style, including el-
ements such as clarity, familiarity, readability, for-
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mality, fanciness, colloquialness, specificity, con-
creteness, objectivity, and naturalness; these stylis-
tic categories reflect common aesthetic judgments
about language. In descriptive studies of register,
some researchers have posited a few fixed styles
(Joos, 1961) or a small, discrete set of situational
constraints which determine style and register (Crys-
tal and Davy, 1969; Halliday and Hasan, 1976); by
contrast, the applied approach of Biber (1988) and
theoretical framework of Leckie-Tarry (1995) offer a
more continuous interpretation of register variation.

In Biber’s approach, functional dimensions such
as Involved vs. Informational, Argumentative vs.
Non-argumentative, and Abstract vs. non-Abstract
are derived in an unsupervised manner from a
mixed-genre corpus, with the labels assigned de-
pending on where features (a small set of known in-
dicators of register) and genres fall on each spec-
trum. The theory of Leckie-Tarry posits a single
main cline of register with one pole (the oral pole)
reflecting a full reliance on the context of the lin-
guistic situation, and the other (the literate pole) re-
flecting a reliance on cultural knowledge. The more
specific elements of register are represented as sub-
clines which are strongly influenced by this main
cline, creating probabilistic relationships between
related dimensions (Birch, 1995).

For the present study, we have chosen 3 dimen-
sions (6 styles) which are clearly represented in the
lexicon, which are discussed often in the relevant lit-
erature, and which fit well into the Leckie-Tarry con-
ception of related subclines: colloquial vs. literary,
concrete vs. abstract, and subjective vs. objective. In
addition to a negative correlation between opposing
styles, we also expect a positive correlation between
stylistic aspects that tend toward the same main pole,
situational (i.e. colloquial, concrete, subjective) or
cultural (i.e. literary, abstract, objective). These cor-
relations can potentially interfere with accurate lex-
ical acquisition.

2.2 Implementation

Our main model is an adaption of the popular latent
Dirichlet allocation topic model (Blei et al., 2003),
with each of the 6 styles corresponding to a topic.
Briefly, latent Dirichlet allocation (LDA) is a gener-
ative Bayesian model: for each document d, a dis-
tribution of topics θd is drawn from a Dirichlet prior

(with parameter α). For each topic z, there is a prob-
ability distribution βz

1 corresponding to the proba-
bility of that topic generating any given word in the
vocabulary. Words in document d are generated by
first selecting a topic z randomly according to θd ,
and then randomly selecting a word w according to
βz. An extension of LDA, the correlated topic model
(CTM) (Blei and Lafferty, 2007), supposes a more
complex representation of topics: given a matrix Σ

representing the covariance between topics and µ

representing the means, for each document a topic
distribution η (analogous to θ ) is drawn from the
logistic normal distribution. Given a corpus, good
estimates for the relevant parameters can be derived
using Bayesian inference.

For both LDA and CTM we use the original
variational Bayes implementation of Blei. Varia-
tional Bayes (VB) works by approximating the true
posterior with a simpler distribution, minimizing
the Kullback-Leibler divergence between the two
through iterative updates of specially-introduced
free variables. The mathematical and algorithmic
details are omitted here; see Blei et al. (2003; 2007).
Our early investigations used an online, batch ver-
sion of LDA (Hoffman et al., 2010), which is more
appropriate for large corpora because it requires
only a single iteration over the dataset. We discov-
ered, however, that batch models were markedly in-
ferior to more traditional models for our purposes
because the influence of the initial model diminishes
too quickly; here, we need particular topics in the
model to correspond to particular styles, and we ac-
complish this by seeding the model with known in-
stances of each style (see Section 3). Specifically,
our initial β consists of distributions where the entire
probability mass is divided amongst the seeds for
each corresponding topic, and a full iteration over
the corpus occurs before β is updated. Typically,
LDA iterates over the corpus until a convergence re-
quirement is met, but in this case this is neither prac-
tical (due to the size of our corpus) nor necessarily
desirable; the diminishing effects of the initial seed-
ing means that the model may not stabilize, in terms
of its likelihood, until after it has shifted away from
our desired stylistic dimensions towards some other

1Some versions of LDA smooth this distribution using a
Dirichlet prior; here, though, we use the original formulation
from Blei (2003), which does not.
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variation in the data. Therefore, we treat the optimal
number of iterations as a variable to investigate.

The model is trained on a 1 million text por-
tion of the 2009 version of the ICWSM Spinn3r
dataset (Burton et al., 2009), a corpus of blogs we
have previously used for formality lexicon induction
(Brooke et al., 2010). Since our method relies on co-
occurrence, we followed our earlier work in using
only texts with at least 100 different word types. All
words were tokenized and converted to lower-case,
with no further lemmatization. Following Hoffman
et al. (2010), we initialized the α of our models to
1/k where k is the number of topics. Otherwise we
used the default settings; when they overlap they
were identical for the LDA and CTM models.

3 Lexicon Induction

Our primary evaluation is based on the stylistic in-
duction of held-out seed words. The words were
collected from various sources by the first author
and further reviewed by the second; we are both
native speakers of English with significant experi-
ence in English linguistics. Included words had to
be clear, extreme members of their stylistic cate-
gory, with little or no ambiguity with respect to their
style. The colloquial seeds consist of English slang
terms and acronyms, e.g. cuz, gig, asshole, lol. The
literary seeds were primarily drawn from web sites
which explain difficult language in texts such as the
Bible and Lord of the Rings; examples include be-
hold, resplendent, amiss, and thine. The concrete
seeds all denote objects and actions strongly rooted
in the physical world, e.g. shove and lamppost, while
the abstract seeds all involve concepts which require
significant human psychological or cultural knowl-
edge to grasp, for instance patriotism and noncha-
lant. For our subjective seeds, we used an edited
list of strongly positive and negative terms from a
manually-constructed sentiment lexicon (Taboada et
al., 2011), e.g. gorgeous and depraved, and for our
objective set we selected words from sets of near-
synonyms where one was clearly an emotionally-
distant alternative, e.g. residence (for home), jocu-
lar (for funny) and communicable (for contagious).
We filtered initial lists to 150 of each type, remov-
ing words which did not appear in the corpus or
which occurred in multiple lists. For evaluation we

used stratified 3-fold crossvalidation, averaged over
5 different (3-way) splits of the seeds, with the same
splits used for all evaluated conditions.

Given two sets of opposing seeds, we follow our
earlier work in evaluating our performance in terms
of the number of pairings of seeds from each set
which have the expected stylistic relationship rel-
ative to each other (the guessing baseline is 0.5).
Given a word w and two opposing styles (topics) p
and n, we place w on the PN dimension according to
the β of our trained model as follows:

PNw =
βpw−βnw

βpw +βnw

The normalization is important because otherwise
more-common words would tend to have higher
PN’s, when in fact the opposite is true (rare words
tend to be more stylistically prominent). We then
calculate pairwise accuracy as the percentage of
pairs 〈wp,wn〉 (wp ∈ Pseeds and wn ∈ Nseeds) where
PNwp > PNwn . However, this metric does not address
the case where the degree of a word in one stylistic
dimension is overestimated because of its status on
a parallel dimension. Two more-holistic alternatives
are total accuracy, the percentage of seeds for which
the highest βtw is the topic t for which w is a seed
(guessing baseline is 0.17), and the average rank of
the correct t as ordered by βtw (in the range 1–6,
guessing baseline is 3.5); the latter is more forgiving
of near misses.

We tested a few options which involved straight-
forward modifications to model training. Standard
LDA produces all tokens in the document, but when
dealing with style rather than topic, the number of
times a word appears is much less relevant (Brooke
et al., 2010). Our binary model assumes an LDA
that generates types, not tokens.2 A key comparison

2At the theoretical level, this move is admittedly problem-
atic, since our LDA model is thus being trained under the as-
sumption that texts with multiple instances of the same type can
be generated, when of course such texts cannot by definition ex-
ist. We might address this by moving to Bayesian models with
very different generative assumptions, e.g. the spherical topic
model (Reisinger et al., 2010), but these methods involve a sig-
nificant increase of computational complexity and we believe
that on a practical level there are no real negatives associated
with directly using a binary representation as input to LDA; in
fact, we are avoiding what appears to be a much more serious
problem, burstiness (Doyle and Elkan, 2009), i.e. the fact that

675



Model Pairwise Accuracy (%) Total Acc. (%) Avg. RankLit/Col Abs/Con Obj/Sub All
guessing baseline 50.0 50.0 50.0 50.0 16.6. 3.50
basic LDA (iter 2) 94.3 98.8 93.0 95.4 55.0 1.79
binary LDA (iter 2) 96.2 98.9 93.5 96.2 57.7 1.74
combo binary LDA (iter 1) 95.4 99.2 93.3 96.0 53.1 1.86
binary CTM (iter 1) 96.3 99.0 89.6 95.0 53.0 1.87

Table 1: Model performance in lexical induction of seeds. Bold indicates best in column.

here is with a combined LDA model (combo), an
amalgamation of three independently trained 2-topic
models, one for each dimension; this tests our key
hypothesis that training dimensions of style together
is beneficial. Finally, we test against the correlated
topic model (CTM), which offers an explicit repre-
sentation of style correlation, but which has done
poorly with respect to interpretability, despite offer-
ing better perplexity (Chang et al., 2009).

The results of the lexicon induction evaluation
are in Table 1. Since the number of optimal iter-
ations varies, we report the result from the best of
the first five iterations, as measured by total accu-
racy; the best iteration is shown in parenthesis. In
general, all the results are high enough—we are re-
liably above 90% for the pairwise task, and above
50% for the 6-way task—for us to conclude with
some confidence that our model is capturing a sig-
nificant amount of stylistic variation. As predicted,
using words as boolean features had a net positive
gain, consistent across all of our metrics, though this
effect was not as marked as we have seen previously.
The model with independent training of each dimen-
sion (combo) did noticeably worse, supporting our
conclusion that a multidimensional approach is war-
ranted here. Particularly striking is the much larger
drop in overall accuracy as compared to pairwise ac-
curacy, which suggests that the combo model is cap-
turing the general trends but not distinguishing cor-
related styles as well. However, the most complex
model, the CTM, actually does slightly worse than
the combo, which was contrary to our expectations
but nonetheless consistent with previous work on the
interpretability of topic models. The performance of
the full LDA models benefited from a second itera-

traditional LDA is influenced too much by multiple instances of
the same word.

tion, but this was not true of combo LDA or CTM,
and the performance of all models dropped after the
second iteration.

An analysis of individual errors reveals, unsur-
prisingly, that most of the errors occur across styles
on the same pole; by far the largest single com-
mon misclassification is objective words to abstract.
Of the words that consistently show this misclas-
sification across the runs, many of them, e.g. ani-
mate, aperture, encircle, and constrain are clearly
errors (if anything, these words tend towards con-
creteness), but in other cases the word in question
is arguably also fairly abstract, e.g. categorize and
predominant, and might not be labeled an error at
all. Other signs that our model might be doing bet-
ter than our total accuracy metric gives it credit for:
many of the subjective words that are consistently
mislabeled as literary have an exaggerated, literary
feel, e.g. jubilant, grievous, and malevolent.

4 Text-level Analysis

Our secondary analysis involved evaluating the θ ’s
of our best configuration (based on average pairwise
and total accuracy) on other texts. After training,
we carried out inference on the BNC corpus, aver-
aging the resulting θ ’s to see which styles are asso-
ciated with which genres. Appearances of the seed
terms for each model were disregarded during this
process; only the induced part of the lexicon was
used. The average differences relative to the mean
across the various stylistic dimensions (as measured
by the probabilities in θ ) are given for a selection of
genres in Table 2.

The most obvious pattern in table 2 is the domi-
nance of the medium: all written genres are positive
for our styles on the ‘cultural’ pole and negative for
styles on the ‘situational’ pole and the opposite is
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Genre Styles
Literary Abstract Objective Colloquial Concrete Subjective

News +0.67 +0.50 +0.43 −0.31 −0.72 −0.57
Religious texts +0.38 +0.38 +0.28 −0.27 −0.44 −0.32
Academic +0.18 +0.29 +0.26 −0.20 −0.36 −0.18
Fiction +0.31 +0.09 +0.02 −0.05 −0.12 −0.25
Meeting −0.61 −0.54 −0.42 +0.35 +0.69 +0.55
Courtroom −0.63 −0.53 −0.41 +0.32 +0.69 +0.57
Conversation −0.56 −0.63 −0.54 +0.43 +0.80 +0.50

Table 2: Average differences from corpus mean of LDA-derived stylistic dimension probabilities for various genres in
the BNC, in hundredths.

true for spoken genres. The magnitude of this ef-
fect is more difficult to interpret: though it is clear
why fiction should sit on the boundary (since it con-
tains spoken dialogue), the appearance of news at
the written extreme is odd, though it might be due to
the fact that news blogs are the most prevalent for-
mal genre in the training corpus.

However, if we ignore magnitude and focus on the
relative ratios of the stylistic differences for styles
on the same pole, we can identify some individ-
ual stylistic effects among genres within the same
medium. Relative to the other written genres, for in-
stance, fiction is, sensibly, more literary and much
less objective, while academic texts are much more
abstract and objective; for the other two written gen-
res, the spread is more even, though relative to re-
ligious texts, news is more objective. At the sit-
uational pole, fiction also stands out, being much
more colloquial and concrete than other written gen-
res. Predictably, if we consider again the ratios
across styles, conversation is the most colloquial
genre here, though the difference is subtle.

We carried out a correlation analysis of the LDA-
reduced styles of all texts in the BNC and, con-
sistent with the genre results in Table 2, found a
strong positive correlation for all styles on the same
main pole, averaging 0.83. The average negative
correlation between opposing poles is even higher,
−0.88. This supports the Leckie-Tarry formulation.
The independence assumptions of the LDA model
did not prevent strong correlations from forming be-
tween these distinct yet clearly interrelated dimen-
sions; if anything, the correlations are stronger than
we would have predicted.

5 Conclusion

We have introduced a Bayesian model of stylistic
variation. Topic models like LDA are often evalu-
ated using information-theoretic measures, but our
emphasis has been on interpretibility: at the word
level we can use the model to induce stylistic lex-
icons which correspond to human judgement, and
at the text level we can use it distinguish genres in
expected ways. Another theme has been to offer ev-
idence that indeed a multi-dimensional approach is
strongly warranted: importantly, our results indicate
that separate unidimensional models of style are in-
ferior for identifying the core stylistic character of
each word, and in our secondary analysis we found
strong correlations among styles attributable to the
situational/cultural dichotomy. However, an off-the-
shelf model that integrates correlation among topics
did not outperform basic LDA.

One advantage of a Bayesian approach is in the
flexibility of the model: there are any number of
other interesting possible extensions at both the θ

and β levels of the model, including alternative ap-
proaches to correlation (Li and McCallum, 2006).
Beyond Bayesian models, vector space and graphi-
cal approaches should be compared. More work is
clearly needed to improve evaluation: some of our
seeds could fall into multiple stylistic categories, so
a more detailed annotation would be useful.
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Abstract
The topic of a document can prove to be use-
ful information for Word Sense Disambigua-
tion (WSD) since certain meanings tend to be
associated with particular topics. This paper
presents an LDA-based approach for WSD,
which is trained using any available WSD sys-
tem to establish a sense per (Latent Dirich-
let allocation based) topic. The technique is
tested using three unsupervised and one su-
pervised WSD algorithms within the SPORT
and FINANCE domains giving a performance
increase each time, suggesting that the tech-
nique may be useful to improve the perfor-
mance of any available WSD system.

1 Introduction

Assigning each word its most frequent sense (MFS)
is commonly used as a baseline in Word Sense Dis-
ambiguation (WSD). This baseline can be difficult to
beat, particularly for unsupervised systems which do
not have access to the annotated training data used to
determine the MFS. However, it has also been shown
that unsupervised methods can be used to identify
the most likely sense for each ambiguous word type
and this approach can be effective for disambigua-
tion (McCarthy et al., 2004).

Knowledge of the domain of a document has been
shown to be useful information for WSD. For ex-
ample, Khapra et al. (2010) improve the perfor-
mance of a graph-based WSD system using a small
number of hand-tagged examples, but further ex-
amples would be required for each new domain.
Agirre et al. (2009) automatically construct a the-
saurus from texts in a domain which they use for

WSD. Unfortunately, performance drops when the
thesaurus is combined with information from local
context. Stevenson et al. (2011) showed that per-
formance of an unsupervised WSD algorithm can
be improved by supplementing the context with do-
main information. Cai et al. (2007) use LDA to
create an additional feature for a supervised WSD
algorithm, by inferring topics for labeled training
data. Boyd-Graber et al. (2007) integrate a topic
model with WordNet and use it to carry out dis-
ambiguation and learn topics simultaneously. Li et
al. (2010) use sense paraphrases to estimate prob-
abilities of senses and carry out WSD. Koeling et
al. (2005) showed that automatically acquiring the
predominant sense of a word from a corpus from
the same domain increases performance (over using
a predominant sense acquired from a balanced cor-
pus), but their work requires a separate thesaurus to
be built for each domain under investigation. Nav-
igli et al. (2011) extracted relevant terms from texts
in a domain and used them to initialize a random
walk over the WordNet graph.

Our approaches rely on a one sense per topic
hypothesis (Gale et al., 1992), making use of top-
ics induced using LDA – we present three novel
techniques for exploiting domain information that
are employable with any WSD algorithm (unsuper-
vised or supervised). Using any WSD algorithm, we
create a sense per topic distribution for each LDA
topic, and the classification of a new document into a
topic determines the sense distribution of the words
within. Once a sense per topic distribution is ob-
tained, no further WSD annotation of new texts is
required. Instead of fixing domains, our technique
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allows these to be dynamically created (using LDA)
and we using four existing publicly available WSD
algorithms (three unsupervised and one supervised)
to show that our technique increases their perfor-
mance with no changes to the original algorithm.

Section 2 briefly introduces LDA, while Section 3
describes our three techniques for adding domain
information to a WSD algorithm. The WSD algo-
rithms employed in the evaluation of our techniques
are described in Section 4 with experiments and re-
sults in Section 5. Section 6 draws our conclusions
and presents avenues for future work.

2 Latent Dirichlet allocation

LDA (Blei et al., 2003) is a widely used topic model,
which views the underlying document distribution
as having a Dirichlet prior. We employ a pub-
licly available implementation of LDA1 which has
two main execution methods: parameter estimation
(model building) and inference for new data (classi-
fication of a new document). Both invocation meth-
ods produce θ distributions (the topic-document dis-
tributions, i.e., p(ti|d) for ti topics and d document),
and φ distributions (word-topic distributions, i.e.,
p(wj |ti) for words wj). The parameter estimation
phase also creates a list of n words most likely to be
associated with each topic.

3 Using LDA for WSD

The underlying idea of our approach lies in deriv-
ing a document invariant sense distribution for each
topic, p(w, s|t). Once this word sense distribution
is obtained, the underlying WSD algorithm is never
needed again. We make the assumption that while
the WSD algorithm may not be able to select the
correct sense within an individual text due to insuf-
ficient domain information, the topic specific sense
will be selected with a greater frequency over all
documents pertaining to a topic, and thus the prob-
ability distributions over senses generated in this
fashion should be more accurate.

Only the distribution p(w, s|t) is dependent on an
underlying WSD algorithm – once this distribution
is obtained, it can be combined with the LDA de-
rived θ distribution, p(t|dnew), to compute the de-

1http://jgibblda.sourceforge.net/.

sired word sense distribution within the new docu-
ment dnew:

p(w, s|dnew) =
∑

t

p(w, s|t)p(t|dnew)

Sections 3.1, 3.2 and 3.3 describe three different
methods for deriving p(w, s|t), and we investigate
the performance changes with different WSD algo-
rithms: two versions of Personalized PageRank, de-
scribed in Section 4.1, a similarity based WSD sys-
tem outlined in Section 4.2, and a supervised graph
based algorithm (Section 4.3).

3.1 Sense-based topic model (SBTM)
In its usual form, the φ distribution generated
by LDA merely provides a word-topic distribution
(p(w|t)). However, we modify the approach to di-
rectly output p(w, s|t), but we remain able to clas-
sify (non WSD annotated) new text. The topic
model is built from documents annotated with word
senses using the chosen WSD algorithm.2 The topic
model created from this data is based on word-sense
combinations and thus φ represents p(w, s|t).

To classify new (non sense disambiguated) doc-
uments, the model is transformed to a word (rather
than word-sense) based for: i.e., the p(w, s|t) prob-
abilities are summed over all senses of w to give re-
sulting probabilities for the wordform. A new docu-
ment, dnew, classified using this system gives rise to
a number of distributions, including the probability
of a topic given a document distribution (p(t|dnew)).

3.2 Linear equations (LinEq)
If the topic model is created directly from word-
forms, we can use the known probabilities p(s|w, d)
(obtained from the WSD algorithm), and p(t|d)
(from the LDA classifier) to yield an overdetermined
system of linear equations of the form

p(s|w, d) =
∑

t

p(s|w, t)p(t|d)

We use an existing implementation of linear least
squares to find a solution (i.e. p(s|w, t) for each t)

2It is not crucial to word sense disambiguate all words in the
text – a word can be passed to LDA in either its word-sense, dis-
ambiguated, form or in its raw form. While we do not attempt
this in our work, it would be possible to build a model specifi-
cally for noun senses of a word, by including noun senses of the
word and leaving the raw form for any non-noun occurrences.
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by minimizing the sum of squared differences be-
tween the data values and their corresponding mod-
eled values, i.e., minimizing:

∑
d

(
p(s|w, d)−

∑
t

p(s|w, t)p(t|d)

)2

3.3 Topic words (TopicWord)

The techniques presented in Sections 3.1 and 3.2
both require the WSD algorithm to annotate a rea-
sonably high proportion of the data used to build the
topic model. For systems which do not rely on word
order, an alternative based on the most likely words
per topic is possible: the LDA algorithm generates
φ, a word-topic distribution. It is therefore possible
to extract the most likely words per topic.

To acquire a sense-topic distribution for a topic t,
each target word w is included in a bag of words
which includes the most likely words for t and
the unsupervised WSD algorithm is executed (w is
added to the list if t does not already contain it).
This technique is not applicable to non bag-of-words
WSD algorithms, as structure is absent.

4 Word Sense Disambiguation

Only the topic model documents need to be auto-
matically annotated with the chosen WSD system,
after this, the WSD system is never applied again
(an LDA classification determines the sense distri-
bution) – this is particularly useful for supervised
system which frequently have a long execution time.
We explore three different types of WSD system:
two versions of a knowledge base based system
(Section 4.1), an unsupervised system (Section 4.2)
and a supervised system (Section 4.3).

4.1 Personalized PageRank (ppr and w2w)

We use the freely available3 Personalized PageRank
algorithm (Agirre and Soroa, 2009) with WordNet
3.0. In Section 5 we present results from two options
of the Personalized PageRank algorithm: ppr, which
performs one PageRank calculation for a whole con-
tent, and w2w, which performs one PageRank cal-
culation for every word in the context to be disam-
biguated.

3Available from http://ixa2.si.ehu.es/ukb/

4.2 WordNet similarity (sim)

We also evaluated another unsupervised approach,
the Perl package WordNet::SenseRelate::AllWords
(Pedersen and Kolhatkar, 2009), which finds senses
of each word in a text based on senses of the sur-
rounding words. The algorithm is invoked with Lesk
similarity (Banerjee and Pedersen, 2002).

4.3 Vector space model (vsm)

An existing vector space model (VSM) based state-
of-the-art supervised WSD system with features de-
rived from the text surrounding the ambiguous word
(Stevenson et al., 2008) is trained on Semcor (Miller
et al., 1993).4

5 Experiments

5.1 Data

The approach is evaluated using a domain-specific
WSD corpus (Koeling et al., 2005) which includes
articles from the FINANCE and SPORTS domains
taken from the Reuters corpus (Rose et al., 2002).
This corpus contains 100 manually annotated in-
stances (from each domain) for 41 words.5

The word-sense LDA topic models are created
from 80,128 documents randomly selected from the
Reuters corpus (this corresponds to a tenth of the en-
tire Reuters corpus). LDA can abstract a model from
a relatively small corpus and a tenth of the Reuters
corpus is much more manageable in terms of mem-
ory and time requirements, particularly given the
need to word sense disambiguate (some part of) each
document in this dataset.6

4A version of Semcor automatically transformed to
WordNet 3.0 available from http://www.cse.unt.edu/

˜rada/downloads.html#semcor was used in this work.
5Unfortunately, the entire domain-specific sense disam-

biguated corpus could not be used in the evaluation of
our system, as the released corpus does not link each
annotated sentence to its source document, and it is
not always possible to recover these; approximately 87%
of the data could be used. This dataset is available
at http://staffwww.dcs.shef.ac.uk/people/J.
Preiss/downloads/source_texts.tgz

6In this work, all 80,128 documents were word sense disam-
biguated. However, it would be possible to restrict this set to a
smaller number, as long as a reliable distribution of word senses
per topic could be obtained.
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ppr w2w sim vsm
Baseline 36 41 23 27
SBTM model 39 43 30 31
LinEq 41 44 – 33
TopicWord 38 41 – –

Table 1: Summary of results based on 150 topics

5.2 Results

Table 1 presents the performance results for the four
WSD algorithms based on 150 topics. A range of
topic values was explored, and 150 topics yielded
highest performance, though the variance between
the performance based on different topics (ranging
from 50 to 250) was very small (0.4% difference to
the average performance with 250 topics, and 3%
with 50). The performance shown indicates the pre-
cision (number correct / number attempted). Recall
is 100% in all cases.

The similarity algorithm (sim) fails on certain
documents and therefore the linear equations tech-
nique could not be applied. The topic word tech-
nique (TopicWord) could not be evaluated using the
similarity algorithm, due to the high sensitivity to
word order within the test paragraph. In addition,
the topic words technique is not applicable to su-
pervised systems, due to its reliance on structured
sentences. The best results with this technique were
obtained with including all likely words with proba-
bilities exceeding 0.001 and smoothing of 0.1 of the
topic document distribution.

Using a Wilcoxon signed-rank test, the results
were found to be significantly better over the orig-
inal algorithms in every case (apart from Topic-
Words). Both the WordNet similarity (sim) and
the VSM approach (vsm) have a lower performance
than the two PPR based WSD algorithms (ppt and
w2w). For example, sim assigns the same (usually
incorrect) sense to all occurrences of the word tie,
while both PPR based algorithms detect an obvious
domain change. The vsm approach suffers from a
lack of training data (only a small number of exam-
ples of each word appear in Semcor), while sim does
not get enough information from the context.

As an interesting aside, the topic models based on
word-sense combinations, as opposed to wordforms
only, are more informative with less overlap. Exam-

ining the word stake annotated with the w2w WSD
algorithm: only topic 1 contains stake among the top
12 terms associated with a topic in the word-sense
model, while 10 topics are found in the wordform
topic model. Table 2 shows the top 12 terms associ-
ated with topics containing the word stake.

Topic Word-based model
39 say, will, company, share, deal, euro-

pean, buy, agreement, stake, new, hun-
gary, oil

63 say, share, united, market, offer, stock,
union, percent, stake, will, point, new

90 say, will, fund, price, london, sell,
stake, indonesia, court, investment,
share, buy

91 say, market, bond, russia, press, party,
stake, russian, country, indonesia, new,
election

97 say, million, bank, uk, percent, share,
stake, world, will, year, central, british

113 say, will, percent, week, billion, last,
italy, plan, stake, year, budget, czech

134 say, china, percent, hong, kong, offi-
cial, stake, billion, report, buy, group,
year

142 say, percent, market, first, bank, rate,
year, dealer, million, money, close,
stake

145 say, will, new, brazil, dollar, group,
percent, stake, year, one, make, do

147 say, yen, forecast, million, parent, mar-
ket, share, will, profit, percent, stake,
group
Sense-based model

1 stake*13286801-n, share*13285176-
n, sell*02242464-v, buy*02207206-v,
have*02204692-v, group*00031264-
n, company*08058098-n,
percent*13817526-n, hold*02203362-
v, deal*01110274-n, shareholder,
interest*13286801-n

Table 2: The presence of stake within the word- and
sense-based topic models
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6 Conclusion

We present three unsupervised techniques based on
acquiring LDA topics which can be used to improve
the performance of a number of WSD algorithms.
All approaches make use of topic information ob-
tained using LDA and do not require any modifi-
cation of the underlying WSD system. While the
technique is dependent on the accuracy of the WSD
algorithm, it consistently outperforms the baselines
for all four different algorithms.
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Abstract

Multi-Domain learning assumes that a sin-
gle metadata attribute is used in order to di-
vide the data into so-called domains. How-
ever, real-world datasets often have multi-
ple metadata attributes that can divide the
data into domains. It is not always apparent
which single attribute will lead to the best do-
mains, and more than one attribute might im-
pact classification. We propose extensions to
two multi-domain learning techniques for our
multi-attribute setting, enabling them to si-
multaneously learn from several metadata at-
tributes. Experimentally, they outperform the
multi-domain learning baseline, even when it
selects the single “best” attribute.

1 Introduction
Multi-Domain Learning (Evgeniou and Pontil,
2004; Daumé III, 2007; Dredze and Crammer, 2008;
Finkel and Manning, 2009; Zhang and Yeung, 2010;
Saha et al., 2011) algorithms learn when training in-
stances are spread across many domains, which im-
pact model parameters. These algorithms use exam-
ples from each domain to learn a general model that
is also sensitive to individual domain differences.

However, many data sets include a host of meta-
data attributes, many of which can potentially define
the domains to use. Consider the case of restaurant
reviews, which can be categorized into domains cor-
responding to the cuisine, location, price range, or
several other factors. For multi-domain learning, we
should use the metadata attribute most likely to char-
acterize a domain: a change in vocabulary (i.e. fea-
tures) that most impacts the classification decision

(Ben-David et al., 2009). This choice is not easy.
First, we may not know which metadata attribute is
most likely to fit this role. Perhaps the location most
impacts the review language, but it could easily be
the price of the meal. Second, multiple metadata
attributes could impact the classification decision,
and picking a single one might reduce classification
accuracy. Therefore, we seek multi-domain learn-
ing algorithms which can simultaneously learn from
many types of domains (metadata attributes).

We introduce the multi-attribute multi-domain
(MAMD) learning problem, in which each learning
instance is associated with multiple metadata at-
tributes, each of which may impact feature behavior.
We present extensions to two popular multi-domain
learning algorithms, FEDA (Daumé III, 2007) and
MDR (Dredze et al., 2009). Rather than selecting
a single domain division, our algorithms consider
all attributes as possible distinctions and discover
changes in features across attributes. We evaluate
our algorithms using two different data sets – a data
set of restaurant reviews (Chahuneau et al., 2012),
and a dataset of transcribed speech segments from
floor debates in the United States Congress (Thomas
et al., 2006). We demonstrate that multi-attribute al-
gorithms improve over their multi-domain counter-
parts, which can learn distinctions from only a single
attribute.

2 MAMD Learning
In multi-domain learning, each instance x is drawn
from a domain d with distribution x ∼ Dd over a
vectors space RD and labeled with a domain spe-
cific function fd with label y ∈ {−1,+1} (for bi-
nary classification). In multi-attribute multi-domain
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(MAMD) learning, we have M metadata attributes in
a data set, where the mth metadata attribute has Km

possible unique values which represent the domains
induced by that metadata attribute. Each instance xi

is drawn from a distribution xi ∼ Da specific to a
set of attribute values Ai associated with each in-
stance. Additionally, each unique set of attributes
indexes a function fA.1 Ai could contain a value for
each attribute, or no values for any attribute (which
would index a domain-agnostic “background” distri-
bution and labeling function). Just as a domain can
change a feature’s probability and behavior, so can
each metadata attribute.

Examples of data for MAMD learning abound. The
commonly used Amazon product reviews data set
(Blitzer et al., 2007) only includes product types, but
the original reviews can be attributed with author,
product price, brand, and so on. Additional exam-
ples include congressional floor debate records (e.g.
political party, speaker, bill) (Joshi et al., 2012). In
this paper, we use restaurant reviews (Chahuneau et
al., 2012), which have upto 20 metadata attributes
that define domains, and congressional floor de-
bates, with two attributes that define domains.

It is difficult to apply multi-domain learning algo-
rithms when it is unclear which metadata attribute
to choose for defining the “domains”. It is possible
that there is a single “best” attribute to use for defin-
ing domains, one that when used in multi-domain
learning will yield the best classifier. To find this
attribute, one must rely on one’s intuition about the
problem,2 or perform an exhaustive empirical search
over all attributes using some validation set. Both
these strategies can be brittle, because as the nature
of data changes over time so may the “best” do-
main distinction. Additionally, multi-domain learn-
ing was not designed to benefit from multiple helpful
attributes.

We note here that Eisenstein et al. (2011), as well
as Wang et al. (2012), worked with a “multifaceted
topic model” using the framework of sparse addi-
tive generative models (SAGE). Both those models
capture interactions between topics and multiple as-

1Distributions and functions that share attributes could share
parameters.

2Intuition is often critical for learning and in some cases can
help, such as in the Amazon product reviews data set, where
product type clearly corresponds to domain. However, for other
data sets the choice may be less clear.

pects, and can be adapted to the case of MAMD. While
our problem formulation has significant conceptual
overlap with the SAGE–like multifaceted topic mod-
els framework, our proposed methods are motivated
from a fast online learning perspective.

A naive approach for MAMD would be to treat ev-
ery unique set of attributes as a domain, including
unique proper subsets of different attributes to ac-
count for the case of missing attributes in some in-
stances.3 However, introducing an exponential num-
ber of domains requires a similar increase in train-
ing data, clearly an infeasible requirement. Instead,
we develop multi-attribute extensions for two multi-
domain learning algorithms, such that the increase
in parameters is linear in the number of metadata at-
tributes, and no special handling is required for the
case where some metadata attributes might be miss-
ing from an instance.

Multi-Attribute FEDA The key idea behind
FEDA (Daumé III, 2007) is to encode each domain
using its own parameters, one per feature. FEDA
maps a feature vector x in RD to RD(K+1). This
provides a separate parameter sub-space for every
domain k ∈ 1 . . .K, and also maintains a domain-
agnostic shared sub-space. Essentially, each feature
is duplicated for every instance in the appropriate
sub-space of RD(K+1) that corresponds to the in-
stance’s domain. We extend this idea to the MAMD
setting by using one parameter per attribute value.
The original instance x ∈ RD is now mapped into
RD(1+

∑
m Km); a separate parameter for each at-

tribute value and a shared set of parameters. In ef-
fect, for every metadata attribute a ∈ Ai, the original
features are copied into the appropriate sub-space.
This grows linearly with the number of metadata at-
tribute values, as opposed to exponentially in our
naive solution. While this is still substantial growth,
each instance retains the same feature sparsity as in
the original input space. In this new setup, FEDA al-
lows an instance to contribute towards learning the
shared parameters, and the attribute-specific param-
eters for all the attributes present on an instance. Just
like multi-domain FEDA, any supervised learning al-
gorithm can be applied to the transformed represen-
tation.

3While we used a similar setup for formulating our problem,
we did not rule out the potential for factoring the distributions.
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Multi-Attribute MDR We make a similar change
to MDR (Dredze et al., 2009) to extend it for
the MAMD setting. In the original formulation,
Dredze et al. used confidence-weighted (CW)
learning (Dredze et al., 2008) for learning shared
and domain-specific classifiers, which are combined
based on the confidence scores associated with the
feature weights. For training the MDR approaches in
a multi-domain learning setup, they found that com-
puting updates for the combined classifier and then
equally distributing them to the shared and domain-
specific classifiers was the best strategy, although it
approximated the true objective that they aimed to
optimize. In our multi-attribute setup confidence-
weighted (CW) classifiers are learned for each of the∑

mKm attribute values in addition to a shared CW
classifier. At classification time, a combined clas-
sifier is computed for every instance. However, in-
stead of combining the shared classifier and a single
domain-specific classifier, we combine the shared
CW classifier and |Ai| different attribute value-
specific CW classifiers associated with xi. The
combined classifier is found by minimizing the KL-
divergence of the combined classifier with respect to
each of the underlying classifiers.4

When learning the shared and domain-specific
classifiers, we follow the best result in Dredze et
al. and use the “averaged update” strategy (§7.3 in
Dredze et al.), where updates are computed for the
combined classifier, and are then distributed to the
shared and domain-specific classifiers. MDR-U will
indicate that the updates to the combined classifiers
are uniformly distributed to the underlying shared
and domain-specific classifiers.

Dredze et al. also used another scheme called
“variance” to distribute the combined update to the
underlying classifiers (§4, last paragraph in Dredze
et al.) Their idea was to give a lower portion
of the update to the underlying classifier that has
higher variance (or in their terminology, “less con-
fidence”) since it contributed less to the combined
classifier. We refer to this as MDR-V. However, this
conflicts with the original CW intuition that features
with higher variance (lower confidence) should re-
ceive higher updates; since they are more in need
of change. Therefore, we implemented a modi-
fied “variance” scheme, where the updates are dis-

4We also tried the l2 distance method of Dredze et al. (2009)
but it gave consistently worse results.

tributed to the underlying classifiers such that higher
variance features receive the larger updates. We re-
fer to this as MDR-NV. We observed significant im-
provements with this modified scheme.

3 Experiments
To evaluate our multi-attribute algorithms we con-
sider two datasets. First, we use two subsets of the
restaurant reviews dataset (1,180,308 reviews) intro-
duced by Chahuneau et al. (2012) with the goal of
labeling reviews as positive or negative. The first
subset (50K-RND) randomly selects 50,000 reviews
while the second (50K-BAL) is a class-balanced
sample. Following the approach of Blitzer et al.
(2007), scores above and below 3-stars indicated
positive and negative reviews, while 3-star reviews
were discarded. Second, we use the transcribed seg-
ments of speech from the United States Congress
floor debates (Convote), introduced by Thomas
et al. (2006). The binary classification task on this
dataset is that of predicting whether a given speech
segment supports or opposes a bill under discussion
in the floor debate.

In the WordSalad datasets, each restaurant re-
view can have many metadata attributes, including a
unique identifier, name (which may not be unique),
address (we extract the zipcode), and type (Italian,
Chinese, etc.). We select the 20 most common meta-
data attributes (excluding latitude, longitude, and the
average rating). 5 In the Convote dataset, each
speech segment is associated with the political party
affiliation of the speaker (democrat, independent, or
republican) and the speaker identifier (we use bill
identifiers for creating folds in our 10-fold cross-
validation setup).

In addition to our new algorithms, we evalu-
ate several baselines. All methods use confidence-
weighted (CW) learning (Crammer et al., 2012).

BASE A single classifier trained on all the data,
and which ignores metadata attributes and uses uni-
gram features. For CW, we use the best-performing
setting from Dredze et al. (2008) — the “variance”
algorithm, which computes approximate but closed–
form updates, which also lead to faster learning. Pa-
rameters are tuned over a validation set within each
training fold.

5Our method requires categorical metadata attributes, al-
though real-valued attributes can be discretized.
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metadata 1-META FEDA MDR-U MDR-V MDR-NV

5
0
K
-
R
N
D NONE (BASE) 92.29 (±0.14)

ALL (META) † 92.69 (±0.10)
CATEGORY † 92.48 (±0.11) 92.47 (±0.10) †‡ 92.99 (±0.12) 91.16 (±0.16) †‡ 93.24 (±0.13)

ZIPCODE 92.40 (±0.09) † 92.73 (±0.09) †‡ 92.99 (±0.12) 91.19 (±0.20) †‡ 93.22 (±0.11)
NEIGHBORHOOD 92.42 (±0.11) † 92.65 (±0.13) †‡ 93.02 (±0.13) 91.17 (±0.21) †‡ 93.21 (±0.12)

5
0
K
-
B
A
L NONE (BASE) 89.95 (±0.10)

ALL (META) † 90.39 (±0.09)
CATEGORY 90.09 (±0.11) † 90.50 (±0.11) † 90.60 (±0.11) 87.89 (±0.13) †‡ 91.33 (±0.08)

ZIPCODE 89.97 (±0.12) † 90.42 (±0.13) † 90.56 (±0.09) 87.78 (±0.16) †‡ 91.30 (±0.10)
ID † 90.42 (±0.11) †‡ 90.64 (±0.11) † 90.50 (±0.11) 87.78 (±0.25) †‡ 91.27 (±0.09)

Table 1: Average accuracy (± standard error) for the best three metadata attributes, when using a single attribute at
a time. Results that are numerically the best within a row are in bold. Results significantly better than BASE are
marked with †, and better than META are marked with ‡. Significance is measured using a two-tailed paired t-test with
α = 0.05.

#attributes FEDA MDR-U MDR-V MDR-NV

5
0
K
-
R
N
D MAMD †‡ 93.07 (±0.19) †‡ 93.12 (±0.11) 87.08 (±1.72) †‡ 93.19 (±0.12)

1-ORCL †‡ 93.06 (±0.11) †‡ 93.17 (±0.11) 92.37 (±0.11) †‡ 93.39 (±0.12)
1-TUNE † 92.64 (±0.12) † 92.81 (±0.16) 92.15 (±0.17) †‡ 93.07 (±0.14)
1-MEAN † 92.61 (±0.09) † 92.59 (±0.10) 91.41 (±0.12) † 92.58 (±0.10)

5
0
K
-
B
A
L MAMD †‡ 91.42 (±0.09) †‡ 91.06 (±0.04) 81.43 (±2.79) †‡ 91.40 (±0.08)

1-ORCL †‡ 90.89 (±0.10) †‡ 90.87 (±0.11) 89.33 (±0.13) †‡ 91.45 (±0.07)
1-TUNE † 90.33 (±0.10) †‡ 90.70 (±0.14) 89.13 (±0.16) †‡ 91.26 (±0.08)
1-MEAN † 90.30 (±0.06) 89.92 (±0.07) 88.25 (±0.07) 90.06 (±0.08)

Table 2: Average accuracy (± standard error) using 10-fold cross-validation for methods that use all attributes, either
directly (our proposed methods) or for selecting the “best” single attribute using one of the strategies described earlier.
Formatting and significance symbols are the same as in Table 1.

META Identical to BASEwith a unique bias feature
added for each attribute value (Joshi et al., 2012).
1-META A special case of META where a unique
bias feature is added only for a single attribute.

To use multi-domain learning directly, we could
select a single attribute as the domain. We consider
several strategies for picking this attribute and eval-
uate both FEDA and MDR in this setting.
1-MEAN Choose an attribute randomly, equivalent
to the expected (mean) error over all attributes.
1-TUNE Select the best performing attribute on a
validation set.
1-ORCL Select the best performing attribute on
the test set. Though impossible in practice, this gives
the oracle upper bound on multi-domain learning.

All experiments use ten-fold cross-validation. We
report the mean accuracy, along with standard error.

4 Results
Table 1 shows the results of single-attribute multi-
domain learning methods for the WordSalad
datasets. The table shows the three best-performing
metadata attributes (as decided by the highest accu-
racy among all the methods across all 20 metadata
attributes). Clearly, several of the attributes can pro-

vide meaningful domains, which demonstrates that
methods that can select multiple attributes at once
are desirable. We also see that our modification to
MDR (MDR-NV) works the best.

Table 3 shows the results of single-attribute multi-
domain learning methods for the Convote dataset.
The first observation to be made on this dataset is
that neither the PARTY, nor the SPEAKER attribute
individually achieve significant improvement over
the META baseline, which uses both these attributes
as features. This is in contrast with the results on
the WordSalad dataset, where some attributes by
themselves showed an improvement over the META
baseline. Thus, this dataset represents a more chal-
lenging setup for our multi–attribute multi–domain
learning methods — they need to exploit the two
weak attributes simultaneously.

We next demonstrate multi-attribute improve-
ments over the multi-domain baselines (Tables 2
and 4). For WordSalad datasets, our exten-
sions that can use all metadata attributes simul-
taneously are consistently better than both the
1-MEAN and the 1-TUNE strategies (except for
the case of the old variance scheme used by
(Dredze et al., 2009)). For the skewed subset
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metadata 1-META FEDA MDR-U MDR-V MDR-NV
NONE (BASE) 67.08 (±1.74)

ALL (META) † 82.60 (±1.95)
PARTY † 78.81 (±1.47) † 84.19 (±2.44) † 83.23 (±2.48) † 81.38 (±2.22) † 83.92 (±2.31)

SPEAKER † 77.49 (±1.75) † 82.88 (±2.43) † 78.32 (±1.91) 62.43 (±2.20) † 72.26 (±1.37)

Table 3: Convote: Average accuracy (± standard error) when using a single attribute at a time. Results that are
numerically the best within a row are in bold. Results significantly better than BASE are marked with †, and better
than META are marked with ‡. Significance is measured using a two-tailed paired t-test with α = 0.05.

#attributes FEDA MDR-U MDR-V MDR-NV
MAMD †‡ 85.71 (±2.74) † 84.12 (±2.56) 50.44 (±1.78) †‡ 86.19 (±2.49)

1-ORCL † 84.77 (±2.47) † 83.88 (±2.27) † 81.38 (±2.22) † 83.92 (±2.31)
1-TUNE † 84.19 (±2.44) † 83.23 (±2.48) † 81.38 (±2.22) † 83.92 (±2.31)
1-MEAN † 83.53 (±2.40) † 80.77 (±1.92) † 71.91 (±1.82) † 78.09 (±1.69)

Table 4: Convote: Average accuracy (± standard error) using 10-fold cross-validation for methods that use all
attributes, either directly (our proposed methods) or for selecting the “best” single attribute using one of the strategies
described earlier. Formatting and significance symbols are the same as in Table 3.

50K-RND, MAMD+FEDA is significantly better than
1-TUNE+FEDA; MAMD+MDR-U is significantly bet-
ter than 1-TUNE+MDR-U; MAMD+MDR-NV is not
significantly different from 1-TUNE+MDR-U. For
the balanced subset 50K-BAL, a similar pattern
holds, except that MAMD+MDR-NV is significantly
better than 1-TUNE+MDR-NV. Clearly, our multi-
attribute algorithms provide a benefit over existing
approaches. Even with oracle knowledge of the test
performance using multi-domain learning, we can
still obtain improvements (FEDA and MDR-U in the
50K-BAL set, and all the Convote results, except
MDR-V).

Although MAMD+MDR-NV is not significantly bet-
ter than 1-TUNE+MDR-NV on the 50K-RND set,
we found that in every single fold in our ten-
fold cross-validation experiments, the “best” single
metadata attribute decided using a validation set did
not match the best-performing single metadata at-
tribute on the corresponding test set. This shows
the potential instability of choosing a single best at-
tribute. Also, note that MDR-NV is a variant that we
have proposed in the current work, and in fact for
the earlier variant of MDR (MDR-U), as well as for
FEDA, we do see significant improvements when us-
ing all metadata attributes. Furthermore, the compu-
tational cost of evaluating every metadata attribute
independently to tune the single best metadata at-
tribute can be high and often impractical. Our ap-
proach requires no such tuning. Finally, observe
that for FEDA, the 1-TUNE strategy is not signifi-
cantly different from 1-MEAN, which just randomly
picks a single best metadata attribute. For MDR-U,

1-TUNE is significantly better than 1-MEAN on the
balanced subset 50K-BAL, but not on the skewed
subset 50K-RND.

As mentioned earlier, the Convote dataset is a
challenging setting for our methods due to the fact
that no single attribute is strong enough to yield im-
provements over the META baseline. In this setting,
both MAMD+FEDA and MAMD+MDR-NV achieve a
significant improvement over the META baseline,
with MDR-NV being the best (though not signif-
icantly better than FEDA). Additionally, both of
them are significantly better than their correspond-
ing 1-TUNE strategies. This result further supports
our claim that using multiple attributes in combi-
nation for defining domains (even when any single
one of them is not particularly beneficial for multi–
domain learning) is important.

5 Conclusions
We propose multi-attribute multi-domain learning
methods that can utilize multiple metadata attributes
simultaneously for defining domains. Using these
methods, the definition of “domains” does not have
to be restricted to a single metadata attribute. Our
methods achieve a better performance on two multi-
attribute datasets as compared to traditional multi-
domain learning methods that are tuned to use a sin-
gle “best” attribute.
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Abstract

This opinion piece proposes that recent ad-
vances in opinion detection are limited in the
extent to which they can detect important cat-
egories of opinion because they are not de-
signed to capture some of the pragmatic as-
pects of opinion. A component of these is the
perspective of the user of an opinion-mining
system as to what an opinion really is, which is
in itself a matter of opinion (metasubjectivity).
We propose a way to define this component of
opinion and describe the challenges it poses
for corpus development and sentence-level de-
tection technologies. Finally, we suggest that
investment in techniques to handle metasub-
jectivity will likely bear costs but bring bene-
fits in the longer term.

1 Introduction

Opinion mining, also known as sentiment analysis
(Pang and Lee, 2008), is a relatively recent area
of research in natural language processing. It has
grown very quickly as a research area, developing
around a small number of basic approaches. How-
ever, these approaches are based on particular def-
initions of opinion, assumptions about opinion ex-
pressions, and evaluation practices that we believe
need to be expanded in order for sentiment analysis
to reach new domains and applications.

We are not the first to express concern over the
direction of sentiment analysis as a field. This paper
seeks to further expand upon the views expressed
in Alm (2011) that prevailing evaluation concepts in
sentiment analysis limit the kinds of models we can
build, particularly through the encouragement of a
focus on “high-performing” systems.

The central thread that connects our view of the
field is the idea that the basis of standard techniques
and evaluation in information retrieval and extrac-
tion that underlie existing approaches needs to be
rethought for applications that are inherently subjec-
tive and that the field needs to return to more theoret-
ical groundwork. This will entail sacrificing some of
the performance gains made in recent times, as well
as potentially reducing the capacity for easily com-
parable research that has been gained by the rapid
adoption of corpora that are very easily produced,
shared, and used.

This problem is particularly relevant in the expan-
sion of sentiment analysis techniques to areas such
as market prediction (Bollen et al., 2010) and social
science. In these areas, it is not enough to detect
opinions in predefined areas of text or even to mine
for the locations of opinions in large corpora, but it is
necessary to be able to connect opinions across doc-
uments and to reconstruct the social networks that
underlie social trends. Furthermore, it must be pos-
sible to do this in text that can have an arbitrary num-
ber of opinions intertwined in ways that go beyond
the base case of product review text. This requires
both additional consideration of the perspective of
the user and attention to the finer-grained details of
sentiment expression.

Do existing resources and techniques really re-
flect the ultimate goals and end-uses of fine-grained
opinion-mining, particularly focusing on the senten-
tial and sub-sentential levels? Consider an “ideal
case” of a marketing director or a political campaign
manager requesting a forecast of how a product or
concept will unfold in the media and market. How
do the present conceptions of opinion mining relate
to this among other real-world problems of affect?
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In the remainder of this position paper, we briefly
describe three closely related issues in sentiment
analysis that pertain to expanding beyond the cur-
rent limits of the field.

2 Challenges

2.1 Metasubjectivity and pragmatic opinion

Recent efforts in opinion mining (Ruppenhofer
et al., 2008) technology have often tended to take
the position that opinion is an internal characteristic
of the speaker, a “private state”, and that the overall
aim of the opinion mining field is to discover tech-
niques that allow us to infer the that latent state from
the evidence presented in text. But this may not al-
ways be appropriate to all circumstances.

A very simple boundary example comes from So-
masundaran and Wiebe (2009): The blackberry is
something like $150 and the iPhone is $500. This
comes from a corpus of opinions on cell phone pref-
erence, and this sentence is intended to be a negative
opinion about the iPhone. According to Somasun-
daran and Wiebe, this kind of opinion-expression
requires a model of world-knowledge that is either
not practical under current technologies, or it re-
quires the development of techniques that can re-
cruit a larger context in the text in order to make the
correct inference. They refer to this phenomenon as
“pragmatic opinion”.

One crucial piece of world-knowledge that pro-
vides an opinion its polarity is that of the perspective
of the reader or listener to the opinion; we can min-
imally represent this as the “application” to which
the opinion will be put. We refer to variation in the
application-specific interpretation of the concept of
opinion as “metasubjectivity.” Metasubjectivity is
a serious problem in extending sentiment analysis
work to other domains, particularly for reasons that
we describe in the next section.

Metasubjectivity is closely related to the underly-
ing relative nature of veridicality assessment. The
veridicality of an utterance is the level to which the
listener may judge it as a factual statement about the
world. de Marneffe et al. (2012) note that this re-
quires, in some cases, extensive pragmatic knowl-
edge. They present this sentence as an example:
FBI agents alleged in court documents today that
Zazi had admitted receiving weapons and explosives

training from al-Qaeda operatives in Pakistan last
year. There is an interplay between the trustworthi-
ness of the source of the sentence, the mentioned en-
tities, and the veridicality of words alleged and ad-
mitted, all of which are mediated by the perspective
of the reader. For example, if the reader is strongly
inclined to trust the FBI, then there may be a high
level of veridicality in “alleged” than otherwise. But
it could also be the case that the reader believes that
Zazi is misleading the FBI.

These distinctions operate directly in the context
of determining polarity in opinion mining. Consider
the following example sentence from a major in-
formation technology (IT) business journal: Lloyd
Hession, chief security officer at BT Radianz in New
York, said that virtualization also opens up a slew of
potential network access control issues.

This sentence can be taken to represent an opinion
or merely a factual statement. A casual reader with-
out experience in the domain of IT might be con-
vinced that this sentence is simply a neutral state-
ment of fact. But from the perspective of an inter-
ested reader such as an investor, this may actually
represent a mildly negative statement about virtu-
alization, or it may represent a negative statement
about network access control. From the perspective
of the manager of an IT support department, it may
well be very negative. But from the perspective of
Lloyd Hession, we have no idea outside of the prag-
matic context. Mr. Hession could be a developer of
IT solutions, in which case he would view this as a
positive development for the market in new network
access control technologies, or, for that matter, he
may be invested in a set of technological approaches
that compete with virtualization.

This extends to the vocabulary used to express
opinions. The use of the word “slew”, in this case,
has negative connotations, but only if the whole
statement is construed by the perspective of the
reader to represent an opinion. However, if Lloyd
Hession is a provider of new network access control
solutions, then the use of “open” may convert this
negative context into a positive context.

This is not merely a matter of the perspectives
of individual users and participants. It is a matter
of how providers of sentiment analysis applications
choose to represent these choices to the user, which
is in turn reflected in the way in which they create
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resources, models, and algorithms. If, for example,
our goal is to provide sentiment analysis for domain-
specific market prediction or social science, then we
need to model the reactions not of the private state
of Mr. Hession or of the writer of the article, but
of an “aggregate reader” with a presumed interest in
the text. Here is a definition of this external state
aggregate reader model that might apply to the IT
business domain:

Opinion source A expresses opinion about opinion

target B if an interested third party C’s actions to-

wards B may be affected by A’s textually recorded

actions, in a context where actions have positive or

negative weight.

This accounts for the cases in which the opinion of
interest in the IT example happens to be held by an
investor or a IT support manager or other interested
readers, and it can be generalized to apply to other
domains in which the world’s opinion matters.

It is once again within the area of veridicality as-
sessment that we suggest that a possible form of
solution exists. de Marneffe et al. (2012) present
a model in which the uncertainty in veridicality is
represented as a distribution rather than a discrete
labelling problem.

In the case of veridicality, there is generally an
ultimate ground truth in verifiable facts about the
world, apart from the relative veridical nature of a
statement. For sentiment, however, there is no such
foundation: opinion presence and opinion polarity
exist entirely relative to the perspective of the ag-
gregate reader. This requires a different process of
annotation, the challenges of which we describe in
the next section.

2.2 Corpus development and evaluation
Considering the prevalence of machine learning
techniques in opinion mining research, addressing
the issue of metasubjectivity must mean addressing
the matter of the corpus development.

Existing evaluation techniques depend on a no-
tion of “gold standard data” that are produced by
expert judges or crowdsourced annotators (Wilson,
2007; Kessler et al., 2010; Hsueh et al., 2009). There
are NLP areas in which popular notions of objec-
tivity may partly apply, such as query relevance;
due, among other things, to metasubjectivity, opin-
ion mining is not entirely one of these. However,

gold standard data for opinion mining is typically
produced using procedures that are standard for in-
formation retrieval research, and the quality mea-
sures that are generally used happen to assume the
presence of an underlying objective truth.

This assumption can be coerced to fit particular
cases. For example, a large proportion of opinion
mining research is invested in predicting the rat-
ings of product reviews and then aggregating results
into a single ratings summary, sometimes based on
a lower-level breakdown of product features (de Al-
bornoz et al., 2011). Implicit in this type of work
is the assumption of the existence of an ideal rater
who uses language in a roughly predictable way to
express his or her feelings about the text.

The users of these types of systems can be as-
sumed, to some degree of safety, to share some of
the expectations of the builders of these systems,
particularly since groups of users as product raters
are often the source of the information itself.

But in environments where the users of the sys-
tem may have various different perspectives on the
nature of sentiment, it does not make sense to as-
sume that there would ever be significant agree-
ment among annotators, particularly for market-
relevant applications where prediction of reader re-
action is central to the task. We attempted to an-
notate IT business press articles for sentence-level
reader-perspective opinion occurrences and found
that multiple trained annotators had very low inter-
rater agreement by Cohen’s κ. Multiple attempts
at further annotator training and error analysis re-
vealed that the annotators simply found it very dif-
ficult to agree on what the definition of an opinion
was. Originally, we had two trained student anno-
tators for this task, with repeated training and joint
practice annotations in order to achieve consensus as
to what counts as an opinion mention instance and
what does not. Other groups of annotators and an-
notation designs had no better success.

However, we observed that this appears to be pri-
marily a problem of conservativity where annotators
differed in the quantity of sentences that they con-
sidered to be opinionated, and had a large amount of
overlap in those that they did consider to be opinion-
ated. Further discussion with the annotators found
that some simply had a much lower threshold at
which they would consider a sentence to contain an
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opinion. In other words, this form of annotation is
more affected by metasubjectivity than opinion an-
notation focused on opinion source perspective. It
should be noted that this is a different task from
finding opinion sources and labelling the textual ev-
idence of their private states; we were attempting to
model the “ideal case” we identified in section 1.

We suggest that the answer to this problem is
to deploy the concept of the aggregate reader men-
tioned in the previous section and to pose the anno-
tation question indirectly. The former requires the
collection of data from a larger number of people
and can be provided by existing crowdsourcing tech-
niques (Snow et al., 2008). The latter, however, re-
quires designing the annotation in such a way that
it avoids letting the annotator consider the question:
“What is an opinion?” This is most likely done by
a user interface that simulates the behaviour of the
intended aggregate reader (Sayeed et al., 2011).

2.3 Grammatical expression
There are a number of types of features with which
one can construct and train supervised sentence-
level sentiment detection models. Most recent tech-
niques (Kim and Hovy, 2006; Choi et al., 2006;
Jakob and Gurevych, 2010) take into account the
syntactic context of the sentence but limit the
amount of syntactic context thus used. These re-
strictions reduce the presence or absence of partic-
ular structures to binary features in the model. We
argue that we need techniques that take into account
more syntactic context, particularly without making
use of predefined structures.

The latest techniques make use of larger syntac-
tic contexts with potentially unlimited scope. One
example is Nakagawa et al. (2010), who use fac-
tor graphs (McCallum et al., 2009) to learn a model
that traces paths through the dependency trees of
opinion-relevant sentences (de Marneffe and Man-
ning, 2008). However, this is in the service of polar-
ity classification, as it assumes that the appropriate
sentences have already been identified; then it is a
matter of correctly processing negations and other
polarity-changing items. The challenge of metasub-
jectivity is a barrier to opinion sentence detection it-
self, well before polarity classification.

Another example is Qiu et al. (2011). They are
more directly focused on detecting opinion-relevant

language. However, they make use of a system of
hard-coded heuristics to find opinion words in de-
pendency parses. While these types of heuristics
support longer-distance syntactic relations, they tend
to focus on cases where some form of semantic com-
positionality holds. However, consider this sentence
from the IT business press: The contract is consis-
tent with the desktop computing Outsourcing deals
Citibank awarded EDS and Digital Equipment in
1996. . . In this case, an interested aggregate reader
might note that “awarded” is a word that puts “out-
sourcing” in a positive light. However, the syntac-
tic relationship between these two words does not
directly imply or permit any semantic composition-
ality, In order to find these relationships, we would
need to invest in techniques that can learn from ar-
bitrary non-compositional structure, thereby poten-
tially capturing patterns in grammar that actually re-
flect some aspects of external pragmatic knowledge.

3 Conclusions

This paper has proposed a challenge for opinion
mining, the challenge of metasubjectivity: where the
answer to the question “What is an opinion?” is in
itself an opinion and an intrinsic part of the task. We
first established the context of metasubjectivity rela-
tive to existing characterizations of the opinion min-
ing task, establishing the notion of an external aggre-
gate reader as a way to extend from existing notions
of sentiment as an internal state. Then we described
how this affects the annotation process, given the
as-yet-continuing dependence on supervised corpus-
based detection techniques. Finally, we described
how this affects sentence-level fine-grained opinion
detection at the level of syntactic analysis.

One of the risks for the field in proceeding to
investigations of how to deal with the question
of metasubjectivity is one familiar in natural lan-
guage processing as a whole: there is a strong risk
that these techniques will—initially and for a non-
trivial quantity of time—cause the incremental per-
formance gains in existing research to be lost or
damaged. It will also require the creation of new
training corpora and related resources, temporarily
threatening comparability. Nevertheless, we believe
that these risks need to be accepted in order to make
progress in sentiment analysis.
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Abstract

Social media users who post bullying related
tweets may later experience regret, potentially
causing them to delete their posts. In this pa-
per, we construct a corpus of bullying tweets
and periodically check the existence of each
tweet in order to infer if and when it becomes
deleted. We then conduct exploratory analy-
sis in order to isolate factors associated with
deleted posts. Finally, we propose the con-
struction of a regrettable posts predictor to
warn users if a tweet might cause regret.

1 Introduction

A large body of literature suggests that participants
in bullying events, including victims, bullies, and
witnesses, are likely to report psychological adjust-
ment problems (Jimerson, Swearer, and Espelage,
2010). One potential source of therapy for these is-
sues can be self-disclosure of the experience to an
adult or friend (Mishna and Alaggia, 2005); exist-
ing research suggests that victims who seek advice
and help from others report less maladjustment than
victims who do not (Shelley and Craig, 2010).

Disclosure of bullying experiences through so-
cial media may be a particularly effective mecha-
nism for participants seeking support because so-
cial media has the potential to reach large audi-
ences and because participants may feel less inhi-
bition when sharing private information in an on-
line setting (Walther, 1996). Furthermore, there is
evidence that online communication stimulates self-
disclosure, which leads to higher quality social rela-

tionships and increased well-being (Valkenburg and
Peter, 2009).

Online disclosure may also present risks for
those involved in bullying however, such as re-
victimization, embarrassment, and social ostraciza-
tion. Evidence exists that some individuals may re-
act to these risks retroactively, by deleting their so-
cial media posts (Child et al., 2011; Christofides,
Muise, and Desmarais, 2009). Several relevant mo-
tives have been found to be associated with delet-
ing posted information, including conflict manage-
ment, safety, fear of retribution, impression manage-
ment, and emotional regulation (Child, Haridakis,
and Petronio, 2012).

Our previous work (Xu et al., 2012) demonstrates
that social media can be a valuable data source when
studying bullying, and proposes a text categorization
method to recognize social media posts describing
bullying episodes, bullying traces. To better under-
stand, and possibly prevent, user regret after posting
bullying related tweets, we collect bullying traces
using the same method and perform regular status
checks to determine if and when tweets become in-
accessible. While a tweet becoming inaccessible
does not guarantee it has been deleted, we attempt to
leverage http response codes to rule out other com-
mon causes of inaccessibility. Speculating that re-
gret may be a major cause of deletion, we first con-
duct exploratory analysis on this corpus and then re-
port the results of an off-the-shelf regret predictor.

2 Data Collection

We adopt the procedure used in (Xu et al., 2012) to
obtain bullying traces; each identified trace contains
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at least one bullying related keyword and passes a
bullying-or-not text classifier.

Our data was collected in realtime using the
Twitter streaming API; once a tweet is collected,
we query its url (https://twitter.com/
USERID/status/TWEETID) at regular intervals
and infer its status from the resulting http response
code. We interpret an HTTP 200 response as an indi-
cation a tweet still exists and an HTTP 404 response,
which indicates the tweet is unavailable, as indicat-
ing deletion. A user changing their privacy settings
can also result in an HTTP 403 response; we do not
consider this to be a deletion. Other response codes,
which appear quite rarely, are treated as anomalies
and ignored. All non HTTP 200 responses are re-
tried twice to ensure they are not transient oddities.

To determine when a tweet is deleted, we at-
tempted to access each tweet at time points Ti =
5 × 4i minutes for i = 0, 1 . . . 7 after the creation
time. These roughly correspond to periods of 5 min-
utes, 20 minutes, 1.5 hours, 6 hours, 1 day, 4 days,
2 weeks, and 2 months. While we assume that user
deletion is the main cause of a tweet becoming un-
available, other causes are possible such as the cen-
sorship of illegal contents by Twitter (Twitter, 2012).

Our sample data was collected from July 31
through October 31, 2012 and contains 522,984 bul-
lying traces. Because of intermittent network and
computer issues, several multiple day data gaps ex-
ist in the data. To combat this, we filter our data to
include only tweets of unambiguous status. If any
check within the 20480 minutes (about two weeks)
interval returns an HTTP 404 code, the tweet is
no longer accessible and we consider it deleted. If
the 20480 minute or 81920 minute check returns an
HTTP 200 response, that tweet is still accessible and
we consider it surviving. The union of the surviving
and deleted groups formed our cleaned dataset, con-
taining 311,237 tweets in total.

3 Exploratory Data Analysis

A user’s decision to delete a bullying trace may be
the result of many factors which we would like to
isolate and understand. In this section we will ex-
amine several such possible factors.

3.1 Word Usage
Our dataset contains 331,070 distinct words and we
are interested in isolating those with a significantly
higher presence among either deleted or surviving
tweets. We define the odds ratio of a word w

r(w) =
P (w | deleted)

P (w | surviving)
,

where P (w | deleted) is the probability of word w
occurring in a deleted tweet, and P (w | surviving) is
the probability of w appearing in a surviving tweet.
In order to ensure stability in the probability estima-
tion, we only considered words appearing at least 50
times in either the surviving or deleted corpora.

Following (Bamman, OConnor, and Smith,
2012), we qualitatively analyzed words with ex-
treme values of r(w), and found some interesting
trends. There was a significant tendency for “jok-
ing” words to occur with r(w) < 0.5; examples in-
clude “xd,” “haha,” and “hahaha.” Joking words oc-
cur less frequently in deleted tweets than surviving
ones. On the other end of the spectrum, there were
no joking words with r(w) > 2. What we found
instead were words such as “rip,” “fat,” “kill,” and
“suicide.” While it is relatively clear that joking is
less likely to occur in deleted tweets, there was less
of a trend among words appearing more frequently
in deleted tweets.

3.2 Surviving Time
Let N be the total number of tweets in our cor-
pus, and D(Ti) be the number of tweets that were
first detected as deleted at minute Ti after creation.
Note that D(Ti) is not cumulative over time: it in-
cludes only deletions that occurred in the time inter-
val (Ti−1, Ti]. Then we may define the deletion rate
at time Ti as

RT (Ti) =
D(Ti)

N(Ti − Ti−1)
.

In other words, RT (t) is the fraction of tweets that
are deleted during the one minute period (t, t+ 1).

We plot RT vs. t using logarithmic scales on both
axes in Figure 1 and the result is a quite strong linear
trend. Fitting the plot with a linear regression, we
derive an inverse relationship between RT and t of
the form

RT (t) ∝ 1/t.
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Figure 1: Deletion rate decays over time.

This result makes sense; the social effects of a par-
ticular bullying tweet may decay over time, making
regret less of a factor. Furthermore, the author may
assume an older tweet has already been seen, render-
ing deletion ineffective. Additionally, because the
drop off in deletion rate is so extreme, we are able to
safely exclude deletions occurring after two weeks
from our filtered dataset without introducing a sig-
nificant amount of noise. Finally,

∑∞
t=0RT (t) gives

the overall fraction of deletion, which in our case is
around 4%.

3.3 Location and Hour of Creations

Some bullying traces contain location meta-data in
the form of GPS coordinates or a user-created profile
string. We employed a reverse geocoding database
(http://www.datasciencetoolkit.org)
and a rule-based string matching method to map
these tweets to their origins (at the state level; only
for tweets within the USA). This also allowed us to
convert creation timestamps from UTC to local time
by mapping user location to timezone. Because
many users don’t share their location, we were only
able to successfully map 85,465 bullying traces to a
US state s, and local hour of day h. Among these
traces, 3,484 were deleted which translates to an
overall deletion rate of about 4%.

Let N(s, h) be the count of bullying traces cre-
ated in state s and hour h. Aggregating these counts
temporally yields NS(s) =

∑
hN(s, h), while ag-

gregating spatially produces NH(h) =
∑

sN(s, h).
Similarly, we can defineD(s, h),DS(s) andDH(h)
as the corresponding counts of deleted traces. We
can now compute the deletion rate

RH(h) =
DH(h)

NH(h)
, and RS(s) =

DS(s)

NS(s)
.

The top row of Figure 2 shows NH(h), DH(h),
and RH(h). We find that NH(h) and DH(h) peak
in the evening, indicating social media users are gen-
erally more active at that time. The peak of RH(h)
appears at late night and, while there are multiple
potential causes for this, we hypothesize that users
may fail to fully evaluate the consequences of their
posts when tired. The bottom row of Figure 2 shows
NS(s), DS(S), and RS(s). The plot of NS(s)
shows that bullying traces are more likely to origi-
nate in California, Texas or New York which is the
result of a population effect. Importantly however,
the deletion rate RS(s) is not affected by population
bias and we see, as expected, that spatial differences
in RS(s) are small. We performed χ2-test to see if
a state’s deletion rate is significantly different from
the national average. We chose the significance level
at 0.05 and used Bonferroni correction for multiple
testing. Only four states have significantly differ-
ent deletion rates from the average: Arizona (6.3%,
p = 5.9×10−5), California (5.2%, p = 2.7×10−7),
Maryland (1.9%, p = 2.3 × 10−5), and Oklahoma
(7.1%, p = 3.5× 10−5).

3.4 Author’s Role

Participants in a bullying episode assume well-
defined roles which dramatically affect the view-
point of the author describing the event. We trained
a text classifier to determine author role (Xu et al.,
2012), and used it to label each bullying trace in the
cleaned corpus by author role: Accuser, Bully, Re-
porter, Victim or Other.

Table 1 shows that compared to tweets produced
by bullies, victims create more bullying traces, pos-
sibly due to an increased need for social support on
the part of the victim. More importantly, P (deleted |
victim) is higher than P (deleted | bully), a statis-
tically significant difference in a two-proportion z-
test. Possibly, victims are more sensitive to their au-
dience’s reaction than bullies.

3.5 Teasing

Many bullying traces are written jokingly. We built a
text classifier to identify teasing bullying traces (Xu
et al., 2012) and applied it to the cleaned corpus.

Table 2 shows that P (deletion | Teasing) is much
lower than P (deletion | Not Teasing) and the differ-
ence is statistically significant in a two-proportion z-
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Figure 2: Counts and deletion rates of geo-tagged bullying traces.

Deleted Total P (deleted | Role)
Accuser 2541 50088 5.07%
Bully 1792 30123 5.95%
Reporter 11370 147164 7.73%
Victim 6497 83412 7.79%
Other 41 450 9.11%

Table 1: Counts and deletion rate for different roles.

Deleted Total P (deleted | Teasing?)
Yes 858 22876 3.75%
Not 21383 288361 7.42%

Table 2: Counts and deletion rate for teasing or not.

test. It seems plausible that authors are less likely to
regret teasing posts because they are less controver-
sial and have less potential to generate negative au-
dience reactions. This also corroborates our findings
in word usage that joking words are less frequent in
deleted tweets.

4 Predicting Regrettable Tweets

Once a bullying tweet is published and seen by oth-
ers, the ensuing effects are often impossible to undo.
Since ill-thought-out posts may cause unexpectedly
negative consequences to an author’s reputation, re-

lationship, and career (Wang et al., 2011), it would
be helpful if a system could warn users before a po-
tentially regrettable tweet is posted. One straightfor-
ward approach is to formulate the task as a binary
text categorization problem.

We use the cleaned dataset, in which each tweet
is known to be surviving or deleted after 20480 min-
utes (about two weeks). Since this dataset contains
22,241 deleted tweets, we randomly sub-sampled
the surviving tweets down to 22,241 to force our
deleted and surviving datasets to be of equal size.
Consequentially, the baseline accuracy of the clas-
sifier is 0.5. While this does make the problem ar-
tificially easier, our initial goal was to test for the
presence of a signal in the data.

We then followed the preprocessing procedure
in (Xu et al., 2012), performing case-folding,
anonymization, and tokenization, treating URLs,
emoticons and hashtags specially. We also chose
the unigrams+bigrams feature representation, only
keeping tokens appearing at least 15 times in the cor-
pus.

We chose to employ a linear SVM implemented
in LIBLINEAR (Fan et al., 2008) due to its effi-
ciency on this large sparse text categorization task
and a 10-fold cross validation was conducted to eval-
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uate its performance. Within the first fold, we use
an inner 5-fold cross validation on the training por-
tion to tune the regularization parameter on the grid
{2−10, 2−9, . . . , 1}; the selected parameter is then
fixed for all the remaining folds.

The resulting cross validation accuracy was 0.607
with a standard deviation of 0.012. While it is statis-
tically significantly better than the random-guessing
baseline accuracy of 0.5 with a p-value of 5.15 ×
10−10, this accuracy is nevertheless too low to be
useful in a practical system. One possibility is that
the tweet text contains very limited information for
predicting inaccessibility; a user’s decision to delete
a tweet potentially depends on many other factors,
such as the conversation context and the characteris-
tics of the author and audience.

In the spirit of exploring additional informative
features for deletion prediction, we also used the
teasing and author role classifiers in (Xu et al.,
2012), and appended the predicted teasing, and au-
thor role labels to our feature vector. This aug-
mented feature representation achieved a cross val-
idation accuracy of 0.606, with standard deviation
0.007; not statistically significantly different from
the text-only feature representation. While it seems
that a signal does exist, leveraging it usefully in real
world scenarios may prove challenging due to the
highly-skewed nature of the data.

5 Discussion

There have been several recent works examin-
ing causes of deletion in social media. Wang
et al. (2011) qualitatively investigated regret associ-
ated with users’ posts on social networking sites and
identified several possible causes of regret. Bamman
et al. (2012) focused on censorship-related deletion
of social media posts, identifying a set of sensitive
terms related to message deletion through a statisti-
cal analysis and spatial variation of deletion rate.

Assuming that deletion in social media is indica-
tive of regret, we studied regret in a bullying con-
text by analyzing deletion trends in bullying re-
lated tweets. Through our analysis, we were able
to isolate several factors related to deletion, includ-
ing word usage, surviving time, and author role. We
used these factors to build a regret predictor which
achieved statistically significant results on this very

noisy data. In the future, we plan to explore more
factors to better understand deletion behavior and re-
gret, including users’ recent posts, historical behav-
ior, and other statistics related to their specific social
network.
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sociation for Computational Linguistics.

702



Proceedings of NAACL-HLT 2013, pages 703–708,
Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

A Cross-language Study on Automatic Speech Disfluency Detection

Wen Wang
SRI International
Menlo Park, CA

wwang@speech.sri.com

Andreas Stolcke
Microsoft Research
Mountain View, CA

anstolck@microsoft.com

Jiahong Yuan, Mark Liberman
University of Pennsylvania

Philadelphia, PA
jiahong.yuan@gmail.com

markyliberman@gmail.com

Abstract

We investigate two systems for automatic dis-
fluency detection on English and Mandarin
conversational speech data. The first system
combines various lexical and prosodic fea-
tures in a Conditional Random Field model for
detecting edit disfluencies. The second system
combines acoustic and language model scores
for detecting filled pauses through constrained
speech recognition. We compare the contri-
butions of different knowledge sources to de-
tection performance between these two lan-
guages.

1 Introduction

Speech disfluencies are common phenomena in
spontaneous speech. They consist of spoken words
and phrases that represent self-correction, hesitation,
and floor-grabbing behaviors, but do not add seman-
tic information; removing them yields the intended,
fluent utterance. The presence of disfluencies in
conversational speech data can cause problems for
both downstream processing (parsing and other nat-
ural language processing tasks) and human readabil-
ity of speech transcripts. There has been much re-
search effort on automatic disfluency detection in
recent years (Shriberg and Stolcke, 1997; Snover
et al., 2004; Liu et al., 2006; Lin and Lee, 2009;
Schuler et al., 2010; Georgila et al., 2010; Zwarts
and Johnson, 2011), particularly from the DARPA
EARS (Effective, Affordable, Reusable Speech-to-
Text) MDE (MetaData Extraction) (DARPA Infor-
mation Processing Technology Office, 2003) pro-
gram, which focused on the automatic transcription

of sizable amounts of speech data and rendering
such transcripts in readable form, for both conversa-
tional telephone speech (CTS) and broadcast news
(BN).

However, the EARS MDE effort was focused on
English only, and there hasn’t been much research
on the effectiveness of similar automatic disfluency
detection approaches for multiple languages. This
paper presents three main innovations. First, we
extend the EARS MDE-style disfluency detection
approach combining lexical and prosodic features
using a Conditional Random Field (CRF) model,
which was employed for detecting disfluency on En-
glish conversational speech data (Liu et al., 2005),
to Mandarin conversational speech, as presented in
Section 2. Second, we implement an automatic
filled pause detection approach through constrained
speech recognition, as presented in Section 3. Third,
for both disfluency detection systems, we compare
side-by-side contributions of different knowledge
sources to detection performance for two languages,
English and Mandarin, as presented in Section 4.
Conclusions appear in Section 5.

2 EARS MDE Style Automatic Disfluency
Detection

We focus on two types of disfluencies,Fillers and
Edit disfluencies, following the EARS MDE disflu-
ency types modeled in (Liu et al., 2006). Fillers in-
clude filled pauses (FP), discourse markers (DM),
and explicit editing terms (ET). FPs are words used
by the speakers as floor holders to maintain con-
trol of a conversation. They can also indicate hes-
itations of the speaker. In this work, English FPs
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compriseuh and um, based on English CTS cor-
pora. For Mandarin, Zhao and Jurafsky found that
Mandarin speakers intensively used both demonstra-
tiveszhege (literally ‘this’)andnage (literally ‘that’)
anduh/mmas FPs based on a large speech corpus of
Mandarin telephone conversation (Zhao and Juraf-
sky, 2005). We study the same set of Chinese FPs in
this study. DMs are words or phrases related to the
structure of the discourse and help taking or keeping
a turn, or serving as acknowledgment, for example,
I mean, you know. An explicit ET is an editing term
in an edit disfluency that is not an FP or a DM. For
example,we have two action items� sorry three ac-
tion items from the meeting, wheresorry is an ex-
plicit ET.

Edit disfluencies involve syntactically relevant
content that is either repeated, revised, or aban-
doned. The basic pattern for edit disfluencies has
the form(reparandum) � <editing term> correc-
tion. The reparandum is the portion of the utterance
that is corrected or abandoned entirely (in the case
of restarts). An interruption point (IP), marked with
‘�’ in the pattern, is the point at which the speaker
breaks off the original utterance and then repeats,
revises, or restarts the utterance. The editing term
is optional and consists of one or more filler words.
The correction is the portion of the utterance that
corrects the original reparandum. Revisions denote
the cases when a speaker modifies the original utter-
ance with a similar syntactic structure, e.g.,we have
two action items� sorry three action items from the
meeting. Restarts denote the cases when a speaker
abandons an utterance or a constituent and restarts
all over again, e.g.,He� I like this idea.

We used a CRF model to combine lexical features,
shallow syntactic features, and prosodic features for
joint detection of edit words and IP words. A CRF
defines a global log-linear distribution of the state
(or label) sequenceE conditioned on an observation
sequence, in our case including the word sequenceW and the featuresF , and optimized globally over
the entire sequence considering the context event in-
formation for making decisions at each point. We
used the Mallet package (McCallum, 2002) to im-
plement the CRF model. We used a first-order model
that includes only two sequential events in the fea-
ture set. The CRF model is trained to maximize
the conditional log-likelihood of a given training

setP (EjW;F ). During testing, the most likely se-
quenceE is found using the Viterbi algorithm. To
avoid over-fitting, a zero-mean Gaussian prior (Mc-
Callum and Li, 2003) was applied to the parame-
ters, where the variance of the prior was optimized
on the development test set. Each word is associ-
ated with a class label, representing whether it is
an edit word or not. We included IP in the target
classes and used five states, asoutside edit(O), be-
gin edit with an IP(B-E+IP), begin edit(B-E), in-
side edit with an IP(I-E+IP), and inside edit (I-
E) (Liu et al., 2006). State transitions are also the
same as in (Liu et al., 2006). We built a Hidden
Markov Model (HMM) based part-of-speech (POS)
taggers for English conversational speech and Man-
darin broadcast conversation data. After employing
the co-training approach described in (Wang et al.,
2007), we achieved 94% POS tagging accuracy for
both data sets. The features for CRF modeling in-
clude: n-grams from words and automatically gen-
erated POS tags, speaker turns, whether there is a
repeated word sequence ending at a word bound-
ary, whether a word is a fragment, whether there
is a predefined filler phrase after the word bound-
ary, and the prosody model posterior probabilities
from a decision tree model (Shriberg and Stolcke,
1997) and discretized by cumulative binning (Liu et
al., 2006). The prosodic features were computed
for each interword boundary from words and pho-
netic alignments of the manual transcriptions. We
extracted the same set of prosodic features for En-
glish and Mandarin data, based on duration, funda-
mental frequency (f0), energy, and pause informa-
tion, and nonprosodic information such as speaker
gender and speaker change, for training and apply-
ing the decision-tree-based prosody model (Liu et
al., 2006).

We implemented a rule-based system for filler
word detection. We defined a list of possible Chi-
nese and English filler words, including filled pauses
and discourse markers. The rules also explore POS
tags assigned by our Chinese and English POS tag-
gers.
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3 Constrained Speech Recognition for
Filled Pause Detection

We also propose an alternative approach for auto-
matic detection of FPs given speech transcripts that
omit FPs but are otherwise accurate. This approach
is motivated by situations where only an edited,
“cleaned-up” transcript is available, but where an
accurate verbatim transcript is to be recovered au-
tomatically. We treat this task as a constrained
speech recognition problem, and investigate how ef-
fectively it is solved by a state-of-the-art large vo-
cabulary continuous speech recognition (LVCSR)
system. Hence, this approach can be considered as
combining LVCSR acoustic model (AM) and lan-
guage model (LM) knowledge sources in a search
framework for FP detection. Compared to the FP
detection component in the disfluency detection sys-
tems described in Section 2, this alternative ap-
proach explores different knowledge sources. In
particular, the AMs explore different front-end fea-
tures compared to the lexical and prosodic features
explored in those disfluency detection systems pre-
sented in Section 2. Details of the front-end features
are illustrated below.

We evaluated this approach on both English and
Mandarin conversational speech. For detecting FPs
in English conversational speech, we used a mod-
ified and simplified form of the recognition sys-
tem developed for the 2004 NIST Rich Transcrip-
tion Conversational Telephone Speech (CTS) eval-
uations, described in (Stolcke et al., 2006). The
first pass of the recognizer uses a within-word
MFCC+MLP model (i.e, trained on Mel-frequency
cepstral coefficient (MFCC) features augmented
with Multi-Layer Perceptron (MLP) based phone-
posterior features), while the second pass uses a
cross-word model trained on Perceptual Linear Pre-
diction (PLP) features adapted (by speaker) to the
output of the first pass. For purposes of FP detec-
tion, the recognition is constrained to a word lat-
tice formed by the manually transcribed non-FP ref-
erence words, with optional FP words inserted be-
tween any two words and at the beginning and end
of each utterance. Both first and second pass de-
coding was constrained by the optional-FP lattices.
In the second pass, HTK lattices were generated
with bigram LM probabilities and rescored with a

4-gram LM. The consensus decoding output from
the rescored lattices was used for scoring FP detec-
tion. The system thus evaluates the posterior prob-
ability of an FP at every word boundary using both
acoustic model (AM) and language model (LM) ev-
idence. The acoustic model for the English recog-
nition system was trained on about 2300 hours of
CTS data. The language models (which models FP
like any other word) are bigram and 4-gram statisti-
cal word n-gram LMs estimated from the same data
plus additional non-CTS data and web data.

For detecting FPs in Mandarin broadcast con-
versation speech, we used a modified form of
the recognition system developed for the 2008
DARPA GALE (Global Autonomous Language Ex-
ploitation) Speech-to-Text evaluation, described in
(Lei et al., 2009). The system conducted a con-
strained decoding on the optional-FP lattices, using
a speaker-independent within-word triphone MPE-
trained MFCC+pitch+MLP model and a pruned
trigram LM. For the Mandarin ASR system, the
MFCC+MLP front-end features were augmented
with 3-dimension smoothed pitch features (Lei et al.,
2006). HTK lattices were generated with probabil-
ities from the pruned trigram LM and rescored by
the full trigram LM. The consensus decoding output
from the rescored lattices was used for scoring FP
detection. The AMs for this system were trained on
1642 hours of Mandarin broadcast news and conver-
sation speech data and the LMs were trained on 1.4
billion words comprising a variety of resources. De-
tails of training data and system development were
illustrated in (Lei et al., 2009).

This procedure is similar to forced aligning the
word lattices to the audio data (Finke and Waibel,
1997). Both Finke et al.’s approach (Finke and
Waibel, 1997) and our approach built a lattice from
each transcription sentence (in our approach, op-
tional filled pauses are inserted between any two
words and at the beginning and end of each utter-
ance). Then Finke et al. force-aligned the lattice
with utterance; whereas, we used multi-pass con-
strained decoding with within-word and cross-word
models, MLLR adaptation of the acoustic models,
and rescoring with a higher-order n-gram LM, so the
performance will be better than just flexible align-
ment to the lattices. Note that when constructing
the word lattices with optional FP words, for En-
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glish, the optional FP words are a choice between
uh and um. For Mandarin, the optional FP words
are a choice betweenuh, mm, zhege, andnage. We
assigned equal weights to FP words.

4 Experimental Results

Scoring of EARS MDE-style automatic disfluency
detection output is done using the NIST tools1,
computing the error rate as the average number of
misclassified words per reference event word. For
English, the training and evaluation data were from
the 40 hours CTS data in the NIST RT-04F MDE
training data including speech, their transcriptions
and disfluency annotations by LDC. We randomly
held out two 3-hour subsets from this training data
set for evaluation and parameter tuning respectively,
and used the remaining data for training. Note
that for Mandarin, there is no LDC released Man-
darin MDE training data. We adapted the English
MDE annotation guidelines for Mandarin and man-
ually annotated the manual transcripts of 92 Man-
darin broadcast conversation (BC) shows released
by LDC under the DARPA GALE program, for edit
disfluencies and filler words. We randomly held out
two 3-hour subsets from the 92 shows for evalu-
ation and parameter tuning respectively, and man-
ually corrected disfluency annotation errors on the
evaluation set.

Table 1 shows the results in NIST error rate (%)
for edit word, IP, and filler word detection. We ob-
serve that adding POS features improves edit word,
edit IP, and filler word detection for both languages,
and adding a prosody model produced further im-
provement (note that filler word detection systems
did not employ prosodic features). The gains from
combining the word, POS, and prosody model over
the word n-gram baseline are statistically significant
for both languages (confidence levelp < 0:05 using
matched pair test). Also, adding the prosody model
over word+POS yielded a larger relative gain in edit
word+IP detection performance for Mandarin than
for English data. A preliminary study of these re-
sults has shown that the prosody model contributes
differently for different types of disfluencies for En-
glish and Mandarin conversational speech and we
will continue this study in future work. We also plan

1www.itl.nist.gov/iad/mig/tests/rt/2004-fall/index.html

to investigate the prosodic features considering the
special characteristics of edited disfluencies in Man-
darin studied in (Lin and Lee, 2009).

Table 1: NIST error rate (%) for edit word, IP, and filler
word detection on the English and Mandarin test set,
using word n-gram features, POS n-gram features, and
prosody model.

Feature NIST Error Rate (%)
Edit Word Edit IP Filler Word

English
Word 53.0 38.7 31.2
+POS 52.6 38.2 29.8
++Prosody 52.3 38.0 29.8

Mandarin
Word 58.5 42.8 33.4
+POS 57.7 42.1 32.9
++Prosody 56.9 41.5 32.9

For evaluating constrained speech recognition for
FP detection, the English test set of conversational
speech data and word transcripts is derived from
the CTS subset of the NIST 2002 Rich Transcrip-
tion evaluation. The waveforms were segmented ac-
cording to utterance boundaries given by the human-
generated transcripts, resulting in 6554 utterance
segments with a total duration of 6.8 hours. We then
excluded turns that have fewer than five tokens or
have two or more FPs in a row (such as ‘uh um’ and
‘uh, uh’), resulting in 3359 segments. This yields
the test set from which we computed English FP de-
tection scores. The transcripts of this test set con-
tain 54511 non-FP words and 1394 FPs, transcribed
as eitheruh or um. When evaluating FP detection
performance, these two orthographical forms were
mapped to a single token type, so recognizing one
form as the other is not penalized. The Mandarin
test set is the DARPA GALE 2008 Mandarin speech-
to-text development test set of 1 hour duration. The
transcripts of this test set contain 9820 non-FP words
and 370 FP words, transcribed asuh, mm, zhege,
andnage. We collapsed them to a single token type
for FP scoring. We evaluated FP detection perfor-
mance in terms of both false alarm (incorrect detec-
tion) and miss (failed detection) rates, shown in Ta-
ble 2. We observed that adding pronunciation scores
didn’t change thePfa andPmiss. On the English
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test set, adding LM scores degradedPmiss but im-
provedPfa. However, on the Mandarin test set, in-
creasing LM weight improved bothPmiss andPfa,
suggesting that for the Mandarin LVCSR system in
this study, the LM could provide complementary in-
formation to the AM to discriminate FP and non-FP
words.

Table 2: Probabilities of false alarms (FAs) and misses in
FP detection on the English and Mandarin test set w.r.t.
acoustic model weightwa, language model weightwg,
and pronunciation score weightwp.fwa; wg; wpg FAs (%) Misses (%)

Englishf1,0,8g 1.76 3.23f1,8,8g 1.18 4.73
Mandarinf1,0,8g 1.19 19.68f1,8,8g 0.76 16.76

5 Conclusion

In conclusion, we have presented two automatic dis-
fluency detection systems, one combining various
lexical and prosodic features, and the other com-
bining LVCSR acoustic and language model knowl-
edge sources. We observed significant improve-
ments in combining lexical and prosodic features
over just employing word n-gram features, for both
languages. When combining AM and LM knowl-
edge sources for FP detection in constrained speech
recognition, we found increasing LM weight im-
proved both false alarm and miss rates for Mandarin
but degraded the miss rate for English.
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Abstract

Atypical semantic and pragmatic expression is
frequently reported in the language of children
with autism. Although this atypicality often
manifests itself in the use of unusual or un-
expected words and phrases, the rate of use
of such unexpected words is rarely directly
measured or quantified. In this paper, we
use distributional semantic models to automat-
ically identify unexpected words in narrative
retellings by children with autism. The classi-
fication of unexpected words is sufficiently ac-
curate to distinguish the retellings of children
with autism from those with typical develop-
ment. These techniques demonstrate the po-
tential of applying automated language anal-
ysis techniques to clinically elicited language
data for diagnostic purposes.

1 Introduction

Autism spectrum disorder (ASD) is a neurodevelop-
mental disorder characterized by impaired commu-
nication and social behavior. Although the symp-
toms of ASD are numerous and varied, atypical
and idiosyncratic language has been one of the
core symptoms observed in verbal individuals with
autism since Kanner first assigned a name to the
disorder (Kanner, 1943). Atypical language cur-
rently serves as a diagnostic criterion in many of the
most widely used diagnostic instruments for ASD
(Lord et al., 2002; Rutter et al., 2003), and the phe-
nomenon is especially marked in the areas of seman-
tics and pragmatics (Tager-Flusberg, 2001; Volden
and Lord, 1991).

Because structured language assessment tools are
not always sensitive to the particular atypical seman-
tic and pragmatic expression associated with ASD,
measures of atypical language are often drawn from
spontaneous language samples. Expert manual an-
notation and analysis of spontaneous language in
young people with ASD has revealed that children
and young adults with autism include significantly
more bizarre and irrelevant content (Loveland et al.,
1990; Losh and Capps, 2003) in their narratives and
more abrupt topic changes (Lam et al., 2012) in
their conversations than their language-matched typ-
ically developing peers. Most normed clinical in-
struments for analyzing children’s spontaneous lan-
guage, however, focus on syntactic measures and
developmental milestones related to the acquisition
of vocabulary and syntactic structures. Measures of
semantic and pragmatic atypicality in spontaneous
language are rarely directly measured. Instead, the
degree of language atypicality is often determined
via subjective parental reports (e.g., asking a par-
ent whether their child has ever used odd phrases
(Rutter et al., 2003)) or general impressions dur-
ing clinical examination (e.g., rating the child’s de-
gree of “stereotyped or idiosyncratic use of words or
phrases” on a four-point scale (Lord et al., 2002)).
This has led to a lack of reliable and objective infor-
mation about the frequency of atypical language use
and its precise nature in ASD.

In this study, we attempt to automatically detect
instances of contextually atypical language in spon-
taneous speech at the lexical level in order to quan-
tify its prevalence in the ASD population. We first
determine manually the off-topic, surprising, or in-
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appropriate words in a set of narrative retellings
elicited in a clinical setting from children with ASD
and typical development. We then apply word rank-
ing methods and distributional semantic modeling to
these narrative retellings in order to automatically
identify these unexpected words. The results indi-
cate not only that children with ASD do in fact pro-
duce more semantically unexpected and inappropri-
ate words in their narratives than typically develop-
ing children but also that our automated methods
for identifying these words are accurate enough to
serve as an adequate substitute for manual annota-
tion. Although unexpected off-topic word use is just
one example of the atypical language observed in
ASD, the work presented here highlights the poten-
tial of computational language evaluation and analy-
sis methods for improving our understanding of the
linguistic deficits associated with ASD.

2 Data

Participants in this study included 37 children with
typical development (TD) and 21 children with
autism spectrum disorder (ASD). ASD was diag-
nosed via clinical consensus according to the DSM-
IV-TR criteria (American Psychiatric Association,
2000) and the established threshold scores on two
diagnostic instruments: the Autism Diagnostic Ob-
servation Schedule (ADOS) (Lord et al., 2002), a
semi-structured series of activities designed to allow
an examiner to observe behaviors associated with
autism; and the Social Communication Question-
naire (SCQ) (Rutter et al., 2003), a parental ques-
tionnaire. None of the children in this study met
the criteria for a language impairment, and there
were no significant between-group differences in
age (mean=6.4) or full-scale IQ (mean=114).

The narrative retelling task analyzed here is the

Narrative Memory subtest of the NEPSY (Korkman
et al., 1998), a large and comprehensive battery of
tasks that test neurocognitive functioning in chil-
dren. The NEPSY Narrative Memory (NNM) sub-
test is a narrative retelling test in which the subject
listens to a brief narrative, excerpts of which are
shown in Figure 1, and then must retell the narra-
tive to the examiner. The NNM was administered
to each participant in the study, and each partici-
pant’s retelling was recorded and transcribed. Us-
ing Amazon’s Mechanical Turk, we also collected
a large corpus of retellings from neurotypical adults,
who listened to a recording of the story and provided
written retellings. We describe how this corpus was
used in Section 3, below.

Two annotators, blind to the diagnosis of the ex-
perimental subjects, identified every word in each
retelling transcript that was unexpected or inappro-
priate given the larger context of the story. For in-
stance, in the sentence T-rex could smell things, both
T-rex and smell were marked as unexpected, since
there is no mention of either concept in the story. In
a seemingly more appropriate sentence, the boy sat
up off the bridge, the word bridge is considered un-
expected since the boy is trapped up in a tree rather
than on a bridge.

3 Methods
We start with the expectation that different retellings
of the same source narrative will share a common
vocabulary and semantic space. The presence of
words outside of this vocabulary or semantic space
in a retelling may indicate that the speaker has
strayed from the topic of the story. Our approach for
automatically identifying these unexpected words
relies on the ranking of words according to the
strength of their association with the target topic of
the corpus. The word association scores used in the

Figure 1: Excerpts from the NNM narrative.

Jim was a boy whose best friend was Pepper. Pepper was a big black dog. [...] Near Jim’s house was a
very tall oak tree with branches so high that he couldn’t reach them. Jim always wanted to climb that tree,
so one day he took a ladder from home and carried it to the oak tree. He climbed up [...] When he started
to get down, his foot slipped, his shoe fell off, and the ladder fell to the ground. [...] Pepper sat below the
tree and barked. Suddenly Pepper took Jim’s shoe in his mouth and ran away. [...] Pepper took the shoe to
Anna, Jim’s sister. He barked and barked. Finally, Anna understood that Jim was in trouble. She followed
Pepper to the tree where Jim was stuck. Anna put the ladder up and rescued Jim.
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ranking are informed by the frequency of a word
in the child’s retelling relative to the frequency of
that word in other retellings in the larger corpus of
retellings. These association measures are similar
to those developed for the information retrieval task
of topic modeling, in which the goal is to identify
topic-specific words – i.e., words that appear fre-
quently in only a subset of documents – in order
to cluster together documents about a similar topic.
Details about how these scores are calculated and in-
terpreted are provided in the following sections.

The pipeline for determining the set of unusual
words in each retelling begins by calculating word
association scores, described below, for each word
in each retelling and ranking the words according to
these scores. A threshold over these scores is de-
termined for each child using leave-one-out cross
validation in order to select a set of potentially un-
expected words. This set of potential unexpected
words is then filtered using two external resources
that allow us to eliminate words that were not used
in other retellings but are likely to be semantically
related to topic of the narrative. This final set of
words is evaluated against the set of manually iden-
tified words in order determine the accuracy of our
unexpected word classification.

3.1 Word association measures

Before calculating the word association measures,
we tokenize, downcase, and stem (Porter, 1980) the
transcripts and remove all punctuation. We then use
two association measures to score each word in each
child’s retelling: tf-idf, the term frequency-inverse
document frequency measure (Salton and Buckley,
1988), and the log odds ratio (van Rijsbergen et al.,
1981). We use the following formulation to calcu-
late tf-idf for each child’s retelling i and each word
in that retelling j, where cij is the count of word j
in retelling i; fj is the number of retellings from the
full corpus of child and adult retellings containing
that word j; and D is the total number of retellings
in the full corpus (Manning et al., 2008):

tf-idfij =

{
(1 + log cij) log D

fj
if cij ≥ 1

0 otherwise

The log odds ratio, another association measure
used in information retrieval and extraction tasks, is

the ratio between the odds of a particular word, j,
appearing in a child’s retelling, i, as estimated us-
ing its relative frequency in that retelling, and the
odds of that word appearing in all other retellings,
again estimated using its relative frequency in all
other retellings. Letting the probability of a word
appearing in a retelling be p1 and the probability of
that word appearing in all other retellings be p2, we
can express the odds ratio as follows:

odds ratio =
odds(p1)

odds(p2)
=

p1/(1− p1)

p2/(1− p2)

A large tf-idf or log odds score indicates that the
word j is very specific to the retelling i, which in
turn suggests that the word might be unexpected or
inappropriate in the larger context of the NNM nar-
rative. Thus we expect that the words with higher as-
sociation measure scores are likely to be the words
that were manually identified as unexpected in the
context of the NNM narrative.

3.2 Application of word association measures
As previously mentioned, both of these word associ-
ation measures are used in information retrieval (IR)
to cluster together documents about a similar target
topic. In IR, words that appear only in a subset of
documents from a large and varied corpus of docu-
ments will have high word association scores, and
the documents containing those words will likely be
focused on the same topic. In our task, however,
we have a single cluster of documents focused on
a single topic: the NNM narrative. Topic-specific
words ought to occur much more frequently than
other words. As a result, words with high tf-idf and
log odds scores are likely to be those unrelated to
the topic of the NNM story. If a child veers away
from the topic of the NNM story and uses words that
do not occur frequently in the retellings produced
by neurotypical speakers, his retellings will contain
more words with high word association scores. We
predict that this set of high-scoring words is likely to
overlap significantly with the set of words identified
by the manual annotators as unexpected or off-topic.

Applying these word association scoring ap-
proaches to each word in each child’s retelling yields
a list of words from each retelling ranked in order of
decreasing tf-idf or log odds score. We use cross-
validation to determine, for each measure, the op-
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erating point that maximizes the unexpected word
identification accuracy in terms of F-measure. For
each child, the threshold is found using the data from
all of the other children. This threshold is then ap-
plied to the ranked word list of the held-out child.
All words above this threshold are potential unex-
pected words, while all words below this threshold
are considered to be expected and appropriate in the
context of the NNM narrative. Table 1 shows the
recall, precision, and F-measure using the two word
association measures discussed here. We see that
these two techniques result in high recall at the ex-
pense of precision. The next stage in the pipeline is
therefore to use external resources to eliminate any
semantically appropriate words from the set of po-
tentially unexpected or inappropriate words gener-
ated via thresholding on the tf-idf or log odds score.

3.3 Filtering with external resources

Recall that the corpus of retellings used to gener-
ate the word association measures described above,
is very small. It is therefore quite possible that a
child may have used an entirely appropriate word
that by chance was never used by another child or
one of the neurotypical adults. One way of increas-
ing the lexical coverage of the corpus of retellings
is through semantic expansion using an external re-
source. For each word in the set of potential un-
expected words, we located the WordNet synset for
that word (Fellbaum, 1998). If any of the WordNet
synonyms of the potentially unexpected word was
present in the source narrative or in one of the adult
retellings, that word was removed from the set of
unexpected words.

In the final step, we used the CHILDES corpus
of transcripts of children’s conversational speech
(MacWhinney, 2000) to generate topic estimates for
each remaining potentially unexpected word. For
each of these words, we located every utterance in
the CHILDES corpus containing that potentially un-
expected word. We then measured the association
of that word with every other open-class word that
appeared in an utterance with that word using the
log likelihood ratio (Dunning, 1993). The 20 words
from the CHILDES corpus with the highest log like-
lihood ratio (i.e., the words most strongly associ-
ated with the potentially unexpected word), were as-
sumed to collectively represent a particular topic. If

more than two of the words in the vector of words
representing this topic were also present in the NNM
source narrative or the adult retellings, the word that
generated that topic was eliminated from the set of
unexpected words.

We note that the optimized threshold described
in Section 3.2, above, is determined after filtering.
There is therefore potentially a different threshold
for each condition tested, and hence we do not nec-
essarily expect precision to increase and recall to
decrease after filtering. Rather, since the threshold
is selected in order to optimize F-measure, we ex-
pect that if the filtering is effective, F-measure will
increase with each additional filtering condition ap-
plied.

4 Results

We evaluated the performance of our two word rank-
ing techniques, both individually and combined by
taking either the maximum of the two measures or
the sum, against the set of manually annotations de-
scribed in Section 2. In addition, we report the re-
sults of applying these word ranking techniques in
combination with the two filtering techniques. We
compare these results with a simple baseline method
in which every word used in a retelling that is never
used in another retelling is considered to be unex-
pected. Table 1 shows the precision, accuracy, and
F-measure of these approaches. We see that all of
the more sophisticated unexpected word identifica-
tion approaches outperform the baseline by a wide
margin, and that tf-idf and log odds perform compa-
rably under the condition without filtering and both
filtering conditions. Filtering improves F-measure
under both word ranking schemes, and combining
the two measures results in further improvements
under both filtering conditions. Although apply-
ing topic-estimate filtering yields the highest preci-
sion, the simple WordNet-based approach results in
the highest F-measure and a reasonable balance be-
tween precision and recall.

Recall that the purpose of identifying these un-
expected words was to determine whether children
with ASD produce unexpected and inappropriate
words at a higher rate than children with typical de-
velopment. This appears to be true in our manu-
ally annotated data. On average, 7.5% of the words
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Unexpected word identification method P R F1
Baseline 46.3 74.0 57.0
TF-IDF 72.1 79.5 75.6
Log-odds 70.5 79.5 74.7
Sum(TF-IDF, Log-odds) 72.2 83.3 77.4
Max(TF-IDF, Log-odds) 69.9 83.3 76.0
TF-IDF+WordNet 83.8 80.5 82.1
Log-odds+WordNet 82.1 83.1 82.6
Sum(TF-IDF, Log-odds)+WordNet 84.2 83.1 83.7
Max(TF-IDF, Log-odds)+WordNet 83.3 84.4 83.9
TF-IDF+WordNet+topic 85.7 77.9 81.7
Log-odds+WordNet+topic 83.8 80.5 82.1
Sum(TF-IDF, Log-odds)+WordNet+topic 86.1 80.5 83.2
Max(TF-IDF, Log-odds)+WordNet+topic 85.1 81.8 83.4

Table 1: Accuracy of unexpected word identification.

types produced by children with ASD were marked
as unexpected, while only 2.5% of words produced
by children with TD were marked as unexpected, a
significant difference (p < 0.01, using a one-tailed
t-test). This significant between-group difference
in rate of unexpected word use holds even when
using the automated methods of unexpected word
identification, with the best performing unexpected
word identification method estimating a mean of
6.6% in the ASD group and 2.5% in the TD group
(p < 0.01).

5 Conclusions and future work

The automated methods presented here for rank-
ing and filtering words according to their distribu-
tions in different corpora, which are adapted from
techniques originally developed for topic modeling
in the context of information retrieval and extrac-
tion tasks, demonstrate the utility of automated ap-
proaches for the analysis of semantics and pragmat-
ics. We were able to use these methods to iden-
tify unexpected or inappropriate words with high
enough accuracy to replicate the patterns of unex-
pected word use manually observed in our two di-
agnostic groups. This work underscores the poten-
tial of automated techniques for improving our un-
derstanding of the prevalence and diagnostic utility
of linguistic features associated with ASD and other
communication and language disorders.

In future work, we plan to use a development set
to determine the optimal number of topical words
to select during the topic estimate filtering stage of
the pipeline in order to maintain improvements in

precision without a loss in recall. We would also
like to investigate using part-of-speech, word sense,
and parse information to improve our approaches
for both semantic expansion and topic estimation.
Although the rate of unexpected word use alone is
unlikely to provide sufficient power to classify the
two diagnostic groups investigated here, we expect
that it can serve as one feature in an array of fea-
tures that capture the broad range of semantic and
pragmatic atypicalities observed in the spoken lan-
guage of children with autism. Finally, we plan to
apply these same methods to identify the confabula-
tions and topic shifts often observed in the narrative
retellings of the elderly with neurodegenerative con-
ditions.
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Abstract

Automatic assessment of reading ability
builds on applying speech recognition tools
to oral reading, measuring words correct per
minute. This work looks at more fine-grained
analysis that accounts for effects of prosodic
context using a large corpus of read speech
from a literacy study. Experiments show that
lower-level readers tend to produce relatively
more lengthening on words that are not likely
to be final in a prosodic phrase, i.e. in less
appropriate locations. The results have impli-
cations for automatic assessment of text dif-
ficulty in that locations of atypical prosodic
lengthening are indicative of difficult lexical
items and syntactic constructions.

1 Introduction

Fluent reading is known to be a good indicator of
reading comprehension, especially for early readers
(Rasinski, 2006), so oral reading is often used to
evaluate a student’s reading level. One method that
can be automated with speech recognition technol-
ogy is the number of words that a student can read
correctly of a normed passage, or Words Correct
Per Minute (WCPM) (Downey et al., 2011). Since
WCPM depends on speaking rate as well as liter-
acy, we are interested in identifying new measures
that can be automatically computed for use in com-
bination with WCPM to provide a better assessment
of reading level. In particular, we investigate fine-
grained measures that, if useful in identifying points
of difficulty for readers, can lead to new approaches
for assessing text difficulty.

The WCPM is reduced when a person repeats or
incorrectly reads a word, but also when they in-
troduce pauses and articulate words more slowly.
Pauses and lengthened articulation can be an indi-
cator of uncertainty for a low-level reader, but these
phenomena are also used by skilled readers to mark
prosodic phrase structure, facilitating comprehen-
sion in listeners. Since prosodic phrase boundaries
tend to occur in locations that coincide with certain
syntactic constituent boundaries, it is possible to au-
tomatically predict prosodic phrase boundary loca-
tions from part-of-speech labels and syntactic struc-
ture with fairly high reliability for read news stories
(Ananthakrishnan and Narayanan, 2008). Thus, we
hypothesize that we can more effectively leverage
word-level articulation and pause information by fo-
cusing on words that are less likely to be associ-
ated with prosodic phrase boundaries. By compar-
ing average statistics of articulation rate and paus-
ing for words at boundary vs. non-boundary loca-
tions, we hope to obtain a measure that could aug-
ment reading rate for evaluating reading ability. We
also hypothesize that the specific locations of hesita-
tion phenomena (word lengthening and pausing) ob-
served for multiple readers will be indicative of par-
ticular points of difficulty in a text, either because a
word is difficult or because a syntactic construction
is difficult. Detecting these regions and analyzing
the associated lexical and syntactic correlates is po-
tentially useful for automatically characterizing text
difficulty.

Our study of hesitation phenomena involves em-
pirical analysis of the oral reading data from the Flu-
ency Addition to the National Assessment of Adult
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Literacy (FAN), which collected oral readings from
roughly 12,000 adults, reading short (150-200 word)
fourth- and eighth grade passages (Baer et al., 2009).
The participants in that study were chosen to re-
flect the demographics of adults in the United States;
thus, speakers of varying reading levels and non-
native speakers were included. For our study, we
had access to time alignments of automatic tran-
scriptions, but not the original audio files.

2 Related Work

For low-level readers, reading rate and fluency are
good indicators of reading comprehension (Miller
and Schwanenflugel, 2006; Spear-Swerling, 2006).
Zhang and colleagues found that features of chil-
dren’s oral readings, along with their interactions
with an automated tutor, could predict a single stu-
dent’s comprehension question performance over
the course of a document (2007). Using oral read-
ings is appealing because it avoids the difficulty of
separating question difficulty from passage difficulty
(Ozuru et al., 2008) and of questions that can be an-
swered through world knowledge (Keenan and Bet-
jemann, 2006).

WCPM is generally used as a tool for assessing
reading level by averaging across one or more pas-
sages. It is more noisy when comparing the read-
ability of different texts, especially when the reading
level is measured at a fine-grained (e.g. word) level.
If longer words take longer to read orally, it may
be merely a consequence of having more phonemes,
and not of additional reading difficulty. Further,
for communication reasons, pauses and slow aver-
age articulation rates tend to coincide with major
phrase boundaries. In our work, we would like to ac-
count for prosodic context in using articulation rate
to identify difficult words and constructions.

Much of the previous work on using automatic
speech recognition (ASR) output for reading level
or readability analysis has focused on assessing the
reading level of children (Downey et al., 2011;
Duchateau et al., 2007). Similar success has been
seen in predicting fluency scores in oral reading
tests for L2 learners of English (Balogh et al., 2012;
Bernstein et al., 2011). Project LISTEN has a read-
ing tutor for children that gives real-time feedback,
and has used orthographic and phonemic features

of individual words to predict the likelihood of real
word subsitutions (Mostow et al., 2002).

3 FAN Literacy Scores

To examine the utility of word-level pause and ar-
ticulation rate features for predicting reading level
when controlled for prosodic context, we use the Ba-
sic Reading Skills (BRS) score available for each
reader in the FAN data. The BRS score measures
an individual’s average reading rate in WCPM. Each
participant read three word lists, three pseudo-word
lists, one easy text passage, and one harder text pas-
sage, and the BRS is the average WCPM over the
eight different readings. Specifically, the WCPM
for each case is computed automatically using Ordi-
nate’s VersaReader system to transcribe the speech
given the target text (Balogh et al., 2005). The sys-
tem output is then automatically aligned to the tar-
get texts using the track-the-reader method of Ras-
mussen et al. (2011), which defines weights for re-
gressions and skipped words and then identifies a
least-cost alignment between the ASR output and a
text. Automatic calculation of WCPM has high cor-
relation (.96-1.0) with human judgment of WCPM
(Balogh et al., 2012), so it has the advantage of be-
ing easy to automate.

Word Error Rate (WER) for the the ASR compo-
nent in Ordinate’s prototype reading tracker (Balogh
et al., 2012) may be estimated to be between 6% and
10%. In a sample of 960 passage readings, where
various sets of two passages were read by each of
480 adults (160 native Spanish speakers, 160 native
English-speaking African Americans, and 160 other
native English speakers), the Ordinate ASR system
exhibited a 6.9% WER on the 595 passages that con-
tained no spoken material that was unintelligible to
human transcribers. On the complete set of 960 pas-
sages, the system exhibited a 9.9% WER, with each
unintelligible length of speech contributing one or
more errors to the word error count.

The greatest problem with speech recognition er-
rors is for very low-level readers (Balogh et al.,
2012). In order to have more reliable time align-
ments and BRS scores, approximately 15% of the
FAN participants were excluded from the current
analysis. This 15% were those participants whose
BRS score was labeled ”Below Basic” in the NAAL
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reading scale. Additional participants were elimi-
nated because of missing or incomplete (less than a
few seconds) recordings. With these exclusions, the
number of speakers in our study was 7587.

4 Prosodic Boundary Prediction

We trained a regression tree1 on hand-annotated
data from the Boston University Radio News Cor-
pus (Ostendorf et al., 1995) to predict the locations
where we expect to see prosodic boundaries. Each
word in the Radio News Corpus is labeled with a
prosodic boundary score from 0 (clitic, no bound-
ary) to 6 (sentence boundary). For each word, we
use features based on parse depth and structure and
POS bigrams to predict the prosodic boundary value.

For evaluation, the break labels are grouped into:
0-2 (no intonational boundary marker), 3 (intermedi-
ate phrase), and 4-6 (intonational phrase boundary).
Words with 0-2 breaks are considered non-boundary
words; 4-6 are boundary words. We expect that, for
fluent readers, lengthening and possibly pausing will
be observed after boundary words but not after non-
boundary words. Since the intermediate boundaries
are the most difficult to classify, and may be can-
didates for both boundaries and non-boundaries for
fluent readers, we omit them in our analyses. Our
model achieves 87% accuracy in predicting ± in-
tonational phrase boundaries and 83% accuracy in
predicting ± no intonational boundary, treating in-
termediate phrase boundaries as negative instances
in both cases.

Note that our 3-way prosodic boundary predic-
tion is aimed at identifying locations where fluent
readers are likely to place boundaries (or not), i.e.,
reliable locations for feature extraction, vs. accept-
able locations for text-to-speech synthesis. Because
of this goal and because work on prosodic bound-
ary prediction labels varies in its treatment of inter-
mediate phrase boundaries, our results are not di-
rectly comparable to prior studies. However, per-
formance is in the range reported in recent studies
predicting prosodic breaks from text features only.
Treating intermediate phrase boundaries as positive
examples, Ananthakrishnan and Narayanan (2008)

1Our approach differs slightly from previous work in the use
of a regression (vs. classification) model; this gave a small per-
formance gain.

achieve 88% accuracy. Treating them as negative
examples, Margolis and Ostendorf (2010) achieve
similar results. Both report results on a single held-
out test set, while our results are based on 10-fold
cross validation.

5 Experiments with Prosodic Context

5.1 Word-level Rate Features

We looked at two acoustic cues related to hesitation
or uncertainty: pause duration and word lengthen-
ing. While pause duration is straightforward to ex-
tract (and not typically normalized), various meth-
ods have been used for word lengthening. We ex-
plore two measures of word lengthening: i) the
longest normalized vowel, and ii) the average nor-
malized length of word-final phones (the last vowel
and all following consonants). Word-final length-
ening is known to be a correlate of fluent prosodic
phrase boundaries (Wightman et al., 1992), and
we hypothesized that the longest normalized vowel
might be useful for hesitations though it can also in-
dicate prosodic prominence.

For word-level measures of lengthening, it is stan-
dard to normalize to account for inherent phoneme
durations. We use a z-score: measured duration mi-
nus phone mean divided by phone standard devia-
tion. In addition, Wightman et al. (1992) found it
useful to account for speaking rate in normalizing
phone duration. We adopt the same model, which
assumes that phone durations can be characterized
by a Gamma distribution and that speaker variabil-
ity is characterized by a linear scaling of the phone-
dependent mean parameters, where the scaling term
is shared by all phones. The linear scale factor α for
a speaker is estimated as:

α =
1
N

N∑
i=1

di

µp(i)
(1)

where di is the duration of the i-th phone which has
label p(i) and where µp is the speaker-independent
mean of phone p. Here, we use a speaker-
independent phone mean computed from the TIMIT
Corpus,2 which has hand-marked phonetic labels
and times. We make use of the speaking rate model

2Available from the Linguistic Data Consortium.
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to adjust the speaker-independent TIMIT phone du-
rations to the speakers in the FAN corpus by cal-
culating the linear scale factor α for each speaker.
Thus, the phone mean and standard deviation used
in the z-score normalization is αµpi and ασpi , re-
spectively.

From the many readings of the eight passages, we
identified roughly 777K spoken word instances at
predicted phrase boundaries and 2.0M spoken words
at predicted non-boundaries. For each uttered word,
we calculated three features: the length of the fol-
lowing pause, the length of the longest normalized
vowel, and the averaged normed length of all phones
from the last vowel to the end of the word, as de-
scribed above. The word-level features can be av-
eraged across instances from a speaker for assessing
reading level or across instances of a particular word
in a text uttered by many speakers to assess local text
difficulty.

The phone and pause durations are based on rec-
ognizer output, so they will be somewhat noisy.
The fact that the recognizer is biased towards the
intended word sequence and the omission of the
lowest-level readers from this study together con-
tribute to reducing the error rate (< 10%) and in-
creasing the reliability of the features. In addition,
noise is reduced by averaging over multiple words
or multiple speakers.

5.2 Reading Level Analysis
To assess the potential for prosodic context to im-
prove the utility of word-level features for assessing
reading difficulty, we looked at duration lengthening
and pauses at boundary and non-boundary locations,
where the boundary labels are predicted using the
text-based algorithm and 3-class grouping described
in section 4.

First, for each speaker, we averaged each fea-
ture across all boundary words read by that person
and across all non-boundary words read by that per-
son. We hypothesized that skilled readers would
have shorter averages for all three features at non-
boundary words compared to at boundary words,
while the differences for lower-level readers would
be smaller because of lengthening due to uncertainty
at non-boundary words. The difference between the
boundary and non-boudnary word averages for nor-
malized duration of end-of-word phones is plotted in

Figure 1: Mean end-of-word normalized phone duration
(+/- standard deviation) as a function of BRS score

Figure 1 as a function of reading level. As expected,
the difference increases with reading skill, as mea-
sured by BRS. A similar trend is observed for the
longest normalized vowel in the word.

We also looked at pause duration, finding that the
average pause duration decreases as reading skill in-
creases for both boundary and non-boundary words.
Since pauses are not always present at intonational
phrase boundaries, but are more likely at sentence
boundaries, we investigated dividing the cases by
punctuation rather than prosodic context. Table 1
shows that for both the top 20% of readers and the
bottom 20% of readers, sentence boundaries had
much longer pauses on average, followed by comma
boundaries, and unpunctuated word boundaries. The
drop in both pause frequency and average pause du-
ration is much greater for the more skilled readers.

Looking at all speakers, the unpunctuated words
had an average pause duration that scaled with the
speaking rate estimate for that passage, with high
correlation (0.94). The correlation was much lower
for sentence boundaries (0.44). Thus, we conclude
that the length of pauses at non-boundary locations
is related to the speaker’s reading ability.

5.3 Identifying Difficult Texts

Instead of averaging over multiple words in a pas-
sage, we can average over multiple readings of a
particular word. We identified difficult regions in
texts by sorting all tokens by the average normalized
length of their end-of-word phones for the lowest
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Top 20% Bottom 20%
Pause Rate Avg. Pause Duration Pause Rate Avg. Pause Duration

Sentence-final 81.0% 177 ms 84.7% 283 ms
Comma 26.1% 94 ms 47.0% 168 ms

No punctuation 4.6% 77 ms 16.6% 139 ms
Table 1: Frequency of occurrence and average duration of pauses at sentence boundaries, comma boundaries, and
unpunctuated word boundaries for the top and bottom 20% of all readers, as sorted by BRS score

20% of readers. The examples suggest that length-
ening may coincide with reading difficulty caused
by syntactic ambiguity. Two sentences, with the
lengthened word in bold, illustrate representative
ambiguities:
• She was there for me the whole time my

grandfather was in the hospital.
• Since dogs are gentler when raised by a fam-

ily the dogs are given to children when the dogs
are about fourteen months old.

In the first example, “me” could be the end of the
sentence, while in the second example, readers may
expect “gentler” to be the end of the subordinate
clause started by “since”. The lengthening on these
words is much smaller for the top 20% of readers,
suggesting that the extra lengthening is associated
with points of difficulty for the less skilled readers.

Similarly, we identified sentences with non-
boundary locations where readers commonly
paused, with the word after the pause in bold:
• We have always been able to share our es-

capades and humor with our friends.
• Check with your doctor first if you are a man

over forty or a woman over fifty and you plan
to do vigorous activity instead of moderate ac-
tivity.

We observe a wider variety of potential difficulties
here. Some are associated with difficult words, as in
the first example, while others involve syntactic am-
biguities similar to the ones seen in the lengthening
cases.

6 Summary

We have shown that duration lengthening and pause
cues align with expected prosodic structure (pre-
dicted from syntactic features) more for skilled read-
ers than for low-level readers, which we hope may
lead to a richer assessment of individual reading dif-
ficulties. In addition, we have proposed a method

of characterizing text difficulty at a fine grain based
on these features using multiple oral readings. In or-
der to better understand the information provided by
the different features, we are conducting eye track-
ing experiments on these passages, and future work
will include an analysis of readers’ gaze during read-
ing of these constructions that have been categorized
in terms of their likely prosodic context.

In this work, where the original recordings were
not available, the study was restricted to duration
features. However, other work has suggested that
other prosodic cues, particularly pitch and energy
features, are useful for detecting speaker uncertainty
(Litman et al., 2009; Litman et al., 2012; Pon-Barry
and Shieber, 2011). Incorporating these cues may
increase the reliability of detecting points of read-
ing difficulty and/or offer complementary informa-
tion for characterizing text difficulties.
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Abstract

In this paper we leverage methods from sub-
modular function optimization developed for
document summarization and apply them to
the problem of subselecting acoustic data. We
evaluate our results on data subset selection
for a phone recognition task. Our framework
shows significant improvements over random
selection and previously proposed methods us-
ing a similar amount of resources.

1 Introduction

Present-day applications in spoken language technol-
ogy (speech recognizers, keyword spotters, etc.) can
draw on an unprecedented amount of training data.
However, larger data sets come with increased de-
mands on computational resources; moreover, they
tend to include redundant information as their size
increases. Therefore, the performance gain curves
of large-scale systems with respect to the amount of
training data often show “diminishing returns”: new
data is often less valuable (in terms of performance
gain) when added to a larger pre-existing data set than
when added to a smaller pre-existing set (e.g.,(Moore,
2003)). Therefore it is of prime importance to de-
velop methods for data subset selection. We distin-
guish two data subselection scenarios: (a) a priori
selection of a data set before (re-)training a system;
in this case the goal is to subselect the existing data
set as well as possible, eliminating redundant infor-
mation; (b) selection for adaptation, where the goal

∗These authors are joint first authors with equal contribu-
tions.

is to tune a system to a known development or test
set. While many studies have addressed the second
scenario, this paper investigates the first: our goal is
to select a smaller subset of the data that fits a given
’budget’ (e.g. maximum number of hours of data) but
provides, to the extent possible, as much information
as the complete data set. Additionally, our selection
method should be a low-resource method that does
not require an already-trained complex system such
as an existing word recognizer.

This problem is akin to unsupervised data ’sum-
marization’. In (Lin and Bilmes, 2009) a novel class
of summarization techniques based on submodular
function optimization were proposed for extractive
document summarization. Interestingly, these meth-
ods can also be applied to speech data ’summariza-
tion’ with only small modifications. In the following
sections we develop a submodular framework for
speech data summarization and evaluate it on a proof-
of-concept phone recognition task.

2 Related Work

Most approaches to data subset selection in speech
have relied on “rank-and-select” approaches that de-
termine the utility of each sample in the data set,
rank all samples according to their utility scores, and
then select the top N samples. In weakly supervised
approaches (e.g.,(Kemp and Waibel, 1998; Lamel
et al., 2002; Hakkani-Tur et al., 2002), utility is re-
lated to the confidence of an existing word recognizer
on new data samples: untranscribed training data is
automatically transcribed using an existing baseline
speech recognizer, and individual utterances are se-
lected as additional training data if they have low

721



confidence. These are active learning approaches
suitable for a scenario where a well-trained speech
recognizer is already available and additional data
for retraining needs to be selected. However, we
would like to reduce available training data ahead of
time with a low-resource approach. In (Chen et al.,
2009) individual samples are selected for the purpose
of discriminative training by considering phone ac-
curacy and the frame-level entropy of the Gaussian
posteriors. (Itoh et al., 2012) use a utility function
consisting of the entropy of word hypothesis N-best
lists and the representativeness of the sample using a
phone-based TF-IDF measure. The latter is compa-
rable to methods used in this paper, though the first
term in their objective function still requires a word
recognizer. In (Wu et al., 2007) acoustic training data
associated with transcriptions is subselected to max-
imize the entropy of the distribution over linguistic
units (phones or words). Most importantly, all these
methods select samples in a greedy fashion without
optimality guarantees. As we will explain in the next
section, greedy selection is near-optimal only when
applied to monotone submodular functions.

3 Submodular Functions

Submodular functions (Edmonds, 1970) have been
widely studied in mathematics, economics, and op-
erations research and have recently attracted interest
in machine learning (Krause and Guestrin, 2011). A
submodular function is defined as follows: Given a fi-
nite ground set of objects (samples) V = {v1, ..., vn}
and a function f : 2V → R+ that returns a real value
for any subset S ⊆ V , f is submodular if ∀A ⊆ B,
and v /∈ B, f(A+ v)− f(A) ≥ f(B + v)− f(B).
That is, the incremental “value” of v decreases when
the set in which v is considered grows from A to B.
Powerful optimization guarantees exist for certain
subtypes of submodular functions. If, for example,
the function is monotone submodular, i.e. ∀A ⊆
B, f(A) ≤ f(B), then it can be maximized, under
a cardinality constraint, by a greedy algorithm that
scales to extremely large data sets, and finds a solu-
tion guaranteed to approximate the optimal solution
to within a constant factor 1− 1/e (Nemhauser et al.,
1978). Submodular functions can be considered the
discrete analog of convexity.

3.1 Submodular Document Summarization

In (Lin and Bilmes, 2011) submodular functions were
recently applied to extractive document summariza-
tion. The problem was formulated as a monotone
submodular function that had to be maximized sub-
ject to cardinality or knapsack constraints:

argmaxS⊆V {f(S) : c(S) ≤ K} (1)

where V is the set of sentences to be summarized, K
is the maximum number of sentences to be selected,
and c(·) ≥ 0 is sentence cost. f(S) was instantiated
by a form of saturated coverage:

fSC(S) =
∑
i∈V

min{Ci(S), αCi(V )} (2)

where Ci(S) =
∑

j∈S wij , and where wij ≥ 0 in-
dicates the similarity between sentences i and j —
Ci : 2V → R is itself monotone submodular (modu-
lar in fact) and 0 ≤ α ≤ 1 is a saturation coefficient.
fSC(S) is monotone submodular and therefore has
the previously mentioned performance guarantees.
The weighting function w was implemented as the
cosine similarity between TF-IDF weighted n-gram
count vectors for the sentences in the dataset.

3.2 Submodular Speech Summarization

Similar to the procedure described above we can treat
the task of subselecting an acoustic data set as an
extractive summarization problem. For our a priori
data selection scenario we would like to extract those
training samples that jointly are representative of
the total data set. Initial explorations of submodular
functions for speech data can be found in (Lin and
Bilmes, 2009), where submodular functions were
used in combination with a purely acoustic similarity
measure (Fisher kernel). In addition Equation 2 the
facility location function was used:

ffac(S) =
∑
i∈V

max
j∈S

wij (3)

Here our focus is on utilizing methods that move
beyond purely acoustic similarity measures and con-
sider kernels derived from discrete representations
of the acoustic signal. To this end we first run a to-
kenizer over the acoustic signal that converts it into
a sequence of discrete labels. In our case we use a
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simple bottom-up monophone recognizer (without
higher-level constraints such as a phone language
model) that produces phone labels. We then use the
hypothesized sequence of phonetic labels to compute
two different sentence similarity measures: (a) co-
sine similarity using TF-IDF weighted phone n-gram
counts, and (b) string kernels. We compare their
performance to that of the Fisher kernel as a purely
acoustic similarity measure.
TF-IDF weighted cosine similarity
The cosine similarity between phone sequences si
and sj is computed as

simij =

∑
w∈si

tfw,si × tfw,sj × idf2w√∑
w∈si

tf2w,si
idf2w

√∑
w∈sj

tf2w,sj
idf2w

(4)
where tfw,si is the count of n-gram w in si and idfw
is the inverse document count of w (each sentence is
a “document”). We use n = 1, 2, 3.
String kernel
The particular string kernel we use is a gapped,
weighted subsequence kernel of the type described in
(Rousu and Shawe-Taylor, 2005). Formally, we de-
fine a sentence s as a concatenation of symbols from
a finite alphabet Σ (here the inventory of phones) and
an embedding function from strings to feature vec-
tors, φ : Σ∗ → H. The string kernel function K(s, t)
computes the distance between the resulting vectors
for two sentences si and sj . The embedding function
is defined as

φku(s) :=
∑

i:u=s(i)

λ|i| u ∈ Σk (5)

where k is the maximum length of subsequences,
|i| is the length of i, and λ is a penalty parameter
for each gap encountered in the subsequence. K is
defined as

K(si, sj) =
∑
u

〈φu(si), φu(sj)〉wu (6)

where w is a weight dependent on the length of
u, l(u). Finally, the kernel score is normalized by√
K(si, si) · K(sj , sj) to discourage long sentences

from being favored.
Fisher kernel
The Fisher kernel is based on the vector of derivatives
UX of the log-likelihood of the acoustic data (X)

with respect to the parameters in the phone HMMs
θ1, ..., θm for m models, having similarity score:

simij = (max
i′,j′

di′j′)− dij , where dij = ||U ′i − U ′j ||1,

U θX = 5θ logP (X|θ), and U ′X = U θ1X ◦ U
θ2
x , ..., ◦U

θm
X .

4 Data and Systems

We evaluate our approach on subselecting training
data from the TIMIT corpus for training a phone rec-
ognizer. Although this not a large-scale data task, it
is an appropriate proof-of-concept task for rapidly
testing different combinations of submodular func-
tions and similarity measures. Our goal is to focus
on acoustic modeling only; we thus look at phone
recognition performance and do not have to take into
account potential interactions with a language model.
We also chose a simple acoustic model, a monophone
HMM recognizer, rather than a more powerful but
computationally complex model in order to ensure
quick experimental turnaround time. Note that the
goal of this study is not to obtain the highest phone
accuracy possible; what is important is the relative
performance of the different subset selection meth-
ods, especially on small data subsets.

The sizes of the training, development and test data
are 4620, 200 and 192 utterances, respectively. Pre-
processing was done by extracting 39-dimensional
MFCC feature vectors every 10 ms, with a window
of 25.6ms. Speaker mean and variance normaliza-
tion was applied. A 16-component Gaussian mixture
monophone HMM system was trained on the full data
set to generate parameters for the Fisher kernel and
phone sequences for the string kernel and TF-IDF
based similarity measures.

Following the selection of subsets (2.5%, 5%, 10%,
20%, 30%, 40%, 50%, 60%, 70% and 80% of the
data, measured as percentage of non-silence speech
frames), we train a 3-state HMM monophone recog-
nizer for all 48 TIMIT phone classes on the result-
ing sets and evaluate the performance on the core
test set of 192 utterances, collapsing the 48 classes
into 39 in line with standard practice (Lee and Hon,
1989). The HMM state output distributions are mod-
eled by diagonal-covariance Gaussian mixtures with
the number of Gaussians ranging between 4 and 64,
depending on the data size.

As a baseline we perform 100 random draws of
the specified subset sizes and average the results.
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The second baseline consists of the method in (Wu et
al., 2007), where utterances are selected to maximize
the entropy of the distribution over phones in the
selected subset.

5 Experiments

We tested the three different similarity measures de-
scribed above in combination with the submodular
functions in Equations 2 and 3. The parameters of
the gapped string kernel (i.e. the kernel order (k), the
gap penalty (λ), and the contiguous substring length
l) were optimized on the development set. The best
values were λ = 0.1, k = 4, l = 3. We found that
facility location was superior to saturated cover func-
tion across the board.

Comparison of different data subset selection methods 

Phone Accuracy (%)
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Figure 1: Phone accuracy for different subset sizes; each
block of bars lists, from bottom to top: random baseline,
entropy baseline, Fisher kernel, TF-IDF (unigram), TF-
IDF (bigram), TF-IDF (trigram), string kernel.

Figure 1 shows the performance of the random and
entropy-based baselines as well as the performance
of the facility location function with different sim-
ilarity measures. The entropy-based baseline beats
the random baseline for most percentage cases but
is otherwise the lowest-performing method overall.
Note that this baseline uses the true transcriptions in
line with (Wu et al., 2007) rather than the hypothe-
sized phone labels output by our recognizer. The low
performance and the fact that it is even outperformed
by the random baseline in the 2.5% and 70% cases
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Figure 2: Phone accuracy obtained by random selection,
facility location function, and saturated coverage function
(string kernel similarity measure).

may be because the selection method encourages
highly diverse but not very representative subsets.
Furthermore, the entropy-based baseline utilizes a
non-submodular objective function with a heuristic
greedy search method. No theoretical guarantee of
optimality can be made for the subset found by this
method.

Among the different similarity measures the Fisher
kernel outperforms the baseline methods but has
lower performance than the TF-IDF kernel and the
string kernel. The best performance is obtained with
the string kernel, especially when using small train-
ing data sets (2.5%-10%). The submodular selection
methods yield significant improvements (p < 0.05)
over both the random baseline and over the entropy-
based method.

We also investigated using different submodular
functions, i.e. the facility location function and the
saturated coverage function. Figure 2 shows the per-
formance of the facility location (ffac) and saturated
coverage (fSC) functions in combination with the
string kernel similarity measure. The reason ffac
outperforms fSC is that fSC primarily controls for
over-coverage of any element not in the subset via the
α saturation hyper-parameter. However, it does not
ensure that every non-selected element has good rep-
resentation in the subset. fSC measures the quality of
the subset by how well each individual element out-
side the subset has a surrogate within the subset (via
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Figure 3: Phone accuracy for true vs. hypothesized phone
labels, for string-based similarity measures.

the max function) and hence tends to model complete
coverage better, leading to better results.

Finally we examined whether using hypothesized
phone sequences vs. the true transcriptions has nega-
tive effects. Figure 3 shows that this is not the case:
interestingly, the hypothesized labels even result in
slightly better results. This may be because the rec-
ognized phone sequences are a function of both the
underlying phonetic sequences that were spoken and
the acoustic signal characteristics, such as the speaker
and channel. The true transcriptions, on the other
hand, are able to provide information only about pho-
netic as opposed to acoustic characteristics.

6 Discussion
We have presented a low-resource framework for
acoustic data subset selection based on submodular
function optimization, which was previously devel-
oped for document summarization. Evaluation on a
proof-of-concept task has shown that the method is
successful at selecting data subsets that outperform
subsets selected randomly or by a previously pro-
posed low-resource method. We note that the best
selection strategies for the experimental conditions
tested here involve similarity measures based on a
discrete tokenization of the speech signal rather than
direct acoustic similarity measures.
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Abstract

One way to improve the accuracy of auto-
matic speech recognition (ASR) is to use dis-
criminative language modeling (DLM), which
enhances discrimination by learning where
the ASR hypotheses deviate from the uttered
sentences. However, DLM requires large
amounts of ASR output to train. Instead,
we can simulate the output of an ASR sys-
tem, in which case the training becomes semi-
supervised. The advantage of using simu-
lated hypotheses is that we can generate as
many hypotheses as we want provided that we
have enough text material. In typical scenar-
ios, transcribed in-domain data is limited but
large amounts of out-of-domain (OOD) data
is available. In this study, we investigate how
semi-supervised training performs with OOD
data. We find out that OOD data can yield im-
provements comparable to in-domain data.

1 Introduction

Discriminative language modeling (DLM) helps
ASR systems to discriminate between acoustically
similar word sequences in the process of choos-
ing the most accurate transcription of an utterance.
DLM characterizes and learns from ASR errors by
comparing the reference transcription of the utter-
ance and the candidate hypotheses generated by the
ASR system. Although previous studies based on
this supervised setting have been successful (Roark
et al., 2007; Arısoy et al., 2009; Arısoy et al., 2012;
Sak et al., 2012), they require large amounts of tran-
scribed speech data and a well-trained in-domain
ASR system, both of which are hard to obtain. To

overcome this difficulty, instead of training with the
real ASR output, we can use simulated output, in
which case the training becomes semi-supervised.

Semi-supervised training for discriminative lan-
guage modeling has been shown to achieve as good
word error rate (WER) reduction as the training done
with real ASR output (Sagae et al., 2012; Çelebi et
al., 2012). In this approach, first a confusion model
(CM) is estimated from supervised data. This CM
contains all seen confusions and their occurrence
probabilities in hypotheses generated by an ASR
system. Then, the CM is used to generate a num-
ber of alternative-but-incorrect hypotheses, or simu-
lated hypotheses, for a given sentence. Since the CM
characterizes the errors that the ASR system makes,
simulated hypotheses carry these characteristics. At
the end, the DLM is trained on the reference sen-
tences and their simulated hypotheses. Although be-
ing able to simulate the output of the ASR system
allows us to generate as much output as we need
for the DLM training, there is not always enough
text data that is in the same domain as the ASR sys-
tem. Yet, it is easier to find large amounts of out-of-
domain (OOD) text data. In this study, we extend the
previous studies where in-domain text data was used
for hypothesis simulation. Instead of using limited
in-domain data, we experiment with larger amounts
of OOD data for hypothesis simulation.

The rest of the paper is organized as follows. In
Section 2, we summarize the related work. In Sec-
tion 3, we explain the methods to simulate the hy-
potheses and to train the DLM. We give the exper-
imental results in Section 4 before concluding with
Section 5.
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2 Related Work

The earliest work on hypothesis simulation for DLM
was done by Kurata et al. (2009; 2012). They gen-
erate the probable n-best lists that an ASR system
may output for a hypothetical input utterance given
a word sequence. In another study, Tan et al. (2010)
propose a system for channel modeling of ASR
for simulating the ASR corruption using a phrase-
based machine translation system trained between
the reference and output phoneme sequences from
a phoneme recognizer. Jyothi and Fosler-Lussier
(2010) also model the phonetic confusions using a
confusion matrix that takes into account word-based
phone confusion log likelihoods and distances be-
tween the phonetic acoustic models. This model
is then used to generate confusable word graphs
for training a DLM using the perceptron algorithm.
Xu et al. (2009) propose the concept of cohorts
and report significant WER improvement for self-
supervised DLM. Similarly, Sagae et al. (2012) use
phrasal cohorts to simulate ASR output and the per-
ceptron algorithm for training. They observe half of
the WER reduction that the fully supervised meth-
ods achieve. In another parallel study, Çelebi et al.
(2012) work on a Turkish ASR system and consider
various confusion models at four different granular-
ities (word, morph, syllable, and phone) and differ-
ent sampling methods to choose from a large list of
simulated hypotheses. They observe that the strat-
egy that matches the word error (WE) distribution
of the simulated hypotheses to the WE distribution
of the ASR outputs yields the best WER reduction.

While the previous studies use in-domain data
sets for simulation, it is quite common to collect
large amounts of OOD text data from the web. How-
ever, given the nature of web data, some kind of se-
lection mechanism is needed to ensure quality. Bu-
lyko et al. (2007) use perplexity-based filtering to
select a relevant subset from vast amounts of web
data in order to increase the training data of the gen-
erative LM used by the ASR system. There are also
studies that use a relative-entropy based selection
mechanism in order to match the n-gram distribution
of the selected data against the in-domain data by
Sethy et al. (2006; 2009). In this study, we consider
the perplexity-based selection method for a start.

3 Method

3.1 Sentence Selection from OOD Data
In order to select sentences from the OOD data,
we use three methods in addition to random selec-
tion. We calculate the perplexity of each sentence
with SRILM toolkit, which gives normalized scores
with respect to the length of the sentence. Then,
we order sentences based on their perplexity scores
in increasing order. Perplexity is calculated by a
LM trained on in-domain data. After ordering, the
top of the list contains those sentences that resem-
ble the in-domain data the most whereas the sen-
tences at the bottom resemble the in-domain data the
least. We apply the three methods on this ordered
list of sentences. The first two methods, TOP-N and
BOTTOM-N , simply get the top and bottom N sen-
tences, respectively. The third method, RC-NxM ,
picks uniformly separated N clusters of M consec-
utive sentences, while making sure that top and bot-
tom M sentences are among the selected ones.

3.2 Hypothesis Simulation
Semi-supervised DLM training uses artificially gen-
erated hypotheses which mimic the ASR system
output. To generate the hypotheses, we follow
the three-step finite state transducer based pipeline
given in Çelebi et al. (2012) and summarized by the
following composition sequence:

sample(N -best(prune(W◦LW◦CM)◦LM–1◦GM))

In the first step of the pipeline, we use the confusion
model transducer (CM) to generate all possible con-
fusions that the ASR system can make for a given
reference sentenceW . We consider syllable, morph
and word based confusion models, and convert W
to these units using the lexicon LW . The generated
alternatives are pruned for efficiency reasons.

As the output of the first step may include many
implausible sequences, the second step converts
them to morphs using LM–1 and reweights them
with a morph-based language model GM to favor
the meaningful sequences. For this, we use three ap-
proaches. The first approach is to use the LM that is
used by the ASR system, called GEN-LM. The sec-
ond LM called ASR-LM is trained from the output
of the ASR system, whereas the third approach is
not to use any language model, denoted by NO-LM,
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in which case we just use the scores coming from
the confusion model in the first step. A large list of
of N -best (N = 1000) hypotheses are produced at
this stage.

The third step, called sampling, involves picking a
subset of the hypotheses from a larger set with broad
variety. This step is done in order to pick samples so
as to make sure that they include error variety in-
stead of just high scoring hypotheses. As done by
Çelebi et al. (2012), we use four sampling meth-
ods to pick 50 hypotheses out of the highest scoring
1000 hypotheses. The simplest of them is Top50,
where we select the highest scoring 50 hypotheses.
Another method is Uniform Sampling (US) which
selects instances from the WER-ordered list in uni-
form intervals. Third method, called RC5x10, forms
5 clusters separated uniformly, each containing 10
hypotheses. Lastly, ASRdist-50 selects 50 hypothe-
ses in such a way that the WE distribution of selected
hypotheses resembles the WE distribution of the real
ASR output as much as it can. We accomplish this
by filling the WE bins with the hypotheses having
required number of WEs.

3.3 DLM Estimation

The training of the DLM involves representing the
training data as feature vectors and processing via
a discriminative learning algorithm. We represent
the simulated N -best lists using unigram features as
described by Dikici et al. (2012). As the learning
algorithm, we apply the WER-sensitive perceptron
algorithm proposed by Sak et al. (2011b), which has
been shown to perform better for reranking ASR hy-
potheses as it minimizes an objective function based
on the WER rather than the number of misclassifi-
cations.

4 Experiments

4.1 Experimental Setup

We employ DLM on a Turkish broadcast news tran-
scription data set (Arısoy et al., 2009), which com-
prises disjoint training (105356 sentences), held-out
(1947 sentences) and test (1784 sentences) subsets
consisting of ASR outputs represented as N -best
lists. We use Morfessor (Creutz and Lagus, 2005)
to obtain the morph level word segmentations from
which we build the LMs. For semi-supervised ex-

periments, we use the first half of the training sub-
set (t1: 53992 sentences, 965K morphs) to learn
the confusion models, and the reference transcrip-
tions of the second half (t2: 51364 sentences, 935K
morphs) to generate in-domain simulated n-best lists
to be compared against OOD simulated ones. For
this setup, the generative baseline WER and oracle
WER on the held-out set are 22.9% and 14.2% and
on the test set are 22.4% and 13.9%, respectively.
When we use ASR 50-best from t1 for DLM train-
ing, WERs drop to 22.2% and 21.8% on the held-out
and the test sets, respectively.

For OOD data, we use a data set of 10.8M
sentences (140M morphs) from newspaper articles
downloaded from the Internet (Sak et al., 2011a).
To calculate the perplexity of OOD sentences for se-
lection, we use a language model trained over the
reference transcripts and 50-best lists of t1 and t2.

4.2 Results on Out-of-Domain Data
We start our experiments with 500K randomly se-
lected OOD sentences, or RAND-500K. We run
the simulation pipeline with four sampling methods,
three confusion and three language models, giving
36 experiments in total. We choose among the pro-
posed sampling approaches and confusion models
using a rank-based comparison as done by Dikici et
al. (2012).

We look at which sampling method performs the
best by first dividing experiments into 9 groups, each
having 4 results from all sampling methods. Within
each group, we rank the sampling methods based on
the WER they achieve in increasing order and take
the average of assigned ranks. ASRdist-50 gets the
lowest average rank of 1.8, while RC5x10, US-50,
and TOP-50 come after with the averages of 2.1, 2.4,
and 3.4, respectively. This shows that ASRdist-50
gives the best WER reduction on OOD data, which
is also true for in-domain data (Çelebi et al., 2012).

Doing the same rank-based comparison for the
CMs this time, we observe that the syllable and
morph-based models have the same average rank of
1.5, whereas the word-based model has 2.8. How-
ever, a closer look reveals that the syllable-based
CM paired with NO-LM is an outlier because NO-
LM approach allows variety at the output but when
the unit of the confusion model is as small as syl-
lables, it produces too much variety that deterio-
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rates the discriminative model. If we don’t consider
the ranks coming from NO-LM, the average rank of
syllable- and morph-based models become 1.1 and
1.8, respectively. Thus, we use syllable-based mod-
els over the others for the rest of the experiments.

Knowing that the ASRdist-50 sampling method
and syllable-based CM together give the best re-
sults for RAND-500K, we experiment with three
more sentence selection methods described in Sec-
tion 3.1. Table 1 shows all the results obtained from
four 500K OOD data sets.

OOD Data sets GEN-LM ASR-LM NO-LM
TOP-500K 22.6 22.6 22.6
BOTTOM-500K 22.4 22.2 22.5
RAND-500K 22.2 22.5 22.6
RC-5x100K 22.4 22.6 22.5

Table 1: WER (%) on held-out set obtained with syllable-
based CMs and ASRdist-50 sampling method

According to Table 1, the highest WER reduc-
tion is achieved with BOTTOM-500K+ASR-LM
and RAND-500K+GEN-LM combinations. While
ASR-LM exceeds the other two LMs only in the
case of BOTTOM-500K, for other three OOD data
sets GEN-LM gives the best results. More interest-
ingly, using OOD sentences resembling in-domain
data (or TOP-500K) is outperformed in all cases,
especially by BOTTOM-500K. To understand this,
we look at the number of morphs in each data set
given in Table 2. Even though each OOD data set
has 500K sentences, BOTTOM-500K has the high-
est number of morphs (∼6.5M) and TOP-500K had
the lowest (∼3.5M), while the other two have around
5.5M morphs. We also look at the morph unigram
distribution (M) of all four data sets and calculat-
ing the KL divergence KL(M || U)1 of each M to
uniform distribution (U). We observe that the uni-
gram morph distribution of the TOP-500K data set
is the least uniform with KL distance of 6.6, whereas
BOTTOM-500K has KL distance of 2.7 and the
other two have KL distances of around 4.3. In
other words, this shows that TOP-500K has the low-
est content variation, especially when compared to
BOTTOM-500K. Note also the slightly high value
of KL distance for t2, which can be attributed to the

1KL(M || U) =
∑

i pilog( pi
1/V

) = log(V ) − H(p), where
V = 61294 and H(p) is the entropy of p.

relatively low number of unique morphs (types).

Data set KLD Types Tokens
t2 (50K) 4.65 22,107 935,137
TOP-500K 6.63 20,689 3,519,012
BOTTOM-500K 2.71 54,458 6,474,385
RAND-500K 4.36 50,422 5,559,763
RC-5x100K 4.35 50,561 5,343,342

Table 2: KL distance, KL(M || U), between uniform dis-
tribution (U) and unigram morph distribution (M); num-
ber of unique morphs and tokens.

4.3 Out-of-Domain vs In-Domain Data

In this section, we compare the results for in-domain
data with the results for four OOD data sets in
Table 3. In order to see how the size of OOD
data set affects the WER reduction, we start with
50K sentences and increase the size gradually up
to 500K. The first row of Table 3 shows the WER
obtained with the in-domain data t2, containing ap-
proximately 50K sentences.

Data 50K 100K 200K 500K
t2 22.4 - - -
TOP 22.8 22.7 22.7 22.6
BOTTOM 22.6 22.4 22.3 22.2
RAND 22.5 22.3 22.3 22.2
RC-5 22.5 22.5 22.3 22.4

Table 3: WER (%) on held-out set for in-domain
(Syllable+ASR-LM+ASRdist-50) and four OOD data
sets in increasing sizes

According to Table 3, even though 50K OOD sen-
tences yield worse results than the same amount of
in-domain sentences, as the size of OOD data set
increases, the amount of WER reduction increases
and surpasses the level obtained by using in-domain
data. What is more interesting is that RAND outper-
forms in-domain data starting from 100K, whereas
BOTTOM starts at a higher WER but drops rela-
tively fast, leveling with RAND starting at 200K.
Note that the best WER achieved with the simulated
data matches the supervised DLM performance us-
ing ASR 50-best from t1, reported in Section 4.1.

Then we go one step further and expand the BOT-
TOM data set to 1M sentences and we observe WER
of 22.1% on the held-out set. This further supports
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the observation that the more OOD data we use, the
lower WER we can achieve.

As a side observation, when we calculate the
WER of five 100K-blocks from the RAND-500K
set, we find that the standard deviation of WER is
0.06%, which gives and idea about the significance
level of the WER differences.

4.4 Merging Real and Simulated Hypotheses

We also evaluate whether merging simulated hy-
potheses with real ASR hypotheses yields further
WER reductions. The result of merging the real hy-
potheses from t1 with the simulated ones from in-
domain and OOD data are shown in Table 4. The
first row shows the WER of the combination with
the simulated hypotheses from in-domain data t2.

Real Simulated WER (%)
t1 t2 (50K) 22.0
t1 TOP-500K 22.3
t1 BOTTOM-500K 22.1
t1 RAND-500K 22.0
t1 RC-5x100K 22.1
t1 BOTTOM-1M 21.9

Table 4: WER (%) on held-out set obtained by merging
real and simulated hypotheses

When combined with the real hypotheses from t1,
RAND500K achieves the same level of WER re-
duction as the simulated hypotheses from t2 on the
heldout set. The results on the test set are also sim-
ilar. On the test set, the combination of the real
hypotheses from t1 and the simulated hypotheses
from t2 achieve 21.5% WER, whereas the WER is
21.6% when the simulated hypotheses from t2 are
replaced by those from RAND500K. This indicates
that enough OOD data can replace the in-domain
data and yield similar performance, even in combi-
nation with in-domain real data.

Moreover, we further expand the OOD data to 1M
for BOTTOM, however even though it reduces the
WER on the heldout set, it achieves slightly higher
WER on the test set (21.7%).

Next, we combine the in-domain real hypotheses
from t1, simulated hypotheses from t2 and simulated
ones from the OOD data sets. However, compared
to the combination of t1 and t2, adding extra 500K
OOD hypotheses on top of those two gives similar

WERs on the held-out set while WERs on the test
set increases slightly. From another point of view,
adding in-domain simulated hypotheses from t2 on
top of real ones from t1 and 500K OOD data (rows
2-5 in Table 4) provides slight WER improvement
on the held-out set but not on the test set.

5 Conclusion

In this study, we investigate whether we can
achieve the same level of WER reduction for semi-
supervised DLM with the large amounts of OOD
data instead of in-domain data. We observe that
ASRdist-50 sampling method and syllable-based
CMs yield the best results with the OOD data. More-
over, selecting OOD sentences randomly rather than
using perplexity-based methods is enough to achieve
the best WER reduction. We also observe that sim-
ulated hypotheses from the OOD data is almost as
good as in-domain simulated hypotheses or even real
ones. As a future work, we will increase the size of
the OOD data and examine other methods like rela-
tive entropy based OOD selection.
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and Murat Saraçlar. 2009. Turkish broadcast news
transcription and retrieval. IEEE Transactions on Au-
dio, Speech, and Language Processing, 17(5):874–
883, July.

Ebru Arısoy, Murat Saraçlar, Brian Roark, and Izhak
Shafran. 2012. Discriminative language modeling
with linguistic and statistically derived features. IEEE
Transactions on Audio, Speech, and Language Pro-
cessing, 20(2):540–550, February.

Ivan Bulyko, Mari Ostendorf, Man-Hung Siu, Tim Ng,
Andreas Stolcke, and Özgür Çetin. 2007. Web
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Morpholexical and discriminative language models for
Turkish automatic speech recognition. IEEE Trans-
actions on Audio, Speech, and Language Processing,
20(8):2341–2351, October.

Abhinav Sethy, Panayiotis G. Georgiou, and Shrikanth
Narayanan. 2006. Text data acquisition for domain-
specific language models. In EMNLP ’06 Proceedings
of the 2006 Conference on Empirical Methods in Nat-
ural Language Processing, pages 382–389.

Abhinav Sethy, Panayiotis G. Georgiou, Bhuvana Ram-
abhadran, and Shrikanth Narayanan. 2009. An itera-
tive relative entropy minimization-based data selection
approach for n-gram model adaptation. IEEE Trans-
actions on Audio, Speech and Language Processing,
17(1):13–23, January.

Qun Feng Tan, Kartik Audhkhasi, Panayiotis G. Geor-
giou, Emil Ettelaie, and Shrikanth Narayanan. 2010.
Automatic speech recognition system channel model-
ing. In Proc. Interspeech, pages 2442–2445.

Puyang Xu, Damianos Karakos, and Sanjeev Khudanpur.
2009. Self-supervised discriminative training of statis-
tical language models. In Proc. ASRU, pages 317–322.

732



Proceedings of NAACL-HLT 2013, pages 733–738,
Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

More than meets the eye: Study of Human Cognition in Sense Annotation
Salil Joshi

IBM Research India
Bangalore, India

saljoshi@in.ibm.com

Diptesh Kanojia
Gautam Buddha Technical University

Lucknow, India
dipteshkanojia@gmail.com

Pushpak Bhattacharyya
Computer Science and Engineering Department

Indian Institute of Technology, Bombay
Mumbai, India

pb@cse.iitb.ac.in

Abstract

Word Sense Disambiguation (WSD) ap-
proaches have reported good accuracies in
recent years. However, these approaches can
be classified as weak AI systems. According
to the classical definition, a strong AI based
WSD system should perform the task of sense
disambiguation in the same manner and with
similar accuracy as human beings. In order
to accomplish this, a detailed understanding
of the human techniques employed for sense
disambiguation is necessary. Instead of
building yet another WSD system that uses
contextual evidence for sense disambiguation,
as has been done before, we have taken a step
back - we have endeavored to discover the
cognitive faculties that lie at the very core of
the human sense disambiguation technique.

In this paper, we present a hypothesis regard-
ing the cognitive sub-processes involved in the
task of WSD. We support our hypothesis using
the experiments conducted through the means
of an eye-tracking device. We also strive to
find the levels of difficulties in annotating vari-
ous classes of words, with senses. We believe,
once such an in-depth analysis is performed,
numerous insights can be gained to develop a
robust WSD system that conforms to the prin-
ciple of strong AI.

1 Introduction

Word Sense Disambiguation (WSD) is formally
defined as the task of computationally identifying
senses of a word in a context. The phrase ‘in a
context’ is not defined explicitly in the literature.
NLP researchers define it according to their conve-
nience. In our current work, we strive to unravel

the appropriate meaning of contextual evidence
used for the human annotation process. Chatterjee
et al. (2012) showed that the contextual evidence
is the predominant parameter for the human sense
annotation process. They also state that WSD is
successful as a weak AI system, and further analysis
into human cognitive activities lying at the heart of
sense annotation can aid in development of a WSD
system built upon the principles of strong AI.

Knowledge based approaches, which can be con-
sidered to be closest form of WSD conforming to
the principles of strong AI, typically achieve low
accuracy. Recent developments in domain-specific
knowledge based approaches have reported higher
accuracies. A domain-specific approach due to
Agirre et al. (2009) beats supervised WSD done
in generic domains. Ponzetto and Navigli (2010)
present a knowledge based approach which rivals
the supervised approaches by using the semantic
relations automatically extracted from Wikipedia.
They reported approximately 7% gain over the
closet supervised approach.

In this paper, we delve deep into the cognitive roles
associated with sense disambiguation through the
means of an eye-tracking device capturing the gaze
patterns of lexicographers, during the annotation
process. In-depth discussions with trained lexicog-
raphers indicate that there are multiple cognitive
sub-processes driving the sense disambiguation
task. The eye movement paths available from the
screen recordings done during sense annotation
conform to this theory.

Khapra et al. (2011) points out that the accuracy
of various WSD algorithms is poor on certain
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Part-of-speech (POS) categories, particularly, verbs.
It is also a general observation for lexicographers
involved in sense annotation that there are different
levels of difficulties associated with various classes
of words. This fact is also reflected in our analysis
on sense annotation. The data available after the
eye-tracking experiments gave us the fixation times
and saccades pertaining to different classes of
words. From the analysis of this data we draw
conclusive remarks regarding the reasons behind
this phenomenon. In our case, we classified words
based on their POS categories.

In this paper, we establish that contextual evidence is
the prime parameter for the human annotation. Fur-
ther, we probe into the implication of context used
as a clue for sense disambiguation, and the manner
of its usage. In this work, we address the following
questions:

• What are the cognitive sub-processes associ-
ated with the human sense annotation task?

• Which classes of words are more difficult to dis-
ambiguate and why?

By providing relevant answers to these questions we
intend to present a comprehensive understanding of
sense annotation as a complex cognitive process and
the factors involved in it. The remainder of this pa-
per is organized as follows. Section 2 contains re-
lated work. In section 3 we present the experimental
setup. Section 4 displays the results. We summarize
our findings in section 5. Finally, we conclude the
paper in section 6 presenting the future work.

2 Related Work

As mentioned earlier, we used the eye-tracking
device to ascertain the fact that contextual evidence
is the prime parameter for human sense annotation
as quoted by Chatterjee et al. (2012) who used dif-
ferent annotation scenarios to compare human and
machine annotation processes. An eye movement
experiment was conducted by Vainio et al. (2009)
to examine effects of local lexical predictability
on fixation durations and fixation locations during
sentence reading. Their study indicates that local
lexical predictability influences in decisions but not
where the initial fixation lands in a word. In another
work based on word grouping hypothesis and eye

movements during reading by Drieghe et al. (2008),
the distribution of landing positions and durations of
first fixations in a region containing a noun preceded
by either an article or a high-frequency three-letter
word were compared.

Recently, some work is done on the study of sense
annotation. A study of sense annotations done on 10
polysemous words was conducted by Passonneau
et al. (2010). They opined that the word meanings,
contexts of use, and individual differences among
annotators gives rise to inter-annotation variations.
De Melo et al. (2012) present a study with a
focus on MASC (Manually-Annotated SubCorpus)
project, involving annotations done using WordNet
sense identifiers as well as FrameNet lexical units.

In our current work we use eye-tracking as a tool
to make findings regarding the cognitive processes
connected to the human sense disambiguation
procedure, and to gain a better understanding
of “contextual evidence” which is of paramount
importance for human annotation. Unfortunately,
our work seems to be a first of its kind, and to the
best of our knowledge we do not know of any such
work done before in the literature.

3 Experimental Setup

We used a generic domain (viz., News) corpus in
Hindi language for experimental purposes. To iden-
tify the levels of difficulties associated with human
annotation, across various POS categories, we con-
ducted experiments on around 2000 words (includ-
ing function words and stop words). The analysis
was done only for open class words. The statistics
pertaining to the our experiment are illustrated in ta-
ble 1. For statistical significance of our experiments,
we collected the data with the help of 3 skilled lexi-
cographers and 3 unskilled lexicographers.

POS Noun Verb Adjective Adverb
#(senses) 2.423 3.814 2.602 3.723
#(tokens) 452 206 96 177

Table 1: Number of words (tokens) and average degree
of corpus polysemy (senses) of words per POS category
(taken from Hindi News domain) used for experiments

For our experiments we used a Sense Annotation
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Figure 1: Sense marker tool showing an example Hindi sentence in the Context Window and the wordnet synsets of
the highlighted word in the Synset Window with the black dots and lines indicating the scan path

Tool, designed at IIT Bombay and an eye-tracking
device. The details of the tools and their purposes
are explained below:

3.1 The Sense Marker Tool

A word may have a number of senses, and the task
of identifying and marking which particular sense
has been used in the given context, is known as
sense marking.

The Sense Marker tool1 is a Graphical User Inter-
face based tool developed using Java, which facil-
itates the task of manual sense marking. This tool
displays the senses of the word as available in the
Marathi, Hindi and Princeton (English) WordNets
and allows the user to select the correct sense of the
word from the candidate senses.

3.2 Eye-Tracking device

An eye tracker is a device for measuring eye posi-
tions and eye movement. A saccade denotes move-

1http://www.cse.iitb.ac.in/s̃alilj/resources
/SenseMarker/SenseMarkerTool.zip

ment to another position. The resulting series of fix-
ations and saccades is called a scan path. Figure 1
shows a sample scan path. In our experiments, we
have used an eye tracking device manufactured by
SensoMotoric Instruments2. We recorded saccades,
fixations, length of each fixation and scan paths on
the stimulus monitor during the annotation process.
A remote eye-tracking device (RED) measures gaze
hotspots on a stimulus monitor.

4 Results

In our experiments, each lexicographer performed
sense annotation on the stimulus monitor of the
eye tracking device. Fixation times, saccades
and scan paths were recorded during the sense
annotation process. We analyzed this data and the
corresponding observations are enumerated below.

Figure 2 shows the annotation time taken by differ-
ent lexicographers across POS categories. It can be
observed that the time taken for disambiguating the
verbs is significantly higher than the remaining POS

2http://www.smivision.com/
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Unskilled Lexicographer (Seconds) Skilled Lexicographer (Seconds)

Word Degree of
polysemy

Thypo Tclue Tgloss Ttotal Thypo Tclue Tgloss Ttotal

lAnA (laanaa - to bring) 4 0.63 0.80 5.20 6.63 0.31 1.20 1.82 3.30
krnA (karanaa - to do) 22 0.90 1.42 2.20 4.53 0.50 0.64 1.14 2.24

jtAnA (jataanaa - to express) 4 0.70 2.45 5.93 9.09 0.25 0.39 0.62 1.19

Table 2: Comparison of time taken across different cognitive stages of sense annotation by lexicographers for verbs

Figure 2: Histogram showing time taken (in seconds) by
each lexicographer across POS categories for sense anno-
tation

categories. This behavior can be consistently seen
in the timings recorded for all the six lexicographers.

Table 2 presents the comparison of time taken
across different cognitive stages of sense annotation
by lexicographers for some of the most frequently
occurring verbs.

To know if the results gathered from all the lexicog-
raphers are consistent, we present the correlation be-
tween each pair of lexicographers in table 3. The
table also shows the value of the t-test statistic gen-
erated for each pair of lexicographers.

5 Discussion

The data obtained from the eye-tracking device and
corresponding analysis of the fixation times, sac-
cades and scan paths of the lexicographers’ eyes re-
veal that sense annotation is a complex cognitive
process. From the videos of the scan paths obtained
from the eye-tracking device and from detailed dis-
cussion with lexicographers it can be inferred that

this cognitive process can be broken down into 3
stages:

1. When a lexicographer sees a word, he/she
makes a hypothesis about the domain and con-
sequently about the correct sense of the word,
mentally. In cases of highly polysemous words,
the hypothesis may narrow down to multiple
senses. We denote the time required for this
phase as Thypo.

2. Next the lexicographer searches for clues to
support this hypothesis and in some cases to
eliminate false hypotheses, when the word is
polysemous. These clues are available in the
form of neighboring words around the target
word. We denote the time required for this ac-
tivity as Tclue.

3. The clue words aid the lexicographer to decide
which one of the initial hypotheses was true.
To narrow down the candidate synsets, the lex-
icographers use synonyms of the words in a
synset to check if the sentence retains its mean-
ing.

From the scan paths and fixation times obtained
from the eye-tracking experiment, it is evident that
stages 1, 2 and 3 are chronological stages in the hu-
man cognitive process associated with sense disam-
biguation. In cases of highly polysemous words and
instances where senses are fine-grained, stages 2 and
3 get interleaved. It is also clear that each stage takes
up separate proportions of the sense disambiguation
time for humans. Hence time taken to disambiguate
a word using the Sense Marker Tool (as explained in
Section 3.1) can be factored as follows:

Ttotal = Thypo + Tclue + Tgloss

Where:
Ttotal = Total time for sense disambiguation
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Correlation value T-test statistic
Lexicographer B C D E F B C D E F

A 0.933 0.976 0.996 0.996 0.769 0.007 0.123 0.185 0.036 0.006
B 0.987 0.960 0.915 0.945 0.009 0.028 0.084 0.026
C 0.989 0.968 0.879 0.483 0.088 0.067
D 0.988 0.820 0.367 0.709
E 0.734 0.418

Table 3: Pairwise correlation between annotation time taken by lexicographers

Thypo = Time for hypothesis building
Tclue = Clue word searching time
Tgloss = Gloss Matching time and winner sense
selection time.

The results in table 2 reveal the different ratios of
time invested during each of the above stages. Thypo

takes the minimum amount of time among the dif-
ferent sub-processes. Tgloss > Tclue in all cases.

• For unskilled lexicographers: Tgloss >> Tclue

because of errors in the initial hypothesis.

• For skilled lexicographers: Tgloss ∼ Tclue, as
they can identify the POS category of the word
and their hypothesis thus formed is pruned.
Hence during selection of the winner sense,
they do not browse through other POS cate-
gories, which unskilled lexicographers do.

The results shown in figure 2 reveal that verbs take
the maximum disambiguation time. In fact the
average time taken by verbs is around 75% more
than the time taken by other POS categories. This
supports the fact that verbs are the most difficult to
disambiguate.

The analysis of the scan paths and fixation times
available from the eye-tracking experiments in case
of verbs show that the Tgloss covers around 66%
of Ttotal, as shown in table 2. This means that the
lexicographer takes more time in selecting a winner
sense from the list of wordnet senses. This happens
chiefly because of following reasons:

1. Higher degree of polysemy of verbs compared
to other POS categories (as shown in tables 1
and 2).

2. In several cases the senses are fine-grained.

3. Sometimes the hypothesis of the lexicogra-
phers may not match any of the wordnet senses.
The lexicographer then selects the wordnet
sense closest to their hypothesis.

Adverbs and adjectives show higher degree of pol-
ysemy than nouns (as shown in table 1), but take
similar disambiguation time as nouns (as shown in
figure 2). In case of adverbs and adjectives, the lex-
icographer is helped by their position around a verb
or noun respectively. So, Tclue only involves search-
ing for the nearby verbs or nouns, as the case may
be, hence reducing total disambiguation time Ttotal.

6 Conclusion and Future Work

In this paper we examined the cognitive process that
enables the human sense disambiguation task. We
have also laid down our findings regarding the vary-
ing levels of difficulty in sense annotation across
different POS categories. These experiments are
just a stepping stone for going deeper into finding
the meaning and manner of usage of contextual
evidence which is fundamental to the human sense
annotation process.

In the future we aim to perform an in-depth analy-
sis of clue words that aid humans in sense disam-
biguation. The distance of clue words from the tar-
get word and their and pattern of occurrence could
give us significant insights into building a ‘Discrim-
ination Net’.
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Abstract

Sentence Similarity [SS] computes a similar-
ity score between two sentences. The SS task
differs from document level semantics tasks
in that it features the sparsity of words in a
data unit, i.e. a sentence. Accordingly it is
crucial to robustly model each word in a sen-
tence to capture the complete semantic picture
of the sentence. In this paper, we hypoth-
esize that by better modeling lexical seman-
tics we can obtain better sentential semantics.
We incorporate both corpus-based (selectional
preference information) and knowledge-based
(similar words extracted in a dictionary) lex-
ical semantics into a latent variable model.
The experiments show state-of-the-art perfor-
mance among unsupervised systems on two
SS datasets.

1 Introduction

Sentence Similarity [SS] is emerging as a crucial
step in many NLP tasks that focus on sentence level
semantics such as word sense disambiguation (Guo
and Diab, 2010; Guo and Diab, 2012a), summariza-
tion (Zhou et al., 2006), text coherence (Lapata and
Barzilay, 2005), tweet clustering (Sankaranarayanan
et al., 2009; Jin et al., 2011), etc. SS operates in a
very small context, on average 11 words per sen-
tence in Semeval-2012 dataset (Agirre et al., 2012),
resulting in inadequate evidence to generalize to ro-
bust sentential semantics.

Weighted Textual Matrix Factorization [WTMF]
(Guo and Diab, 2012b) is a latent variable model that
outperforms Latent Semantic Analysis [LSA] (Deer-
wester et al., 1990) and Latent Dirichelet Allocation
[LDA] (Blei et al., 2003) models by a large margin in

the SS task, yielding state-of-the-art performance on
the LI06 (Li et al., 2006) SS dataset. However, all of
these models make harsh simplifying assumptions
on how a token is generated: (1) in LSA/WTMF, a
token is generated by the inner product of the word
latent vector and the document latent vector; (2) in
LDA, all the tokens in a document are sampled from
the same document level topic distribution. Under
this framework, they ignore rich linguistic phenom-
ena such as inter-word dependency, semantic scope
of words, etc. This is a result of simply using docu-
ment IDs as features to represent a word.

Modeling quality lexical semantics in latent vari-
able models does not draw enough attention in the
community, since people usually apply dimension
reduction techniques for documents, which have
abundant words for extracting the document level
semantics. However, in the SS setting, it is crucial to
make good use of each word, given the limited num-
ber of words in a sentence. We believe a reasonable
word generation story will avoid introducing noise
in sentential semantics, encouraging robust lexical
semantics which can further boost the sentential se-
mantics. In this paper, we explicitly encode lexical
semantics, both corpus-based and knowledge-based
information, in the WTMF model, by which we are
able to achieve even better results in SS task.

The additional corpus-based information we ex-
ploit is selectional preference semantics (Resnik,
1997), a feature already existing in the data yet ig-
nored by most latent variable models. Selectional
preference focuses on the admissible arguments for
a word, thus capturing more nuanced semantics than
the sentence IDs (when applied to a corpus of sen-
tences as opposed to documents). Consider the fol-
lowing example:
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Figure 1: matrix factorization

Many analysts say the global Brent crude oil bench-
mark price, currently around $111 a barrel ...

In WTMF/LSA/LDA, a word will receive semantics
from all the other words in a sentence, hence, the
word oil, in the above example, will be assigned the
incorrect finance topic that reflects the sentence level
semantics. Moreover, the problem worsens for ad-
jectives, adverbs and verbs, which have a much nar-
rower semantic scope than the whole sentence. For
example, the verb say should only be associated with
analyst (only receiving semantics from analyst), as
it is not related to other words in the sentence. In
contrast, oil, according to its selectional preference,
should be associated with crude indicating the re-
source topic. We believe modeling selectional pref-
erence capturing local evidence completes the se-
mantic picture for words, hence further rendering
better sentential semantics. To our best knowledge,
this is the first work to model selectional preference
for sentence/document semantics.

We also integrate knowledge-based semantics
in the WTMF framework. Knowledge-based se-
mantics, a human-annotated clean resource, is an
important complement to corpus-based noisy co-
occurrence information. We extract similar word
pairs from Wordnet (Fellbaum, 1998). Leveraging
these pairs, an infrequent word such as purchase
can exploit robust latent vectors from its synonyms
such as buy. Similar words pairs can be seamlessly
modeled in WTMF, since in the matrix factorization
framework a latent vector profile is explicitly created
for each word, while in LDA all the data structures
are designed for documents/sentences. We construct
a graph to connect words according to the extracted
similar word pairs, to encourage similar words to
share similar latent vector profiles. We will refer to
our proposed novel model as WTMF+PK.

2 Weighted Textual Matrix Factorization

Our previous work (Guo and Diab, 2012b) models
the sentences in the weighted matrix factorization

framework (Figure 1). The corpus is stored in an
M ×N matrix X , with each cell containing the TF-
IDF values of words. The rows of X are M distinct
words and columns are N sentences. As in Figure
1, X is approximated by the product of a K ×M
matrix P and a K×N matrix Q. Accordingly, each
sentence sj is represented by a K dimensional la-
tent vector Q·,j . Similarly a word wi is generalized
by P·,i. P and Q is optimized by minimize the ob-
jective function:∑

i

∑
j

Wij (P·,i ·Q·,j −Xij)
2 + λ||P ||22 + λ||Q||22

Wi,j =

{
1, if Xij 6= 0
wm, if Xij = 0

(1)

where λ is a regularization term. Missing tokens are
modeled by assigning a different weightwm for each
0 cell in the matrix X . We can see the inner product
of a word vector P·,i and a sentence vector Q·,j is
used to approximate the cell Xij .

The graphical model of WTMF is illustrated in
Figure 2a. A wi/sj node is a latent vector P·,i/Q·,j ,
corresponding to a word/sentence, respectively. A
shaded node is a non-zero cell in X , representing
an observed token in a sentence. For simplicity, the
missing tokens and weights are not shown in the
graph.

3 Corpus-based Semantics: Selectional
Preference

In this paper, we focus on selectional preference that
reflects the association of two words: if two words
form a bigram, then the two words should share
similar latent dimensions. In the previous example,
crude and oil form a bigram, and they share the re-
source topic. In our framework, this is implemented
by adding extra columns in X , so that each addi-
tional column corresponds to a bigram, treating each
bigram as a pseudo-sentence for the two words. The
graphical model is illustrated in Figure 2b. There-
fore, oil will receive more resource topic from crude
through the bigram crude oil, instead of only finance
topic from the sentence as a whole.

Each non-zero cell in the new columns of X , i.e.
an observed token in a bigram (pseudo-sentence), is
given a different weight:

Wi,j =

 1, if Xij 6= 0 and j is a sentence index
γ · freq(j), if Xij 6= 0 and j is a bigram index
wm, if Xij = 0
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Figure 2: WTMF+PK model (WTMF + corpus-based Selectional [P]references semantics + [K]nowledge-based
semantics): a w/s/b node represents a word/sentence/bigram, respectively

freq(j) denotes the frequency of bigram j appear-
ing in the corpus, hence the strength of association is
differentiated such that higher weights are assigned
on the more probable bigrams. The coefficient γ is
the importance of selectional preference. A larger
γ indicates that we trust the selectional preference
over the global sentential semantics.

4 Knowledge-based Semantics: Similar
Word Pairs

We first extract synonym pairs from WordNet, which
are words associated with the same sense, synset.
We further expand the set by exploiting the relations
defined in WordNet. For the extracted words, we
consider the first sense of each word, and if it is con-
nected to other senses by any of the WordNet defined
relations (hypernym, similar words, etc.), then we
treat the words associated with the other senses as
similar words. In total, we are able to discover 80K
pairs of similar words for the 46K distinct words in
our corpus.

Given a pair of similar words wi1/wi2 , we want
the two corresponding latent vectors P·,i1/P·,i2 to be
as close as possible, namely the cosine similarity to
be close to 1. Accordingly, a term is added in equa-
tion 1 for each similar word pair wi1/wi2 :

δ · (P·,i1 · P·,i2 − |P·,i1 ||P·,i2 |)
2 (2)

|P·,i| denotes the length of the vector P·,i. The co-
efficient δ, analogous to γ, denotes the importance
of the knowledge-based evidence. The Figure 2c
shows the final WTMF+PK model.

5 Inference

In (Guo and Diab, 2012b) we use Alternating Least
Square [ALS] for inference, which is to set the

derivative of equation 1 for P/Q to 0 and iteratively
compute P/Q by fixing the other matrix (Srebro and
Jaakkola, 2003). However, it is no longer applicable
with the new term (equation 2) involving the length
of word vectors |P·,i|. Therefore we approximate the
objective function by treating the vector length |P·,i|
as fixed values during the ALS iterations:

Q·,j =
(
PW̃ (j)P> + λI

)−1

PW̃ (j)X·,j

P·,i =
(
QW̃ (i)Q> + λI + δP·,s(i)P

>
·,s(i)

)−1

(
QW̃ (i)X>i,· + δLiP·,s(i)Ls(i)

) (3)

where P·,s(i) are the latent vectors of similar words
of word i; the length of these vectors in the current
iteration are stored in Ls(i) (similarly Li is the cur-
rent length of P·,i) (cf. (Steck, 2010; Guo and Diab,
2012b) for optimization details).

6 Experimental Setting

We build the model WTMF+PK on the same cor-
pora as used in our previous work (Guo and Diab,
2012b), comprising the following: Brown corpus
(each sentence is treated as a document), sense def-
initions from Wiktionary and Wordnet (only defini-
tions without target words and usage examples). We
follow the preprocessing steps in (Guo and Diab,
2012c): tokenization, pos-tagging, lemmatization
and further merge lemmas. The corpus is used for
building matrix X .

The evaluation datasets are LI06 dataset and
Semeval-2012 STS [STS12] (Agirre et al., 2012)
dataset. LI06 consists of 30 sentence pairs (dic-
tionary definitions). For STS12,1 the training data
(2000 pairs) are used as the tuning set for setting the

1A detailed description of the data sets is provided in (Agirre
et al., 2012).
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parameters of our models. This data comprises msr-
par, msr-vid, smt-eur. Once the models are tuned,
we evaluate them on the STS12 test data that com-
prises 3150 sentence pairs from msr-par, msr-vid,
smt-eur, smt-news, On-WN. It is worth noting that
smt-news and On-WN are not part of the tuning data.
We use cosine similarity to measure the similarity
scores between two sentences. Pearson correlation
between the system’s answer and gold standard sim-
ilarity scores is used as the evaluation metric.

We include three baselines LSA, LDA and
WTMF using the setting described in (Guo and
Diab, 2012b). We run Gibbs Sampling based LDA
for 2000 iterations and average the model over the
last 10 iterations. For WTMF, we run 20 iterations
and fix the missing words weight at wm = 0.01 with
a regularization coefficient set at λ = 20, which is
the best condition found in (Guo and Diab, 2012b).

7 Experiments

Table 1 summarizes the results at dimension K =
100 (the dimension of latent vectors). To remove
randomness, each reported number is the averaged
results of 10 runs. Based on the STS tuning set,
we experiment with different values for the selec-
tional preference weight (γ = {0, 1, 2}), and like-
wise for the similar word pairs weight varying the δ
value as follows δ = {0, 0.1, 0.3, 0.5, 0.7}. The per-
formance on STS12 tuning and test dataset as well
as on the LI06 dataset are illustrated in Figures 3a,
3b and 3d. The parameters of model 6 in Table 1
(γ = 2, δ = 0.3) are the chosen values based on
tuning set performance.

7.1 Evaluation on the STS12 datasets

Table 1 shows WTMF is already a very strong base-
line: it outperforms LSA and LDA by a large mar-
gin. Same as in (Guo and Diab, 2012b), LSA per-
formance degrades dramatically when trained on a
corpus of sentence sized documents, yielding results
worse than the surface words baseline 31% (Agirre
et al., 2012). Using corpus-based selectional prefer-
ence semantics alone (model 4 WTMF+P in Table
1) boosts the performance of WTMF by +1.17% on
the test set, while using knowledge-based semantics
alone (model 5 WTMF+K) improves the over the
WTMF results by an absolute +2.31%. Combining

them (model 6 WTMF+PK) yields the best results,
with an absolute increase of +3.39%, which sug-
gests that the two sources of semantic evidence are
useful, but more importantly, they are complemen-
tary for each other.

Table 1 also presents the performance on each in-
dividual dataset. The gain on each individual source
is not as much as the overall gain, which suggests
part of the overall gain comes from the correct rank-
ing of intra-source pairs. Note that WTMF+PK im-
proves all individual datasets except smt-eur. This
may be caused by too many overlapping words in
the sentence pairs in smt-eur, while our approach
focuses on extracting similarity between different
words.

Observing the performance using different values
of weights in figure 3a and 3b, we can conclude
that the selectional preference and similar word pairs
yield very promising results. The trends hold in
different parameter conditions with a consistent im-
provement. Figure 3c illustrates the impact of di-
mension K = {50, 75, 100, 125, 150} on WTMF
and WTMF+PK. Generally a larger K leads to a
higher Pearson correlation, but the improvement is
tiny when K ≥ 100 (0.1% increase).

Compared to all the unsupervised systems that
participated in Semeval STS 2012 task, WTMF+PK
yields state-of-the-art performance (70.70%).2 In
(Guo and Diab, 2012c) we also apply WTMF (K =
100) on STS12, achieving a correlation of 69.5%.
However, additional data is incorporated in the train-
ing corpora: (1) STS12 tuning set; (2) for WordNet
and Wiktionary data, the target words are also in-
cluded in the definitions (hence synonym pairs were
used); (3) the usage examples of target words were
also appended to the definitions.3 While trained with
this experimental setting, our model WTMF+PK
(γ = 2, δ = 0.3,K = 100) is able to reach an even
higher correlation of 72.0%.

2WTMF+PK is an unsupervised system, since the gold stan-
dard similarly scores are never used in the objective function.
Moreover, even without a tuning set, a non-zero value of γ or δ
will always improve the baseline WTMF according to figure 3a
and 3b.

3We do not adopt this corpora schema, since some defini-
tions are test set sentences in On-WN, thereby adding target
words and usage examples introduces additional information
for some of the test set sentences
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Models Parameters STS12 tune STS12 test msr-par msr-vid On-WN smt-eur smt-news LI06
1. LSA - 21.67% 24.41% 27.18% 9.91% 50.93% 27.86% 19.73% 63.77%
2. LDA α = 0.05, β = 0.05 71.10% 63.18% 29.15% 76.73% 62.81% 47.81% 27.2% 83.71%
3. WTMF - 71.41% 67.31% 44.00% 82.59% 70.78% 50.89% 37.77% 89.81%
4. WTMF+P γ = 2, δ = 0 72.94% 68.48% 46.21% 83.29% 70.61% 49.54% 39.50% 90.16%
5. WTMF+K γ = 0, δ = 0.3 73.84% 69.64% 45.04% 83.04% 70.40% 49.88% 41.66% 90.11%
6. WTMF+PK γ = 2, δ = 0.3 75.29% 70.70% 46.77% 83.90% 71.03% 49.77% 40.48% 90.17%

Table 1: Evaluation Results using Pearson Correlation on STS12 and LI06
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Figure 3: Pearson correlation at different parameter settings

7.2 Evaluation on the LI06 dataset
Figure 3d presents the results obtained on the LI06
data set at different weight values for the corpus-
based selectional preference semantics γ and for the
knowledge-based semantics δ. Our previous exper-
iments (Guo and Diab, 2012b) show that WTMF
is the state-of-the-art model on LI06. With lexi-
cal semantics explicitly modeled, WTMF+PK yields
better results than WTMF (see Table 1). It should
be noted that LI06 prefers a smaller similar word
pair weight ( a δ = 0.1 yields the best perfor-
mance around of 90.75%), yet in almost all condi-
tions WTMF+PK outperforms WTMF as shown in
Figure 3d.

8 Related Work

SS has progressed immensely in recent years, espe-
cially with the establishment of the Semantic Tex-
tual Similarity task in SEMEVAL 2012. Early work
in SS focused on word pair similarity in the high di-
mensional space (Li et al., 2006; Liu et al., 2007;
Islam and Inkpen, 2008; Tsatsaronis et al., 2010; Ho
et al., 2010), where co-occurrence information was
not efficiently exploited. Researchers (O’Shea et al.,
2008) find LSA does not yield good performance. In
(Guo and Diab, 2012b; Guo and Diab, 2012c), we
show the superiority of the latent space approach in
WTMF. In this paper, we improve the WTMF model

and achieve state-of-the-art Pearson correlation on
two standard SS datasets.

There are latent variable models designed for lex-
ical semantics, such as word senses (Boyd-Graber
et al., 2007; Guo and Diab, 2011), function words
(Griffiths et al., 2005), selectional preference (Ritter
et al., 2010), synonyms and antonyms (Yih et al.,
2012), etc. However little improvement is shown
on document/sentence level semantics: (Ritter et al.,
2010) and (Yih et al., 2012) focus on selectional
preference and antonym identification, respectively;
in (Griffiths et al., 2005) the LDA performance de-
grades in the text categorization task including the
modeling of function words. Rather, we concentrate
on nuanced lexical semantics phenomena that could
benefit sentential semantics.

9 Conclusion

We incorporate corpus-based (selectional prefer-
ence) and knowledge-based (similar word pairs) lex-
ical semantics into a latent variable model. Our
system yields state-of-the-art unsupervised perfor-
mance on two most popular and standard SS
datasets.
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Abstract

Continuous space language models have re-
cently demonstrated outstanding results across
a variety of tasks. In this paper, we ex-
amine the vector-space word representations
that are implicitly learned by the input-layer
weights. We find that these representations
are surprisingly good at capturing syntactic
and semantic regularities in language, and
that each relationship is characterized by a
relation-specific vector offset. This allows
vector-oriented reasoning based on the offsets
between words. For example, the male/female
relationship is automatically learned, and with
the induced vector representations, “King -
Man + Woman” results in a vector very close
to “Queen.” We demonstrate that the word
vectors capture syntactic regularities by means
of syntactic analogy questions (provided with
this paper), and are able to correctly answer
almost 40% of the questions. We demonstrate
that the word vectors capture semantic regu-
larities by using the vector offset method to
answer SemEval-2012 Task 2 questions. Re-
markably, this method outperforms the best
previous systems.

1 Introduction

A defining feature of neural network language mod-
els is their representation of words as high dimen-
sional real valued vectors. In these models (Ben-
gio et al., 2003; Schwenk, 2007; Mikolov et al.,
2010), words are converted via a learned lookup-
table into real valued vectors which are used as the

∗Currently at Google, Inc.

inputs to a neural network. As pointed out by the
original proposers, one of the main advantages of
these models is that the distributed representation
achieves a level of generalization that is not possi-
ble with classical n-gram language models; whereas
a n-gram model works in terms of discrete units that
have no inherent relationship to one another, a con-
tinuous space model works in terms of word vectors
where similar words are likely to have similar vec-
tors. Thus, when the model parameters are adjusted
in response to a particular word or word-sequence,
the improvements will carry over to occurrences of
similar words and sequences.

By training a neural network language model, one
obtains not just the model itself, but also the learned
word representations, which may be used for other,
potentially unrelated, tasks. This has been used to
good effect, for example in (Collobert and Weston,
2008; Turian et al., 2010) where induced word rep-
resentations are used with sophisticated classifiers to
improve performance in many NLP tasks.

In this work, we find that the learned word repre-
sentations in fact capture meaningful syntactic and
semantic regularities in a very simple way. Specif-
ically, the regularities are observed as constant vec-
tor offsets between pairs of words sharing a par-
ticular relationship. For example, if we denote the
vector for word i as xi, and focus on the singu-
lar/plural relation, we observe that xapple−xapples ≈
xcar−xcars, xfamily−xfamilies ≈ xcar−xcars, and
so on. Perhaps more surprisingly, we find that this
is also the case for a variety of semantic relations, as
measured by the SemEval 2012 task of measuring
relation similarity.
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The remainder of this paper is organized as fol-
lows. In Section 2, we discuss related work; Section
3 describes the recurrent neural network language
model we used to obtain word vectors; Section 4 dis-
cusses the test sets; Section 5 describes our proposed
vector offset method; Section 6 summarizes our ex-
periments, and we conclude in Section 7.

2 Related Work

Distributed word representations have a long his-
tory, with early proposals including (Hinton, 1986;
Pollack, 1990; Elman, 1991; Deerwester et al.,
1990). More recently, neural network language
models have been proposed for the classical lan-
guage modeling task of predicting a probability dis-
tribution over the “next” word, given some preced-
ing words. These models were first studied in the
context of feed-forward networks (Bengio et al.,
2003; Bengio et al., 2006), and later in the con-
text of recurrent neural network models (Mikolov et
al., 2010; Mikolov et al., 2011b). This early work
demonstrated outstanding performance in terms of
word-prediction, but also the need for more compu-
tationally efficient models. This has been addressed
by subsequent work using hierarchical prediction
(Morin and Bengio, 2005; Mnih and Hinton, 2009;
Le et al., 2011; Mikolov et al., 2011b; Mikolov et
al., 2011a). Also of note, the use of distributed
topic representations has been studied in (Hinton
and Salakhutdinov, 2006; Hinton and Salakhutdi-
nov, 2010), and (Bordes et al., 2012) presents a se-
mantically driven method for obtaining word repre-
sentations.

3 Recurrent Neural Network Model

The word representations we study are learned by a
recurrent neural network language model (Mikolov
et al., 2010), as illustrated in Figure 1. This architec-
ture consists of an input layer, a hidden layer with re-
current connections, plus the corresponding weight
matrices. The input vector w(t) represents input
word at time t encoded using 1-of-N coding, and the
output layer y(t) produces a probability distribution
over words. The hidden layer s(t) maintains a rep-
resentation of the sentence history. The input vector
w(t) and the output vector y(t) have dimensional-
ity of the vocabulary. The values in the hidden and

Figure 1: Recurrent Neural Network Language Model.

output layers are computed as follows:

s(t) = f (Uw(t) + Ws(t−1)) (1)

y(t) = g (Vs(t)) , (2)

where

f(z) =
1

1 + e−z
, g(zm) =

ezm∑
k ezk

. (3)

In this framework, the word representations are
found in the columns of U, with each column rep-
resenting a word. The RNN is trained with back-
propagation to maximize the data log-likelihood un-
der the model. The model itself has no knowledge
of syntax or morphology or semantics. Remark-
ably, training such a purely lexical model to max-
imize likelihood will induce word representations
with striking syntactic and semantic properties.

4 Measuring Linguistic Regularity

4.1 A Syntactic Test Set
To understand better the syntactic regularities which
are inherent in the learned representation, we created
a test set of analogy questions of the form “a is to b
as c is to ” testing base/comparative/superlative
forms of adjectives; singular/plural forms of com-
mon nouns; possessive/non-possessive forms of
common nouns; and base, past and 3rd person
present tense forms of verbs. More precisely, we
tagged 267M words of newspaper text with Penn
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Category Relation Patterns Tested # Questions Example
Adjectives Base/Comparative JJ/JJR, JJR/JJ 1000 good:better rough:
Adjectives Base/Superlative JJ/JJS, JJS/JJ 1000 good:best rough:
Adjectives Comparative/

Superlative
JJS/JJR, JJR/JJS 1000 better:best rougher:

Nouns Singular/Plural NN/NNS,
NNS/NN

1000 year:years law:

Nouns Non-possessive/
Possessive

NN/NN POS,
NN POS/NN

1000 city:city’s bank:

Verbs Base/Past VB/VBD,
VBD/VB

1000 see:saw return:

Verbs Base/3rd Person
Singular Present

VB/VBZ, VBZ/VB 1000 see:sees return:

Verbs Past/3rd Person
Singular Present

VBD/VBZ,
VBZ/VBD

1000 saw:sees returned:

Table 1: Test set patterns. For a given pattern and word-pair, both orderings occur in the test set. For example, if
“see:saw return: ” occurs, so will “saw:see returned: ”.

Treebank POS tags (Marcus et al., 1993). We then
selected 100 of the most frequent comparative adjec-
tives (words labeled JJR); 100 of the most frequent
plural nouns (NNS); 100 of the most frequent pos-
sessive nouns (NN POS); and 100 of the most fre-
quent base form verbs (VB). We then systematically
generated analogy questions by randomly matching
each of the 100 words with 5 other words from the
same category, and creating variants as indicated in
Table 1. The total test set size is 8000. The test set
is available online. 1

4.2 A Semantic Test Set

In addition to syntactic analogy questions, we used
the SemEval-2012 Task 2, Measuring Relation Sim-
ilarity (Jurgens et al., 2012), to estimate the extent
to which RNNLM word vectors contain semantic
information. The dataset contains 79 fine-grained
word relations, where 10 are used for training and
69 testing. Each relation is exemplified by 3 or
4 gold word pairs. Given a group of word pairs
that supposedly have the same relation, the task is
to order the target pairs according to the degree to
which this relation holds. This can be viewed as an-
other analogy problem. For example, take the Class-
Inclusion:Singular Collective relation with the pro-

1http://research.microsoft.com/en-
us/projects/rnn/default.aspx

totypical word pair clothing:shirt. To measure the
degree that a target word pair dish:bowl has the same
relation, we form the analogy “clothing is to shirt as
dish is to bowl,” and ask how valid it is.

5 The Vector Offset Method

As we have seen, both the syntactic and semantic
tasks have been formulated as analogy questions.
We have found that a simple vector offset method
based on cosine distance is remarkably effective in
solving these questions. In this method, we assume
relationships are present as vector offsets, so that in
the embedding space, all pairs of words sharing a
particular relation are related by the same constant
offset. This is illustrated in Figure 2.

In this model, to answer the analogy question a:b
c:d where d is unknown, we find the embedding
vectors xa, xb, xc (all normalized to unit norm), and
compute y = xb − xa + xc. y is the continuous
space representation of the word we expect to be the
best answer. Of course, no word might exist at that
exact position, so we then search for the word whose
embedding vector has the greatest cosine similarity
to y and output it:

w∗ = argmaxw
xwy

‖xw‖‖y‖
When d is given, as in our semantic test set, we
simply use cos(xb − xa + xc, xd) for the words
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Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

provided. We have explored several related meth-
ods and found that the proposed method performs
well for both syntactic and semantic relations. We
note that this measure is qualitatively similar to rela-
tional similarity model of (Turney, 2012), which pre-
dicts similarity between members of the word pairs
(xb, xd), (xc, xd) and dis-similarity for (xa, xd).

6 Experimental Results

To evaluate the vector offset method, we used
vectors generated by the RNN toolkit of Mikolov
(2012). Vectors of dimensionality 80, 320, and 640
were generated, along with a composite of several
systems, with total dimensionality 1600. The sys-
tems were trained with 320M words of Broadcast
News data as described in (Mikolov et al., 2011a),
and had an 82k vocabulary. Table 2 shows results
for both RNNLM and LSA vectors on the syntactic
task. LSA was trained on the same data as the RNN.
We see that the RNN vectors capture significantly
more syntactic regularity than the LSA vectors, and
do remarkably well in an absolute sense, answering
more than one in three questions correctly. 2

In Table 3 we compare the RNN vectors with
those based on the methods of Collobert and We-
ston (2008) and Mnih and Hinton (2009), as imple-
mented by (Turian et al., 2010) and available online
3 Since different words are present in these datasets,
we computed the intersection of the vocabularies of
the RNN vectors and the new vectors, and restricted
the test set and word vectors to those. This resulted
in a 36k word vocabulary, and a test set with 6632

2Guessing gets a small fraction of a percent.
3http://metaoptimize.com/projects/wordreprs/

Method Adjectives Nouns Verbs All
LSA-80 9.2 11.1 17.4 12.8
LSA-320 11.3 18.1 20.7 16.5
LSA-640 9.6 10.1 13.8 11.3
RNN-80 9.3 5.2 30.4 16.2
RNN-320 18.2 19.0 45.0 28.5
RNN-640 21.0 25.2 54.8 34.7
RNN-1600 23.9 29.2 62.2 39.6

Table 2: Results for identifying syntactic regularities for
different word representations. Percent correct.

Method Adjectives Nouns Verbs All
RNN-80 10.1 8.1 30.4 19.0
CW-50 1.1 2.4 8.1 4.5
CW-100 1.3 4.1 8.6 5.0
HLBL-50 4.4 5.4 23.1 13.0
HLBL-100 7.6 13.2 30.2 18.7

Table 3: Comparison of RNN vectors with Turian’s Col-
lobert and Weston based vectors and the Hierarchical
Log-Bilinear model of Mnih and Hinton. Percent correct.

questions. Turian’s Collobert and Weston based vec-
tors do poorly on this task, whereas the Hierarchical
Log-Bilinear Model vectors of (Mnih and Hinton,
2009) do essentially as well as the RNN vectors.
These representations were trained on 37M words
of data and this may indicate a greater robustness of
the HLBL method.

We conducted similar experiments with the se-
mantic test set. For each target word pair in a rela-
tion category, the model measures its relational sim-
ilarity to each of the prototypical word pairs, and
then uses the average as the final score. The results
are evaluated using the two standard metrics defined
in the task, Spearman’s rank correlation coefficient
ρ and MaxDiff accuracy. In both cases, larger val-
ues are better. To compare to previous systems, we
report the average over all 69 relations in the test set.

From Table 4, we see that as with the syntac-
tic regularity study, the RNN-based representations
perform best. In this case, however, Turian’s CW
vectors are comparable in performance to the HLBL
vectors. With the RNN vectors, the performance im-
proves as the number of dimensions increases. Sur-
prisingly, we found that even though the RNN vec-
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Method Spearman’s ρ MaxDiff Acc.
LSA-640 0.149 0.364
RNN-80 0.211 0.389
RNN-320 0.259 0.408
RNN-640 0.270 0.416
RNN-1600 0.275 0.418
CW-50 0.159 0.363
CW-100 0.154 0.363
HLBL-50 0.149 0.363
HLBL-100 0.146 0.362
UTD-NB 0.230 0.395

Table 4: Results in measuring relation similarity

tors are not trained or tuned specifically for this task,
the model achieves better results (RNN-320, RNN-
640 & RNN-1600) than the previously best perform-
ing system, UTD-NB (Rink and Harabagiu, 2012).

7 Conclusion

We have presented a generally applicable vector off-
set method for identifying linguistic regularities in
continuous space word representations. We have
shown that the word representations learned by a
RNNLM do an especially good job in capturing
these regularities. We present a new dataset for mea-
suring syntactic performance, and achieve almost
40% correct. We also evaluate semantic general-
ization on the SemEval 2012 task, and outperform
the previous state-of-the-art. Surprisingly, both re-
sults are the byproducts of an unsupervised maxi-
mum likelihood training criterion that simply oper-
ates on a large amount of text data.
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Abstract

We propose a novel semantic anno-
tation type of assigning truth values
to predicate occurrences, and present
TruthTeller, a standalone publicly-
available tool that produces such annota-
tions. TruthTeller integrates a range
of semantic phenomena, such as nega-
tion, modality, presupposition, implicativ-
ity, and more, which were dealt only partly
in previous works. Empirical evaluations
against human annotations show satisfac-
tory results and suggest the usefulness of
this new type of tool for NLP.

1 Introduction

In a text, the action or relation denoted by ev-
ery predicate can be seen as being either pos-
itively or negatively inferred from its sentence,
or otherwise having an unknown truth status.
Only in (3) below can we infer that Gal sold
her shop, hence the positive truth value of the
predicate sell, while according to (2) and (4) Gal
did not sell it, hence the negative truth values,
and in (1) we do not know if she sold it or not
(the notations pt+, pt- and pt? denote truth
states, defined in Subsection 2.3). Identifying
these predicate truth values is an important sub-
task within many semantic processing scenarios,
including various applications such as Question
Answering (QA), Information Extraction (IE),
paraphrasing and summarization. The follow-
ing examples illustrate the phenomenon:

(1) Gal made an attempt pt+ to sell pt? her
shop.

(2) Gal did not try pt− to sell pt− her shop af-
ter hearing pt+ the offers.

(3) Maybe Gal wasn’t smart pt? to sell pt+ her
shop.

(4) Gal wasn’t smart pt− enough to sell pt− the
shop that she had bought pt+.

Previous works addressed specific aspects of
the truth detection problem: Nairn et al.
(2006), and later MacCartney & Manning (2007;
2009), were the first to build paraphrasing and
inference systems that combine negation (see try
in (2)), modality (smart in (3)) and “natural
logic”, a recursive truth value calculus (sell in
(1-3)); recently, Mausam et al. (2012) built an
open IE system that identifies granulated vari-
ants of modality and conditions on predicates
(smart in (3)); and Kiparsky & Kiparsky (1970)
and Karttunen (1971; 2012) laid the ground
work for factive and implicative entailment cal-
culus (sell in (1-4)), as well as many generic
constructions of presupposition (hearing in (2)
is presupposed because it heads an adverbial
clause and bought in (4) heads a finite relative
clause), which, to our knowledge, have not yet
been implemented computationally. Notice in
the examples that presuppositions persist under
negation, in questions and if-clauses, while en-
tailments do not. In addition, there is a growing
research line of negation and modality detection.
See, for example, Morante & Daelemans (2012).
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We present TruthTeller1, a novel algo-
rithm and system that identifies the truth value
of each predicate in a given sentence. It anno-
tates nodes in the text’s dependency parse-tree
via a combination of pattern-based annotation
rules and a recursive algorithm based on natu-
ral logic. In the course of computing truth value,
it also computes the implicativity/factivity sig-
nature of predicates, and their negation and
modality to a basic degree, both of which are
made available in the system output. It ad-
dresses and combines the aforementioned phe-
nomena (see Section 2), many of which weren’t
dealt in previous systems.

TruthTeller is an open source and pub-
licly available annotation tool, offers a relatively
simple algebra for truth value computation, and
is accompanied by a publicly available lexicon
of over 1,700 implicative and factive predicates.
Also, we provide an intuitive GUI for viewing
and modifying the algorithm’s annotation rules.

2 Annotation Types and Algorithm

This section summarizes the annotation algo-
rithm (a detailed report is available with the sys-
tem release). We perform the annotations over
dependency parse trees, generated according to
the Stanford Dependencies standard (de Marn-
effe and Manning, 2008). For all verbs, nouns
and adjectives in a sentence’s parse tree, we pro-
duce the following 4 annotation types, given in
the order they are calculated, as described in the
following subsections:

1. Predicate Implication Signature (sig) - de-
scribes the pattern by which the predi-
cate entails or presupposes its complements,
e.g., the verb refuse entails the negative of
its complements: Ed refused to pay entails
that Ed didn’t pay.

2. Negation and Uncertainty (NU) - indicates
whether the predicate is modified by an un-
certainty modifier like might, probably, etc.,
or whether it’s negated by no, never etc.

3. Clause-Truth (CT) - indicates whether the
1http://cs.biu.ac.il/~nlp/downloads/TruthTeller

entire clause headed by the predicate is en-
tailed by the complete sentence

4. Predicate Truth (PT) - indicates whether
the predicate itself is entailed by the sen-
tence, as defined below

Before presenting the detailed definitions and
descriptions below, we give a high-level descrip-
tion of TruthTeller’s algorithm, where each
step relies on the results of its predecessor: a)
every predicate in the parse tree is annotated
with a predicate implication signature, identi-
fied by lexicon lookup; b) NU annotations are
added, according to the presence of uncertainty
modifiers (maybe, might, etc.) and negation
modifies (not, never, etc.); c) predicates in cer-
tain presupposition constructions (e.g., adver-
bial clauses, WH arguments) are annotated with
positive CT values; d) the parse tree is depth-
first scanned, in order to compute both CT and
PT annotations by the recursive effects of fac-
tives and implicatives; e) in conjunction with
the previous step, relative clause constructions
are identified and annotated with CT and PT.
Except for steps a) and d), all of the pro-

cedure is implemented as an ordered sequence
of annotation rule applications. An annotation
rule is a dependency parse tree template, pos-
sibly including variables, which assigns certain
annotations to any parse tree node that matches
against it. Step a) is implemented with signa-
ture lexicon lookups, and step d) is an algorithm
implemented in code.
To illustrate this entire process, Figure 1

presents the annotation process of a sim-
ple sentence, step by step, resulting in
TruthTeller’s complete output, fully speci-
fied below. Most other examples in this paper
show only partial annotations for brevity.

2.1 Predicate Implication Signature
Our system marks the signature of each predi-
cate, as defined in Table 1. There, each signa-
ture has a left sign and a right sign. The left sign
determines the clause truth value of the pred-
icate’s complements, when the predicate is in
positive contexts (e.g., not negated), while the
right sign applies in negative contexts (clause
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# Sig Positive context example Negative context example
1 +/- Ed managed to escape ⇒ Ed escaped Ed didn’t manage to escape ⇒ Ed didn’t escape
2 +/? Ed was forced to sell ⇒ Ed sold Ed wasn’t forced to sell ⇒ no entailments
3 ?/- Ed was allowed to go ⇒ no entailments Ed wasn’t allowed to go ⇒ Ed didn’t go
4 -/+ Ed forgot to pay ⇒ Ed didn’t pay Ed didn’t forget to pay ⇒ Ed paid
5 -/? Ed refused to fight ⇒ Ed didn’t fight Ed didn’t refuse to fight ⇒ no entailments
6 ?/+ Ed hesitated to ask ⇒ no entailments Ed didn’t hesitate to ask ⇒ Ed asked
7 +/+ Ed was glad to come ⇒ Ed came Ed wasn’t glad to come ⇒ Ed came
8 -/- Ed pretended to pay ⇒ Ed didn’t pay Ed didn’t pretend to pay ⇒ Ed didn’t pay
9 ?/? Ed wanted to fly ⇒ no entailments Ed didn’t want to fly ⇒ no entailments

Table 1: Implication signatures, based on MacCartney & Manning (2009) and Karttunen (2012). The first
six signatures are named implicatives, and the last three factive, counter factive and regular, respectively.

a) Annotate signatures via lexicons lookup
Gal wasn’t allowed?/− to come?/?

b) Annotate NU
Gal wasn’t allowed?/−,nu− to come?/?,nu+

c) Annotate CT to presupposition constructions
Gal wasn’t allowed?/−,nu−,ct+ to come?/?,nu+,ct+

d) Recursive CT and PT annotation
Gal wasn’t allowed?/−,nu−,ct+,pt− to

come?/?,nu+,ct−,pt−

e) Annotate CT and PT of relative clauses
(has no effect on this example)

Gal wasn’t allowed?/−,nu−,ct+,pt− to
come?/?,nu+,ct−,pt−

Figure 1: An illustration of the annotation process

truth is defined in Subsection 2.3). See exam-
ples for both context types in the table. Each
sign can be either + (positive), - (negative) or
? (unknown). The unknown sign signifies that
the predicate does not entail its complements in
any way.
Signatures are identified via lookup, using two

lexicons, one for single-word predicates and the
other for verb+noun phrasal verbs, e.g., take the
time to X. Our single-word lexicon is similar to
those used in (Nairn et al., 2006) and (Bar-Haim
et al., 2007), but is far greater, holding over
1,700 entries, while each of the previous two has,
to the best of our knowledge, less than 300 en-
tries. It was built semi automatically, out of
a kernel of 320 manually inspected predicates,

which was then expanded with WordNet syn-
onyms (Fellbaum, 1998). The second lexicon
is the implicative phrasal verb lexicon of Kart-
tunen (2012), adapted into our framework. The
+/? implicative serves as the default signature
for all unlisted predicates.
Signature is also sensitive to the type of the

complement. Consider:

(6) Ed forgot−/+ to call pt− Joe

(7) Ed forgot+/+ that he called pt+ Joe

Therefore, signatures are specified separately for
finite and non finite complements of each pred-
icate.
After the initial signature lookup, two anno-

tation rules correct the signatures of +/+ fac-
tives modified by enough and too, into +/- and
-/+, correspondingly, see Kiparsky & Kiparsky
(1970). Compare:

(8) Ed was mad+/+ to go ⇒ Ed went

(9) Ed was too mad−/+ to go ⇒ Ed didn’t go

In addition, we observed, like Karttunen (2012),
that most verbs that have passive voice and the
into preposition become +/? implicatives, e.g.,

(10) Workers were pushed / maddened /
managed+/? into signing ⇒ They signed

(11) Workers weren’t pushed / maddened /
managed+/? into signing⇒ It is unknown
whether they signed

so we captured this construction in another rule.
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2.2 Negation and Uncertainty (NU)
NU takes the values {nu+, nu-, nu?}, stand-
ing for non-negated certain actions, negated cer-
tain actions, and uncertain actions. The first
NU rules match against a closed set of negation
modifiers around the predicate, like not, never,
neither etc. (see (2)), while later rules detect
uncertainty modifiers, like maybe, probably, etc.
Therefore, nu? takes precedence over nu-.

Many constructions of subject-negation,
object-negation and “double negation” are
accounted for in our rules, as in:

(12) Nobody was seennu− at the site

(13) Almost nobody was seennu+ at the site

2.3 Clause Truth and Predicate Truth
Clause Truth (CT, denoted as ct(p)) corre-
sponds to polarity of Nairn et al. (2006). It
represents whether the clause headed by a pred-
icate p is entailed by the sentence, contradicted
or unknown, and thus takes three values {ct+,
ct-, ct?}.
Predicate Truth (PT) (denoted as pt(p)) rep-

resents whether we can infer from the sentence
that the action described by the predicate hap-
pened (or that its relation holds). It is defined
as the binary product of NU and CT:
Definition 1. PT = NU · CT

and takes analogous values: {pt+, pt-, pt?}.
Intuitively, the product of two identical posi-
tive/negative values yields pt+, a positive and a
negative yield pt-, and nu? or ct? always yield
pt?. To illustrate these definitions, consider:

(14) Meg may have sleptct+,pt? after
eatingct+,pt+ the meal Ed cookedct+,pt+,
while no one was therect+,pt−

After signatures and NU are annotated, CT
and PT are calculated. At first, we apply
a set of rules that annotate generic presup-
position constructions with ct+. These in-
clude adverbial clauses opening with {while, be-
fore, after, where, how come, because, since,
owing to, though, despite, yet, therefore...},
WH arguments (who, which, whom, what), and

ct(p) =



ct+ : p was already annotated
by a presupposition rule

ct(gov(p)) : p heads a relative
clause

compCT (p) : otherwise, and p is
a complement

ct? : otherwise (default)

Figure 2: Formula of ct(p), for any predicate p.
ct(gov(p)) is the CT of p’s governing predicate.

parataxis2. See for example the effects of after
and while in (14).

Then, we apply the following recursive se-
quential procedure. The tree root always gets
ct+ (see slept in (14)). The tree is then scanned
downwards, predicate by predicate. At each one,
we compute CT by the formula in Figure 2, as
follows. First, we check if one of the aforemen-
tioned presupposition rules already matched the
node. Second, if none matched, we apply to the
node’s entire subtree another set of rules that
annotate each relative clause with the CT of its
governing noun3, ct(gov(p)) (see failed in (15)).
Third, if no previous rule matched, and p is a
complement of another predicate gov(p), then
compCT(p) is calculated, by the following logic:
when pt(gov(p)) is pt+ or pt-, the correspond-
ing left or right sign of sig(gov(p)) is copied.
Otherwise, if pt(gov(p)) = pt?, ct? is returned,
except when the signature of gov(p) is +/+ (or
-/-) factive, which always yields ct+ (or ct-).

Third, if nothing applied to p, ct? is returned
by default. Finally, PT is set, according to Def-
inition 1.
To illustrate, consider these annotations:

(15) Gal managed+/−,ct+,pt+ a
building+/?,ct+,pt+, which Ginger
failed−/+,ct+,pt+ to sell+/?,ct−,pt−

First, managed gets ct+ as the tree root. Then,
we get compCT (building) = ct+, as the com-
plement of managed+/−,pt+. Next, a relative
clause rule copies ct+ from building to failed.

2The placing of clauses or phrases one after another,
without words to indicate coordination, as in “veni, vidi,
vici” in contrast to “veni, vidi and vici”.

3We also annotate nouns and adjectives as predicates
in copular constructions, and in instances where nouns
have complements.
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Finally, compCT (sell) = ct- is calculated, as
the complement of failed−/+,pt+.

3 Evaluation

To evaluate TruthTeller’s accuracy, we sam-
pled 25 sentences from each of the RTE5 and
RTE6 Test datasets (Bentivogli et al., 2009;
Bentivogli et al., 2010), widely used for textual
inference benchmarks. In these 50 sentences, we
manually annotated each predicate, 153 in to-
tal, forming a gold standard. As baseline, we
report the most frequent value for each annota-
tion. The results, in Table 2, show high accuracy
for all types, reducing the baseline CT and PT
errors by half. Furthermore, most of the remain-
ing errors were due to parser errors, according
to a manual error analysis we conducted.
The baseline for NU annotations shows that

negations are scarce in these RTE datasets,
which was also the case for ct- and pt- an-
notations. Thus, Table 2 mostly indicates
TruthTeller’s performance in distinguishing pos-
itive CT and PT annotations from unknown
ones, the latter constituting v20% of the gold
standard. To further assess ct- and pt- annota-
tions we performed two targeted measurements.
Precision for ct- and pt- was measured by man-
ually judging the correctness of such annotations
by TruthTeller, on a sample from RTE6 Test
including 50 ct- and 124 pt- annotations. This
test yielded 78% and 83% precision, respectively.
pt- is more frequent as it is typically triggered
by ct-, as well as by other constructions involv-
ing negation. Recall was estimated by employ-
ing a human annotator to go through the dataset
and look for ct- and pt- gold standard anno-
tations. The annotator identified 40 “ct-”s and
50 “pt-”s, out of which TruthTeller found
47.5% of the “ct-”s and 74% of the “pt-”s. In
summary, TruthTeller’s performance on our
target PT annotations is quite satisfactory with
89% accuracy overall, having 83% precision and
74% recall estimates specifically for pt-.

4 Conclusions and Future Work

We have presented TruthTeller, a novel algo-
rithm and system that identifies truth values of

Annotation TruthTeller Baseline
Signature 89.5% 81% (+/?)

NU 98% 97.3% (nu+)
CT 90.8% 78.4% (ct+)
PT 89% 77% (pt+)

Table 2: The accuracy measures for
TruthTeller’s 4 annotations. The right col-
umn gives the accuracy for the corresponding
most-frequent baseline: {+/?, nu+, ct+, pt+}.

predicates, the first such system to a) address or
combine a wide variety of relevant grammatical
constructions; b) be an open source annotation
tool; c) address the truth value annotation task
as an independent tool, which makes it possible
for client systems to use its output, while pre-
vious works only embedded annotations in their
task-specific systems; and d) annotate unknown
truth values extensively and explicitly.

TruthTeller may be used for several pur-
poses, such as inferring parts of a sentence
from the whole and improving textual entail-
ment (and contradiction) detection. It includes
a novel, large and accurate, lexicon of predicate
implication signatures.
While in this paper we evaluated the correct-

ness of TruthTeller as an individual com-
ponent, in the future we propose integrating
it in a state-of-the-art RTE system and report
its impact. One challenge in this scenario is
having other system components interact with
TruthTeller’s decisions, possibly masking its
effects. In addition, we plan to incorporate
monotonicity calculations in the annotation pro-
cess, like in MacCartney and Manning (2009).
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Abstract

We present the 1.0 release of our para-
phrase database, PPDB. Its English portion,
PPDB:Eng, contains over 220 million para-
phrase pairs, consisting of 73 million phrasal
and 8 million lexical paraphrases, as well as
140 million paraphrase patterns, which cap-
ture many meaning-preserving syntactic trans-
formations. The paraphrases are extracted
from bilingual parallel corpora totaling over
100 million sentence pairs and over 2 billion
English words. We also release PPDB:Spa, a
collection of 196 million Spanish paraphrases.
Each paraphrase pair in PPDB contains a
set of associated scores, including paraphrase
probabilities derived from the bitext data and a
variety of monolingual distributional similar-
ity scores computed from the Google n-grams
and the Annotated Gigaword corpus. Our re-
lease includes pruning tools that allow users to
determine their own precision/recall tradeoff.

1 Introduction

Paraphrases, i.e. differing textual realizations of the
same meaning, have proven useful for a wide vari-
ety of natural language processing applications. Past
paraphrase collections include automatically derived
resources like DIRT (Lin and Pantel, 2001), the
MSR paraphrase corpus and phrase table (Dolan
et al., 2004; Quirk et al., 2004), among others.
Although several groups have independently ex-
tracted paraphrases using Bannard and Callison-
Burch (2005)’s bilingual pivoting technique (see
Zhou et al. (2006), Riezler et al. (2007), Snover et
al. (2010), among others), there has never been an
official release of this resource.

In this work, we release version 1.0 of the Para-
Phrase DataBase PPDB,1 a collection of ranked En-
glish and Spanish paraphrases derived by:

• Extracting lexical, phrasal, and syntactic para-
phrases from large bilingual parallel corpora
(with associated paraphrase probabilities).

• Computing distributional similarity scores for
each of the paraphrases using the Google n-
grams and the Annotated Gigaword corpus.

In addition to the paraphrase collection itself, we
provide tools to filter PPDB to only retain high pre-
cision paraphrases, scripts to limit the collection to
phrasal or lexical paraphrases (synonyms), and soft-
ware that enables users to extract paraphrases for
languages other than English.

2 Extracting Paraphrases from Bitexts

To extract paraphrases we follow Bannard and
Callison-Burch (2005)’s bilingual pivoting method.
The intuition is that two English strings e1 and e2
that translate to the same foreign string f can be as-
sumed to have the same meaning. We can thus pivot
over f and extract 〈e1, e2〉 as a pair of paraphrases,
as illustrated in Figure 1. The method extracts a di-
verse set of paraphrases. For thrown into jail, it ex-
tracts arrested, detained, imprisoned, incarcerated,
jailed, locked up, taken into custody, and thrown
into prison, along with a set of incorrect/noisy para-
phrases that have different syntactic types or that are
due to misalignments.

For PPDB, we formulate our paraphrase collec-
tion as a weighted synchronous context-free gram-
mar (SCFG) (Aho and Ullman, 1972; Chiang, 2005)

1Freely available at http://paraphrase.org.

758



... fünf Landwirte , weil

... 5 farmers were in Ireland ...

...

oder wurden , gefoltert

or have been , tortured

festgenommen 

thrown into jail

festgenommen

imprisoned

...

... ...

...

Figure 1: Phrasal paraphrases are extracted via bilingual
pivoting.

with syntactic nonterminal labels, similar to Cohn
and Lapata (2008) and Ganitkevitch et al. (2011).
An SCFG rule has the form:

r
def
= C → 〈f, e,∼, ~ϕ〉,

where the left-hand side of the rule,C, is a nontermi-
nal and the right-hand sides f and e are strings of ter-
minal and nonterminal symbols. There is a one-to-
one correspondence, ∼, between the nonterminals
in f and e: each nonterminal symbol in f has to
also appear in e. Following Zhao et al. (2008), each
rule r is annotated with a vector of feature functions
~ϕ = {ϕ1...ϕN} which are combined in a log-linear
model (with weights ~λ) to compute the cost of ap-
plying r:

cost(r) = −
N∑

i=1

λi logϕi. (1)

To create a syntactic paraphrase grammar we
first extract a foreign-to-English translation gram-
mar from a bilingual parallel corpus, using tech-
niques from syntactic machine translation (Koehn,
2010). Then, for each pair of translation rules where
the left-hand side C and foreign string f match:

r1
def
= C → 〈f, e1,∼1, ~ϕ1〉

r2
def
= C → 〈f, e2,∼2, ~ϕ2〉,

we pivot over f to create a paraphrase rule rp:

rp
def
= C → 〈e1, e2,∼p, ~ϕp〉,

with a combined nonterminal correspondency func-
tion ∼p. Note that the common source side f im-
plies that e1 and e2 share the same set of nonterminal
symbols.

The paraphrase rules obtained using this method
are capable of making well-formed generalizations
of meaning-preserving rewrites in English. For
instance, we extract the following example para-
phrase, capturing the English possessive rule:

NP → the NP1 of NNS 2 | the NNS2 ’s NP1.

The paraphrase feature vector ~ϕp is computed
from the translation feature vectors ~ϕ1 and ~ϕ2 by
following the pivoting idea. For instance, we esti-
mate the conditional paraphrase probability p(e2|e1)
by marginalizing over all shared foreign-language
translations f :

p(e2|e1) ≈
∑

f

p(e2|f)p(f |e1). (2)

3 Scoring Paraphrases Using Monolingual
Distributional Similarity

The bilingual pivoting approach anchors para-
phrases that share an interpretation because of a
shared foreign phrase. Paraphrasing methods based
on monolingual text corpora, like DIRT (Lin and
Pantel, 2001), measure the similarity of phrases
based on distributional similarity. This results in a
range of different types of phrases, including para-
phrases, inference rules and antonyms. For instance,
for thrown into prison DIRT extracts good para-
phrases like arrested, detained, and jailed. How-
ever, it also extracts phrases that are temporarily
or causally related like began the trial of, cracked
down on, interrogated, prosecuted and ordered the
execution of, because they have similar distribu-
tional properties. Since bilingual pivoting rarely ex-
tracts these non-paraphrases, we can use monolin-
gual distributional similarity to re-rank paraphrases
extracted from bitexts (following Chan et al. (2011))
or incorporate a set of distributional similarity scores
as features in our log-linear model.

Each similarity score relies on precomputed dis-
tributional signatures that describe the contexts that
a phrase occurs in. To describe a phrase e, we gather
counts for a set of contextual features for each oc-
currence of e in a corpus. Writing the context vector
for the i-th occurrence of e as ~se,i, we can aggre-
gate over all occurrences of e, resulting in a distri-
butional signature for e, ~se =

∑
i ~se,i. Following the

intuition that phrases with similar meanings occur in
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the long-term

achieve25

goals 23

plans 97

investment 10

confirmed64

revise43 the long-term

the long-term
the long-term

the long-term
the long-term

..
..

L-achieve = 25

L-confirmed = 64

L-revise = 43

⇣
R-goals = 23

R-plans  = 97

R-investment = 10

⇣
the long-term

⌘
=~sig

⇣

(a) The n-gram corpus records the long-term as preceded
by revise (43 times), and followed by plans (97 times). We
add corresponding features to the phrase’s distributional
signature retaining the counts of the original n-grams.

long-term investment holding on to

det
amod

the

JJ NN VBG IN TO DT

NP
PP

VP

⇣ ⇣
the long-term

⌘
=~sig

⇣
dep-det-R-investment

pos-L-TO 

pos-R-NN  

lex-R-investment 

lex-L-to 

dep-amod-R-investment

syn-gov-NP syn-miss-L-NN 

lex-L-on-to 

pos-L-IN-TO  

dep-det-R-NN dep-amod-R-NN

(b) Here, position-aware lexical and part-of-speech n-
gram features, labeled dependency links , and features
reflecting the phrase’s CCG-style label NP/NN are in-
cluded in the context vector.

Figure 2: Features extracted for the phrase the long term from the n-gram corpus (2a) and Annotated Gigaword (2b).

similar contexts, we can then quantify the goodness
of e′ as a paraphrase of e by computing the cosine
similarity between their distributional signatures:

sim(e, e′) =
~se · ~se′

|~se||~se′ |
.

A wide variety of features have been used to de-
scribe the distributional context of a phrase. Rich,
linguistically informed feature-sets that rely on de-
pendency and constituency parses, part-of-speech
tags, or lemmatization have been proposed in work
such as by Church and Hanks (1991) and Lin and
Pantel (2001). For instance, a phrase is described by
the various syntactic relations such as: “what verbs
have this phrase as the subject?”, or “what adjectives
modify this phrase?”. Other work has used simpler
n-gram features, e.g. “what words or bigrams have
we seen to the left of this phrase?”. A substantial
body of work has focussed on using this type of
feature-set for a variety of purposes in NLP (Lapata
and Keller, 2005; Bhagat and Ravichandran, 2008;
Lin et al., 2010; Van Durme and Lall, 2010).

For PPDB, we compute n-gram-based context
signatures for the 200 million most frequent phrases
in the Google n-gram corpus (Brants and Franz,
2006; Lin et al., 2010), and richer linguistic signa-
tures for 175 million phrases in the Annotated Gi-
gaword corpus (Napoles et al., 2012). Our features
extend beyond those previously used in the work by
Ganitkevitch et al. (2012). They are:

• n-gram based features for words seen to the left
and right of a phrase.

• Position-aware lexical, lemma-based, part-of-
speech, and named entity class unigram and bi-
gram features, drawn from a three-word win-
dow to the right and left of the phrase.

• Incoming and outgoing (wrt. the phrase) de-
pendency link features, labeled with the corre-
sponding lexical item, lemmata and POS.

• Syntactic features for any constituents govern-
ing the phrase, as well as for CCG-style slashed
constituent labels for the phrase.

Figure 2 illustrates the feature extraction for an ex-
ample phrase.

4 English Paraphrases – PPDB:Eng

We combine several English-to-foreign bitext cor-
pora to extract PPDB:Eng: Europarl v7 (Koehn,
2005), consisting of bitexts for the 19 European lan-
guages, the 109 French-English corpus (Callison-
Burch et al., 2009), the Czech, German, Span-
ish and French portions of the News Commen-
tary data (Koehn and Schroeder, 2007), the United
Nations French- and Spanish-English parallel cor-
pora (Eisele and Chen, 2010), the JRC Acquis cor-
pus (Steinberger et al., 2006), Chinese and Arabic
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Identity Paraphrases Total
Lexical 0.6M 7.6M 8.1M
Phrasal 4.9M 68.4M 73.2M

Syntactic 46.5M 93.6M 140.1M
All 52.0M 169.6M 221.4M

Table 1: A breakdown of PPDB:Eng size by paraphrase
type. We distinguish lexical (i.e. one-word) paraphrases,
phrasal paraphrases and syntactically labeled paraphrase
patterns.

newswire corpora used for the GALE machine trans-
lation campaign,2 parallel Urdu-English data from
the NIST translation task,3 the French portion of
the OpenSubtitles corpus (Tiedemann, 2009), and a
collection of Spanish-English translation memories
provided by TAUS.4

The resulting composite parallel corpus has more
than 106 million sentence pairs, over 2 billion En-
glish words, and spans 22 pivot languages. To ap-
ply the pivoting technique to this multilingual data,
we treat the various pivot languages as a joint Non-
English language. This simplifying assumption al-
lows us to share statistics across the different lan-
guages and apply Equation 2 unaltered.

Table 1 presents a breakdown of PPDB:Eng by
paraphrase type. We distinguish lexical (a single
word), phrasal (a continuous string of words), and
syntactic paraphrases (expressions that may con-
tain both words and nonterminals), and separate
out identity paraphrases. While we list lexical and
phrasal paraphrases separately, it is possible that a
single word paraphrases as a multi-word phrase and
vice versa – so long they share the same syntactic
label.

5 Spanish Paraphrases – PPDB:Spa

We also release a collection of Spanish paraphrases:
PPDB:Spa is extracted analogously to its English
counterpart and leverages the Spanish portions of the
bitext data available to us, totaling almost 355 mil-
lion Spanish words, in nearly 15 million sentence
pairs. The paraphrase pairs in PPDB:Spa are anno-

2http://projects.ldc.upenn.edu/gale/
data/Catalog.html

3LDC Catalog No. LDC2010T23
4http://www.translationautomation.com/

Identity Paraphrases Total
Lexical 1.0M 33.1M 34.1M
Phrasal 4.3M 73.2M 77.5M

Syntactic 29.4M 55.3M 84.7M
All 34.7M 161.6M 196.3M

Table 2: An overview of PPDB:Spa. Again, we parti-
tion the resource into lexical (i.e. one-word) paraphrases,
phrasal paraphrases and syntactically labeled paraphrase
patterns.

expect

NNS VBP

NP

VP

the data

NP VP

S

to show

JJ

economistsfew ......

S

...

RelArg0 Arg1

Figure 3: To inspect our coverage, we use the Penn
Treebank’s parses to map from Propbank annotations to
PPDB’s syntactic patterns. For the above annotation
predicate, we extract VBP → expect, which is matched
by paraphrase rules like VBP → expect | anticipate
and VBP → expect | hypothesize. To search for
the entire relation, we replace the argument spans
with syntactic nonterminals. Here, we obtain S →
NP expect S, for which PPDB has matching rules like
S → NP expect S | NP would hope S, and S →
NP expect S | NP trust S. This allows us to apply so-
phisticated paraphrases to the predicate while capturing
its arguments in a generalized fashion.

tated with distributional similarity scores based on
lexical features collected from the Spanish portion
of the multilingual release of the Google n-gram
corpus (Brants and Franz, 2009), and the Spanish
Gigaword corpus (Mendonca et al., 2009). Table 2
gives a breakdown of PPDB:Spa.

6 Analysis

To estimate the usefulness of PPDB as a resource
for tasks like semantic role labeling or parsing, we
analyze its coverage of Propbank predicates and
predicate-argument tuples (Kingsbury and Palmer,
2002). We use the Penn Treebank (Marcus et
al., 1993) to map Propbank annotations to patterns
which allow us to search PPDB:Eng for paraphrases
that match the annotated predicate. Figure 3 illus-
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(b) PPDB:Eng’s coverage of Propbank predicates
with up to two arguments. Here we consider rules
that paraphrase the full predicate-argument expres-
sion.

Figure 4: An illustration of PPDB’s coverage of the manually annotated Propbank predicate phrases (4a) and binary
relations with argument non-terminals (4b). The curves indicate the coverage on tokens (solid) and types (dotted), as
well as the average number of paraphrases per covered type (dashed) at the given pruning level.

trates this mapping.
In order to quantify PPDB’s precision-recall

tradeoff in this context, we perform a sweep
over our collection, beginning with the full set of
paraphrase pairs and incrementally discarding the
lowest-scoring ones. We choose a simple estimate
for each paraphrase pair’s score by uniformly com-
bining its paraphrase probability features in Eq. 1.

The top graph in Figure 4a shows PPDB’s cover-
age of predicates (e.g. VBP → expect) at the type
level (i.e. counting distinct predicates), as well as
the token level (i.e. counting predicate occurrences
in the corpus). We also keep track of average num-
ber of paraphrases per covered predicate type for
varying pruning levels. We find that PPDB has a
predicate type recall of up to 52% (accounting for
97.5% of tokens). Extending the experiment to full
predicate-argument relations with up to two argu-
ments (e.g. S → NNS expect S), we obtain a 27%
type coverage rate that accounts for 40% of tokens
(Figure 4b). Both rates hold even as we prune the
database down to only contain high precision para-
phrases. Our pruning method here is based on a sim-
ple uniform combination of paraphrase probabilities
and similarity scores.

To gauge the quality of our paraphrases, the au-
thors judged 1900 randomly sampled predicate para-
phrases on a scale of 1 to 5, 5 being the best. The
bottom graph in Figure 4a plots the resulting human
score average against the sweep used in the cover-

age experiment. It is clear that even with a simple
weighing approach, the PPDB scores show a clear
correlation with human judgements. Therefore they
can be used to bias the collection towards greater re-
call or higher precision.

7 Conclusion and Future Work

We present the 1.0 release of PPDB:Eng and
PPDB:Spa, two large-scale collections of para-
phrases in English and Spanish. We illustrate the
resource’s utility with an analysis of its coverage of
Propbank predicates. Our results suggest that PPDB
will be useful in a variety of NLP applications.

Future releases of PPDB will focus on expand-
ing the paraphrase collection’s coverage with regard
to both data size and languages supported. Further-
more, we intend to improve paraphrase scoring by
incorporating additional sources of information, as
well as by better utilizing information present in the
data, like domain or topic. We will also address
points of refinement such as handling of phrase am-
biguity, and effects specific to individual pivot lan-
guages. Our aim is for PPDB to be a continuously
updated and improving resource.

Finally, we will explore extensions to PPDB to in-
clude aspects of related large-scale resources such as
lexical-semantic hierarchies (Snow et al., 2006), tex-
tual inference rules (Berant et al., 2011), relational
patterns (Nakashole et al., 2012), and (lexical) con-
ceptual networks (Navigli and Ponzetto, 2012).

762



Acknowledgements

We would like to thank Frank Ferraro for his Prop-
bank processing tools. This material is based
on research sponsored by the NSF under grant
IIS-1249516 and DARPA under agreement num-
ber FA8750-13-2-0017 (the DEFT program). The
U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes. The
views and conclusions contained in this publication
are those of the authors and should not be interpreted
as representing official policies or endorsements of
DARPA or the U.S. Government.

References

Alfred V. Aho and Jeffrey D. Ullman. 1972. The Theory
of Parsing, Translation, and Compiling. Prentice Hall.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Proceed-
ings of ACL.

Jonathan Berant, Jacob Goldberger, and Ido Dagan.
2011. Global learning of typed entailment rules. In
Proceedings of ACL.

Rahul Bhagat and Deepak Ravichandran. 2008. Large
scale acquisition of paraphrases for learning surface
patterns. In Proceedings of ACL/HLT.

Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram
version 1.

Thorsten Brants and Alex Franz. 2009. Web 1T 5-gram,
10 european languages version 1. Linguistic Data
Consortium, Philadelphia.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009
Workshop on Statistical Machine Translation. In Pro-
ceedings of WMT, pages 1–28, Athens, Greece, March.

Tsz Ping Chan, Chris Callison-Burch, and Benjamin Van
Durme. 2011. Reranking bilingually extracted para-
phrases using monolingual distributional similarity. In
EMNLP Workshop on GEMS.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
ACL.

Kenneth Church and Patrick Hanks. 1991. Word asso-
ciation norms, mutual information and lexicography.
Computational Linguistics, 6(1):22–29.

Trevor Cohn and Mirella Lapata. 2008. Sentence com-
pression beyond word deletion. In Proceedings of the
COLING.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:

Exploiting massively parallel news sources. In Pro-
ceedings of the COLING.

Andreas Eisele and Yu Chen. 2010. MultiUN: A multi-
lingual corpus from united nation documents. In Pro-
ceedings of LREC, Valletta, Malta.

Juri Ganitkevitch, Chris Callison-Burch, Courtney
Napoles, and Benjamin Van Durme. 2011. Learning
sentential paraphrases from bilingual parallel corpora
for text-to-text generation. In Proceedings of EMNLP.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2012. Monolingual distributional
similarity for text-to-text generation. In Proceedings
of *SEM. Association for Computational Linguistics.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. In Proceedings of LREC.

Philipp Koehn and Josh Schroeder. 2007. Experiments
in domain adaptation for statistical machine transla-
tion. In Proceedings of WMT, Prague, Czech Repub-
lic, June. Association for Computational Linguistics.

Philipp Koehn. 2005. Europarl: A parallel corpus for sta-
tistical machine translation. In MT summit, volume 5.

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press.

Mirella Lapata and Frank Keller. 2005. Web-based mod-
els for natural language processing. ACM Transac-
tions on Speech and Language Processing, 2(1).

Dekang Lin and Patrick Pantel. 2001. Discovery of infer-
ence rules from text. Natural Language Engineering.

Dekang Lin, Kenneth Church, Heng Ji, Satoshi Sekine,
David Yarowsky, Shane Bergsma, Kailash Patil, Emily
Pitler, Rachel Lathbury, Vikram Rao, Kapil Dalwani,
and Sushant Narsale. 2010. New tools for web-scale
n-grams. In Proceedings of LREC.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: the Penn Treebank. Computational
Linguistics, 19(2).

Angelo Mendonca, David Andrew Graff, and Denise
DiPersio. 2009. Spanish Gigaword Second Edition.
Linguistic Data Consortium.

Ndapandula Nakashole, Gerhard Weikum, and Fabian
Suchanek. 2012. PATTY: a taxonomy of rela-
tional patterns with semantic types. In Proceedings
of EMNLP.

Courtney Napoles, Matt Gormley, and Benjamin Van
Durme. 2012. Annotated gigaword. In Proceedings
of AKBC-WEKEX 2012.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belNet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic
network. Artificial Intelligence, 193.

Chris Quirk, Chris Brockett, and William Dolan. 2004.
Monolingual machine translation for paraphrase gen-
eration. In Proceedings of EMNLP.

763



Stefan Riezler, Alexander Vasserman, Ioannis Tsochan-
taridis, Vibhu Mittal, and Yi Liu. 2007. Statistical
machine translation for query expansion in answer re-
trieval. In Proceedings of the 45th Annual Meeting of
the ACL.

Matthew Snover, Nitin Madnani, Bonnie Dorr, and
Richard Schwartz. 2010. Ter-plus: paraphrase, se-
mantic, and alignment enhancements to translation
edit rate. Machine Translation, 23(2-3):117–127.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2006.
Semantic taxonomy induction from heterogenous evi-
dence. In Proceedings of the ACL/Coling.

Ralf Steinberger, Bruno Pouliquen, Anna Widiger,
Camelia Ignat, Tomaz Erjavec, Dan Tufis, and Dániel
Varga. 2006. The JRC-Acquis: A multilingual
aligned parallel corpus with 20+ languages. In Pro-
ceedings of LREC, Genoa, Italy.

Jörg Tiedemann. 2009. News from OPUS: A collection
of multilingual parallel corpora with tools and inter-
faces. In Recent Advances in Natural Language Pro-
cessing, volume 5.

Benjamin Van Durme and Ashwin Lall. 2010. Online
generation of locality sensitive hash signatures. In
Proceedings of ACL, Short Papers.

Shiqi Zhao, Cheng Niu, Ming Zhou, Ting Liu, and Sheng
Li. 2008. Combining multiple resources to improve
SMT-based paraphrasing model. In Proceedings of
ACL/HLT.

Liang Zhou, Chin-Yew Lin, Dragos Stefan Munteanu,
and Eduard Hovy. 2006. Paraeval: Using paraphrases
to evaluate summaries automatically. In Proceedings
of HLT/NAACL.

764



Proceedings of NAACL-HLT 2013, pages 765–771,
Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

Exploiting the Scope of Negations and Heterogeneous Features
for Relation Extraction: A Case Study for Drug-Drug Interaction Extraction

Md. Faisal Mahbub Chowdhury † ‡ and Alberto Lavelli ‡

‡ Fondazione Bruno Kessler (FBK-irst), Italy
† University of Trento, Italy

fmchowdhury@gmail.com, lavelli@fbk.eu

Abstract

This paper presents an approach that exploits
the scope of negation cues for relation extrac-
tion (RE) without the need of using any specif-
ically annotated dataset for building a separate
negation scope detection classifier. New fea-
tures are proposed which are used in two dif-
ferent stages. These also include non-target
entity specific features. The proposed RE ap-
proach outperforms the previous state of the
art for drug-drug interaction (DDI) extraction.

1 Introduction

Negation is a linguistic phenomenon where a nega-
tion cue (e.g. not) can alter the meaning of a partic-
ular text segment or of a fact. This text segment (or
fact) is said to be inside the scope of that negation
(cue). In the context of RE, there is not much work
that aims to exploit the scope of negations.1 The
only work on RE that we are aware of is Sanchez-
Graillet and Poesio (2007) where they used various
heuristics to extract negative protein interaction.

Despite the recent interest on automatically de-
tecting the scope of negation2 till now there seems
to be no empirical evidence supporting its exploita-
tion for the purpose of RE. Even if we could man-
age to obtain highly accurate automatically detected

1In the context of event extraction (a closely related task of
RE), there have been efforts in BioNLP shared tasks of 2009 and
2011 for (non-mandatory sub-task of) event negation detection
(3 participants in 2009; 2 in 2011) (Kim et al., 2009; Kim et al.,
2011). The participants approached the sub-task using either
pre-defined patterns or some heuristics.

2This task is popularized by various recently held shared
tasks (Farkas et al., 2010; Morante and Blanco, 2012).

negation scopes, it is not clear how to feed this infor-
mation inside the RE approach. Simply considering
whether a pair of candidate mentions falls under the
scope of a negation cue might not be helpful.

In this paper, we propose that the scope of nega-
tions can be exploited at two different levels. Firstly,
the system would check whether all the target en-
tity3 mentions inside a sentence along with possible
relation clues (or trigger words), if any, fall (directly
or indirectly) under the scope of a negation cue. If
such a sentence is found, then it should be discarded
(i.e. candidate mention pairs4 inside that sentence
would not be considered). Secondly, for each of the
remaining pairs of candidate mentions, the system
should exploit features related to the scope of nega-
tion (rather than simply adding a feature for negation
cue, approach adopted in various RE systems) that
can provide indication (if any such evidence exists)
that the corresponding relation of interest actually
does not hold in that particular context.

In the subsequent sections, we describe our ap-
proach. The RE task considered is drug-drug in-
teraction (DDI) extraction. The task has signifi-
cant importance for public health safety.5 We used

3The target entities, for example, for DDI extraction and for
EMP-ORG relation extraction would be {DRUG} and {PER,
GPE, ORG} respectively. Any entity other than the target enti-
ties (w.r.t. the particular RE task) belongs to non-target entities.

4Candidate mention pairs for RE are taken from target entity
mentions.

5After the death of pop star Michael Jackson, allegedly due
to DDI, it was reported that about 2.2 million people in USA,
age 57 to 85, were taking potentially dangerous combinations of
drugs (Landau, 2009). An earlier report mentioned that deaths
from accidental drug interactions rose 68 percent between 1999
and 2004 (Payne, 2007).
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the DDIExtraction-2011 challenge corpus (Segura-
Bedmar et al., 2011). The official training and test
data of the corpus contain 4,267 and 1,539 sen-
tences, and 2,402 and 755 DDI annotations respec-
tively.

2 Proposed Approach

2.1 Stage 1: Exploiting scope of negation to
filter out sentences

We propose a two stage RE approach. In the first
stage, our goal is to exploit the scope of negations
to reduce the number of candidate mention pairs by
discarding sentences. For this purpose, we propose
the following features to train a binary classifier:

• has2TM: If the sentence has exactly 2 target entity
mentions (i.e. drug mentions for DDI extraction).

• has3OrMoreTM: Whether the sentence has more
than 2 target entity mentions.

• allTMonRight: Whether all target entity mentions
inside the sentence appear after the negation cue.

• neitherAllTMonLeftOrRight: Whether some but not
all target entity mentions appear after the negation
cue.

• negCue: The negation cue itself.

• immediateGovernor: The word on which the cue is
directly syntactically dependent.

• nearestVerbGovernor: The nearest verb in the de-
pendency graph on which the cue is syntactically
dependent.

• isVerbGovernorRoot: Whether the nearestVerb-
Governor is root of the dependency graph of the
sentence.

• allTMdependentOnNVG: Whether all target en-
tity mentions are syntactically dependent (di-
rectly/indirectly) on the nearestVerbGovernor.

• allButOneTMdependentOnNVG: Whether all but
one target entity mentions are syntactically depen-
dent on the nearestVerbGovernor.

• although*PrecedeCue: Whether the syntactic
clause containing the negation cue begins with “al-
though / though / despite / in spite”.

• commaBeforeNextTM: Whether there is a comma in
the text between the negation cue and the next target
entity mention after the cue.

• commaAfterPrevTM: Whether there is a comma in
the text between the previous target entity mention
before the negation cue and the cue itself.

• sentHasBut: Whether the sentence contains the
word “but”.

The objective of the classifier is to decide whether
all of the target entity mentions (i.e. drugs) as well as
any possible evidence of the relation of interest (for
which we assume the immediate and the nearest verb
governors of the negation cue would be good candi-
dates) inside the corresponding sentence fall under
the scope of a negation cue in such a way that the
sentence is unlikely to contain a DDI.

At present, we limit our focus only on the first
occurrence of the following negation cues: “no”,
“n’t” or “not”.6 In the Stage 1, any sentence that
contains at least one DDI is considered by the clas-
sifier as a positive (training/test) instance. Other sen-
tences are considered as negative instances. We rule
out any sentence (i.e. we do not consider as train-
ing/test instance for the classifier that filters less in-
formative sentences) during both training and testing
if any of the following conditions holds:

• The sentence contains less than two target entity
mentions (such sentence would not contain the re-
lation of interest anyway).

• It has any of the following phrases – “not recom-
mended”, “should not be” or “must not be”.7

• There is no “no”, “n’t” or “not” in the sentence.

• No target entity mention appears in the sentence af-
ter “no”, “n’t” or “not”.

To assess the effectiveness of the proposed Stage
1 classifier, we defined a baseline classifier that fil-
ters any sentence that contains “no”, “n’t” or “not”.

2.2 Stage 2
Once the sentences which are likely to have no DDI
are identified and removed, the next step is to ap-
ply a state-of-the-art RE approach on the remaining
sentences. In this section, we propose a new hybrid
kernel, KHybrid, for this purpose. It is defined as
follows:

KHybrid (R1, R2) = KHF (R1, R2) + KSL

(R1, R2) + w * KPET (R1, R2)
6These cues usually occur more frequently and generally

have larger negation scope than other negation cues.
7These expressions often provide clues that one of the bio-

entity mentions negatively influences the level of activity of the
other.
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Here, KHF stands for a new feature based kernel
(proposed in this paper) that uses a heterogeneous
set of features. KSL stands for the Shallow Linguis-
tic (SL) kernel proposed by Giuliano et al. (2006).
KPET stands for the Path-enclosed Tree (PET) ker-
nel (Moschitti, 2004). w is a multiplicative constant
used for the PET kernel. It allows the hybrid kernel
to assign more (or less) weight to the information
obtained using tree structures depending on the cor-
pus.

The proposed kernel composition is valid accord-
ing to the closure properties of kernels. We ex-
ploit the SVM-Light-TK toolkit (Moschitti, 2006;
Joachims, 1999) for kernel computation. In Stage
2, each candidate drug mention pair represents an
instance.

2.2.1 Proposed KHF kernel
As mentioned earlier, this proposed kernel uses

heterogeneous features. The first version of the het-
erogeneous feature set (henceforth, HF v1) com-
bines features proposed by two previous RE works.
The former is Zhou et al. (2005), which uses 51 dif-
ferent features. We select the following 27 of their
features for our feature set:

WBNULL, WBFL, WBF, WBL, WBO,
BM1F, BM1L, AM2F, AM2L, #MB, #WB,
CPHBNULL, CPHBFL, CPHBF, CPHBL,
CPHBO, CPHBM1F, CPHBM1L, CPHAM2F,
CPHAM2F, CPP, CPPH, ET12SameNP,
ET12SamePP, ET12SameVP, PTP, PTPH

The latter is the TPWF kernel (Chowdhury and
Lavelli, 2012a) from which we use following fea-
tures:

HasTriggerWord, Trigger-X, DepPattern-i, e-
walk, v-walk

The TPWF kernel extracts the HasTriggerWord,
Trigger-X and DepPattern-i features from a sub-
graph called reduced graph. We also follow this ap-
proach with one minor difference. Unlike Chowd-
hury and Lavelli (2012a), we look for trigger words
in the whole reduced graph instead of using only the
root of the sub-graph.

Due to space limitation we refer the readers to
the corresponding papers for the description of the
above mentioned features and the definition of re-
duced graph.

In addition, HF v1 also includes surrounding to-
kens within the window of {-2,+2} for each candi-
date mention. We are unaware of any available list
of trigger words for drug-drug interaction. So, we
created such a list.8

We extend the heterogeneous feature set by
adding features related to the scope of negation
(henceforth, HF v2). We use a list of 13 negation
cues9 to search inside the reduced graph of a candi-
date pair. If the reduced graph contains any of the
negation cues or their morphological variants then
we add the following features:

• negCue: The corresponding negation cue.

• immediateNegatedWord: If the word following the
negation cue is neither a preposition nor a “be verb”,
then that word, otherwise the word after the next
word.10

Furthermore, if the corresponding matched nega-
tion cue is either “no”, “n’t” or “not”, then we add
additional features related to negation scope:

• bothEntDependOnImmediateGovernor: Whether
the immediate governor (if any) of the negation cue
is also governor of a dependency sub-tree (of the de-
pendency graph of the corresponding sentence) that
includes both of the candidate mentions.

• immediateGovernorIsVerbGovernor: Whether the
immediate governor of the negation cue is a verb.

• nearestVerbGovernor: The closest verb governor
(i.e. parent or grandparent inside the dependency
graph), if any, of the negation cue.

We further extend the heterogeneous feature set
by adding features related to relevant non-target en-
tities (with respect to the relation of interest; hence-
forth, HF v3). For the purpose of DDI extrac-
tion, we deem the presence of DISEASE mentions
(which might result as a consequence of a DDI)
can provide some clues. So, we use a publicly
available state-of-the-art disease NER system called
BioEnEx (Chowdhury and Lavelli, 2010) to anno-
tate the DDIExtraction-2011 challenge corpus. For

8The RE system developed for this work and the cre-
ated list of trigger words for DDI can be downloaded from
https://github.com/fmchowdhury/HyREX .

9No, not, neither, without, lack, fail, unable, abrogate, ab-
sence, prevent, unlikely, unchanged, rarely.

10For example, “interested” from “... not interested ...”, and
“confused” from “... not to be confused ...”.
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each candidate (drug) mention pair, we add the fol-
lowing features in HF v3:

• NTEMinsideSentence: Whether the corresponding
sentence contains important non-target entity men-
tion(s) (e.g. disease for DDI).

• immediateGovernorIsVerbGovernorOfNTEM: The
immediate governor (if any) of the non-target entity
mention, only if such governor is also governing a
dependency sub-tree that includes both of the target
candidate entity mentions.

• nearestVerbGovernorOfNTEM: The closest verb
governor (if any) of the non-target entity mention,
only if it also governs the candidate entity mentions.

• immediateGovernorIsVerbGovernorOfNTEM:
Whether the immediate governor is a verb.

3 Results and Discussion

We train a linear SVM classifier in Stage 1 and
tune the hyper-parameters (by doing 5-fold cross-
validation) for obtaining maximum possible recall.
In this way we minimize the number of false neg-
atives (i.e. sentences that contain DDIs but are
wrongly identified as not having any).

During the cross-validation experiments on the
training data, 334 sentences (7.83% of the total sen-
tences) containing at least 2 drug mentions were
identified by our proposed classifier (in Section 2.1)
as unlikely to have any DDI and hence are candi-
dates for discarding. Only 19 of these sentences
were incorrectly identified. When we trained on
the training data and tested on the official test data
of DDIExtraction-2011 challenge corpus, 121 sen-
tences (7.86% of the total test sentences) were iden-
tified by the classifier as candidates for discarding.
Only 5 of them were incorrectly identified.

Unlike Stage 1, in Stage 2 where we train the hy-
brid kernel based RE classifier and use it for RE (i.e.
DDI extraction) from the test data, sentences are not
the RE training/test instances. Instead, a RE instance
corresponds to a candidate mention pair.

All the DDIs (i.e. positive RE instances) of the
incorrectly identified sentences in Stage 1 (i.e. the
sentences which are incorrectly labelled as not hav-
ing any DDI and filtered) are automatically consid-
ered as false negatives during the calculation of DDI
extraction results in Stage 2.

To verify whether our proposed hybrid kernel
achieves state-of-the-art results without taking ben-
efits of the output of Stage 1, we did some experi-
ments without discarding any sentence. These ex-
periments are done using Zhou et al. (2005), TPWF
kernel, SL kernel, different versions of proposed
KHF kernel and KHybrid kernel. Table 1 shows
the results of 5-fold cross-validation experiments
(hyper-parameters are tuned for obtaining maximum
F-score). As the results show, there is a gain +0.9
points in F-score (mainly due to the boost in re-
call) after the addition of features related to negation
scope. There is also some minor improvement due
to the proposed non-target entity specific features.

We also performed (5-fold cross validation) ex-
periments by combining the Stage 1 classifier with
each of the Zhou et al. (2005), TPWF kernel, SL
kernel, PET kernel, KHF kernel and KHybrid kernel
separately (only the results of KHybrid are reported
in Table 1 due to space limitation). In each case,
there were improvements in precision, recall and F-
score. The gain in F-score ranged from 1.0 to 1.4
points.

P / R / F-score

Using SL kernel (Giuliano et al., 2006) 51.3 / 64.7 / 57.3

Using (Zhou et al., 2005) 58.7 / 37.1 / 45.5

Using PET kernel (Moschitti, 2004) 46.8 / 602 / 52.7

TPWF (Chowdhury and Lavelli, 2012a) 43.7 / 60.7 / 50.8

Proposed approaches

Proposed KHF v1 53.4 / 51.5 / 52.4

KHF v2 (i.e. + neg scope feat.) 53.9 / 52.6 / 53.3 (+0.9)

KHF v3 (i.e. + non-target entity feat.) 53.6 / 53.5 / 53.6 (+0.3)

Proposed KHybrid 56.3 / 68.5 / 61.8

Proposed KHybrid with Stage 1 57.3 / 69.4 / 62.8 (+1.0)

Table 1: 5-fold cross-validation results on training data.

Table 2 reports the results of the previously pub-
lished studies that used the same corpus. Our pro-
posed KHybrid kernel obtains an F-score that is
higher than that of the previous state of the art.

When the Stage 1 classifier (based on negation
scope features) is exploited before using the KHybrid

kernel, the F-score reaches up to 67.4. This is
+1.0 points higher than without exploiting the Stage
1 classifier and +1.7 higher than previous state of
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the art. We did separate experiments (also reported
in Table 2) to assess the performance improvement
when the output of Stage 1 is used to filter sentences
from either training or test data only. The results
remain the same when only training sentences are
filtered; while there are some improvements when
only test sentences are filtered. Filtering both train-
ing and test sentences provides the larger gain which
is statistically significant.

Usually, the number of negative instances in a
corpus is much higher than that of the positive in-
stances. In a recent work, Chowdhury and Lavelli
(2012b) showed that by removing less informative
(negative) instances (henceforth, LIIs), not only the
skewness in instance distribution could be reduced
but it also leads to a better result. The proposed
Stage 1 classifier, presented in this work, also re-
duces skewness in instance distribution. This is be-
cause we are only removing those sentences that are
unlikely to contain any positive instance. So, in prin-
ciple, the Stage 1 classifier is focused on removing
only negative instances (although the classifier mis-
takenly discards few positive instances, too).

We wanted to study how the Stage 1 classifier
would contribute if we use it on top of the tech-
niques that were proposed in Chowdhury and Lavelli
(2012b) to remove LIIs. As Table 2 shows, by using
the Stage 1 classifier along with LLI filtering, we
could further improve the results (+3.2 points differ-
ence in F-score with the previous state of the art).

4 Conclusion

A major flexibility in the proposed approach is that
it does not require a separate dataset (which needs
to match the genre of the text to be used for RE)
annotated with negation scopes. Instead, the pro-
posed Stage 1 classifier uses the RE training data
(which do not have negation scope annotations) to
self-supervise itself. Various new features have been
exploited (both in stages 1 and 2) that can provide
strong indications of the scope of negation cues with
respect to the relation to be extracted. The only thing
needed is the list of possible negation cues (Morante
(2010) includes such a comprehensive list).

Our proposed kernel, which has a component that
exploits a heterogeneous set of features including
negation scope and presence of non-target entities,
already obtains better results than previous studies.

P R F-score

(Thomas et al., 2011) 60.5 71.9 65.7

(Chowdhury et al., 2011) 58.6 70.5 64.0

(Chowdhury and Lavelli, 2011) 58.4 70.1 63.7

(Bjorne et al., 2011) 58.0 68.9 63.0

Proposed KHybrid 60.0 74.3 66.4

KHybrid + Stage 1 baseline 61.8 68.9 65.1

KHybrid + proposed Stage 1 60.0 74.2 66.4

(only training sentences are filtered)

KHybrid + proposed Stage 1 61.4 73.8 67.0

(only test sentences are filtered)

KHybrid + proposed Stage 1 62.1 73.8 67.4 stat. sig.

(both training and test sentences are filtered)

Proposed KHybrid + LII filtering 61.1 75.1 67.4 stat. sig.

Proposed KHybrid + LII filtering 63.5 75.2 68.9 stat. sig.

+ proposed Stage 1

Table 2: Results obtained on the official test set of the
2011 DDI Extraction challenge. LII filtering refers to the
techniques proposed in Chowdhury and Lavelli (2012b)
for reducing skewness in RE data distribution. stat. sig. in-
dicates that the improvement of F-score, due to usage of
Stage 1 classifier, is statistically significant (verified using
Approximate Randomization Procedure (Noreen, 1989);
number of iterations = 1,000, confidence level = 0.01).

The results considerably improve when possible ir-
relevant sentences from both training and test data
are filtered by exploiting features related to the scope
of negations.

In future, we would like to exploit the scope of
more negation cues, apart from the three cues that
are used in this study. We believe our approach
would help to improve RE in other genres of text
(such as newspaper) as well.
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Abstract

Iterative bootstrapping methods are
widely employed for relation extraction,
especially because they require only a
small amount of human supervision.
Unfortunately, a phenomenon known
as semantic drift can affect the accuracy
of iterative bootstrapping and lead to
poor extractions. This paper proposes
an alternative bootstrapping method,
which ranks relation tuples by measuring
their distance to the seed tuples in a
bipartite tuple-pattern graph. In contrast
to previous bootstrapping methods, our
method is not susceptible to semantic
drift, and it empirically results in better
extractions than iterative methods.

1 Introduction

The goal of relation extraction is to extract tu-
ples of a particular relation from a corpus of
natural language text. A widely employed ap-
proach to relation extraction is based on iter-
ative bootstrapping (Brin, 1998; Agichtein and
Gravano, 2000; Pasca et al., 2006; Pantel and
Pennacchiotti, 2006), which can be applied with
only small amounts of supervision and which
scales well to very large datasets.

A well-known problem with iterative boot-
strapping is a phenomenon known as seman-
tic drift (Curran et al., 2007): as bootstrap-
ping proceeds it is likely that unreliable pat-
terns will lead to false extractions. These extrac-
tion errors are amplified in the following itera-
tions and the extracted relation will drift away

from the intended target. Semantic drift often
results in low precision extractions and there-
fore poses a major limitation of iterative boot-
strapping algorithms. Previous work on itera-
tive bootstrapping has addressed the issue of re-
ducing semantic drift for example by bagging
the results of various runs employing differing
seed tuples, constructing filters which identify
false tuples or patterns and adding further con-
straints to the bootstrapping process (T. McIn-
tosh, 2010; McIntosh and Curran, 2009; Curran
et al., 2007).

However, the analysis of Komachi et al.
(2008) has shown that semantic drift is an in-
herent property of iterative bootstrapping algo-
rithms and therefore poses a fundamental prob-
lem. They have shown that iterative bootstrap-
ping without pruning corresponds to an eigen-
vector computation and thus as the number of
iterations increases the resulting ranking will al-
ways converge towards the same static ranking
of tuples, regardless of the particular choice of
seed instances.

In this paper, we describe an alternative
method, that is not susceptible to semantic drift.
We represent our data as a bipartite graph,
whose vertices correspond to patterns and tu-
ples respectively and whose edges capture cooc-
currences and then measure the distance of a
tuple to the seed set in terms of random walk
hitting times. Experimental results confirm that
semantic drift is avoided by our method and
show that substantial improvements over iter-
ative forms of bootstrapping are possible.
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2 Scoring with Hitting Times

From a given corpus, we extract a dataset con-
sisting of tuples and patterns. Tuples are pairs
of co-occurring strings in the corpus, such as
(Bill Gates, Microsoft), which potentially belong
to a particular relation of interest. In our case,
patterns are simply the sequence of tokens oc-
curring between tuple elements, e.g. “is the
founder of”. We represent all the tuple types1

X and all the extraction pattern types Y con-
tained in a given corpus through an undirected,
weighted, bipartite graph G = (V,E) with ver-
tices V = X ∪ Y and edges E ⊂ X × Y , where
an edge (x, y) ∈ E indicates that tuple x oc-
currs with pattern y somewhere in the corpus.
Edge weights are defined through a weight ma-
trix W which holds the weight Wi,j = w(vi, vj)
for edges (vi, vj) ∈ E. Specifically, we use the
count of how many times a tuple occurs with
a pattern in the corpus and weights for uncon-
nected vertices are zero.

Our goal is to compute a score vector σ hold-
ing a score σi = σ(xi) for each tuple xi ∈ X,
which quantifies how well the tuple matches the
seed tuples. Higher scores indicate that the tu-
ple is more likely to belong to the relation de-
fined through the seeds and thus the score vec-
tor effectively provides a ranking of the tuples.

We define scores of tuples based on their dis-
tance2 to the seed tuples in the graph. The dis-
tance of some tuple x to the seed set S can
be naturally formalized in terms of the aver-
age time it takes until a random walk starting
in S reaches x, the hitting time. The random
walk is defined through the probability distri-
bution over start vertices and through a ma-
trix of transition probabilities. Edge weights
are constrained to be non-negative, which al-
lows us to define the transition matrix P with
Pi,j = p(vj |vi) = 1

dvi
w(vi, vj), where dv =∑

vk∈V w(v, vk) is the degree of a vertex v ∈ V .
The distance of two vertices is measured in

terms of the average time of a random walk be-
1Note that we are using tuple and pattern types rather

than particular mentions in the corpus.
2The term is used informally. In particular, hitting times

are not a distance metric, since they can be asymmetric.

tween the two. Specifically, we adopt the notion
of T-truncated hitting time (Sarkar and Moore,
2007) defined as the expected number of steps
it takes until a random walk of at most T steps
starting at vi reaches vj for the first time:

hT (vj |vi) =

{
0 iff. vj = vi or T=0
1 +

∑
vk∈V p(vk|vi)h

T−1(vj |vk)

The truncated hitting time hT (vj |vi) can be
approximately computed by sampling M inde-
pendent random walks starting at vi of length T
and computing

ĥT (vj |vi) =
1

M

m∑
k=1

tk + (1− m

M
)T (1)

where {t1 . . . tm} are the sampled first-hit times
of random walks which reach vj within T steps
(Sarkar et al., 2008).

The score σHT (v) of a vertex v /∈ S to the seed
set S is then defined as the inverse of the aver-
age T -truncated hitting time of random walks
starting at a randomly chosen vertex s ∈ S:

1

σHT (v)
= hT (v|S) =

1

|S|
∑
s∈S

hT (v|s) (2)

3 Experiments

We extracted tuples and patterns from the fifth
edition of the Gigaword corpus (Parker et al.,
2011), by running a named entity tagger and
extracting all pairs of named entities and ex-
tracting occurring within the same sentence
which do not have another named entity stand-
ing between them. Gold standard seed and test
tuples for a set of relations were obtained from
YAGO (Suchanek et al., 2007). Specifically, we
took all relations for which there are at least
300 tuples, each of which occurs at least once
in the corpus. This resulted in the set of rela-
tions shown in Table 1, plus the development
relation hasWonPrize.

For evaluation, we use the percentile rank of
the median test set element (PRM, see Francois
et al. 2007), which reflects the quality of the
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full produced ranking, not just the top N ele-
ments and is furthermore computable with only
a small set of labeled test tuples 3.

We compare our proposed method based on
hitting times (HT) with two variants of iterative
bootstrapping. The first one (IB1) does not em-
ploy pruning and corresponds to the algorithm
described in Komachi et al. (2008). The sec-
ond one (IB2) corresponds to a standard boot-
strapping algorithm which employs pruning af-
ter each step in order to reduce semantic drift.
Specifically, scores are pruned after projecting
from X onto Y and from Y onto X, retaining
only the top N (t) = N0t scores at iteration t and
setting all other scores to zero.

3.1 Parametrizations

The experiments in this section were conducted
on the held out development relation hasWon-
Prize. The ranking produced by both forms of
iterative bootstrapping IB1 and IB2 depend on
the number of iterations, as shown in Figure 1.
IB1 achieves an optimal ranking after just one
iteration and thereafter scores get worse due to
semantic drift. In contrast, pruning helps avoid
semantic drift for IB2, which attains an optimal
score after 2 iterations and achieves relatively
constant scores for several iterations. However,
during iteration 9 an incorrect pattern is kept
and this at once leads to a drastic loss in ac-
curacy, showing that semantic drift is only de-
ferred and not completely eliminated.

Our method HT has parameter T , correspond-
ing to the truncation time, i.e., maximal number
of steps of a random walk. Figure 2 shows the
PRM of our method for different values of T .
Performance gets better as T increases and is
optimal for T = 12, whereas for larger values,
the performance gets slightly worse again. The
figure shows that, if T is large enough (> 5), the
PRM is relatively constant and there is no phe-
nomenon comparable to semantic drift, which
causes instability in the produced rankings.

3other common metrics do not satisfy these conditions.

Figure 1: PRM for iterative bootstrapping with-
out pruning (IB1) and with pruning (IB2). A
lower PRM is better.

Figure 2: PRM for our method based on hitting
times, for different values of the truncation time
parameter T.

3.2 Method Comparison

To evaluate the methods, firstly the parameters
for each method were set to the optimal values
as determined in the previous section. For the
experiments here, we again use 200 randomly
chosen tuples as the seeds for each relation. All
the remaining gold standard tuples are used for
testing.

Table 1 shows the PRM for the three methods.
For a majority of the relations (12/16) HT at-
tains the best, i.e. lowest, PRM, which confirms
that hitting times constitute an accurate way of
measuring the distance of tuples to the seed set.
IB1 and IB2 each perform best on 2/16 of the
relations. A sign test on these results yields that
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Relation IB1 IB2 HT
created 1.82 1.71 0.803
dealsWith 0.0262 0.107 0.0481
diedIn 30.5 18.4 20.4
directed 0.171 0.238 0.166
hasChild 7.66 32.2 4.26
influences 5.93 5.48 6.60
isAffiliatedTo 1.54 2.01 1.30
isCitizenOf 1.74 1.87 1.68
isLeaderOf 1.37 1.91 0.401
isMarriedTo 4.69 4.14 1.27
isPoliticianOf 0.0117 0.110 0.0409
livesIn 3.17 2.48 1.70
owns 11.0 2.10 2.07
produced 1.55 0.967 0.240
wasBornIn 11.3 9.37 8.42
worksAt 1.52 2.21 0.193

Table 1: PRM in percent for all relations, for all
three models. A lower PRM corresponds to a
better model, with the best score indicated in
bold.

Figure 3: PRM for the three methods, as a func-
tion of the size of the seed set for the relation
created.

HT is better than both IB1 and IB2 at signifi-
cance level α < 0.01.

Moreover, the ranking produced by HT is sta-
ble and not affected by semantic drift, given that
even where results are worse than for IB1 or
IB2, they are still close to the best performing
method. In contrast, when semantic drift oc-
curs, the performance of IB1 and IB2 can dete-
riorate drastically, e.g. for the worksAt relation,
where both IB1 and IB2 produce rankings that
are a lot worse than the one produced by HT.

3.3 Sensitivity to Seed Set Size

Figure 3 shows the PRM for each of the three
methods as a function of the size of the seed set
for the relation created. For small seed sets, the
performance of the iterative methods can be in-
creased by adding more seeds. However, from
a seed set size of 50 onwards, performance re-
mains relatively constant. In other words, iter-
ative bootstrapping is not benefitting from the
information provided by the additional labeled
data, and thus has a poor learning performance.
In contrast, for our method based on hitting
times, the performance continually improves as
the seed set size is increased. Thus, also in terms
of learning performance, our method is more
sound than iterative bootstrapping.

4 Conclusions

The paper has presented a graph-based method
for seed set expansion which is not susceptible
to semantic drift and on most relations outper-
forms iterative bootstrapping. The method mea-
sures distance between vertices through random
walk hitting times. One property which makes
hitting times an appropriate distance measure
is their ability to reflect the overall connectivity
structure of the graph, in contrast to measures
such as the shortest path between two vertices.
The hitting time will decrease when the num-
ber of paths from the start vertex to the tar-
get vertex increases, when the length of paths
decreases or when the likelihood (weights) of
paths increases. These properties are particu-
larly important when the observed graph edges
must be assumed to be merely a sample of all
plausible edges, possibly perturbated by noise.
This has also been asserted by previous work,
which has shown that hitting times successfully
capture the notion of similarity for other natural
language processing problems such as learning
paraphrases (Kok and Brockett, 2010) and re-
lated problems such as query suggestion (Mei
et al., 2008). Future work will be aimed to-
wards employing our hitting time based method
in combination with a richer feature set.
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Abstract

Distant supervision, heuristically labeling a

corpus using a knowledge base, has emerged

as a popular choice for training relation ex-

tractors. In this paper, we show that a sig-

nificant number of “negative“ examples gen-

erated by the labeling process are false neg-

atives because the knowledge base is incom-

plete. Therefore the heuristic for generating

negative examples has a serious flaw. Building

on a state-of-the-art distantly-supervised ex-

traction algorithm, we proposed an algorithm

that learns from only positive and unlabeled

labels at the pair-of-entity level. Experimental

results demonstrate its advantage over existing

algorithms.

1 Introduction

Relation Extraction is a well-studied problem

(Miller et al., 2000; Zhou et al., 2005; Kambhatla,

2004; Min et al., 2012a). Recently, Distant Super-

vision (DS) (Craven and Kumlien, 1999; Mintz et

al., 2009) has emerged to be a popular choice for

training relation extractors without using manually

labeled data. It automatically generates training ex-

amples by labeling relation mentions1 in the source

corpus according to whether the argument pair is

listed in the target relational tables in a knowledge

base (KB). This method significantly reduces human

efforts for relation extraction.

The labeling heuristic has a serious flaw. Knowl-

edge bases are usually highly incomplete. For exam-

1An occurrence of a pair of entities with the source sentence.

ple, 93.8% of persons from Freebase2 have no place

of birth, and 78.5% have no nationality (section 3).

Previous work typically assumes that if the argument

entity pair is not listed in the KB as having a re-

lation, all the corresponding relation mentions are

considered negative examples.3 This crude assump-

tion labeled many entity pairs as negative when in

fact some of their mentions express a relation. The

number of such false negative matches even exceeds

the number of positive pairs, by 3 to 10 times, lead-

ing to a significant problem for training. Previous

approaches (Riedel et al., 2010; Hoffmann et al.,

2011; Surdeanu et al., 2012) bypassed this problem

by heavily under-sampling the “negative“ class.

We instead deal with a learning scenario where we

only have entity-pair level labels that are either posi-

tive or unlabeled. We proposed an extension to Sur-

deanu et al. (2012) that can train on this dataset. Our

contribution also includes an analysis on the incom-

pleteness of Freebase and the false negative match

rate in two datasets of labeled examples generated

by DS. Experimental results on a realistic and chal-

lenging dataset demonstrate the advantage of the al-

gorithm over existing solutions.

2 Related Work

Distant supervision was first proposed by Craven

and Kumlien (1999) in the biomedical domain.

2Freebase is a large collaboratively-edited KB. It is available

at http://www.freebase.com.
3There are variants of labeling heuristics. For example, Sur-

deanu et al. (2011) and Sun et al. (2011) use a pair < e, v >

as a negative example, when it is not listed in Freebase, but e is

listed with a different v′. These assumptions are also problem-

atic in cases where the relation is not functional.
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Since then, it has gain popularity (Mintz et al., 2009;

Bunescu and Mooney, 2007; Wu and Weld, 2007;

Riedel et al., 2010; Hoffmann et al., 2011; Sur-

deanu et al., 2012; Nguyen and Moschitti, 2011).

To tolerate noisy labels in positive examples, Riedel

et al. (2010) use Multiple Instance Learning (MIL),

which assumes only at-least-one of the relation men-

tions in each “bag“ of mentions sharing a pair of ar-

gument entities which bears a relation, indeed ex-

presses the target relation. MultiR (Hoffmann et

al., 2011) and Multi-Instance Multi-Label (MIML)

learning (Surdeanu et al., 2012) further improve it

to support multiple relations expressed by different

sentences in a bag. Takamatsu et al. (2012) mod-

els the probabilities of a pattern showing relations,

estimated from the heuristically labeled dataset.

Their algorithm removes mentions that match low-

probability patterns. Sun et al. (2011) and Min et

al. (2012b) also estimate the probablities of patterns

showing relations, but instead use them to relabel ex-

amples to their most likely classes. Their approach

can correct highly-confident false negative matches.

3 Problem Definition

Distant Supervision: Given a KB D (a collection

of relational tables r(e1, e2), in which rǫR (R is the

set of relation labels), and < e1, e2 > is a pair of

entities that is known to have relation r) and a cor-

pus C, the key idea of distant supervision is that we

align D to C, label each bag4 of relation mentions

that share argument pair < e1, e2 > with r, other-

wise OTHER. This generates a dataset that has labels

on entity-pair (bag) level. Then a relation extractor

is trained with single-instance learning (by assum-

ing all mentions have the same label as the bag), or

Multiple-Instance Learning (by assuming at-least-

one of the mentions expresses the bag-level label),

or Multi-Instance Multi-Label learning (further as-

suming a bag can have multiple labels) algorithms.

All of these works treat the OTHER class as exam-

ples that are labeled as negative.

The incomplete KB problem: KBs are usually

incomplete because they are manually constructed,

and it is not possible to cover all human knowledge

4A bag is defined as a set of relation mentions sharing the

same entity pair as relation arguments. We will use the terms

bag and entity pair interchangeably in this paper.

nor stay current. We took frequent relations, which

involve an entity of type PERSON, from Freebase

for analysis. We define the incompleteness ∂(r) of a

relation r as follows:

∂(r) = |{e}|−|{e|∃e′,s.t.r(e,e′)ǫD}|
|{e}|

∂(r) is the percentage of all persons {e} that do

not have an attribute e′ (with which r(e, e′) holds).

Table 1 shows that 93.8% of persons have no place

of birth, and 78.5% of them have no nationality.

These are must-have attributes for a person. This

shows that Freebase is highly incomplete.
Freebase relation types Incompleteness

/people/person/education 0.792

/people/person/employment history 0.923

/people/person/nationality* 0.785

/people/person/parents* 0.988

/people/person/place of birth* 0.938

/people/person/places lived* 0.966

Table 1: The incompleteness of Freebase (* are must-

have attributes for a person).

We further investigate the rate of false negative

matches, as the percentage of entity-pairs that are

not listed in Freebase but one of its mentions gen-

erated by DS does express a relation in the tar-

get set of types. We randomly picked 200 unla-

beled bags5 from each of the two datasets (Riedel

et al., 2010; Surdeanu et al., 2012) generated by DS,

and we manually annotate all relation mentions in

these bags. The result is shown in Table 2, along

with a few examples that indicate a relation holds in

the set of false negative matches (bag-level). Both

datasets have around 10% false negative matches in

the unlabeled set of bags. Taking into considera-

tion that the number of positive bags and unlabeled

bags are highly imbalanced (1:134 and 1:37 in the

Riedel and KBP dataset respectively, before under-

sampling the unlabeled class), the number of false

negative matches are 11 and 4 times the number

of positive bags in Reidel and KBP dataset, respec-

tively. Such a large ratio shows false negatives do

have a significant impact on the learning process.

4 A semi-supervised MIML algorithm

Our goal is to model the bag-level label noise,

caused by the incomplete KB problem, in addition

585% and 95.7% of the bags in the Riedel and KBP datasets

have only one relation mention.
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Dataset

(train-

ing)

# pos-

itive

bags

# positive :

# unlabeled

% are

false

negatives

# positive

: # false

negative

has human

assessment

Examples of false negative mentions

Riedel 4,700 1:134(BD*) 8.5% 1:11.4 no
(/location/location/contains)... in Brooklyn ’s Williamsburg.

(/people/person/place lived) Cheryl Rogowski , a farmer from

Orange County ...

KBP 183,062 1:37(BD*) 11.5% 1:4 yes
(per:city of birth) Juan Martn Maldacena (born September

10, 1968) is a theoretical physicist born in Buenos Aires

(per:employee of)Dave Matthews, from the ABC News, ...

Table 2: False negative matches on the Riedel (Riedel et al., 2010) and KBP dataset (Surdeanu et al., 2012). All

numbers are on bag (pairs of entities) level. BD* are the numbers before downsampling the negative set to 10% and

5% in Riedel and KBP dataset, respectively.

to modeling the instance-level noise using a 3-layer

MIL or MIML model (e.g., Surdeanu et al. (2012)).

We propose a 4-layer model as shown in Figure 1.

The input to the model is a list of n bags with a

vector of binary labels, either Positive (P), or Un-

labled (U) for each relation r. Our model can be

viewed as a semi-supervised6 framework that ex-

tends a state-of-the-art Multi-Instance Multi-Label

(MIML) model (Surdeanu et al., 2012). Since the

input to previous MIML models are bags with per-

relation binary labels of either Positive (P) or Neg-

ative (N), we add a set of latent variables ℓ which

models the true bag-level labels, to bridge the ob-

served bag labels y and the MIML layers. We con-

sider this as our main contribution to the model. Our

hierarchical model is shown in Figure 1.

Figure 1: Plate diagram of our model.

Let i, j be the index in the bag and mention level,

respectively. Following Surdeanu et al. (2012), we

model mention-level extraction p(zr
ij |xij ;wz) and

multi-instance multi-label aggregation p(ℓr
i |zi;w

r
ℓ)

in the bottom 3 layers. We define:

• r is a relation label. rǫR ∪ {OTHER}, in

which OTHER denotes no relation expressed.

• yr
i ǫ{P, U}: r holds for ith bag or the bag is

unlabeled.

6We use the term semi-supervised because the algorithm

uses unlabeled bags but existing solutions requires bags to be

labeled either positive or negative.

• ℓr
i ǫ{P, N}: a hidden variable that denotes

whether r holds for the ith bag.

• θ is an observed constant controlling the total

number of bags whose latent label is positive.

We define the following conditional probabilities:

• p(yr
i |ℓ

r
i ) =















1/2 if yr
i = P ∧ ℓr

i = P ;
1/2 if yr

i = U ∧ ℓr
i = P ;

1 if yr
i = U ∧ ℓr

i = N ;
0 otherwise ;

It encodes the constraints between true bag-

level labels and the entity pair labels in the KB.

• p(θ|ℓ) ∼ N (
∑n

i=1

∑
rǫR δ(ℓr

i ,P )
n

, 1
k
) where

δ(x, y) = 1 if x = y, 0 otherwise. k is a large

number. θ is the fraction of the bags that are

positive. It is an observed parameter that de-

pends on both the source corpus and the KB

used.

Similar to Surdeanu et al. (2012), we also define

the following parameters and conditional probabili-

ties (details are in Surdeanu et al. (2012)):

• zijǫR ∪ {OTHER}: a latent variable that de-

notes the relation type of the jth mention in the

ith bag.

• xij is the feature representation of the jth rela-

tion mention in the ith bag. We use the set of

features in Surdeanu et al. (2012).

• wz is the weight vector for the multi-class rela-

tion mention-level classifier.

• w
r
ℓ is the weight vector for the rth binary top-

level aggregation classifier (from mention la-

bels to bag-level prediction). We use wℓ to rep-

resent w1
ℓ ,w

2
ℓ , ...w

|R|
ℓ .

• p(ℓr
i |zi;w

r
ℓ) ∼ Bern(fℓ(w

r
ℓ , zi)) where fℓ is

probability produced by the rth top-level clas-

sifier, from the mention-label level to the bag-

label level.

• p(zr
ij |xij ;wz) ∼ Multi(fz(wz,xij)) where fz
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is probability produced by the mention-level

classifier, from the mentions to the mention-

label level.7

4.1 Training

We use hard Expectation-Maximization (EM) algo-

rithm for training the model. Our objective function

is to maximize log-likelihood:

L(wz,wℓ) = logp(y, θ|x;wz,wℓ)

= log
∑

ℓ

p(y, θ, ℓ|x;wz,wℓ)

Since solving it exactly involves exploring an expo-

nential assignment space for ℓ, we approximate and

iteratively set ℓ∗ = argℓ max p(ℓ|y, θ,x;wz,wℓ)
p(ℓ|y, θ,x;wz,wℓ) ∝ p(y, θ, ℓ|x;wz,wℓ)

= p(y, θ|ℓ,x)p(ℓ|x;wz,wℓ)

= p(y|ℓ)p(θ|ℓ)p(ℓ|x;wz,wℓ)
Rewriting in log form:

logp(ℓ|y, θ,x;wz,wℓ)

= logp(y|ℓ) + logp(θ|ℓ) + logp(ℓ|x;wz,wℓ)

=
n

∑

i=1

∑

rǫR

logp(yr
i |ℓ

r
i )− k(

n
∑

i=1

∑

rǫR

δ(ℓr
i , P )

n
− θ)2

+
n

∑

i=1

∑

rǫR

logp(ℓr
i |xi;wz,wℓ) + const

Algorithm 1 Training (E-step:2-11; M-step:12-15)

1: for i = 1, 2 to T do

2: ℓr
i ← N for all yr

i = U and rǫR
3: ℓr

i ← P for all yr
i = P and rǫR

4: I = {< i, r > |ℓr
i = N}; I ′ = {< i, r > |ℓr

i = P}

5: for k = 0, 1 to θn− |I ′| do

6: < i′, r′ >= argmax<i,r>ǫI p(ℓr
i |xi;wz,wℓ)

7: ℓr′

i′ ← P ; I = I\{< i′, r′ >}

8: end for

9: for i = 1, 2 to n do

10: z
∗
i = argmaxzi

p(zi|ℓi,xi;wz,wℓ)
11: end for

12: w
∗
z = argmaxwz

∑n
i=1

∑|xi|
j=1 logp(zij |xij ,wz)

13: for all rǫR do

14: w
r(∗)
ℓ = argmaxwr

ℓ

∑n
i=1 p(ℓr

i |zi,w
r
ℓ)

15: end for

16: end for

17: return wz,wℓ

7All classifiers are implemented with L2-regularized logistic

regression with Stanford CoreNLP package.

In the E-step, we do a greedy search (steps 5-8

in algorithm 1) in all p(ℓr
i |xi;wz,wℓ) and update ℓr

i

until the second term is maximized. wz , wℓ are the

model weights learned from the previous iteration.

After fixed ℓ, we seek to maximize:

logp(ℓ|xi;wz,wℓ) =
n

∑

i=1

logp(ℓi|xi;wz,wℓ)

=
n

∑

i=1

log
∑

zi

p(ℓi, zi|xi;wz,wℓ)

which can be solved with an approxi-

mate solution in Surdeanu et al. (2012)

(step 9-11): update zi independently with:

z
∗
i = argmaxzi

p(zi|ℓi,xi;wz,wℓ). More details

can be found in Surdeanu et al. (2012).

In the M-step, we retrain both of the mention-

level and the aggregation level classifiers.

The full EM algorithm is shown in algorithm 1.

4.2 Inference

Inference on a bag xi is trivial. For each mention:

z∗ij = argzijǫR∪{OTHER}max p(zij |xij ,wz)
Followed by the aggregation (directly with wℓ):

y
r(∗)
i = argyr

i ǫ{P,N}max p(yr
i |zi;w

r
ℓ)

4.3 Implementation details

We implement our model on top of the

MIML(Surdeanu et al., 2012) code base.8 We

use the same mention-level and aggregate-level

feature sets as Surdeanu et al. (2012). We adopt

the same idea of using cross validation for the E

and M steps to avoid overfitting. We initialize our

algorithm by sampling 5% unlabeled examples as

negative, in essence using 1 epoch of MIML to

initialize. Empirically it performs well.

5 Experiments

Data set: We use the KBP (Ji et al., 2011)

dataset9 prepared and publicly released by Surdeanu

et al. (2012) for our experiment since it is 1) large

and realistic, 2) publicly available, 3) most im-

portantly, it is the only dataset that has associated

human-labeled ground truth. Any KB held-out eval-

uation without manual assessment will be signif-

icantly affected by KB incompleteness. In KBP

8Available at http://nlp.stanford.edu/software/mimlre.shtml
9Available from Linguistic Data Consortium (LDC).

http://projects.ldc.upenn.edu/kbp/data/
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Figure 2: Performance on the KBP dataset. The figures on the left, middle and right show MIML, Hoffmann, and

Mintz++ compared to the same MIML-Semi curve, respectively. MIML-Semi is shown in red curves (lighter curves in

black and white) while other algorithms are shown in black curves (darker curves in black and white).

dataset, the training bags are generated by mapping

Wikipedia (http://en.wikipedia.org) infoboxes (after

merging similar types following the KBP 2011 task

definition) into a large unlabeled corpus (consisting

of 1.5M documents from the KBP source corpus and

a complete snapshot of Wikipedia). The KBP shared

task provided 200 query named entities with their as-

sociated slot values (in total several thousand pairs).

We use 40 queries as development dataset (dev), and

the rest (160 queries) as evaluation dataset. We set

θ = 0.25 by tuning on the dev set and use it in the

experiments. For a fair comparison, we follow Sur-

deanu et al. (2012) and begin by downsampling the

“negative“ class to 5%. We also set T=8 and use

the following noisy-or (for ith bag) of mention-level

probability to rank predicted types (r) of pairs and

plot the precision-recall curves for all experiments.

Probi(r) = 1−
∏

j

(1− p(zij = r|xij ;wz))

Evaluation: We compare our algorithm (MIML-

semi) to three algorithms: 1) MIML (Surdeanu et

al., 2012), the Multiple-Instance Multiple Label al-

gorithm which labels the bags directly with the KB

(y = ℓ). 2) MultiR (denoted as Hoffmann) (Hoff-

mann et al., 2011), a Multiple-Instance algorithm

that supports overlapping relations. It also imposes

y = ℓ. 3) Mintz++ (Surdeanu et al., 2012), a vari-

ant of the single-instance learning algorithm (section

3). The first two are stat-of-the-art Multi-Instance

Multi-Label algorithms. Mintz++ is a strong base-

line (Surdeanu et al., 2012) and an improved ver-

sion of Mintz et al. (2009). Figure 2 shows that

our algorithm consistently outperforms all three al-

gorithms at almost all recall levels (with the excep-

tion of a very small region in the PR-curve). This

demonstrates that by treating unla-beled data set dif-

ferently and leveraging the missing positive bags,

MIML-semi is able to learn a more accurate model

for extraction. Although the proposed solution is a

specific algorithm, we believe the idea of treating

unlabeled data differently can be incorporated into

any of these algorithms that only use unlabeled data

as negative examples.

6 Conclusion

We show that the distant-supervision labeling pro-

cess generates a significant number of false nega-

tives because the knowledge base is incomplete. We

proposed an algorithm that learns from only positive

and unlabeled bags. Experimental results demon-

strate its advantage over existing algorithms.
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Abstract

In this paper, we propose a novel Rhetorical
Structure Index (RSI) to measure the struc-
tural importance of a word or a phrase. Un-
like TF-IDF and other content-driven mea-
surements, RSI identifies words or phrases
that are structural cues in an unstructured doc-
ument. We show structurally motivated fea-
tures with high RSI values are more useful
than content-driven features for applications
such as segmenting unstructured lecture tran-
scripts into meaningful segments. Experi-
ments show that using RSI significantly im-
proves the segmentation accuracy compared
to TF-IDF, a traditional content-based feature
weighting scheme.

1 Introduction

Online learning, a new trend in distance learning,
provides numerous lectures to students all over the
world. More than 19,000 colleges offer thousands
of free online lectures1. Starting from video record-
ings of lectures which sometimes also come with the
presentation material, a set of processes can be ap-
plied to extract information from the unstructured
data to assist students in browsing, searching and
understanding the content of the lecture. These pro-
cesses include automatic speech recognition (ASR)
which converts the audio to text, lecture segmen-
tation which inserts paragraph boundaries and adds
section titles to the lecture transcriptions, automatic
summarization that generates a short summary from

1http://www.thebestcolleges.org/
free-online-classes-and-course-lectures/

the full lecture, and lecture translation that translates
the lecture from the original language to the native
language of the student.

The transcription of a lecture generated by the
ASR system is a sequence of words which does
not contain any structural information such as para-
graph, section boundaries and section titles. Zhang
et al. (2007; 2008; 2010) used acoustic and lin-
guistic features for rhetorical structure detection and
summarization. They showed that linguistic features
such as TF-IDF are the most influential in segmenta-
tion and summarization and that knowing the struc-
ture of a lecture can significantly improve the perfor-
mance of lecture summarization. Our experiments
with a real-time lecture translation system also show
that displaying the rolling translation results of a live
lecture with proper paragraphing and inserted sec-
tion titles makes it easier for students to grasp the
key points during a lecture.

In this paper, we apply existing algorithms,
namely the Hidden Markov Model (HMM) (Gales
and Young, 2007) to unstructured lecture transcrip-
tion to infer the underlying structure for better lec-
ture segmentation and summarization. HMM has
been successfully applied in early works (van Mul-
bregt et al., 1998; Sherman and Liu, 2008) for text
segmentation, event tracking and boundary detec-
tion. The focus of this work is to identify cue
words and phrases that are good indicators of lec-
ture structure. Intuitively, words and phrases such
as “last week we talked about”, “this is an out-
line of my talk”, “now I am going to talk about”,
“in conclusion”, and “any questions” should be
important features to recognize lecture structure.
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These words/phrases, however, may not be so im-
portant content-wise. Thus, content-driven met-
rics such as the TF-IDF score usually do not as-
sign higher weights to these structurally impor-
tant words/phrases. We propose a novel metric
called Rhetorical Structural Index (RSI) to weigh
words/phrases based on their structural importance.

2 Rhetorical Structural Index

RSI incorporates both frequency of occurrences and,
more importantly, the position distribution of occur-
rences of a word/phrase. The intuition is that if a
term is a structural marker, it usually occurs at a cer-
tain position in a lecture. Because the term is mainly
about the structure rather than the content of a lec-
ture, it can appear with high frequency in lectures
that are of different topics. For example, “today we”
occurs at the beginning of a lecture and “thank you”
usually appears towards the end (Figure 1) no mat-
ter whether the lecture is about history or computer
science.

We define the RSI of a word w as:

RSI(w) =
1

λVar(Lw) + (1− λ)idf(w,D)
(1)

where Lw is the random variable of “normalized po-
sitions” of a word w in a lecture. For each occur-
rence of w in a particular lecture d, we divide its
position by the length of the lecture |d| to estimate
its “normalized position”. Lw takes a value between
[0, 1]. A value close to 0 indicates this word occurs
at the beginning and close to 1 means w is close to
the end of the lecture. Var(Lw) is the variance of the
normalized position of a word w. A small Var(Lw)
indicates that w always occurs at certain positions
of a typical lecture (e.g., “bye”) while a large value
means w can occur at any position (e.g., function
words “of” and “the”).

The second part of RSI is the inverse document
frequency (idf), or effectively the document fre-
quency since RSI is proportional to the 1/idf term.
Lectures, such as different research talks, can vary
in content but usually have a very similar structure
and share some common structural cues. A good
structural cue word should be common to many lec-
tures. idf has been widely used in information re-
trieval research to assign higher weights to words
that occur in just a few documents as compared to

Table 1: Examples of n-grams with high RSI values
which are likely to be structural cues.
n-gram Var(Lw) idf RSI
now 0.0004 0.60 1.04
here 0.0004 0.62 1.03
class 0.0001 2.12 0.90
week 0.0001 2.23 0.89
goodbye 0.0001 3.62 0.80
thank you 0.0003 1.53 0.95
talk about 0.0003 1.90 0.92
dealing with 0.0002 2.00 0.91
today we 0.0003 2.51 0.87
see how 0.0009 2.69 0.85
ladies and gentlemen 0.0008 1.35 0.96
last time we 0.0004 2.22 0.89
here we have 0.0005 2.35 0.88
next time we 0.0002 2.51 0.86

common words that occur in all documents. Define
the idf of a word w given a collection of lectures D
as:

idf(w,D) = log
|D|

|{d ∈ D|w ∈ d}|
(2)

|D| is the number of all lectures in the collection and
|{d ∈ D|w ∈ d}| is the number of lectures where w
appears. A low idf (w,D) value indicates that word
w occurs in many documents and thus is more likely
to be a common structural cue.

Combining the variance of normalized position
and idf by scaling factor λ, we define RSI as in equa-
tion 1. We found 0.9 as an optimal value of λ accord-
ing our experiments over all data sets. A word w
with high RSI value is more likely to be structurally
important. Similarly, we can calculate the RSI val-
ues for phrases (n-grams) such as “I would like to
talk about”, “I will switch gear to” and “thank you
for your attention”.

Table 1 shows examples of n-grams and the cal-
culated variance, idf-scores and RSI values from a
collection of lectures.

3 Incorporating RSI in Lecture
Segmentation

Several algorithms have been developed for text seg-
mentation including the Naive Bayes classifier for
keyword extraction (Balagopalan et al., 2012), the
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Figure 1: Fitted Poisson-distribution of normalized positions in lectures for the bigrams “today we” and “thank you”.
“today we” appears more frequently at the beginning of a lecture, whereas “thank you” more in the concluding part
of a lecture. The x-axis is the normalized word position in a lecture and y-axis is the probability of seeing the word at
a position.

Hidden Markov Model (Gales and Young, 2007),
the Maximum entropy Markov model (McCallum et
al., 2000), the Conditional Random Field (Lafferty
et al., 2001) and the Latent Content Analysis (Ponte
and Croft, 1997). In this paper, we evaluate the ef-
fectiveness of the proposed RSI feature on lecture
segmentation using an HMM.

We represent each segment in a lecture as a state
in the Markov model and use the EM algorithm
to learn HMM parameters from unlabeled lecture
data. We use a fully connected HMM with five
states. Typical state labels for lecture are: “Introduc-
tion”, “Background”, “Main Topic”, “Questions”
and “Conclusion” as shown in Figure 2. HMM states
emit word tokens. Instead of considering the full
vocabulary as the possible emission alphabet, which
usually leads to model over-fitting, we only consider
terms with high RSI values and high TF-IDF* scores
for comparison. For a word w, define its TF-IDF*
score as:

TF-IDF*(w) = max
d

TF-IDF(w, d), (3)

which is the highest TF-IDF score of a word in any
document in the collection. Our experiments try to
answer the question that “if HMM is meant to cap-
ture the underlying structure of lectures no matter
which topic the lecture is about, what kind of fea-
tures should be emitted from each state to reflect
such structural patterns among lectures?”

The learned HMM model is then applied to un-
seen lecture data to label each sentence to be “In-
troduction”, “Background”, “Main Topic”, “Ques-
tions” or “Conclusion” and, based on the label, we
segment the lecture to different sections for evalu-
ation. Segment boundaries are defined in the posi-
tions where sentence labels change.

3.0.1 Bootstrap HMM from K-Means
Clustering Segmentation

Initial HMM parameters are bootstrapped using
results from K-means clustering where we cluster a
sequence of sentences to form a “segment”. K cor-
responds to the number of desired segments of a lec-
ture. Similarities are computed based on the content
similarity (using n-gram matches) and the relative
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sentence position defined as:

Sim(Si, Cj) = αM(Si, Cj) + (1− α)P (Si, Cj),
(4)

where Si is the i-th sentence, Cj is the centroid of
the j-th cluster. M(Si, Cj) is the content similarity
between sentence Si and centroid Cj and P(Si, Cj)
is the position similarity (distance). α is a scaling
factor (set to optimal value 0.2 based on all data sets
in our experiments).

Content similarity is based on the number of com-
mon words between two sentences, or between a
sentence and the centroid vector of a cluster. Denote
the binary word frequency vector (bag of words) in
sentence Si as ~Si and similarly ~Cj for cluster cen-
troid Cj , define:

M(Si, Cj) =
~Si· ~Cj

‖ ~Si ‖‖ ~Cj ‖
. (5)

P(Si, Cj) measures the position similarity of two
sentences. Position similarity is based on the rela-
tive position distance between the sentence and the
cluster:Define

P (Si, Cj) =
L

|Pos(Si)− Pos(Cj)|+ ε
, (6)

where Si is the i-th sentence, Cj is the j-th cluster.
Pos(Si) is the position of sentence Si. Pos(Cj) is
the average sentence position of all members belong
to cluster Cj and L is the total number of sentences
in a lecture. ε is a small constant to avoid division
by zeros.

4 Experiments and Evaluation

We evaluated segmentation on three different data
sets: college lectures recorded by Karlsruhe In-
stitute of Technology (KIT), Microsoft research
(MSR) lectures2 and scientific papers3. Both col-
lege and Microsoft research lectures are manually
transcribed. The reason why we do not include ex-
periments on ASR output is that current ASR quality
of lecture data is still quite poor. Word-Error-Rates
(WER) of ASR output range from 24.37 to 30.80 for
KIT lectures. Roughly speaking, every one out of 3
or 4 words is mis-recognized.

2http://research.microsoft.com/apps/catalog/
3http://aclweb.org/anthology-new/

For evaluation, human annotators annotated a few
lectures to create test/reference sets. The test data
from KIT is annotated by one human annotator and
MSR lectures are annotated by four annotators. The
segmentation gold standard is created based on the
agreed annotations. Since the number of annotated
lectures is small and human annotation is subjective,
we also used ACL papers as an additional data set.
ACL papers are in a way “lectures in written form”
and have titles for section and subsections which can
be used to identify the segments and annotate the
data set automatically. The statistics of each data set
are listed in Table 2.

Table 2: Statistics of three data sets used in the exper-
iments: our own lecture data (KIT), Microsoft research
talks (MSR) and conference proceedings from ACL an-
thology archive. We removed equations, short titles such
as “Abstract” and “Conclusion”, when extracting text
from PDF files from the ACL anthology, which results
in a relatively small number of words per paper. Words
are simply tokenized without case normalization or stem-
ming, which results in relatively large vocabulary sizes.

Properties KIT MSR ACL
Num. 74 1,182 3,583
Avg. Num. of Sent. 484 655 212
Avg. Num. of Words 10,078 10,225 3,896
Avg. Duration (Min.) 43.57 39.15 -
Vocabulary Size 1.3K 22K 24K

First, we calculate the RSI and TF-IDF* scores
for each word in the dataset and choose the top N
words as the HMM emission vocabulary. To avoid
over-fitting, we choose N that is much smaller than
the full vocabulary size of the data set. In our ex-
periments, we set N=300 for KIT, N=5000 for MSR
and N=5400 for ACL. The top 5 words with the
highest TF-IDF* scores from the MSR data set are:
“RFID”, “Cherokee”, “tree-to-string”, “GPU”, and
“data-triggered”, whereas the top 5 words selected
by RSI are “today”, “work”, “question”, “now”, and
“thank”, which are more structurally informative.

To estimate the accuracy of the segmentation
module, we used Recall, Precision, F-Measure and
Pk (Beeferman et al., 1999) as evaluation metric.
We used an error window of length 6 to calculate
Precision, Recall and F-Measure and a sliding win-
dow with a length equal to half of the average seg-
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Figure 2: Fully connected 5-state HMM representing Introduction, Background, Main Topic, Questions, Conclusion
in a typical lecture.

ment length to estimate the Pk score. With error
window we mean that hypothesis boundaries do not
have to be exactly the same as the reference segment
boundaries. Hypothesis boundaries are acceptable
if they are close enough to reference boundaries in
that window. The Pk score indicates the probability
of segmentation inconsistency. Therefore, the lower
the Pk score the better the segmentation is.

Table 3: Segmentation results measured by Pk (the
smaller the better), Precision, Recall and F-Measure
scores (the higher the better) for three data sets compar-
ing HMM using TF-IDF*-filtered word tokens as emis-
sion and RSI-filtered words as emissions.

Evaluation Score KIT MSR ACL
Pk

HMM + TF-IDF* 0.06 0.06 0.05
HMM + RSI 0.01 0.02 0.01

Precision
HMM + TF-IDF* 32.01 30.47 32.85
HMM + RSI 41.10 41.01 42.70

Recall
HMM + TF-IDF* 39.32 36.09 38.08
HMM + RSI 47.38 46.39 48.95

F-Measure
HMM + TF-IDF* 35.29 33.04 35.27
HMM + RSI 44.01 43.53 45.61

The evaluation results on all data sets listed in
Table 3 show that according F-Measure and Pk

scores, considering words with high RSI values as

HMM emission significantly improve over the base-
line method of choosing word tokens with high TF-
IDF* scores.

5 Conclusions

In this work we propose the Rhetorical Structure In-
dex (RSI), a method to identify structurally impor-
tant terms in lectures. Experiments show that terms
with high RSI values are better candidates than those
with high TF-IDF values when used by an HMM-
based segmenter as state emissions. In other words,
terms with high RSI values are more likely to be
structural cues in lectures independent of the lecture
topic. In the future we will run experiments on ASR
output and incorporate other prosodic features such
as pitch, intensity, duration into the RSI to improve
this metric for structural analysis of lectures and ap-
ply the RSI to other structure discovery applications
such as dialogue segmentation.
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Abstract

Twitter has been shown to be a fast and reli-
able method for disease surveillance of com-
mon illnesses like influenza. However, previ-
ous work has relied on simple content anal-
ysis, which conflates flu tweets that report
infection with those that express concerned
awareness of the flu. By discriminating these
categories, as well as tweets about the authors
versus about others, we demonstrate signifi-
cant improvements on influenza surveillance
using Twitter.

1 Introduction

Twitter is a fantastic data resource for many tasks:
measuring political (O’Connor et al., 2010; Tumas-
jan et al., 2010), and general sentiment (Bollen et
al., 2011), studying linguistic variation (Eisenstein
et al., 2010) and detecting earthquakes (Sakaki et
al., 2010). Similarly, Twitter has proven useful for
public health applications (Dredze, 2012), primar-
ily disease surveillance (Collier, 2012; Signorini et
al., 2011), whereby public health officials track in-
fection rates of common diseases. Standard govern-
ment data sources take weeks while Twitter provides
an immediate population measure.

Strategies for Twitter influenza surveillance in-
clude supervised classification (Culotta, 2010b; Cu-
lotta, 2010a; Eiji Aramaki and Morita, 2011), un-
supervised models for disease discovery (Paul and
Dredze, 2011), keyword counting1, tracking geo-
graphic illness propagation (Sadilek et al., 2012b),
and combining tweet contents with the social net-
work (Sadilek et al., 2012a) and location informa-

1The DHHS competition relied solely on keyword counting.
http://www.nowtrendingchallenge.com/

tion (Asta and Shalizi, 2012). All of these methods
rely on a relatively simple NLP approach to analyz-
ing the tweet content, i.e. n-gram models for classi-
fying related or not related to the flu. Yet examining
flu tweets yields a more complex picture:
• going over to a friends house to check on her son.

he has the flu and i am worried about him
• Starting to get worried about swine flu...

Both are related to the flu and express worry, but
tell a different story. The first reports an infec-
tion of another person, while the second expresses
the author’s concerned awareness. While infection
tweets indicate a rise in infection rate, awareness
tweets may not. Automatically making these dis-
tinctions may improve influenza surveillance, yet re-
quires more than keywords.

We present an approach for differentiating be-
tween flu infection and concerned awareness tweets,
as well as self vs other, by relying on a deeper analy-
sis of the tweet. We present our features and demon-
strate improvements in influenza surveillance.

1.1 Related Work
Much of the early work on web-based influenza
surveillance relied on query logs and click-through
data from search engines (Eysenbach, 2006), most
famously Google’s Flu Trends service (Ginsberg et
al., 2008; Cook et al., 2011). Other sources of in-
formation include articles from the news media and
online mailing lists (Brownstein et al., 2010).

2 Capturing Nuanced Trends

Previous work has classified messages as being re-
lated or not related to influenza, with promising
surveillance results, but has ignored nuanced differ-
ences between flu tweets. Tweets that are related to
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flu but do not report an infection can corrupt infec-
tion tracking.
Concerned Awareness vs. Infection (A/I) Many
flu tweets express a concerned awareness as opposed
to infection, including fear of getting the flu, an
awareness of increased infections, beliefs related to
flu infection, and preventative flu measures (e.g. flu
shots.) Critically, these people do not seem to have
the flu, whereas infection tweets report having the
flu. This distinction is similar to modality (Prab-
hakaran et al., 2012a). Conflating these tweets can
hurt surveillance, as around half of our annotated
flu messages were awareness. Identifying awareness
tweets may be of use in-and-of itself, such as for
characterizing fear of illness (Epstein et al., 2008;
Epstein, 2009), public perception, and discerning
sentiment (e.g. flu is negative, flu shots may be pos-
itive.) We focus on surveillance improvements.2

Self vs. Other (S/O) Tweets for both awareness
and infection can describe the author (self) or oth-
ers. It may be that self infection reporting is more
informative. We test this hypothesis by classifying
tweets as self vs. other.
Finding Flu Related Tweets (R/U) We must first
identify messages that are flu related. We construct
a classifier for flu related vs. unrelated.

3 Features

Token sequences (n-grams) are an insufficient fea-
ture set, since our classes share common vocabular-
ies. Consider,
• A little worried about the swine flu epidemic!
• Robbie might have swine flu. I’m worried.

Both tweets mention flu and worried, which distin-
guish them as flu related but not specifically aware-
ness or infection, nor self or other. Motivated by
Bergsma et al. (2012), we complement 3-grams with
additional features that capture longer spans of text
and generalize using part of speech tags. We begin
by processing each tweet using the ARK POS tag-
ger (Gimpel et al., 2011) and find phrase segmen-
tations using punctuation tags.3 Most phrases were
two (31.2%) or three (26.6%) tokens long.

2While tweets can both show awareness and report an in-
fection, we formulate a binary task for simplicity since only a
small percentage of tweets were so labeled.

3We used whitespace for tokenization, which did about the
same as Jerboa (Van Durme, 2012).

Class Name Words in Class
Infection getting, got, recovered, have, hav-

ing, had, has, catching, catch, cured,
infected

Possession bird, the flu, flu, sick, epidemic
Concern afraid, worried, scared, fear, worry,

nervous, dread, dreaded, terrified
Vaccination vaccine, vaccines, shot, shots, mist,

tamiflu, jab, nasal spray
Past Tense was, did, had, got, were, or verb with

the suffix “ed”
Present Tense is, am, are, have, has, or verb with

the suffix “ing”
Self I, I’ve, I’d, I’m, im, my
Others your, everyone, you, it, its, u, her,

he, she, he’s, she’s, she, they, you’re,
she’ll, he’ll, husband, wife, brother,
sister, your, people, kid, kids, chil-
dren, son, daughter

Table 1: Our manually created set of word class features.

Word Classes For our task, many word types can
behave similarly with regard to the label. We create
word lists for possessive words, flu related words,
fear related words, “self” words, “other” words, and
fear words (Table 1). A word’s presence triggers a
count-based feature corresponding to each list.
Stylometry We include Twitter-specific style fea-
tures. A feature is included for retweet, hashtags,
and mentions of other users. We include a feature
for emoticons (based on the emoticon part-of-speech
tag). We include a more specific feature for positive
emoticons (:) :D :)). We also include a feature
for negative emoticons (:( :/). Additionally, we
include a feature for links to URLs.
Part of Speech Templates We include features
based on a number of templates matching specific
sequences of words, word classes, and part of speech
tags. Where any word included in the template
matches a word in one of the word classes, an ad-
ditional feature is included indicating that the word
class was included in that template.
• Tuples of (subject,verb,object) and pairs of (sub-
ject, verb), (subject, object), and (verb, object). We
use a simple rule to construct these tuples: the first
noun or pronoun is taken as the subject, and the first
verb appearing after the subject is taken as the verb.
The object is taken as any noun or pronoun that ap-
pears before a verb or at the end of a phrase.
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• A pairing of the first pronoun with last noun.
These are useful for S/O, e.g. I am worried that my
son has the flu to recognize the difference between
the author (I) and someone else.
• Phrases that begin with a verb (pro-drop). This is
helpful for S/O, e.g. getting the flu! which can indi-
cate self even without a self-related pronoun. An ad-
ditional feature is included if this verb is past-tense.
• Numeric references. These often indicate aware-
ness (number of people with the flu) and are gen-
erally not detected by an n-gram model. We add a
separate feature if the word following has the root
“died”, e.g. So many people dying from the flu, I’m
scared!
• Pair of first pronoun/noun with last verb in a
phrase. Many phrases have multiple verbs, but the
last verb is critical, e.g. I had feared the flu. Ad-
ditional features are added if the noun/pronoun is in
the “self” or “other” word class, and if the verb is in
the “possessive” word class.
• Flu appears as a noun before first verb in a phrase.
This indicates when flu is a subject, which is more
likely to be about awareness.
• Pair of verb and following noun. This indicates the
verbs object, which can change the focus of A/I,
e.g., I am getting a serious case of the flu vs. I am
getting a flu shot. Additional features are added if
the verb is past tense (based on word list and suffix
“-ed”.)
• Whether a flu related word appears as a noun or
an adjective. When flu is used as an adjective, it
may indicate a more general discussion of the flu,
as opposed to an actual infection I hate this flu vs. I
hate this flu hype.
• If a proper noun is followed by a possessive verb.
This may indicate others for the S/O task Looks like
Denmark has the flu. An additional feature fires for
any verb that follows a proper noun and any past
tense verb that follows a proper noun.
• Pair each noun with “?”. While infection tweets
are often statements and awareness questions, the
subject matters, e.g. Do you think that swine flu
is coming to America? as awareness. An equivalent
feature is included for phrases ending with “!”.

While many of our features can be extracted using
a syntactic parser (Foster et al., 2011), tweets are
very short, so our simple rules and over-generating
features captures the desired effects without parsing.

Self Other Total
Awareness 23.15% 24.07% 47.22%
Infection 37.21% 15.57% 52.78%
Total 60.36% 39.64%

Table 2: The distribution over labels of the data set. In-
fection tweets are more likely to be about the author (self)
than those expressing awareness.

3.1 Learning

We used a log-linear model from Mallet (McCal-
lum, 2002) with L2 regularization. For each task, we
first labeled tweets as related/not-related and then
classified the related tweets as awareness/infection
and self/others. We found this two phase approach
worked better than multi-class.

4 Data Collection

We used two Twitter data sets: a collection of 2
billion tweets from May 2009 and October 2010
(O’Connor et al., 2010)4 and 1.8 billion tweets col-
lected from August 2011 to November 2012. To
obtain labeled data, we first filtered the data sets
for messages containing words related to concern
and influenza,5 and used Amazon Mechanical Turk
(Callison-Burch and Dredze, 2010) to label tweets
as concerned awareness, infection, media and un-
related. We allowed multiple categories per tweet.
Annotators also labeled awareness/infection tweets
as self, other or both. We included tweets we anno-
tated to measure Turker quality and obtained three
annotations per tweet. More details can be found in
Lamb et al. (2012).

To construct a labeled data set we removed low
quality annotators (below 80% accuracy on gold
tweets.) This seemed like a difficult task for anno-
tators as a fifth of the data had no annotations after
this step. We used the majority label as truth and ties
were broken using the remaining low quality anno-
tators. We then hand-corrected all tweets, changing
13.5% of the labels. The resulting data set contained
11,990 tweets (Table 2), 5,990 from 2011-2012 for
training and the remaining from 2009-2010 as test.6

4This coincided with the second and larger H1N1 (swine
flu) outbreak of 2009; swine flu is mentioned in 39.6% of the
annotated awareness or infection tweets.

5e.g. “flu”, “worried”, “worry”, “scared”, “scare”, etc.
6All development was done using cross-validation on train-

ing data, reserving test data for the final experiments.
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Feature Removed A/I S/O
n-grams 0.6701 0.8440
Word Classes 0.7735 0.8549
Stylometry 0.8011 0.8522
Pronoun/Last Noun 0.7976 0.8534
Pro-Drop 0.7989 0.8523
Numeric Reference 0.7988 0.8530
Pronoun/Verb 0.7987 0.8530
Flu Noun Before Verb 0.7987 0.8526
Noun in Question 0.8004 0.8534
Subject,Object,Verb 0.8005 0.8541

Table 3: F1 scores after feature ablation.

5 Experiments

We begin by evaluating the accuracy on the bi-
nary classification tasks and then measure the re-
sults from the classifiers for influenza surveillance.
We created precision recall curves on the test data
(Figure 1), and measured the highest F1, for the
three binary classifiers. For A/I and S/O, our addi-
tional features improved over the n-gram baselines.
We performed feature ablation experiments (Table
3) and found that for A/I, the word class features
helped the most by a large margin, while for S/O
the stylometry and pro-drop features were the most
important after n-grams. Interestingly, S/O does
equally well removing just n-gram features, sug-
gesting that the S/O task depends on a few words
captured by our features.

Since live data will have classifiers run in stages
– to filter out not-related tweets – we evaluated
the performance of two-staged classification. F1
dropped to 0.7250 for A/I and S/O dropped to
0.8028.

5.1 Influenza surveillance using Twitter

We demonstrate how our classifiers can improve in-
fluenza surveillance using Twitter. Our hypothesis
is that by isolating infection tweets we can improve
correlations against government influenza data. We
include several baseline methods:
Google Flu Trends: Trends from search queries.7

Keywords: Tweets that contained keywords from
the DHHS Twitter surveillance competition.
ATAM: We obtained 1.6 million tweets that were
automatically labeled as influenza/other by ATAM

7http://www.google.org/flutrends/

Data System 2009 2011
Google Flu Trends 0.9929 0.8829

Twitter

ATAM 0.9698 0.5131
Keywords 0.9771 0.6597
All Flu 0.9833 0.7247
Infection 0.9897 0.7987
Infection+Self 0.9752 0.6662

Table 4: Correlations against CDC ILI data: Aug 2009-
Aug 2010, Dec 2011 to Aug 2012.

(Paul and Dredze, 2011). We trained a binary classi-
fier with n-grams and marked tweets as flu infection.

We evaluated three trends using our three binary
classifiers trained with a reduced feature set close to
the n-gram features:8

All Flu: Tweets marked as flu by Keywords or
ATAM were then classified as related/unrelated.9

This trend used all flu-related tweets.
Infection: Related tweets were classified as either
awareness or infection. This used infection tweets.
Infection+Self: Infection were then labeled as self
or other. This trend used self tweets.

All five of these trends were correlated against
data from the Centers for Disease Control and Pre-
vention (CDC) weekly estimates of influenza-like
illness (ILI) in the U.S., with Pearson correlations
computed separately for 2009 and 2011 (Table 4).10

Previous work has shown high correlations for 2009
data, but since swine flu had so dominated social me-
dia, we expect weaker correlations for 2011.

Results are show in Table 4 and Figure 2 shows
two classifiers against the CDC ILI data. We see
that in 2009 the Infection curve fits the CDC curve
very closely, while the All Flu curve appears to
substantially overestimate the flu rate at the peak.
While 2009 is clearly easier, and all trends have
similar correlations, our Infection classifier beats the
other Twitter methods. All trends do much worse in

8Classifiers trained on 2011 data and thresholds selected to
maximize F1 on held out 2009 data.

9Since our data set to train related or unrelated focused on
tweets that appeared to mention the flu, we first filtered out ob-
vious non-flu tweets by running ATAM and Keywords.

10While the 2009 data is a 10% sample of Twitter, we used a
different approach for 2011. To increase the amount of data, we
collected Tweets mentioning health keywords and then normal-
ized by the public stream counts. For our analysis, we excluded
days that were missing data. Additionally, we used a geolocator
based on user provided locations to exclude non-US messages.
See (Dredze et al., 2013) for details and code for the geolocator.
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Figure 1: Left to right: Precision-recall curves for related vs. not related, awareness vs. infection and self vs. others.
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Figure 2: The Twitter flu rate for two years alongside the ILI rates provided by the CDC. The y-axes are not comparable
between the two years due to differences in data collection, but we note that the 2011-12 season was much milder.

the 2011 season, which was much milder and thus
harder to detect. Of the Twitter methods, those us-
ing our system were dramatically higher, with the
Infection curve doing the best by a significant mar-
gin. Separating out infection from awareness (A/I)
led to significant improvements, while the S/O clas-
sifier did not, for unknown reasons.

The best result using Twitter reported to date has
been by Doan et al. (2012), whose best system had
a correlation of 0.9846 during the weeks beginning
8/30/09–05/02/10. Our Infection system had a cor-
relation of 0.9887 during the same period. While
Google does better than any of the Twitter systems,
we note that Google has access to much more (pro-
prietary) data, and their system is trained to predict
CDC trends, whereas our Twitter system is intrinsi-
cally trained only on the tweets themselves.

Finally, we are also interested in daily trends in
addition to weekly, but there is no available evalu-
ation data on this scale. Instead, we computed the
stability of each curve, by measuring the day-to-day
changes. In the 2009 season, the relative increase
or decrease from the previous day had a variance of
3.0% under the Infection curve, compared to 4.1%
under ATAM and 6.7% under Keywords.

6 Discussion

Previous papers have implicitly assumed that flu-
related tweets mimick the infection rate. While this
was plausible on 2009 data that focused on the swine
flu epidemic, it is clearly false for more typical flu
seasons. Our results show that by differentiating be-
tween types of flu tweets to isolate reports of infec-
tion, we can recover reasonable surveillance. This
result delivers a promising message for the NLP
community: deeper content analysis of tweets mat-
ters. We believe this conclusion is applicable to nu-
merous Twitter trend tasks, and we encourage others
to investigate richer content analyses for these tasks.
In particular, the community interested in modeling
author beliefs and influence (Diab et al., 2009; Prab-
hakaran et al., 2012b; Biran and Rambow, 2011)
may find our task and data of interest. Finally, be-
yond surveillance, our methods can be used to study
disease awareness and sentiment, which has impli-
cations for how public health officials respond to
outbreaks. We conclude with an example of this dis-
tinction. On June 11th, 2009, the World Health Or-
ganization declared that the swine flu had become a
global flu pandemic. On that day, flu awareness in-
creased 282%, while infections increased only 53%.
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Abstract

Wizard-of-Oz experimental setup in a dia-
logue system is commonly used to gather data
for informing an automated version of that
system. Previous work has exposed depen-
dencies between user behavior towards sys-
tems and user belief about whether the sys-
tem is automated or human-controlled. This
work examines whether user behavior changes
when user belief is held constant and the sys-
tem’s operator is varied. We perform a post-
hoc experiment using generalizable prosodic
and lexical features of user responses to a dia-
logue system backed with and without a hu-
man wizard. Our results suggest that user
responses are different when communicating
with a wizarded and an automated system, in-
dicating that wizard data may be less reliable
for informing automated systems than gener-
ally assumed.

1 Introduction

In a Wizard-of-Oz (WOZ) experimental setup, some
or all of the automated portions of a dialogue sys-
tem are replaced with a hidden, human evaluator.
This setup is often used to gather data from users
who believe they are interacting with an automated
system (Wolska et al., 2004; Andrews et al., 2008;
Becker et al., 2011). This data can inform a down-
stream, real automated system. A WOZ experimen-
tal protocol calls for holding “all other input and out-
put . . . constant so that the only unknown variable
is who does the internal processing” (Paek, 2001).
Thus, hiding the human wizard’s input by layers of

system interface can render that system believably
automated.

An assumption of this WOZ data-gathering strat-
egy is that user behavior will not vary substantially
between the WOZ and automated (AUT) experimen-
tal setups. However, it was shown in a dialogue sys-
tem that training with a small set of data from an au-
tomated system gave rise to better performance than
training with a large set of data from an analogous
wizarded system (Drummond and Litman, 2011).
There, it was suggested that differences in system
automation may be responsible for the performance
gap. It is possible that user responses to these dia-
logue systems differed substantially.

This paper aims to investigate this possibility by
comparing data between a wizarded and automated
version of a tutoring dialogue system. We hypoth-
esize that what users say and how they say it will
differ when the only change is whether the system’s
speech recognition and correctness evaluation com-
ponents are wizarded or automated.

2 Dialogue System

The data for this study is provided by the baseline
conditions (one wizarded (WOZ) and one automated
(AUT)) of two prior experiments with a spoken tu-
torial dialogue system. Users of this system were
students recruited at our university, and each was
a native speaker of American English. Users were
novices and were tutored in basic Newtonian physics
by the system. Each was engaged by a set of di-
alogues that illustrated one or more basic physics
concepts. Those dialogues included remedial sub-
dialogues that were accessed when the users pro-
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Tutor: So what are the forces acting on the
packet after it’s dropped from the plane?
Student: um gravity then well air resistance is
negligible just gravity
Tutor: Fine. So what’s the direction of the force
of gravity on the packet?
Student: vertically down

Figure 1: Tutor text is shown on a screen and read aloud
via text-to-speech. The user responds verbally to the tu-
tor’s queries.

vided incorrect or off-topic answers. These prior
experiments were examining the effects of system
adaptation in response to detected student uncer-
tainty (Forbes-Riley and Litman(a), 2011; Forbes-
Riley and Litman(b), 2011). However, in this study
we consider only the baseline, non-adaptive condi-
tions of those experiments. Figure 1 shows a sample
dialogue excerpt between the student and tutor.

In the baseline conditions of the WOZ and AUT
system past experiments, as shown in Figure 2, the
setups varied only by the system component respon-
sible for understanding and evaluating a user’s ver-
bal response. Each student participated in only one
of the two setups, and students were not informed
when the system was wizarded. In the WOZ setup a
human wizard marked student responses to prompts
as correct or incorrect. In the AUT setup, automatic
speech recognition was performed on student re-
sponses1, and (in)correctness of answers was deter-
mined using natural language understanding models
trained from the WOZ experiment’s data.

3 Post-Hoc Experiment

Using both lexical and prosodic features, we aimed
to determine whether there exist significant differ-
ences in users’ turn-level responses to the WOZ and
AUT systems.

It was suspected that the imperfect accuracy2

(87%) of the AUT system’s evaluations of the
(in)correctness of user responses may have led to
remedial sub-dialogues being accessed by the AUT
system more often, since false-negatives accounted

1The average word-error rate for these AUT responses was
19%.

2Agreement of κ = 0.7 between the system and human.

Figure 2: The workflow of the tutoring dialogue system
with the WOZ setup component shown in solid, blue and
the AUT setup component shown in dashed, red.

System #Users #Qu #Turns
WOZ 21 111 1542
AUT 25 111 2034

Table 1: Counts for users, unique questions, and user
turns in each data set.

for 72% of inaccurate evaluations. To correct for this
imbalance, rather than comparing user responses to
all questions, we compared the features of user re-
sponses (turns) to each question individually. We
omitted questions which were presented in only one
setup3 as well as turns for which a human transcriber
found no user speech. Table 1 gives the numbers of
users, number of unique questions asked, and total
number of user responses contained in the remain-
ing data and used in our investigations.

For prosodic features, we considered duration,
pitch, and energy (RMS), each extracted using
openSMILE (Eyben et al., 2010). From pitch and
energy, which contain many samples during a single
turn, we extracted features for maximum, minimum,
mean, and standard deviation of these readings. We
also considered speech duration and the length of
the pause before speech began. This gave us a total
of 10 prosodic features. To account for any differ-
ences in recording environment and users’ voices,
we normalized each prosodic feature by dividing its
value on each turn by its value in the first turn of the
current problem dialogue for that user. This normal-

3There were 3 such questions containing 6 user responses;
each question was a remedial sub-dialogue accessed in the AUT
but not WOZ setup.
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ization scheme was chosen for our analysis because
it is used in the live system, though we note that al-
ternative methods considering more user responses
could be explored in the future.

For lexical features, we used the Linguistic In-
quiry and Word Count (LIWC). LIWC (Pennebaker
et al., 2001), a word-count dictionary, provides fea-
tures representing the percentage of words in an ut-
terance falling under particular categories. Though
still a counting strategy, these categories capture
higher-level concepts than would simple unigrams.
For example, one category is Tentative(T), which
includes words such as “maybe”, “perhaps”, and
“guess”. Less abstract categories, such as Prepo-
sitions(P), with words such as “to”, “with”, and
“above”, are also generated by LIWC. Using these
example categories, the utterance “Maybe above”
would receive feature vector:

〈0, . . . , 0, T = 50, 0, . . . , 0, P = 50, 0, . . . , 0〉 (1)

Human transcriptions of users’ speech were made
available post-hoc for both system versions. We ex-
tracted 69 LIWC categories as lexical features from
these human transcriptions of each user turn.

Between the WOZ and AUT setups, we looked
for user response feature differences in two ways.
First, a Welch’s two-tailed t-test was used to com-
pare the distributions of each feature’s values be-
tween WOZ and AUT user responses per question.
We noted the features found to be significantly dif-
ferent. Second, we built classification models to dis-
tinguish between user responses per question from
the WOZ and AUT experiments. For each question,
a J484 decision tree model was trained and tested
using 10-fold cross validation via the Weka5 toolkit.
Only questions with at least 10 responses between
both setups were considered. Each model was com-
pared against majority-class baseline for its respec-
tive question by checking for statistically significant
differences in the model’s accuracy.

4We tried Logistic Regression and Support Vector classifiers
but these were consistently outperformed by J48.

5http://www.cs.waikato.ac.nz/ml/weka

4 Results

4.1 Statistical Comparison of Features

The number of questions for which at least one
feature differed statistically significantly was calcu-
lated. Since distinct sets of students were involved in
the WOZ and AUT setups, it is possible that some of
these differences are inherent between the students
and not resulting from the presence or absence of a
human wizard. To control for this possibility, we as-
signed students randomly into two new groups (pre-
serving the original class distribution in each new
group) and tested for feature differences between
these new groups. Table 2 summarizes the differ-
ences found by each feature set. We report only
questions for which at least one feature differed be-
tween WOZ and AUT but not between these two
random groups6. Table 2 also shows the percentage
of turns that those questions comprised in the cor-
pus. Prosodic and lexical features each differ for a
substantial portion of the corpus of turns, and when
both sets are considered about 67% of the corpus is
captured.

Feature set #Qu % Corpus by Turns
Prosodic 42 46.22%
Lexical 33 35.46%
Either 61 66.86%

Table 2: Number of questions for which at least one fea-
ture from the feature set was found to differ with signif-
icance p < 0.05 between WOZ and AUT responses and
the percentage the corpus represented by those questions,
weighted by the speech turns they comprise.

After controlling for possible between-student
differences, all 10 prosodic features and 29 out of
69 lexical features differed significantly (p < 0.05)
for at least one question. Table 3 gives the features
which were able to differentiate at least 10% of the
corpus by turns.

These t-tests show there exist features which dif-
fer for a substantial number of questions between
the two experimental setups. Examination of Table

6We repeated this random split procedure 10 times and
found, after omitting features found significant in any of the 10
splits, that 58.08% of the corpus was still captured. Less than
2% of the turns belonged to questions with at least one feature
different through all 10 splits.
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Feature % CbT #Qu #W>A
Duration 22.15% 19 1
RMS Min 16.86% 15 14
Dictionary Words 15.13% 13 11
pronoun 12.56% 10 10
social 11.35% 9 8
funct 10.99% 9 9
Six Letter Words 10.91% 9 0

Table 3: Features shown to differ with significance p <
0.05 between WOZ and AUT responses in questions
comprising at least 10% of the corpus by turns (CbT).
The numbers of questions these turns comprised and of
questions with greater (W)OZ than (A)UT mean are also
given.

Tutor: So how do these two forces’ directions
compare?
Top two most common responses:
WOZ(9),AUT(2): they are opposite
WOZ(3),AUT(8): opposite
Longest responses per tutor setup:
WOZ Student: the relationship between the two
forces’ directions are towards each other since
the sun is pulling the gravitational force of the
earth
AUT Student: they are opposite directions

Figure 3: The tutor question and select user responses to
a question for which the Dictionary Words feature was
greater for WOZ responses.

3 in addition suggests that users used more words
with the wizarded system. For example, the fourth
row shows that all of the questions showing differ-
ences for the LIWC category pronoun (the words
“they”, “he”, and “it” are popular in this corpus) ex-
posed higher percentage of pronouns in the WOZ
utterances. The usual dominance of the third row,
Dictionary Words, by the WOZ utterances also re-
flects this trend. Figure 3 gives common and charac-
teristic student responses for each setup on a ques-
tion for which Dictionary Words differed signifi-
cantly. We next applied machine learning to clas-
sify the experiment-of-origin of responses based on
these features.

Figure 4: The J48 tree for the question “Would you like to
do another problem?”. Classification nodes are marked in
blue and red for WOZ and AUT, respectively, and specify
(#Instances:#Incorrect).

4.2 Response Classification Experiments

After removing questions with less than 10 re-
sponses between the two setups, there remained 97
questions totaling 2980 turns. Of the J48 models
built and tested on each question, 21 of 97 out-
performed the majority-class baseline accuracies for
those questions with significance p < 0.05. These
21 questions represented 32.79% of the corpus by
turns. We present in detail the two of these 21 ques-
tions with the most turns.

The question “Would you like to do another prob-
lem?” represented 6.11% of the corpus by turns and
the J48 model built for it, shown in Figure 4, out-
performed the baseline accuracy with p < 0.001.
While the Duration feature was the root node, a big-
ger decision was made by Word Count ≤ 1, for
which most responses were from AUT data. This
result is consistent with literature (Schechtman and
Horowitz, 2003; Rosé and Torrey, 2005) that sug-
gests that users interacting with automated systems
will be more curt.

The question “Now let’s find the forces exerted
on the car in the vertical direction during the colli-
sion. First, what vertical force is always exerted on
an object near the surface of the earth?” represented
1.54% of the corpus by turns and the J48 model built
for it, shown in Figure 5, outperformed the baseline
accuracy with p < 0.01. Again, Duration emerged
as the tree root, but here the biggest decision fell to
RMS mean. Student responses approximately louder
than the initial response to the tutor in this question
dialogue were marked, almost entirely accurately, as
AUT.

Since both trees were rooted at Duration, we sam-
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Figure 5: The J48 tree for the question “Now let’s find the
forces exerted on the car in the vertical direction during
the collision. First, what vertical force is always exerted
on an object near the surface of the earth?”. Classification
nodes are marked in blue and red for WOZ and AUT,
respectively, and specify (#Instances:#Incorrect).

pled common responses from each experiment for
both problems. We noticed that hyper-articulation
(speaking slowly, loudly, and enunciating each syl-
lable) was more common in the AUT responses. For
example, one user answering “Would you like to do
another problem?” took almost 4 seconds to clearly
and slowly pronounce the word “yes”. We suspect
that these hyper-articulations may have contributed
to the classifiers’ ability to detect WOZ responses
based on their brevity.

The performance of the per-question J48 models
shows, for a non-trivial portion of the turns, that the
experiment-of-origin can be classified based on gen-
eralizable prosodic and lexical features alone. The
two trees discussed above demonstrate the simplic-
ity of the models needed to perform this separation.

5 Discussion and Future Work

We demonstrate that there exist significant differ-
ences between user responses to a wizarded and an
automatic dialogue system’s questions, even when
the contribution of the wizard is as atomic as speech
recognition and correctness evaluation. Our gen-
eralizable features are derived exclusively from the
recordings of the users’ responses and human tran-
scriptions of their speech.

Because the role of the wizard in the WOZ setup
was limited to evaluating users’ spoken response to a
prompt, our results suggest that user speech changes
as a result of user confidence in the system’s ac-
curacy. For example, Figure 3 demonstrates that
users in the WOZ setup used complete sentences

and gave long responses, where AUT users, possi-
bly anticipating system error, used shorter (some-
times one word) responses. This relationship be-
tween user confidence and user speech may be anal-
ogous to observed differences like users’ longer
speech and typed responses to systems when told
those systems are human-operated (Schechtman and
Horowitz, 2003; Rosé and Torrey, 2005). Our re-
sults suggest ways in which raw wizarded data may
fall short of ideal for training an automated system.

Having established that differences exist, our fu-
ture work will focus on deeper exploration of the na-
ture of these differences in users’ responses. We sus-
pect users become less confident in the automated
system over time, so one direction of study will be to
measure how the observed differences change over
the course of the dialogue. We expect that they are
minimal early on and become more pronounced in
the automated setup as users’ confidence is shaken.
Additionally, some technical aspects of our method-
ology may impact these and future results: using dif-
ferent methods of normalization for user speech val-
ues than the one from this paper may affect visibility
of observed differences between the setups.

Future work may also attempt to address these
differences directly. Intentional wizard error could
be introduced to frustrate the user into responding
as she would to a less accurate system, analogous
to intentional errors produced in user simulation in
spoken dialogue systems (Lee and Eskenazi, 2012).
This strategy would be further informed by stud-
ies of the relationship between the system’s eval-
uation accuracy and student responses’ deviation
from wizarded responses. Alternatively, post-hoc
domain adaptation could be used to adjust the WOZ
data. Generalizable statistical classification domain
adaptation (Daumé and Marcu, 2006) and adapta-
tion demonstrated to work well in NLP-specific do-
mains (Jiang and Zhai, 2007) both have the potential
to adjust WOZ data to better match that seen by au-
tomated systems.
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Abstract

We present a method of improving the perfor-
mance of dialog act tagging in identifying mi-
nority classes by using per-class feature opti-
mization and a method of choosing the class
based not on confidence, but on a cascade of
classifiers. We show that it gives a minor-
ity class F-measure error reduction of 22.8%,
while also reducing the error for other classes
and the overall error by about 10%.

1 Introduction

In this paper, we discuss dialog act tagging, the
task of assigning a dialog act to an utterance, where
a dialog act (DA) is a high-level categorization of
the pragmatic meaning of the utterance. Our data is
email. Our starting point is the tagger described in
(Hu et al., 2009), which uses a standard multi-class
classifier based on support vector machines (SVMs).
While the performance of this system is pretty good
as measured by accuracy, it performs badly on the
DA REQUEST-ACTION, which is a rare class. Multi-
class SVMs are typically implemented as a set of
SVMs, one per class, with the overall choice of class
being determined by the SVM with the highest con-
fidence (“one-against-all”). Multi-class SVMs are
typically packaged as a single system, whose inner
workings are ignored by the NLP researcher. In this
paper we show that, for our problem of DA classi-
fication, we can boost the performance of the rare
classes (while maintaining the overall performance)
by performing feature optimization separately for
each individual classifier. But we also show that we

can achieve an all-around error reduction by alter-
ing the method by which the multi-class classifier
combines the individual SVMs. This new method
of combination is a simple cascade: we run the in-
dividual classifiers in ascending order of frequency
of the classes in the training corpus; the first classi-
fier to classify the data point positively determines
the choice of the overall classifier. If no classifier
classifies the data point positively, we use the usual
confidence-based method. This new method obtains
a 22.8% error reduction for the minority class, and
around 10% error reduction for the other classes and
for the overall classifier.

This paper is structured as follows. We start out
by discussing related work (Section 2). We then
present our data in Section 3, and in Section 4 we
present the experiments with our systems and the re-
sults. We report the results of an extrinsic evaluation
in Section 5, and conclude.

2 Related Work

Dialog act (DA) annotations and tagging, inspired
by the speech act theory of Austin (1975) and Searle
(1976), have been used in the NLP community to un-
derstand and model dialog. Initial work was done on
spoken interactions (see for example (Stolcke et al.,
2000)). Recently, studies have explored dialog act
tagging in written interactions such as emails (Co-
hen et al., 2004), forums (Kim et al., 2006; Kim et
al., 2010b), instant messaging (Kim et al., 2010a)
and Twitter (Zhang et al., 2012). Most DA tagging
systems for written interactions use a message/post
level tagging scheme, and allow multiple tags for
each message/post. In such a tagging scheme, indi-

802



vidual binary classifiers for each tag are independent
of one another. However, recent studies have found
merit in segmenting each message into functional
units and assigning a single DA to each segment (Hu
et al., 2009). Our work falls in this paradigm (we
choose a single DA for smaller textual units). We
build on the work by (Hu et al., 2009); we improve
their dialog act predicting performance on minority
classes using per-class feature optimization.

3 Data

In this study, we use the email corpus presented in
(Hu et al., 2009), which is manually annotated for
DA tags. The corpus contains 122 email threads
with a total of 360 messages and 20,740 word to-
kens. This set of email threads is chosen from a ver-
sion of the Enron email corpus with some missing
messages restored from other emails in which they
were quoted (Yeh and Harnly, 2006; Agarwal et al.,
2012). Most emails are concerned with exchanging
information, scheduling meetings, or solving prob-
lems, but there are also purely social emails.

Dialog Act Tag Count (%)
REQUEST-ACTION (R-A) 35 (2.5%)
REQUEST-INFORMATION (R-I) 151 (10.7%)
CONVENTIONAL (CONV) 357 (25.4%)
INFORM (INF) 853 (60.7%)
Total # of DFUs 1406

Table 1: Annotation statistics

Each message in the thread is segmented into Di-
alog Functional Units (DFUs). A DFU is a con-
tiguous span within an email message which has
a coherent communicative intention. Each DFU
is assigned a single DA label which is one of the
following: REQUEST-ACTION (R-A), REQUEST-
INFORMATION (R-I), CONVENTIONAL (CONV)
and INFORM (INF). There are three other DA labels
— INFORM-OFFLINE, COMMIT, and NODA for no
dialog act — which occurred 5 or fewer times in the
corpus. We ignore these DA labels in this paper. The
corpus also contains links between the DFUs, but we
do not use those annotations in this study. Table 1
presents the distribution of DA labels in our corpus.
We now describe each of the DAs we consider in our
experiments.

In a REQUEST-ACTION, the writer signals
her desire that the reader perform some non-
communicative act, i.e., an act that cannot in itself
be part of the dialogue. For example, a writer can
ask the reader to write a report or make coffee.

In a REQUEST-INFORMATION, the writer signals
her desire that the reader perform a specific com-
municative act, namely that he provide information
(either facts or opinion).

In an INFORM, the writer conveys information, or
more precisely, the writer signals that her desire that
the reader adopt a certain belief. It covers many dif-
ferent types of information that can be conveyed in-
cluding answers to questions, beliefs (committed or
not), attitudes, and elaborations on prior DAs.

A CONVENTIONAL dialog act does not signal any
specific communicative intention on the part of the
writer, but rather it helps structure and thus facilitate
the communication. Examples include greetings, in-
troductions, expressions of gratitude, etc.

4 System

We developed four systems for our experiments: a
baseline (BAS) system which is close to the system
described in (Hu et al., 2009), and three variants of
our novel divide and conquer (DAC) system. Fea-
tures used in both systems are extracted as explained
in Section 4.2. Section 4.3 describes the baseline
system, the basic DAC system, and two variations
of the DAC system.

4.1 Experimental Framework
In all our experiments, we use linear kernel Sup-
port Vector Machines (SVM). However, across the
systems, there are differences in how we use them.
Our framework was built with the ClearTK toolkit
(Ogren et al., 2008) with its wrapper for SVMLight
(Joachims, 1999). The ClearTK wrapper internally
shifts the prediction threshold based on posterior
probabilistic scores calculated using the algorithm
of Lin et al. (2007). We report results from 5-fold
cross validation performed on the entire corpus.

4.2 Feature Engineering
In developing our system, we classified our features
into three categories: lexical, verbal and message-
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level. Lexical features consists of n-grams of words,
n-grams of POS tags, mixed n-grams of closed class
words and POS tags (Prabhakaran et al., 2012), as
well as a small set of specialized features — Start-
POS/Lemma (POS tag and lemma of the first word),
LastPOS/Lemma (POS tag and lemma of the last
word), MDCount (number of modal verbs in the
DFU) and QuestionMark (is there a question mark
in the DFU). We used the POS tags produced by the
OpenNLP POS tagger. Verbal features capture the
position and identity of the first verb in the DFU. Fi-
nally, message-level features capture aspects of the
location of the DFU in the message and of the mes-
sage in the thread (relative position and size). In
optimizing each system, we first performed an ex-
haustive search across all combinations of features
within each category. For the lexical n-gram fea-
tures we varied the n-gram window from 1 to 5. This
step gave us the best performing feature combination
within each category. In a second step, we found the
best combination of categories, using the previously
determined features for each category. In this pa-
per, we do not report best performing feature sets
for each configuration, due to lack of space.

4.3 Experiments

Baseline (BAS) System This system uses the
ClearTK built-in one-versus-all multiclass SVM in
prediction. Internally, the multi-class SVM builds
a set of binary classifiers, one for each dialog act.
For a given test instance, the classifier that obtains
the highest probability score determines the overall
prediction. We performed feature optimization on
the whole multiclass classifier (as described in Sec-
tion 4.2), i.e., the same set of features was available
to all component classifiers. We optimized for sys-
tem accuracy. Table 2 shows results using this sys-
tem. In this and all tables, we give the performance
of the system on the four DAs, using precision, re-
call, and F-measure. The DAs are listed in ascend-
ing order of frequency in the corpus (least frequent
DA first). We also give an overall accuracy evalua-
tion. As we can see, detecting REQUEST-ACTION is
much harder than detecting the other DAs.

Basic Divide and Conquer (DAC) System Like
the BAS system, the DAC system also builds a bi-
nary classifier for each dialog act separately, and the

Prec. Rec. F-meas.
R-A 57.9 31.4 40.7
R-I 91.5 78.2 84.3
CONV 92.0 95.8 93.8
INF 91.6 95.1 93.3
Accuracy 91.3

Table 2: Results for baseline (BAS) system (standard
multiclass SVM)

component classifier with highest probability score
determines the overall prediction. The crucial dif-
ference in the DAC system is that the feature opti-
mization is performed for each component classifier
separately. Each component classifier is optimized
for F-measure. Table 3 shows results using this sys-
tem.

Prec. Recall F-meas. ER
R-A 66.7 40.0 50.0 15.6
R-I 91.5 78.2 84.3 0.0
CONV 93.9 94.1 94.0 2.6
INF 91.4 96.1 93.7 5.7
Accuracy 91.7 4.9

Table 3: Results for basic DAC system (per-class feature
optimization followed by maximum confidence based
choice); “ER” refers to error reduction in percent over
standard multiclass SVM (Table 2)

Minority Preference (DACMP) System This sys-
tem is exactly the same as the basic DAC system
except for one crucial difference: overall classifica-
tion is biased towards a specified minority class. If
the minority class binary classifier predicts true, this
system chooses the minority class as the predicted
class. In cases where the minority class classifier
predicts false, it backs off to the basic DAC system
after removing the minority class classifier from the
confidence tally. Table 4 shows our results using
REQUEST-ACTION as the minority class.

Cascading Minority Preference (DACCMP) System
This system is similar to the Minority Preference
System; however, instead of a single supplied mi-
nority class, the system accepts an ordered list of
classes. The classifier then works, in order, through
this list; whenever any classifier in the list predicts
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Prec. Recall F-meas. ER
R-A 66.7 45.7 54.2 22.8
R-I 91.5 78.2 84.3 0.0
CONV 93.9 94.1 94.0 2.6
INF 91.6 96.0 93.8 6.5
Accuracy 91.8 5.7

Table 4: Results for minority-preference DAC system —
DACMP (first consult REQUEST-ACTION tagger, then de-
fault to choice by maximum confidence); “ER” refers to
error reduction in percent over standard multiclass SVM
(Table 2)

true, for a given instance, it then assigns this class
as the predicted class. The subsequent classifiers in
the list are not run. If all classifiers predict false, we
back off to the basic DAC system, i.e., the compo-
nent classifier with highest probability score deter-
mines the overall prediction. We ordered the list of
classes in the ascending order of their frequencies in
the training data. This ordering is driven by the ob-
servation that the less frequent classes are also hard
to predict correctly. Table 5 shows our results using
the ordered list: (REQUEST-ACTION, REQUEST-
INFORMATION, CONVENTIONAL, INFORM).

Prec. Recall F-meas. ER
R-A 66.7 45.7 54.2 22.8
R-I 91.0 80.8 85.6 8.4
CONV 93.7 95.3 94.5 10.1
INF 92.4 95.8 94.0 10.0
Accuracy 92.2 10.6

Table 5: Results for cascading minority-preference DAC
system — DACCMP (consult classifiers in reverse order
of frequency of class); “ER” refers to error reduction in
percent over standard multiclass SVM (Table 2)

4.4 Discussion
As shown in Table 3, the basic DAC system obtained
a 15.6% F-measure error reduction for the minor-
ity class REQUEST-ACTION over the BAS system.
It also improves performance of two other classes
— CONVENTIONAL and INFORM, and obtaines a
4.9% error reduction on overall accuracy. Recall
here that the only difference between the DAC sys-
tem and the BAS system is the per-class feature op-
timization and therefore this must be the reason for

this boost in performance. When we turn to DACMP,
we see that the performance on the minority class
REQUEST-ACTION is further enhanced, with an F-
measure error reduction of 22.8%; the overall ac-
curacy improves slightly with an error reduction of
5.7%. Finally, DACCMP further improves the perfor-
mance. Since the method of choosing the minor-
ity class REQUEST-ACTION does not change over
DACMP, the F-measure error reduction remains the
same. However, now all three other classes also im-
prove their performance, and we obtain a 10.6% er-
ror reduction on overall accuracy over the baseline
system.

Following (Guyon et al., 2002), we performed a
post-hoc analysis by inspecting the feature weights
of the best performing models created for each in-
dividual classifier in the DAC system. Table 6 lists
some interesting features chosen during feature opti-
mization for the individual SVMs. We selected them
from the top 25 features in terms of absolute value
of feature weights.

Some features help distinguish different DA cat-
egories. For example, the feature QuestionMark
is the feature with the highest negative weight for
INFORM, but has the highest positive weight for
REQUEST-INFORMATION. Features like fyi and pe-
riod (.) have high positive weights for INFORM

and high negative weights for CONVENTIONAL.
Some other features are important only for certain
classes. For e.g., please and VB NN are important
for REQUEST-ACTION, but not so for other classes.
Overall, the most discriminating features for both
INFORM and CONVENTIONAL are mostly word
ngrams, while those for REQUEST-ACTION and
REQUEST-INFORMATION are mostly POS ngrams.
This shows why our approach of per-class feature
optimization is important to boost the classification
performance.

Another interesting observation is that the least
frequent category, REQUEST-ACTION, has the least
strong indicators (as measured by feature weights).
Presumably this is because there is much less train-
ing data for this class. This explains why our cascad-
ing classifiers approach giving priority to the least
frequent categories worked better than a simple con-
fidence based approach, since the simple approach
drowns out the less confident classifiers.
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REQUEST-ACTION REQUEST-INFORMATION CONVENTIONAL INFORM

please (0.9) QuestionMark (6.6) StartPOS NNP (2.7) QuestionMark (-3.0)
VB NN (0.7) BOS PRP (-1.2) thanks (2.3) thanks (-2.2)
you VB (0.3) WRB (1.0) . (-2.0) . (2.2)
PRP (-0.3) PRP VBP (-0.9) fyi (-2.0) fyi (1.9)
MD PRP VB (0.3) BOS MD (0.8) , (0.9) you (-1.0)
will (-0.2) BOS DT (-0.7) QuestionMark (-0.8) can you (-0.9)

Table 6: Post-hoc analysis on the models built by the DAC system: some of the top features with corresponding
feature weights in parentheses, for each individual tagger. (POS tags are capitalized; BOS stands for Beginning Of
Sentence)

5 Extrinsic Evaluation

In this section, we perform an extrinsic evaluation
for the dialog act tagger presented in Section 4 by
applying it to the task of identifying Overt Displays
of Power (ODP) in emails, proposed by Prabhakaran
et al. (2012). The task is to identify utterances where
the linguistic form introduces additional constraints
on its responses, beyond those introduced by the
general dialog act. The dialog act features were
found to be useful and the best performing system
obtained an F-measure of 65.8 using gold dialog
act tags. For our extrinsic evaluation, we retrained
the ODP tagger using dialog act tags predicted by
our BAS and DACCMP systems instead of gold dia-
log acts. ODP tagger uses the same dataset as ours
for training. In the cross validation step, we made
sure that the test folds for ODP were excluded from
training the taggers to obtain DA tags. At each ODP
cross validation step, we trained a BAS or DACCMP

tagger using ODP’s training folds for that step and
used tags produced by that tagger for both training
and testing the ODP tagger for that step. Table 7 lists
the results obtained.

Prec. Rec. F-meas.
No-DA 55.7 45.4 50.0
Gold-DA 75.8 58.1 65.8
BAS-DA 60.6 46.5 52.6
DACCMP-DA 67.2 45.4 54.2

Table 7: Results for ODP system using various sources
of DA tags

Using BAS tagged DA, the F-measure of ODP
system reduced by 13.2 points to 52.6 from using
gold dialog acts (F=65.8). Using DACCMP, the F-

measure improved over BAS by 1.6 points to 54.2.
This constitutes an error reduction of 12.1%, tak-
ing the system using gold DA tags as the reference.
This improvement is noteworthy, given the fact that
the overall error reduction obtained by DACCMP over
BAS in the DA tagging was around 10.6%. Also, the
DACCMP-based ODP system obtained an error reduc-
tion of about 26.6% over a system that does not use
the DA features at all (F=50.0).

6 Conclusion

We presented a method of improving the perfor-
mance of dialog act tagging in identifying minority
classes by using per-class feature optimization and
choosing the class based on a cascade of classifiers.
We showed that it gives a minority class F-measure
error reduction of 22.8% while also reducing the er-
ror on other classes and the overall error by around
10%. We also presented an extrinsic evaluation of
this technique on detecting Overt Displays of Power
in dialog, where we achieve an error reduction of
12.1% over using the standard multiclass SVM to
generate dialog act tags.
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Abstract
Document-level sentiment analysis can bene-
fit from fine-grained subjectivity, so that sen-
timent polarity judgments are based on the
relevant parts of the document. While fine-
grained subjectivity annotations are rarely
available, encouraging results have been ob-
tained by modeling subjectivity as a latent
variable. However, latent variable models
fail to capitalize on our linguistic knowledge
about discourse structure. We present a new
method for injecting linguistic knowledge into
latent variable subjectivity modeling, using
discourse connectors. Connector-augmented
transition features allow the latent variable
model to learn the relevance of discourse con-
nectors for subjectivity transitions, without
subjectivity annotations. This yields signif-
icantly improved performance on document-
level sentiment analysis in English and Span-
ish. We also describe a simple heuristic for
automatically identifying connectors when no
predefined list is available.

1 Introduction

Document-level sentiment analysis can benefit from
consideration of discourse structure. Voll and
Taboada (2007) show that adjective-based sentiment
classification is improved by examining topicality
(whether each sentence is central to the overall
point); Yessenalina et al. (2010b) show that bag-of-
ngrams sentiment classification is improved by ex-
amining subjectivity (whether a sentence expresses
a subjective opinion or objective fact). However, it
is unclear how best to obtain the appropriate dis-
course analyses. Voll and Taboada (2007) find that

domain-independent discourse parsing (Soricut and
Marcu, 2003) offers little improvement for senti-
ment analysis, so they resort to training a domain-
specific model for identifying topic sentences in re-
views. But this requires a labeled dataset of topic
sentences, imposing a substantial additional cost.

Yessenalina et al. (2010b) treat sentence level
subjectivity as a latent variable, automatically in-
ducing the “annotator rationale” (Zaidan et al., 2007;
Yessenalina et al., 2010a) for each training sen-
tence so as to focus sentiment learning on the sub-
jective parts of the document. This yields sig-
nificant improvements over bag-of-ngrams super-
vised sentiment classification. Latent variable sub-
jectivity analysis is attractive because it requires
neither subjectivity annotations nor an accurate
domain-independent discourse parser. But while the
“knowledge-free” nature of this approach is appeal-
ing, it is unsatisfying that it fails to exploit decades
of research on discourse structure.

In this paper, we explore a lightweight approach
to injecting linguistic knowledge into latent variable
models of subjectivity. The entry point is a set of
discourse connectors: words and phrases that signal
a shift or continuation in the discourse structure.
Such connectors have been the subject of exten-
sive study in the creation of the Penn Discourse
Treebank (PDTB: Prasad et al. 2008). The role
of discourse connectors in sentiment analysis can
be clearly seen in examples, such as “It’s hard to
imagine the studios hiring another manic German
maverick to helm a cop thriller. But that’s exactly
why the movie is unmissable.” (Huddleston, 2010)
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We present a new approach to incorporate
discourse connectors in a latent subjectivity
model (Yessenalina et al., 2010b). This approach
requires no manually-specified information about
the meaning of the connectors, just the connectors
themselves. Our approach builds on proximity
features, which give the latent variable model a way
to prefer or disprefer subjectivity and sentiment
transitions, usually with the goal of encouraging
smoothness across the document. By taking
the cross-product of these features with a set of
discourse connectors, we obtain a new set of
connector-augmented transition features, which
capture the way discourse connectors are used to
indicate subjectivity and sentiment transitions. The
model is thus able to learn that subjectivity shifts
are likely to be accompanied by connectors such as
however or nonetheless.

We present experiments in both English and Span-
ish showing that this method of incorporating dis-
course connectors yields significant improvements
in document-level sentiment analysis. In case no
list of connectors is available, we describe a sim-
ple heuristic for automatically identifying candidate
connector words. The automatically identified con-
nectors do not perform as well as the expert-defined
lists, but they still outperform a baseline method
that ignores discourse connectors (in English). This
demonstrates both the robustness of the approach
and the value of linguistic knowledge.

2 Model

Given accurate labels of the subjectivity of each
sentence, a document-level sentiment analyzer
could safely ignore the sentences marked as non-
subjective.1 This would be beneficial for training as
well as prediction, because the learning algorithm
would not be confused by sentences that contradict
the document label. But in general we cannot rely on
having access to sentence-level subjectivity annota-
tions. Instead, we treat subjectivity as a latent vari-
able, and ask the learner to impute its value. Given
document-level sentiment annotations and an initial

1Discourse parsing often focuses on sub-sentence elemen-
tary discourse units (Mann and Thompson, 1988). For sim-
plicity, we consider units at the sentence level only, and leave
finer-grained analysis for future work.

model, the learner can mark as non-subjective those
sentences whose analysis disagrees with the docu-
ment label.

More formally, each document has a label y ∈
{−1, 1}, a set of sentences x, and a set of per-
sentence subjectivity judgments h ∈ {0, 1}S , where
S is the number of sentences. We compute a set
of features on these variables, and score each in-
stance by a weighted combination of the features,
wTf(y,x,h). At prediction time, we seek a label
y which achieves a high score given the observed x
and the ideal h.

ŷ = arg max
y

(
max

h
wTf(y,x,h)

)
. (1)

At training time, we seek weights w which
achieve a high score given all training examples
{x, y}t,

ŵ = arg max
w

∑
t

max
h

wTf(yt,xt,h). (2)

We can decompose the feature vector into two
parts: polarity features fpol(y,x,h), and subjectiv-
ity features fsubj(x,h). The basic feature set decom-
poses across sentences, though the polarity features
involve the document-level polarity. For sentence i,
we have fpol(y,xi, hi) = yhixi: the bag-of-words
features for sentence i are multiplied by the docu-
ment polarity y ∈ {−1, 1} and the sentence sub-
jectivity hi ∈ {0, 1}. The weights wpol capture the
sentiment polarity of each possible word. As for the
subjectivity features, we simply have fsubj(xi, hi) =
hixi. The weights wsubj capture the subjectivity of
each word, with large values indicate positive sub-
jectivity.

However, these features do not capture transi-
tions between the subjectivity and sentiment of ad-
jacent sentences. For this reason, Yessenalina et al.
(2010b) introduce an additional set of proximity fea-
tures, fprox(hi, hi−1), which are parametrized by the
subjectivity of both the current sentence i and the
previous sentence i− 1. The effect of these features
will be to learn a preference for consistency in the
subjectivity of adjacent sentences.

By augmenting the transition features with the
text xi, we allow this preference for consistency
to be modulated by discourse connectors. We de-
sign the transition feature vector ftrans(xi, hi, hi−1)
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to contain two elements for every discourse connec-
tor, one for hi = hi−1, and one for hi 6= hi−1. For
example, the feature 〈moreover, CONTINUE〉 fires
when sentence i starts with moreover and hi−1 =
hi,i. We would expect to learn a positive weight for
this feature, and negative weights for features such
as 〈moreover, SHIFT〉 and 〈however, CONTINUE〉.

3 Experiments

To evaluate the utility of adding discourse connec-
tors to latent subjectivity sentiment analysis, we
compare several models on movie review datasets
in English and Spanish.

3.1 Data
We use two movie review datasets:

• 50,000 English-language movie reviews (Maas
et al., 2011). Each review has a rating from
1-10; we marked ratings of 5 or greater as pos-
itive. Half the dataset is used for test and half
for training. Parameter tuning is performed by
cross-validation.

• 5,000 Spanish-language movie reviews (Cruz
et al., 2008). Each review has a rating from
1-5; we marked 3-5 as positive. We randomly
created a 60/20/20 split for training, validation,
and test.

3.2 Connectors
We first consider single-word discourse connectors:
in English, we use a list of all 57 one-word con-
nectors from the Penn Discourse Tree Bank (Prasad
et al., 2008); in Spanish, we selected 25 one-word
connectors from a Spanish language education web-
site.2 We also consider multi-word connectors. Us-
ing the same sources, this expands the English set to
93 connectors, and Spanish set to 80 connectors.

In case no list of discourse connectors is avail-
able, we propose a simple technique for automati-
cally identifying potential connectors. We use a χ2

test to select words which are especially likely to ini-
tiate sentences. The top K words (with the lowest p
values) were added as potential connectors, where
K is equal to the number of “true” connectors pro-
vided by the gold-standard resource.

2russell.famaf.unc.edu.ar/˜laura/
shallowdisc4summ/discmar/

Finally, we consider a model with connector-
augmented transition features for all words in the
vocabulary. Thus, there are four connector sets:

• true-unigram-connectors: unigram connec-
tors from the Penn Discourse Treebank and the
Spanish language education website

• true-multiword-connectors: unigram and
multiword connectors from these same re-
sources

• auto-unigram-connectors: automatically-
selected connectors using the χ2 test

• all-unigram-connectors: all words are poten-
tial connectors

3.3 Systems
The connector-augmented transition features are in-
corporated into a latent variable support vector ma-
chine (SVM). We also consider two baselines:

• no-connectors: the same latent variable SVM,
but without the connector features. This is
identical to the prior work of Yessenalina et al.
(2010b).

• SVM: a standard SVM binary classifier

The latent variable models require an initial guess
for the subjectivity of each sentence. Yessenalina et
al. (2010b) compare several initializations and find
the best results using OpinionFinder (Wilson et al.,
2005). For the Spanish data, we performed initial
subjectivity analysis by matching against a publicly-
available full-strength Spanish lexicon set (Rosas et
al., 2012).

3.4 Implementation details
Both our implementation and the baselines are
built on the latent structural SVM (Yu and
Joachims, 2009; http://www.cs.cornell.
edu/˜cnyu/latentssvm/), which is in turn
built on the SVM-Light distribution (http://
svmlight.joachims.org/). The regulariza-
tion parameter C was chosen by cross-validation.

4 Results

Table 1 shows the sentiment analysis accuracy with
each system and feature set. The best overall re-
sults in both language are given by the models with
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system English Spanish
true-multiword-connectors 91.25 79.80

true-unigram-connectors 91.36 77.50

auto-connectors 90.22 76.90
all-unigram-connectors 87.60 74.30

No-connectors 88.21 76.42
SVM 84.79 69.44

0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92
sentiment analysis accuracy

SVM

no-connectors

all-unigram

auto-unigram

true-unigram

true-multiword

English

0.70 0.75 0.80
sentiment analysis accuracy

SVM

no-connectors

all-unigram

auto-unigram

true-unigram

true-multiword

Spanish

Figure 1: Document-level sentiment analysis accuracy.
The 95% confidence intervals are estimated from the cu-
mulative density function of the binomial distribution.

connector-augmented transition features. In En-
glish, the multiword and unigram connectors per-
form equally well, and significantly outperform all
alternatives at p < .05. The connector-based fea-
tures reduce the error rate of the latent subjectivity
SVM by 25%. In Spanish, the picture is less clear
because the smaller test set yields larger confidence
intervals, so that only the comparison with the SVM
classifier is significant at p < .05. Nonetheless,
the connector-augmented transition features give the
best accuracy, with an especially large improvement
obtained by the multiword connectors.

Next, we investigated the quality of the
automatically-induced discourse connectors.
The χ2 heuristic for selecting candidate connectors
gave results that were significantly better than the
no-connector baseline in English, though the

Figure 2: Precision-Recall curve for top-K discovered
connectors when compared with PDTB connector set

difference in Spanish was minimal. However, when
every word is included as a potential connectors, the
performance suffers, dropping below the accuracy
of the no-connector baseline. This shows that the
improvement in accuracy offered by the connector
features is not simply due to the increased flexibility
of the model, but depends on identifying a small set
of likely discourse connectors.

For a qualitative evalatuation, we ranked all
English-language unigram connectors by their fea-
ture weights, and list the top ten for each subjectivity
transition:

• SHIFT: however; though; but; if; unlike; al-
though; while; overall; nevertheless; still

• CONTINUATION: as; there; now; even; in; af-
ter; once; almost; because; so

Overall these word lists cohere with our intu-
itions, particularly the words associated with SHIFT

transitions: however, but, and nevertheless. As one
of the reviewers noted, some of the words associ-
ated with CONTINUATION transitions are better seen
as discourse cues rather than connectors, such as
now. Other words seem to connect two subsequent
clauses, e.g., if Nicholas Cage had played every role,
the film might have reached its potential. Incorporat-
ing such connectors must be left for future work.

Finally, in learning weights for each connector
feature, our model can be seen as discovering dis-
course connectors. We compare the highly weighted
discovered connectors from the all-unigram and
auto-unigram settings with the one-word connec-
tors from the Penn Discourse Tree Bank. The results
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of this comparison are shown in Figure 2, which
traces a precision-recall curve by taking the top K
connectors for various values of K. The auto-
unigram model is able to identify many true con-
nectors from the Penn Discourse Treebank, while
the all-unigram model achieves low precision. This
graph helps to explain the large performance gap
between the auto-unigram and all-unigram fea-
ture sets; the all-unigram set includes too many
weak features, and the learning algorithm is not able
to distinguish the true discourse connectors. The
Spanish discourse connectors identified by this ap-
proach were extremely poor, possibly because so
many more of the Spanish connectors include mul-
tiple words.

5 Related Work

Polanyi and Zaenen (2006) noted the importance of
accounting for valence shifters in sentiment analy-
sis, identifying relevant connectors at the sentence
and discourse levels. They propose a heuristic ap-
proach to use shifters to modify the contributions
of sentiment words. There have been several sub-
sequent efforts to model within-sentence valence
shifts, including compositional grammar (Moilanen
and Pulman, 2007), matrix-vector products across
the sentence (Yessenalina and Cardie, 2011), and
methods that reason about polarity shifters within
the parse tree (Socher et al., 2012; Sayeed et al.,
2012). The value of discourse structure towards pre-
dicting opinion polarity has also demonstrated in the
context of multi-party dialogues (Somasundaran et
al., 2009). Our approach functions at the discourse
level within single-author documents, so it is com-
plementary to this prior work.

Voll and Taboada (2007) investigate various tech-
niques for focusing sentiment analysis on sentences
that are central to the main topic. They obtain
negative results with the general-purpose SPADE
discourse parser (Soricut and Marcu, 2003), but
find that training a decision tree classifier to iden-
tify topic-central sentences yields positive results.
Wiebe (1994) argues that in coherent narratives, ob-
jectivity and subjectivity are usually consistent be-
tween adjacent sentences, an insight exploited by
Pang and Lee (2004) in a supervised system for
subjectivity analysis. Later work employed struc-

tured graphical models to model the flow of sub-
jectivity and sentiment over the course of the doc-
ument (Mao and Lebanon, 2006; McDonald et al.,
2007). All of these approaches depend on labeled
training examples of subjective and objective sen-
tences, but Yessenalina et al. (2010b) show that sub-
jectivity can be modeled as a latent variable, using a
latent variable version of the structured support vec-
tor machine (Yu and Joachims, 2009).

Our work can be seen as a combination of the
machine learning approach of Yessenalina et al.
(2010b) with the insight of Polanyi and Zaenen
(2006) that connectors play a key role in transitions
between subjectivity and sentiment. Eisenstein and
Barzilay (2008) incorporated discourse connectors
into an unsupervised model of topic segmentation,
but this work only considered the role of such mark-
ers to differentiate adjoining segments of text, and
not to identify their roles with respect to one an-
other. That work was also not capable of learning
from supervised annotations in a downstream task.
In contrast, our approach uses document-level senti-
ment annotations to learn about the role of discourse
connectors in sentence-level subjectivity.

6 Conclusion

Latent variable machine learning is a powerful
tool for inducing linguistic structure directly from
data. However, adding a small amount of linguistic
knowledge can substantially improve performance.
We have presented a simple technique for combin-
ing a latent variable support vector machine with
a list of discourse connectors, by creating an aug-
mented feature set that combines the connectors
with pairwise subjectivity transition features. This
improves accuracy, even with a noisy list of connec-
tors that has been identified automatically. Possible
directions for future work include richer representa-
tions of discourse structure, and the combination of
discourse-level and sentence-level valence and sub-
jectivity shifters.
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Abstract 

This study focuses on modeling discourse co-
herence in the context of automated assess-
ment of spontaneous speech from non-native 
speakers. Discourse coherence has always 
been used as a key metric in human scoring 
rubrics for various assessments of spoken lan-
guage. However, very little research has been 
done to assess a speaker's coherence in auto-
mated speech scoring systems. To address 
this, we present a corpus of spoken responses 
that has been annotated for discourse coher-
ence quality. Then, we investigate the use of 
several features originally developed for es-
says to model coherence in spoken responses. 
An analysis on the annotated corpus shows 
that the prediction accuracy for human holistic 
scores of an automated speech scoring system 
can be improved by around 10% relative after 
the addition of the coherence features.  Fur-
ther experiments indicate that a weighted F-
Measure of 73% can be achieved for the au-
tomated prediction of the coherence scores. 

1 Introduction 

In recent years, much research has been conducted 
into developing automated assessment systems to 
automatically score spontaneous speech from non-
native speakers with the goals of reducing the bur-
den on human raters, improving reliability, and 
generating feedback that can be used by language 
learners. Various features related to different as-
pects of speaking proficiency have been exploited, 
such as delivery features for pronunciation, proso-
dy, and fluency (Strik and Cucchiarini, 1999; Chen 
et al., 2009; Cheng, 2011; Higgins et al., 2011), as 

well as language use features for vocabulary and 
grammar, and content features (Chen and Zechner, 
2011; Xie et al., 2012). However, discourse-level 
features related to topic development have rarely 
been investigated in the context of automated 
speech scoring. This is despite the fact that an im-
portant criterion in the human scoring rubrics for 
speaking assessments is the evaluation of coher-
ence, which refers to the conceptual relations be-
tween different units within a response. 

Methods for automatically assessing discourse 
coherence in text documents have been widely 
studied in the context of applications such as natu-
ral language generation, document summarization, 
and assessment of text readability. For example, 
Foltz et al. (1998) measured the overall coherence 
of a text by utilizing Latent Semantic Analysis 
(LSA) to calculate the semantic relatedness be-
tween adjacent sentences. Barzilay and Lee (2004) 
introduced an HMM-based model for the docu-
ment-level analysis of topics and topic transitions. 
Barzilay and Lapata (2005; 2008) presented an 
approach to coherence modeling which focused on 
the entities in the text and their grammatical transi-
tions between adjacent sentences, and calculated 
the entity transition probabilities on the document 
level. Pitler et al. (2010) provided a summary of 
the performance of several different types of 
features for automated coherence evaluation, such 
as cohesive devices, adjacent sentence similarity, 
Coh-Metrix (Graesser et al., 2004), word co-
occurrence patterns, and entity-grid. 

In addition to studies on well-formed text, re-
searchers have also addressed coherence modeling 
on text produced by language learners, which may 
contain many spelling and grammar errors.  
Utilizing LSA and Random Indexing methods, 
Higgins et al. (2004) measured the global 
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coherence of students’ essays by calculating the 
semantic relatedness between sentences and the 
corresponding prompts. In addition, Burstein et. al 
(2010) combined entity-grid features with writing 
quality features produced by an automated assess-
ment system of essays to predict the coherence 
scores of student essays. Recently, Yannakoudakis 
and Briscoe (2012) systematically analyzed a vari-
ety of coherence modeling methods within the 
framework of an automated assessment system for 
non-native free text responses and indicated that 
features based on Incremental Semantic Analysis 
(ISA), local histograms of words, the part-of-
speech IBM model, and word length were the most 
effective.   

In contrast to these previous studies involving 
well-formed text or learner text containing errors, 
this paper focuses on modeling coherence in spon-
taneous spoken responses as well as investigating 
discourse features in an attempt to extend the con-
struct coverage of an automated speech scoring 
system. In a related study, Hassanali et al. (2012) 
investigated coherence modeling for spoken lan-
guage in the context of a story retelling task for the 
automated diagnosis of children with language im-
pairment. They annotated transcriptions of chil-
dren's narratives with coherence scores as well as 
markers of narrative structure and narrative quali-
ty; furthermore they built models to predict the 
coherence scores based on Coh-Metrix features 
and the manually annotated narrative features. The 
current study differs from this one in that it deals 
with free spontaneous spoken responses provided 
by students at a university level; these responses 
therefore contain more varied and more complicat-
ed information than the child narratives. 

The main contributions of this paper can be 
summarized as follows: First, we obtained coher-
ence annotations on a corpus of spontaneous spo-
ken responses drawn from a university-level 
English language proficiency assessment, and 
demonstrated an improvement of around 10% rela-
tive in the accuracy of the automated prediction of 
human holistic scores with the addition of the co-
herence annotations. Second, we applied the entity-
grid features and writing quality features from an 
automated essay scoring system to predict the co-
herence scores; the experimental results have 
shown promising correlations between some of 
these features and the coherence scores.  

2 Data and Annotation 

2.1 Data 

For this study, we collected 600 spoken responses 
from the international TOEFL® iBT assessment of 
English proficiency for non-native speakers. 100 
responses were drawn from each of 6 different test 
questions comprising two different speaking tasks: 
1) providing an opinion based on personal experi-
ence (N = 200) and 2) summarizing or discussing 
material provided in a reading and/or listening pas-
sage (N = 400). The spoken responses were all 
transcribed by humans with punctuation and capi-
talization. The average number of words contained 
in the responses was 104.4 (st. dev. = 34.4) and the 
average number of sentences was 5.5 (st. dev. = 
2.1).  

The spoken responses were all provided with 
holistic English proficiency scores on a scale of 1 - 
4 by expert human raters in the context of opera-
tional, high-stakes scoring for the spoken language 
assessment. The scoring rubrics address the fol-
lowing three main aspects of speaking proficiency: 
delivery (pronunciation, fluency, prosody), lan-
guage use (grammar and lexical choice), and topic 
development (content and coherence). In order to 
ensure a sufficient quantity of responses from each 
proficiency level for training and evaluating the 
coherence prediction features, the spoken respons-
es selected for this study were balanced based on 
the human scores as follows: 25 responses were 
selected randomly from each of the 4 score points 
(1 - 4) for each of the 6 test questions. In some 
cases, more than one response was selected from a 
given test-taker; in total, 471 distinct test-takers are 
represented in the data set. 

2.2 Annotation and Analysis 

The coherence annotation guidelines used for the 
spoken responses in this study were modified 
based on the annotation guidelines developed for 
written essays described in Burstein et al. (2010). 
According to these guidelines, expert annotators 
provided each response with a score on a scale of 1 
- 3. The three score points were defined as follows: 
3 = highly coherent (contains no instances of con-
fusing arguments or examples), 2 = somewhat co-
herent (contains some awkward points in which the 
speaker's line of argument is unclear), 1 = barely 
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coherent (the entire response was confusing and 
hard to follow; it was intuitively incoherent as a 
whole and the annotators had difficulties in identi-
fying specific weak points). For responses receiv-
ing a coherence score of 2, the annotators were 
required to highlight the specific awkward points 
in the response. In addition, the annotators were 
specifically required to ignore disfluencies and 
grammatical errors as much as possible; thus, they 
were instructed to not label sentences or clauses as 
awkward points solely because of the presence of 
disfluent or ungrammatical speech.  

Two annotators (not drawn from the pool of ex-
pert human raters who provided the holistic scores) 
made independent coherence annotations for all 
600 spoken responses. The distribution of annota-
tions across the three score points is presented in 
Table 1. The two annotators achieved a moderate 
inter-annotator agreement (Landis and Koch, 1977) 
of κ = 0.68 on the 3-point scale. The average of the 
two coherence scores provided by the two annota-
tors correlates with the holistic speaking proficien-
cy scores at r = 0.66, indicating that the overall 
proficiency scores of spoken responses can benefit 
from the discourse coherence annotations. 
 

 1 2 3 
# 1 160 (27%) 278 (46%) 162 (27%) 
# 2 125 (21%) 251 (42%) 224 (37%) 

Table 1. Distribution of coherence annotations from two 
annotators 
 

Furthermore, coherence features based on the 
human annotations were examined within the con-
text of an automated spoken language assessment 
system, SpeechRaterSM (Zechner et al., 2007; 
2009). We extracted 96 features related to pronun-
ciation, prosody, fluency, language use, and con-
tent development using SpeechRater. These 
features were either extracted directly from the 
speech signal or were based on the output of an 
automatic speech recognition system (with a word 
error rate of around 28%1

                                                           
1 Both the training and evaluation sets used to develop the 
speech recognizer consist of similar spoken responses drawn 
from the same assessment. However, there is no response 
overlap between these sets and the corpus used for discourse 
coherence annotation in this study. 

). By utilizing a decision 
tree classifier (the J48 implementation from Weka 
(Hall et al., 2009)), 4-fold cross validation was 

conducted on the 600 responses to train and evalu-
ate a scoring model for predicting the holistic pro-
ficiency scores. The resulting correlation between 
the predicted scores (based on the 96 baseline 
SpeechRater features) and the human holistic pro-
ficiency scores was r = 0.667.  

In order to model a spoken response's coher-
ence, three different features were extracted from 
the human annotations. Firstly, the average of the 
two annotators’ coherence scores was directly used 
as a feature with a 5-point scale (henceforth 
Coh_5). Secondly, following the work in Burstein 
et al. (2010), we collapsed the average coherence 
scores into a 2-point scale to deal with the 
difficulty in distinguishing somewhat and highly 
coherent responses. For this second feature 
(henceforth Coh_2), scores 1 and 1.5 were mapped 
to score 1, and scores 2, 2.5, and 3 were mapped to 
score 2. Finally, the number of awkward points 
was also counted as a feature (henceforth Awk). 
As shown in Table 2, when these three coherence 
features were combined separately with the 
SpeechRater features, the correlations could be 
improved from r = 0.667 to r > 0.7. Meanwhile, 
the accuracy (i.e., the percentage of correctly pre-
dicted holistic scores) could be improved from 
0.487 to a range between 0.535 and 0.543.  

 
Features r Accuracy 

SpeechRater 0.667 0.487 
SpeechRater+Coh_5 0.714 0.540 
SpeechRater+Coh_2 0.705 0.543 
SpeechRater+Awk 0.702 0.535 

SpeechRater+Coh_5+Awk 0.703 0.537 
SpeechRater+Coh_2+Awk 0.701 0.542 

Table 2. Improvement to an automated speech scoring 
system after the addition of human-assigned coherence 
scores and measures, showing both Pearson r correla-
tions and the ratio of correctly matched holistic scores 
between the system and human experts 

 
These experimental results demonstrate that the 

automatic scoring system can benefit from coher-
ence modeling either by directly using a human-
assigned coherence score or the identified awk-
ward points. However, the use of both kinds of 
annotations does not provide further improvement. 
When collapsing the average scores into a 2-point 
scale, there was a 0.009 correlation drop (not sta-
tistically significant), but the accuracy was slightly 
improved. In addition, due to the relatively small 

816



size of the set of available coherence annotations, 
we adopted the collapsed 2-point scale instead of 
the 5-point scale for the coherence prediction ex-
periments in the next section.  

2.3 Experimental Design 

As demonstrated in Section 2.2, the collapsed av-
erage coherence score can be used to improve the 
performance of an automated speech scoring sys-
tem. Therefore, this study treats coherence predic-
tion as a binary classification task: low-coherent 
vs. high-coherent, where the low-coherent re-
sponses are those with average scores 1 and 1.5, 
and the high-coherent responses are those with av-
erage scores 2, 2.5, and 3.  

For coherence modeling, we again use the J48 
decision tree from the Weka machine learning 
toolkit (Hall et al., 2009) and run 4-fold cross-
validation on the 600 annotated responses. The 
correlation coefficient (r) and the weighted aver-
age F-Measure2

In this experiment, we examine the performance 
of the entity-grid features and a set of features pro-
duced by the e-rater® system (an automated writ-
ing assessment system for learner essays) (Attali 
and Burstein, 2006) to predict the coherence scores 
of the spontaneous spoken responses, where all the 
features are extracted from human transcriptions of 
the responses.  

 are used as evaluation metrics.  

2.4 Entity Grid and e-rater Features 

First, we applied the algorithm from Barzilay and 
Lapata (2008) to extract entity-grid features, which 
calculated the vector of entity transition probabili-
ties across adjacent sentences.  Several different 
methods of representing the entities can be used 
before generating the entity-grid. First, all the enti-
ties can be described by their syntactic roles in-
cluding S (Subject), O (Object), and X (Other). 
Alternatively, these roles can also be reduced to P 
(Present) or N (Absent). Furthermore, entities can 
be defined as salient, when they appear two or 
more times, otherwise as non-salient. In this study, 
                                                           
2 The data distribution in the experimental corpus is unbal-
anced:  71% of the responses are high-coherent and 29% are 
low-coherent. Therefore, we adopt the weighted average F-
Measure to evaluate the performance of coherence prediction: 
first, the F1-Measure of each category is calculated, and then 
the percentages of responses in each category are used as 
weights to obtain the final weighted average F-Measure. 

we generated there basic entity grids: EG_SOX 
(entity grid with the syntactic roles S, O, and X), 
EG_REDUCED (entity grid with the reduced rep-
resentations P and N), and EG_SALIENT (entity 
grid with salient and non-salient entities). In addi-
tion to these entity-grid features, we also used 130 
writing quality features related to grammar, usage, 
mechanics, and style from e-rater to model the co-
herence. 

A baseline system for this task would simply as-
sign the majority class (high-coherent) to all of the 
responses; this baseline achieves an F-Measure of 
0.587. Table 3 shows that the EG_REDUCED and 
e-rater features can obtain F-Measures of 0.677 
and 0.726 as well as correlations with human 
scores of 0.20 and 0.33, respectively. However, the 
combination of the two sets of features only brings 
a very small improvement (from 0.33 to 0.34). In 
addition, our experiments show that by introducing 
the component of co-reference resolution for entity 
grid building, we can only get a very slight im-
provement on EG_SALIENT, but no improvement 
on EG_SOX and EG_REDUCED. That may be 
because it is generally more difficult to parse the 
transcriptions of spoken language than well-
formed text, and more errors are introduced during 
the process of co-reference resolution. 

 
 r F-Measure 

Baseline 0.0 0.587 
EG_SOX 0.16 0.664 
EG_REDUCED 0.2 0.677 
EG_SALIENT 0.2 0.678 
e-rater 0.33 0.726 
EG_SOX +e-rater 0.30 0.714 
EG_REDUCED +e-rater 0.34 0.73 
EG_SALIENT + e-rater 0.26 0.695 

Table 3. Performance of entity grid and e-rater features 
on the coherence modeling task  

2.5 Discussion and Future Work  

In order to further analyze these features, the  cor-
relation coefficients between various features and 
the average coherence scores (on a five-point 
scale) were calculated; Figure 1 shows the histo-
gram of these correlation values. As the figure 
shows, there are a total of approximately 50 fea-
tures with correlations larger than 0.1. Four of the 
entity-grid features have correlations between 0.15 
and 0.29. As for the writing quality features, some 
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of them show high correlations with the average 
coherence scores, despite the fact that they are not 
explicitly related to discourse coherence, such as 
the number of good lexical collocations.  

Based on the above analysis, we plan to investi-
gate additional superficial features explicitly relat-
ed to discourse coherence, such as the distribution 
of conjunctions, pronouns, and discourse connec-
tives. Moreover, based on the research on well-
formed texts and learner essays, we will attempt to 
examine more effective features and models to bet-
ter cover the discourse aspects of spontaneous 
speech. For example, local semantic features relat-
ed to inter-sentential coherence and the ISA feature 
will be investigated on spoken responses. In addi-
tion, we will apply the features and build coher-
ence models using the output of automatic speech 
recognition in addition to human transcriptions. 
Finally, various coherence features or models will 
be integrated into a practical automated scoring 
system, and further experiments will be performed 
to measure their effect on the performance of au-
tomated assessment of spontaneous spoken re-
sponses.  
 

 
Figure1. Histogram of entity-grid and writing quality 
features based on their correlations with coherence 
scores 
 

3 Conclusion  

In this paper, we present a corpus of coherence 
annotations for spontaneous spoken responses pro-
vided in the context of an English speaking profi-

ciency assessment. Entity-grid features and fea-
tures from an automated essay scoring system were 
examined for coherence modeling of spoken re-
sponses. The analysis on the annotated corpus 
showed promising results for improving the per-
formance of an automated scoring system by 
means of modeling the coherence of spoken re-
sponses.  
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Abstract

In this paper, we propose a multi-step stacked
learning model for disfluency detection. Our
method incorporates refined n-gram features
step by step from different word sequences.
First, we detect filler words. Second, edited
words are detected using n-gram features ex-
tracted from both the original text and filler fil-
tered text. In the third step, additional n-gram
features are extracted from edit removed texts
together with our newly induced in-between
features to improve edited word detection. We
use Max-Margin Markov Networks (M3Ns) as
the classifier with the weighted hamming loss
to balance precision and recall. Experiments
on the Switchboard corpus show that the re-
fined n-gram features from multiple steps and
M3Ns with weighted hamming loss can signif-
icantly improve the performance. Our method
for disfluency detection achieves the best re-
ported F-score 0.841 without the use of addi-
tional resources.1

1 Introduction

Detecting disfluencies in spontaneous speech can
be used to clean up speech transcripts, which help-
s improve readability of the transcripts and make it
easy for downstream language processing modules.
There are two types of disfluencies: filler words in-
cluding filled pauses (e.g., ‘uh’, ‘um’) and discourse
markers (e.g., ‘I mean’, ‘you know’), and edited
words that are repeated, discarded, or corrected by

1Our source code is available at
http://code.google.com/p/disfluency-detection/downloads/list

the following words. An example is shown below
that includes edited words and filler words.

I want a flight to Boston︸ ︷︷ ︸
edited

uh I mean︸ ︷︷ ︸
filler

to Denver

Automatic filler word detection is much more ac-
curate than edit detection as they are often fixed
phrases (e.g., “uh”, “you know”, “I mean”), hence
our work focuses on edited word detection.

Many models have been evaluated for this task.
Liu et al. (2006) used Conditional Random Fields
(CRFs) for sentence boundary and edited word de-
tection. They showed that CRFs significantly out-
performed Maximum Entropy models and HMM-
s. Johnson and Charniak (2004) proposed a TAG-
based noisy channel model which showed great im-
provement over boosting based classifier (Charniak
and Johnson, 2001). Zwarts and Johnson (2011)
extended this model using minimal expected F-loss
oriented n-best reranking. They obtained the best re-
ported F-score of 83.8% on the Switchboard corpus.
Georgila (2009) presented a post-processing method
during testing based on Integer Linear Programming
(ILP) to incorporate local and global constraints.

From the view of features, in addition to tex-
tual information, prosodic features extracted from
speech have been incorporated to detect edited
words in some previous work (Kahn et al., 2005;
Zhang et al., 2006; Liu et al., 2006). Zwarts and
Johnson (2011) trained an extra language model on
additional corpora, and used output log probabili-
ties of language models as features in the reranking
stage. They reported that the language model gained
about absolute 3% F-score for edited word detection
on the Switchboard development dataset.
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In this paper, we propose a multi-step stacked
learning approach for disfluency detection. In our
method, we first perform filler word detection, then
edited word detection. In every step, we generate
new refined n-gram features based on the processed
text (remove the detected filler or edited words from
the previous step), and use these in the next step.
We also include a new type of features, called in-
between features, and incorporate them into the last
step. For edited word detection, we use Max-Margin
Markov Networks (M3Ns) with weighted hamming
loss as the classifier, as it can well balance the pre-
cision and recall to achieve high performance. On
the commonly used Switchboard corpus, we demon-
strate that our proposed method outperforms other
state-of-the-art systems for edit disfluency detection.

2 Balancing Precision and Recall Using
Weighted M3Ns

We use a sequence labeling model for edit detection.
Each word is assigned one of the five labels: BE (be-
ginning of the multi-word edited region), IE (in the
edited region), EE (end of the edited region), SE (s-
ingle word edited region), O (other). For example,
the previous sentence is represented as:

I/O want/O a/O flight/O to/BE Boston/EE uh/O
I/O mean/O to/O Denver/O

We use the F-score as the evaluation metrics
(Zwarts and Johnson, 2011; Johnson and Charniak,
2004), which is defined as the harmonic mean of the
precision and recall of the edited words:

P =
#correctly predicted edited words

#predicted edited words

R =
#correctly predicted edited words

#gold standard edited words

F =
2× P ×R

P + R

There are many methods to train the sequence mod-
el, such as CRFs (Lafferty et al., 2001), averaged
structured perceptrons (Collins, 2002), structured
SVM (Altun et al., 2003), online passive aggressive
learning (Crammer et al., 2006). Previous work has
shown that minimizing F-loss is more effective than
minimizing log-loss (Zwarts and Johnson, 2011),
because edited words are much fewer than normal
words.

In this paper, we use Max-margin Markov Net-
works (Taskar et al., 2004) because our preliminary

results showed that they outperform other classifier-
s, and using weighted hamming loss is simple in this
approach (whereas for perceptron or CRFs, the mod-
ification of the objective function is not straightfor-
ward).

The learning task for M3Ns can be represented as
follows:

min
α

1

2
C∥

∑
x,y

αx,y∆f(x, y)∥2
2 +

∑
x,y

αx,yL(x, y)

s.t.
∑

y

αx,y = 1 ∀x

αx,y ≥ 0, ∀x, y

The above shows the dual form for training M3Ns,
where x is the observation of a training sample,
y ∈ Y is a label. α is the parameter needed
to be optimized, C > 0 is the regularization pa-
rameter. ∆f(x, y) is the residual feature vector:
f(x, ỹ) − f(x, y), where ỹ is the true label of x.
L(x, y) is the loss function. Taskar et al. (2004) used
un-weighted hamming loss, which is the number
of incorrect components: L(x, y) =

∑
t δ(yt, ỹt),

where δ(a, b) is the binary indicator function (it is 0
if a = b). In our work, we use the weighted ham-
ming loss:

L(x, y) =
∑

t

v(yt, ỹt)δ(yt, ỹt)

where v(yt, ỹt) is the weighted loss for the error
when ỹt is mislabeled as yt. Such a weighted loss
function allows us to balance the model’s precision
and recall rates. For example, if we assign a large
value to v(O, ·E) (·E denotes SE, BE, IE, EE), then
the classifier is more sensitive to false negative er-
rors (edited word misclassified as non-edited word),
thus we can improve the recall rate. In our work,
we tune the weight matrix v using the development
dataset.

3 Multi-step Stacked Learning for Edit
Disfluency Detection

Rather than just using the above M3Ns with some
features, in this paper we propose to use stacked
learning to incorporate gradually refined n-gram fea-
tures. Stacked learning is a meta-learning approach
(Cohen and de Carvalho, 2005). Its idea is to use two
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(or more) levels of predictors, where the outputs of
the low level predictors are incorporated as features
into the next level predictors. It has the advantage
of incorporating non-local features as well as non-
linear classifiers. In our task, we do not just use the
classifier’s output (a word is an edited word or not)
as a feature, rather we use such output to remove the
disfluencies and extract new n-gram features for the
subsequent stacked classifiers. We use 10 fold cross
validation to train the low level predictors. The fol-
lowing describes the three steps in our approach.

3.1 Step 1: Filler Word Detection

In the first step, we automatically detect filler word-
s. Since filler words often occur immediately after
edited words (before the corrected words), we ex-
pect that removing them will make rough copy de-
tection easy. For example, in the previous example
shown in Section 1, if “uh I mean” is removed, then
the reparandum “to Boston” and repair “to Denver”
will be adjacent and we can use word/POS based n-
gram features to detect that disfluency. Otherwise,
the classifier needs to skip possible filler words to
find the rough copy of the reparandum.

For filler word detection, similar to edited word
detection, we define 5 labels: BP , IP , EP , SP , O.
We use un-weighted hamming loss to learn M3Ns
for this task. Since for filler word detection, our per-
formance metric is not F-measure, but just the over-
all accuracy in order to generate cleaned text for sub-
sequent n-gram features, we did not use the weight-
ed hamming hoss for this. The features we used are
listed in Table 1. All n-grams are extracted from the
original text.

3.2 Step 2: Edited Word Detection

In the second step, edited words are detected using
M3Ns with the weighted-hamming loss. The fea-
tures we used are listed in Table 2. All n-grams in
the first step are also used here. Besides that, word
n-grams, POS n-grams and logic n-grams extracted
from filler word removed text are included. Feature
templates I(w0, w

′
i) is to generate features detecting

rough copies separated by filler words.

3.3 Step 3: Refined Edited Word Detection

In this step, we use n-gram features extracted from
the text after removing edit disfluencies based on

unigrams w0, w−1, w1, w−2, w2

p0, p−1, p1, p−2, p2, w0p0

bigrams w−1w0, w0w1, p−1p0, p0p1

trigrams p−2p−1p0, p−1p0p1, p0p1p2

logic unigrams I(wi, w0), I(pi, p0), −4 ≤ i ≤ 4
logic bigrams I(wi−1wi, w−1, w0)

I(pi−1pi, p−1p0)
I(wiwi+1, w0w1)
I(pipi+1, p0p1), −4 ≤ i ≤ 4

transitions y−1y0

Table 1: Feature templates for filler word detection.
w0, p0 denote the current word and POS tag respective-
ly. w−i denotes the ith word to the left, wi denotes the
ith word to the right. The logic function I(a, b) indicates
whether a and b are identical (eigher unigrams or bigram-
s).

All templates in Table 1
unigrams w′

1, w′
2, w′

3, w′
4

bigrams p0p
′
1, p0p

′
2, p0p

′
3, p0p

′
4

w0p
′
1, w0p

′
2, w0p

′
3, w0p

′
4

w0p1, w0p2, w0p3, w0p4

logic unigrams I(w0, w
′
i), 1 ≤ i ≤ 4

transitions p0y−1y0

Table 2: Feature templates for edit detection (step 2).
w′

i, p
′
i denote the ith word/POS tag to the right in the filler

words removed text. If current word w0 is removed in
step 1, we use its original n-gram features rather than the
refined n-gram features.

the previous step. According to our analysis of the
errors produced by step 2, we observed that many
errors occurred at the boundaries of the disfluen-
cies, and the word bigrams after removing the edited
words are unnatural. The following is an example:

• Ref: The new type is prettier than what
their/SE they used to look like.

• Sys: The new type is prettier than what/BE
their/EE they used to look like.

Using the system’s prediction, we would have bi-
gram than they, which is odd. Usually, the pronoun
following than is accusative case. We expect adding
n-gram features derived from the cleaned-up sen-
tences would allow the new classifier to fix such hy-
pothesis. This kind of n-gram features is similar to
the language models used in (Zwarts and Johnson,
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2011). They have the benefit of measuring the flu-
ency of the cleaned text.

Another common error we noticed is caused by
the ambiguities of coordinates, because the coordi-
nates have similar patterns as rough copies. For ex-
ample,

• Coordinates: they ca n′t decide which are the
good aspects and which are the bad aspects

• Rough Copies: it/BE ′s/IE a/IE pleasure/IE
to/EE it s good to get outside

To distinguish the rough copies and the coordinate
examples shown above, we analyze the training data
statistically. We extract all the pieces lying between
identical word bigrams AB . . . AB. The observation
is that coordinates are often longer than edited se-
quences. Hence we introduce the in-between fea-
tures for each word. If a word lies between identical
word bigrams, then its in-between feature is the log
length of the subsequence lying between the two bi-
grams; otherwise, it is zero (we use log length to
avoid sparsity). We also used other patterns such as
A . . . A and ABC . . . ABC, but they are too noisy or
infrequent and do not yield much performance gain.

Table 3 lists the feature templates used in this last
step.

All templates in Table 1, Table 2
word n-grams w′′

1 , w0w
′′
1

in-between LAB , w0bAB , bAB

Table 3: Feature templates for refined edit detection (step
3). w′′

i denotes the ith word tag to the right in the edit-
ed word removed text. LAB denotes the log length of
the sub-sequence in the pattern AB. . . AB, bAB indicates
whether the current word lies between two identical bi-
grams.

4 Experiments

4.1 Experimental Setup

We use the Switchboard corpus in our experimen-
t, with the same train/develop/test split as the pre-
vious work (Johnson and Charniak, 2004). We al-
so remove the partial words and punctuation from
the training and test data for the reason to simulate
the situation when speech recognizers are used and

such kind of information is not available (Johnson
and Charniak, 2004).

We tuned the weight matrix for hamming loss on
the development dataset using simple grid search.
The diagonal elements are fixed at 0; for false pos-
itive errors, O → ·E (non-edited word mis-labeled
as edited word), their weights are fixed at 1; for false
negative errors, ·E → O, we tried the weight from
1 to 3, and increased the weight 0.5 each time. The
optimal weight matrix is shown in Table 4. Note
that we use five labels in the sequence labeling task;
however, for edited word detection evaluation, it is
only a binary task, that is, all of the words labeled
with ·E will be mapped to the class of edited words.

PPPPPPPPtruth
predict

BE IE EE SE O

BE 0 1 1 1 2
IE 1 0 1 1 2
EE 1 1 0 1 2
SE 1 1 1 0 2
O 1 1 1 1 0

Table 4: Weighted hamming loss for M3Ns.

4.2 Results

We compare several sequence labeling models:
CRFs, structured averaged perceptron (AP), M3Ns
with un-weighted/weighted loss, and online passive-
aggressive (PA) learning. For each model, we tuned
the parameters on the development data: Gaussian
prior for CRFs is 1.0, iteration number for AP is 10,
iteration number and regularization penalty for PA
are 10 and 1. For M3Ns, we use Structured Sequen-
tial Minimal Optimization (Taskar, 2004) for model
training. Regularization penalty is C = 0.1 and iter-
ation number is 30.

Table 5 shows the results using different models
and features. The baseline models use only the n-
grams features extracted from the original text. We
can see that M3Ns with the weighted hamming loss
achieve the best performance, outperforming all the
other models. Regarding the features, the gradually
added n-gram features have consistent improvemen-
t for all models. Using the weighted hamming loss
in M3Ns, we observe a gain of 2.2% after deleting
filler words, and 1.8% after deleting edited words. In
our analysis, we also noticed that the in-between fea-
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CRF AP PA M3N w. M3N
Baseline 78.8 79.0 78.9 79.4 80.1
Step 2 81.0 81.1 81.1 81.5 82.3
Step 3 82.9 83.0 82.8 83.3 84.1

Table 5: Effect of training strategy and recovered features
for stacked learning. F scores are reported. AP = Aver-
aged Perceptron, PA = online Passive Aggresive, M3N =
un-weighted M3Ns, w. M3N = weighted M3Ns.

tures yield about 1% improvement in F-score for all
models (the gain of step 3 over step 2 is because of
the in-between features and the new n-gram features
extracted from the text after removing previously
detected edited words). We performed McNemar’s
test to evaluate the significance of the difference a-
mong various methods, and found that when using
the same features, weighted M3Ns significantly out-
performs all the other models (p value < 0.001).
There are no significant differences among CRFs,
AP and PA. Using recovered n-gram features and in-
between features significantly improves all sequence
labeling models (p value < 0.001).

We also list the state-of-the-art systems evaluat-
ed on the same dataset, as shown in Table 6. We
achieved the best F-score. The most competitive
system is (Zwarts and Johnson, 2011), which uses
extra resources to train language models.

System F score
(Johnson and Charniak, 2004) 79.7
(Kahn et al., 2005) 78.2
(Zhang et al., 2006)† 81.2
(Georgila, 2009)⋆ 80.1
(Zwarts and Johnson, 2011)+ 83.8
This paper 84.1

Table 6: Comparison with other systems. † they used
the re-segmented Switchboard corpus, which is not ex-
actly the same as ours. ⋆ they reported the F-score of
BE tag (beginning of the edited sequences). + they used
language model learned from 3 additional corpora.

5 Conclusion

In this paper, we proposed multi-step stacked learn-
ing to extract n-gram features step by step. The first
level removes the filler words providing new ngram-
s for the second level to remove edited words. The

third level uses the n-grams from the original tex-
t and the cleaned text generated by the previous t-
wo steps for accurate edit detection. To minimize
the F-loss approximately, we modified the hamming
loss in M3Ns. Experimental results show that our
method is effective, and achieved the best reported
performance on the Switchboard corpus without the
use of any additional resources.
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Abstract

We consider the problem of translating natu-
ral language text queries into regular expres-
sions which represent their meaning. The mis-
match in the level of abstraction between the
natural language representation and the regu-
lar expression representation make this a novel
and challenging problem. However, a given
regular expression can be written in many se-
mantically equivalent forms, and we exploit
this flexibility to facilitate translation by find-
ing a form which more directly corresponds to
the natural language. We evaluate our tech-
nique on a set of natural language queries
and their associated regular expressions which
we gathered from Amazon Mechanical Turk.
Our model substantially outperforms a state-
of-the-art semantic parsing baseline, yielding
a 29% absolute improvement in accuracy.1

1 Introduction

Regular expressions (regexps) have proven them-
selves to be an extremely powerful and versatile for-
malism that has made its way into everything from
spreadsheets to databases. However, despite their
usefulness and wide availability, they are still con-
sidered a dark art that even many programmers do
not fully understand (Friedl, 2006). Thus, the ability
to automatically generate regular expressions from
natural language would be useful in many contexts.

Our goal is to learn to generate regexps from nat-
ural language, using a training set of natural lan-
guage and regular expression pairs such as the one
in Figure 1. We do not assume that the data includes
an alignment between fragments of the natural lan-
guage and fragments of the regular expression. In-

1The dataset used in this work is available at
http://groups.csail.mit.edu/rbg/code/regexp/

Text Description Regular Expression

three letter word starting with ’X’ \bX[A-Za-z]{2}\b

Figure 1: An example text description and its associated
regular expression.3

ducing such an alignment during learning is partic-
ularly challenging because oftentimes even humans
are unable to perform a fragment-by-fragment align-
ment.

We can think of this task as an instance of
grounded semantic parsing, similar to the work
done in the domain of database queries (Kate and
Mooney, 2006; Zettlemoyer and Collins, 2005;
Kwiatkowski et al., 2010). However, the current
success in semantic parsing relies on two impor-
tant properties of the data. First, while the past
work did not assume the alignment was given, they
did assume that finding a fine grained fragment-
by-fragment alignment was possible. Secondly,
the semantic domains considered in the past were
strongly typed. This typing provides constraints
which significantly reduce the space of possible
parses, thereby greatly reducing the ambiguity.

However, in many interesting domains these two
properties may not hold. In our domain, the align-
ment between the natural language and the regu-
lar expressions often happens at the level of the
whole phrase, making fragment-by-fragment align-
ment impossible. For example, in Figure 1 no frag-
ment of the regexp maps clearly to the phrase “three
letter”. Instead, the regexp explicitly represents the
fact that there is only two characters after X, which is
not stated explicitly by the text description and must
be inferred. Furthermore, regular expressions have

3Our regular expression syntax supports Perl regular expres-
sion shorthand which utilizes \b to represent a break (i.e. a
space or the start or end of the line). Our regular expression
syntax also supports intersection (&) and complement(˜).
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([A-Za-z]{3})&(\b[A-Za-z]+\b)&(X.*)
(a)

three letter [A-Za-z]{3}
word \b[A-Za-z]+\b
starting with ’X’ X.*

(b)

Figure 2: (a) shows a regexp which is semantically
equivalent to that in Figure 1, yet admits a fragment-by-
fragment mapping to the natural language. (b) shows this
mapping.

relatively few type constraints.
The key idea of our work is to utilize semantic

unification in the logical domain to disambiguate the
meaning of the natural language. Semantic unifi-
cation utilizes an inference engine to determine the
semantic equality of two syntactically divergent ex-
pressions. This is a departure from past work on se-
mantic parsing which has largely focused on the syn-
tactic interface between the natural language and the
logical form, and on example-based semantic equal-
ity, neither of which utilize the inference power in-
herent in many symbolic domains.

To see how we can take advantage of semantic
unification, consider the regular expression in Fig-
ure 2(a). This regular expression is semantically
equivalent to the regular expression in Figure 1. Fur-
thermore, it admits a fragment-by-fragment map-
ping as can be seen in Figure 2(b). In contrast, as
we noted earlier, the regexp in Figure 1 does not ad-
mit such a mapping. In fact, learning can be quite
difficult if our training data contains only the regexp
in Figure 1. We can, nonetheless, use the regexp in
Figure 2 as a stepping-stone for learning if we can
use semantic inference to determine the equivalence
between the two regular expressions. More gener-
ally, whenever the regexp in the training data does
not factorize in a way that facilitates a direct map-
ping to the natural language description, we must
find a regexp which does factorize and be able to
compute its equivalence to the regexp we see in the
training data. We compute this equivalence by con-
verting each regexp to a minimal deterministic finite
automaton (DFA) and leveraging the fact that mini-
mal DFAs are guaranteed to be the same for seman-
tically equivalent regexps (Hopcroft et al., 1979).

We handle the additional ambiguity stemming
from the weak typing in our domain through the use
of a more effective parsing algorithm. The state of
the art semantic parsers (Kwiatkowski et al., 2011;

Liang et al., 2011) utilize a pruned chart parsing
algorithm which fails to represent many of the top
parses and is prohibitively slow in the face of weak
typing. In contrast, we use an n-best parser which
always represents the most likely parses, and can be
made very efficient through the use of the parsing
algorithm from Jimenez and Marzal (2000).

Our approach works by inducing a combinatory
categorial grammar (CCG) (Steedman, 2001). This
grammar consists of a lexicon which pairs words
or phrases with regular expression functions. The
learning process initializes the lexicon by pairing
each sentence in the training data with the full reg-
ular expression associated with it. These lexical en-
tries are iteratively refined by considering all possi-
ble ways to split the regular expression and all pos-
sible ways to split the phrase. At each iteration we
find the n-best parses with the current lexicon, and
find the subset of these parses which are correct us-
ing DFA equivalence. We update the weights of a
log-linear model based on these parses and the cal-
culated DFA equivalence.

We evaluate our technique using a dataset of sen-
tence/regular expression pairs which we generated
using Amazon Mechanical Turk (Turk, 2013). We
find that our model generates the correct regexp
for 66% of sentences, while the state-of-the-art se-
mantic parsing technique from Kwiatkowski et al.
(2010) generates correct regexps for only 37% of
sentences. The results confirm our hypothesis that
leveraging the inference capabilities of the seman-
tic domain can help disambiguate natural language
meaning.

2 Related Work

Generating Regular Expressions Past work has
looked at generating regular expressions from nat-
ural language using rule based techniques (Ranta,
1998), and also at automatically generating regular
expressions from examples (Angluin, 1987). To the
best of our knowledge, however, our work is the first
to use training data to learn to automatically gener-
ate regular expressions from natural language.

Language Grounding There is a large body of re-
search mapping natural language to some form of
meaning representation (Kate and Mooney, 2006;
Kate et al., 2005; Raymond and Mooney, 2006;
Thompson and Mooney, 2003; Wong and Mooney,
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2006; Wong and Mooney, 2007; Zelle and Mooney,
1996; Branavan et al., 2009; Mihalcea et al., 2006;
Poon and Domingos, 2009). In some of the consid-
ered domains the issue of semantic equivalence does
not arise because of the way the data is generated.
The most directly related work in these domains, is
that by Kwiatkowski et al. (2010 and 2011) which is
an extension of earlier work on CCG-based semantic
parsing by Zettlemoyer and Collins (2005). Similar
to our work, Kwiatkowski et al. utilize unification to
find possible ways to decompose the logical form.
However, they perform only syntactic unification.
Syntactic unification determines equality using only
variable substitutions and does not take advantage of
the inference capabilities available in many semantic
domains. Thus, syntactic unification is unable to de-
termine the equivalence of two logical expressions
which use different lexical items, such as “.*” and
“.*.*”. In contrast, our DFA based technique can
determine the equivalence of such expressions. It
does this by leveraging the equational inference ca-
pabilities of the regular expression domain, making
it a form of semantic unification. Thus, the contribu-
tion of our work is to show that using semantic uni-
fication to find a deeper level of equivalence helps to
disambiguate language meanings.

In many other domains of interest, determining
semantic equivalence is important to the learning
process. Previous work on such domains has fo-
cused on either heuristic or example-driven mea-
sures of semantic equivalence. For example, Artzi
and Zettlemoyer (2011) estimate semantic equiva-
lence using a heuristic loss function. Other past
work has executed the logical form on an example
world or in a situated context and then compared the
outputs. This provides a very weak form of semantic
equivalence valid only in that world/context (Clarke
et al., 2010; Liang et al., 2009; Liang et al., 2011;
Chen and Mooney, 2011; Artzi and Zettlemoyer,
2013). In contrast, our work uses an exact, theoret-
ically sound measure of semantic equivalence that
determines whether two logical representations are
equivalent in any context, i.e. on any input string.

3 Background

3.1 Finding Regexp Equivalence Using DFAs
Regular expressions can be equivalently represented
as minimal DFAs, which are guaranteed to be equal

function sig. regexp function signature regexp

cons(R,R,...) ab rep*(R) a*
and(R,R,...) [a-b]&[b-c] repminmax(I,I,R) a{3,5}
or(R,R,...) a|b repmin(I,R) a{3,}
not(R) ˜(a) repexact(I,R) a{3}

Figure 3: This shows the signatures of all functions in our
lambda calculus along with their regexp syntax.

for the same regular language (Hopcroft et al.,
1979). The DFA representation of a regular expres-
sion may be exponentially larger than the the orig-
inal regular expression. However, past work has
shown that most regular expressions do not exhibit
this exponential behavior (Tabakov and Vardi, 2005;
Moreira and Reis, 2012), and the conversion pro-
cess is renowned for its good performance in prac-
tice (Moreira and Reis, 2012). Hence, we compare
the equivalence of two regular expressions by con-
verting them to minimal DFAs and comparing the
DFAs. We do this using a modified version of Møller
(2010).4

3.2 Lambda Calculus Representation
To take advantage of the inherent structure of reg-
ular expressions, we deterministically convert them
from a flat string representation into simply typed
lambda calculus expressions. The full set of func-
tions available in our lambda calculus can be seen
in Figure 3. As can be seen from the figures, our
lambda calculus is very weakly typed. It has only
two primitive types, integer (I) and regexp (R), with
most arguments being of type R.

3.3 Parsing
Our parsing model is based on a Combinatory Cate-
gorial Grammar. In CCG parsing most of the gram-
mar complexity is contained in the lexicon, Λ, while
the parser itself contains only a few simple rewrite
rules called combinators.

Lexicon The lexicon, Λ, consists of a set of lexical
entries that couple natural language with a lambda
calculus expression. Our lexical entries contain
words or phrases, each of which is associated with
a function from the lambda calculus we described
in §3.2. For example:

4We set a timeout on this process to catch any cases where
the resulting DFA might be prohibitively large. We use a one
second timeout in our experiments, which results in timeouts
on less than 0.25% of the regular expressions.
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with ’bob’ after ’joe’—————— —– ——————– —–
R/R R R\R/R R

λx(.*x.*) bob λxy.(x.*y) joe
————————–(f)

R\R
λy.joe.*y

————————————(b)
R

joe.*bob
———————————————————–(f)

R
.*joe.*bob.*

Figure 4: This shows an example parse.

〈 after, R\R/R:λxy.(x.*y) 〉
〈 at least, R/I/R:λxy.((x){y,}) 〉

Note that the lambda expressions contain type infor-
mation indicating the number of arguments and the
type of those arguments as described in §3.2. How-
ever, this information is augmented with a (/) or a
(\) for each argument indicating whether that argu-
ment comes from the left or the right, in sentence
order. Thus R\R/R can be read as a function which
first takes an argument of type R on the right then
takes another argument of type R on the left, and
returns an expression of type R.

Combinators Parses are built by combining lexical
entries through the use of a set of combinators. Our
parser uses only the two most basic combinators,
forward function application and backward function
application.5 These combinators work as follows:

R/R:f R:g → R:f(g) (forward)
R:f R\R:g → R:g(f) (backward)

The forward combinator applies a function to an ar-
gument on its right when the type of the argument
matches the type of the function’s first argument.
The backward combinator works analogously. Fig-
ure 4 shows an example parse.

4 Parsing Model

For a given lexicon, Λ, and sentence, ~w, there will in
general be many valid parse trees, t ∈ T (~w; Λ). We
assign probabilities to these parses using a standard
log-linear parsing model with parameters θ:

p(t|~w; θ,Λ) =
eθ·φ(t, ~w)∑
t′ e

θ·φ(t′, ~w)

Our training data, however, includes only the cor-
rect regular expression, r, and not the correct parse,

5Technically, this choice of combinators makes our model
just a Categorial Grammar instead of a CCG.

t. The training objective used by the past work in
such circumstances, is to maximize the probability
of the correct regular expression by marginalizing
over all parses which generate that exact regular ex-
pression. Such an objective is limited, however, be-
cause it does not allow parses that generate seman-
tically correct regexps which are not syntactically
equivalent to r, such as those in Figure 2. The main
departure of our work is to use an objective which al-
lows such parses through the use of the DFA-EQUAL

procedure. DFA-EQUAL uses the process described
in §3.1 to determine whether parse t evaluates to a
regexp which is semantically equivalent to r, lead-
ing to the following objective:

O =
∑
i

log
∑

t|DFA-EQUAL(t,ri)

p(t|~wi; θ,Λ) (1)

At testing time, for efficiency reasons, we calcu-
late only the top parse. Specifically, if r = eval(t)
is the regexp which results from evaluating parse t,
then we generate t∗ = arg maxt∈T (~w) p(t|~w; θ,Λ),
and return r∗ = eval(t∗).

5 Learning

Our learning algorithm starts by generating a single
lexical entry for each training sample which pairs
the full sentence, ~wi, with the associated regular ex-
pression, ri. Formally, we initialize the lexicon as
Λ = {〈~wi, R : ri〉 |i = 1 . . . n}. We then run an iter-
ative process where in each iteration we update both
Λ and θ for each training sample. Our initial Λ will
perfectly parse the training data. However it won’t
generalize at all to the test data since the lexical en-
tries contain only full sentences. Hence, in each
iteration we refine the lexicon by splitting existing
lexical entries to generate more granular lexical en-
tries which will generalize better. The candidates for
splitting are all lexical entries used by parses which
generate the correct regular expression, ri, for the
current training sample. We consider all possible
ways to factorize each lexical entry, and we add to
Λ a new lexical entry for each possible factorization,
as discussed in §5.2. Finally, we update θ by per-
forming a single stochastic gradient ascent update
step for each training sample, as discussed in §5.1.
See Algorithm 1 for details.

This learning approach follows the structure
of the previous work on CCG based seman-
tic parsers (Zettlemoyer and Collins, 2005;
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Inputs: Training set of sentence regular expression pairs.
{〈~wi, ri〉 |i = 1 . . . n}

Functions:

• N-BEST(~w; θ,Λ) n-best parse trees for ~w using the
algorithm from §5.1

• DFA-EQUAL(t, r) calculates the equality of the regexp
from parse t and regexp r using the algorithm from §3.1

• SPLIT-LEX(T ) splits all lexical entries used by any
parse tree in set T , using the process described in §5.2

Initialization: Λ = {〈~wi, R : ri〉 |i = 1 . . . n}

For k = 1 . . .K, i = 1 . . . n

Update Lexicon: Λ
• T = N-BEST(~wi; θ,Λ)

• C = {t|t ∈ T ∧ DFA-EQUAL(t, ri)}
• Λ = Λ ∪ SPLIT-LEX(C)

Update Parameters: θ
• T = N-BEST(~wi; θ,Λ)
• C = {t|t ∈ T ∧ DFA-EQUAL(t, ri)}
• ∆ = Ep(t|t∈C)[φ(t, ~w)]− Ep(t|t∈T )[φ(t, ~w)]

• θ = θ + α∆

Output: The lexicon and the parameters, 〈Λ, θ〉

Algorithm 1: The full learning algorithm.

Kwiatkowski et al., 2010). However, our domain
has distinct properties that led to three important
departures from this past work.

First, we use the DFA based semantic unifica-
tion process described in §3.1 to determine the set
of correct parses when performing parameter up-
dates. This is in contrast to the syntactic unification
technique, used by Kwiatkowski et al. (2010), and
the example based unification used by other seman-
tic parsers, e.g. Artzi and Zettlemoyer (2011). Us-
ing semantic unification allows us to handle training
data which does not admit a fragment-by-fragment
mapping between the natural language and the reg-
ular expression, such as the example in Figure 2.

Second, our parser is based on the efficient n-best
parsing algorithm of Jimenez and Marzal (2000) in-
stead of the pruned chart parsing algorithm used
by the past work (Zettlemoyer and Collins, 2005;
Kwiatkowski et al., 2010). As we show in §8.2, this
results in a parser which more effectively represents
the most likely parses. This allows our parser to bet-
ter handle the large number of potential parses that
exist in our domain due to the weak typing.

Third, we consider splitting lexical entries used in
any correct parse, while the past work (Zettlemoyer
and Collins, 2005; Kwiatkowski et al., 2010) con-
siders splitting only those used in the best parse. We

must utilize a less constrictive splitting policy since
our domain does not admit the feature weight ini-
tialization technique used in the domains of the past
work. We discuss this in §5.2.1. In the remainder
of this section we discuss the process for learning θ
and for generating the lexicon, Λ.

5.1 Estimating Theta
To estimate θ we will use stochastic gradient ascent,
updating the parameters based on one training exam-
ple at a time. Hence, we can differentiate the objec-
tive from equation 1 to get the gradient of parameter
θj for training example i, as follows:
∂Oi
∂θj

=Ep(t|DFA-EQUAL(t,ri),·) [φj(t, ~wi)]− Ep(t|·) [φj(t, ~wi)]

(2)
This gives us the standard log-linear gradient, which
requires calculating expected feature counts. We de-
fine the features in our model over individual parse
productions, admitting the use of dynamic program-
ming to efficiently calculate the unconditioned ex-
pected counts. However, when we condition on gen-
erating the correct regular expression, as in the first
term in (2), the calculation no longer factorizes, ren-
dering exact algorithms computationally infeasible.

To handle this, we use an approximate gradient
calculation based on the n-best parses. Our n-best
parser uses an efficient algorithm developed orig-
inally by (Jimenez and Marzal, 2000), and subse-
quently improved by (Huang and Chiang, 2005).
This algorithm utilizes the fact that the first best
parse, t1, makes the optimal choice at each deci-
sion point, and the 2nd best parse, t2 must make the
same optimal choice at every decision point, except
for one. To execute on this intuition, the algorithm
first calculates t1 by generating an unpruned CKY-
style parse forest which includes a priority queue
of possible subparses for each constituent. The set
of possible 2nd best parses T are those that choose
the 2nd best subparse for exactly one constituent of
t1 but are otherwise identical to t1. The algorithm
chooses t2 = arg maxt∈T p(t). More generally,
T is maintained as a priority queue of possible nth

best parses. At each iteration, i, the algorithm sets
ti = arg maxt∈T p(t) and augments T by all parses
which both differ from ti at exactly one constituent
ci and choose the next best possible subparse for ci.

We use the n-best parses to calculate an approxi-
mate version of the gradient. Specifically, Ti is the
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set of n-best parses for training sample i, and Ci in-
cludes all parses t in Ti such that DFA-EQUAL(t, ri).
We calculate the approximate gradient as:

∆ = Ep(t|t∈Ci;θ,Λ)[φ(t, ~wi)]− Ep(t|t∈Ti;θ,Λ)[φ(t, ~wi)]
(3)

In contrast to our n-best technique, the past
work has calculated equation (2) using a beam
search approximation of the full inside-outside algo-
rithm (Zettlemoyer and Collins, 2005; Kwiatkowski
et al., 2010; Liang et al., 2011). Specifically, since
the conditional probability of t given r does not fac-
torize, a standard chart parser would need to main-
tain the full logical form (i.e. regular expression)
for each subparse, and there may be an exponential
number of such subparses at each chart cell. Thus,
they approximate this full computation using beam
search, maintaining only the m-best logical forms at
each chart cell.

Qualitatively, our n-best approximation always
represents the most likely parses in the approxima-
tion, but the number of represented parses scales
only linearly with n. In contrast, the number of
parses represented by the beam search algorithm
of the past work can potentially scale exponentially
with the beam size,m, due to its use of dynamic pro-
gramming. However, since the beam search prunes
myopically at each chart cell, it often prunes out
the highest probability parses. In fact, we find that
the single most likely parse is pruned out almost
20% of the time. Furthermore, our results in §8
show that the beam search’s inability to represent
the likely parses significantly impacts the overall
performance. It is also important to note that the
runtime of the n-best algorithm scales much better.
Specifically, as n increases, the n-best runtime in-
creases as O(n|~w| log(|~w||P | + n), where P is the
set of possible parse productions. In contrast, as
m is increased, the beam search runtime scales as
O(|~w|5m2), where the |~w|5 factor comes from our
use of headwords, as discussed in §6. In practice,
we find that even with n set to 10, 000 and m set to
200, our algorithm still runs almost 20 times faster.

5.2 Lexical Entry Splitting

Each lexical entry consists of a sequence of n
words aligned to a typed regular expression func-
tion, 〈w0:l, T : r〉. Our splitting algorithm considers
all possible ways to split a lexical entry into two new

cons

Parent Tree Child Tree

b
.

rep*o b
.

rep*

cons

.
rep*x

.
rep* b o b

cons
Original Tree

(a) (b) (c)
Figure 5: The tree in (a) represents the lambda expression
from the lexical entry 〈with bob, R:.*bob.*〉. One pos-
sible split of this lexical entry generates the parent lexical
entry 〈with, R/R:λx.(.*x.*)〉 and the child lexical en-
try, 〈bob, R:bob〉, whose lambda expressions are repre-
sented by (b) and (c), respectively.

lexical entries such that they can be recombined via
function application to obtain the original lexical en-
try. This process is analogous to the syntactic unifi-
cation process done by Kwiatkowski et al. (2010).

We first consider all possible ways to split the
lambda expression r. The splitting process is most
easily explained using a tree representation for r, as
shown in Figure 5(a). This tree format is simply a
convenient visual representation of a lambda calcu-
lus function, with each node representing one of the
function type constants from Figure 3. Each split,
s ∈ S(r), generates a child expression sc and a par-
ent expression sp such that r = sp(sc). For each
node, n, in r besides the root node, we generate a
split where sc is the subtree rooted at node n. For
such splits, sp is the lambda expression r with the
sub-expression sc replaced with a bound variable,
say x. In addition to these simple splits, we also con-
sider a set of more complicated splits at each node
whose associated function type constant can take
any number of arguments, i.e. or, and, or cons. If
C(n) are the children of node n, then we generate a
split for each possible subset, {V |V ⊂ C(n)}. Note
that for cons nodes V must be contiguous. In §6 we
discuss additional restrictions placed on the splitting
process to avoid generating an exponential number
of splits. For the split with subset V , the child tree,
sc, is a version of the tree rooted at node n pruned
to contain only the children in V . Additionally, the
parent tree, sp, is generated from r by replacing all
the children in V with a single bound variable, say
x. Figure 5 shows an example of such a split. We
only consider splits in which sc does not have any
bound variables, so its type, Tc, is always either R
or I . The type of sp is then type of the original ex-
pression, T augmented by an additional argument of
the child type, i.e. either T/Tc or T\Tc.

Each split s generates two pairs of lexical entries,
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one for forward application, and one for backward
application. The set of such pairs of pairs is:

{( 〈w0:j , T/Tc : sp〉 , 〈wj:l, Tc : sc〉),
(〈w0:j , Tc : sc〉 , 〈wj:l, T\Tc : sp〉)|
(0 ≤ j ≤ l) ∧ (s ∈ S(r))}

5.2.1 Adding New Lexical Entries
Our model splits all lexical entries used in parses

which generate correct regular expressions, i.e.
those in Ci, and adds all of the generated lexical
entries to Λ. In contrast, the previous work (Zettle-
moyer and Collins, 2005; Kwiatkowski et al., 2010)
has a very conservative process for adding new lex-
ical entries. This process relies on a good initial-
ization of the feature weights associated with a new
lexical entry. They perform this initialization using
a Giza++ alignment of the words in the training sen-
tences with the names of functions in the associated
lambda calculus expression. Such an initialization
is ineffective in our domain since it has very few
primitive functions and most of the training exam-
ples use more than half of these functions. Instead,
we add new lexical entries more aggressively, and
rely on the n-best parser to effectively ignore any
lexicon entries which do not generate high probabil-
ity parses.

6 Applying the Model

Features To allow inclusion of head words in our
features, our chart cells are indexed by start word,
end word, and head word. Thus for each parse pro-
duction we have a set of features that combine the
head word and CCG type, of the two children and
the newly generated parent. Additionally, for each
lexical entry 〈~wi, R : ri〉 ∈ Λ, we have four types of
features: (1) a feature for 〈~wi, R : ri〉, (2) a feature
for ~wi, (3) a feature for R : ri, and (4) a set of fea-
tures indicating whether ~wi contains a string literal
and whether the leaves of ri contain any exact char-
acter matches (rather than character range matches).

Initialization In addition to the sentence level ini-
tialization discussed in §5 we also initialize the lex-
icon, Λ, with two other sets of lexical entries. The
first set is all of the quoted string literals in the natu-
ral language phrases from the training set. Thus for
the phrase, “lines with ’bob’ twice” we would add
the lexical entry 〈 ’bob’, R:bob 〉. We also add lex-
ical entries for both numeric and word representa-
tions of numbers, such as 〈 1, R:1〉 and 〈 one, R:1〉.

We add these last two types of lexical entries be-
cause learning them from the data is almost impos-
sible due to data sparsity. Lastly, for every individual
word in our training set vocabulary, we add an iden-
tity lexical entry whose lambda expression is just a
function which takes one argument and returns that
argument. This allows our parser to learn to skip
semantically unimportant words in the natural lan-
guage description, and ensures that it generates at
least one parse for every example in the dataset. At
test time we also add both identity lexical entries for
every word in the test set vocabulary as well as lex-
ical entries for every quoted string literal seen in the
test queries. Note that the addition of these lexical
entries requires only access to the test queries and
does not make use of the regular expressions (i.e.
labels) in the test data in any way.

Parameters We initialize the weight of all lexical
entry features except the identity features to a default
value of 1 and initialize all other features to a default
weight of 0. We regularize our log-linear model us-
ing the L2-norm and a λ value of 0.001. We use a
learning rate of α = 1.0, set n = 10, 000 in our n-
best parser, and run each experiment with 5 random
restarts and K = 50 iterations. We report results
using the pocket algorithm technique originated by
Gallant (1990).

Constraints on Lexical Entry Splitting To prevent
the generation of an exponential number of splits,
we constrain the lexical entry splitting process as
follows:• We only consider splits at nodes which are at most

a depth of 2 from the root of the original tree.
• We limit lambda expressions to 2 arguments.
• In unordered node splits (and and or) the result-

ing child can contain at most 4 of the arguments.

These restrictions ensure the number of splits is
at most an M-degree polynomial of the regexp size.
The unification process used by Kwiatowski et al.
(2010) bounded the number of splits similarly.

7 Experimental Setup

Dataset Our dataset consists of 824 natural language
and regular expression pairs gathered using Amazon
Mechanical Turk (Turk, 2013) and oDesk (oDesk,
2013).6 On Mechanical Turk we asked workers to

6This is similar to the size of the datasets used by past work.
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generate their own original natural language queries
to capture a subset of the lines in a file (similar to
UNIX grep). In order to compare to example based
techniques we also ask the Mechanical Turk work-
ers to generate 5 positive and 5 negative examples
for each query. On oDesk we hired a set of pro-
grammers to generate regular expressions for each
of these natural language queries. We split our data
into 3 sets of 275 queries each and tested using 3-
fold cross validation. We tuned our parameters sep-
arately on each development set but ended up with
the same values in each case.

Evaluation Metrics We evaluate by comparing the
generated regular expression for each sentence with
the correct regular expression using our DFA equiv-
alence technique. As discussed in §3.1 this met-
ric is exact, indicating whether the generated regu-
lar expression is semantically equivalent to the cor-
rect regular expression. Additionally, as discussed
in §6, our identity lexical entries ensure we generate
a valid parse for every sentence, so we report only
accuracy instead of precision and recall.

Baselines We compared against six different base-
lines. The UBL baseline uses the published code
from Kwiatkowski et al. (2010) after configuring
it to handle the lambda calculus format of our reg-
ular expressions.7 The other baselines are ablated
and/or modified versions of our model. The Beam-
Parse baselines replace the N-BEST procedure from
Algorithm 1 with the beam search algorithm used
for parsing by past CCG parsers (Zettlemoyer and
Collins, 2005; Kwiatkowski et al., 2010).8 The
StringUnify baseline replaces the DFA-EQUAL proce-
dure from Algorithm 1 with exact regular expres-
sion string equality. The HeuristicUnify baselines
strengthen this by replacing DFA-EQUAL with a smart
heuristic form of semantic unification. Our heuristic
unification procedure first flattens the regexp trees
by merging all children into the parent node if they
are both of the same type and of type or, and, or
cons. It then sorts all children of the and and or
operators. Finally, it converts both regexps back to
a flat string and compares these strings for equiva-
lence. This process should more effective than any

7This was done in consultation with the original authors.
8we set the beam size to 200, which is equivalent to the past

work. With this setting, the slow runtime of this algorithm al-
lowed us to run only two random restarts.

Model Percent Correct
UBL 36.5%

BeamParse-HeuristicUnify 9.4%
BeamParse-HeuristicUnify-TopParse 22.1%

NBestParse-StringUnify 31.1%
NBestParse-ExampleUnify 52.3%
NBestParse-HeuristicUnify 56.8%

Our Full Model 65.5%

Table 1: Accuracy of our model and the baselines.

form of syntactic unification and any simpler heuris-
tics. The ExampleUnify baseline represents the per-
formance of the example based semantic unification
techniques. It replaces DFA-EQUAL with a procedure
that evaluates the regexp on all the positive and neg-
ative examples associated with the given query and
returns true if all 10 are correctly classified. Finally,
BeamParse-HeuristicUnify-TopParse uses the same
algorithm as that for BeamParse-HeuristicUnify ex-
cept that it only generates lexical entries from the
top parse instead of all parses. This more closely
resembles the conservative lexical entry splitting al-
gorithm used by Kwiatkowski et al.

8 Results

Our model outperforms all of the baselines, as
shown in Table 1. The first three baselines –
UBL, BeamParse-HeuristicUnify, and BeamParse-
HeuristicUnify-TopParse– represent the algorithm
used by Kwiatkowski et al. Our model outperforms
the best of these by over 30% in absolute terms and
180% in relative terms.

The improvement in performance of our model
over the NBestParse-StringUnify, NBestParse-
ExampleUnify and NBestParse-HeuristicUnify
baselines highlights the importance of our DFA
based semantic unification technique. Specifi-
cally, our model outperforms exact string based
unification by over 30%, example based semantic
unification by over 13% and our smart heuristic
unification procedure by 9%. These improvements
confirm that leveraging exact semantic unification
during the learning process helps to disambiguate
language meanings.

8.1 Effect of Additional Training Data
Table 2 shows the change in performance as we in-
crease the amount of training data. We see that our
model provides particularly large gains when there
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%age of Data 15% 30% 50% 75%
NBestParse-
HeuristicUnify

12.4% 26.4% 39.0% 45.4%

Our Model 29.0% 50.3% 58.7% 65.2%

Relative Gain 2.34x 1.91x 1.51x 1.43x

Table 2: Results for varying amounts of training data.
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Figure 6: This graph compares the set of parses repre-
sented by the n-best algorithm used in our model to the
set of parses represented by the beam search algorithm
used by the past work. Note that our n-best algorithm
represents 100% of the top 10000 parses.

is a small amount of training data. These gains de-
crease as the amount of training data increases be-
cause the additional data allows the baseline to learn
new lexical entries for every special case. This re-
duces the need for the fine grained lexicon decom-
position which is enabled by our DFA based unifica-
tion. For example, our DFA based model will learn
separate lexical entries for “line”, “word”, “starting
with”, and “ending with”. The baseline instead will
just learn separate lexical entries for every possible
combination such as “line starting with”, “word end-
ing with”, etc. Our model’s ability to decompose,
however, allows it to provide equivalent accuracy to
even the best baseline with less than half the amount
of training data. Furthermore, we would expect this
gain to be even larger for domains with more com-
plex mappings and a larger number of different com-
binations.

8.2 Beam Search vs. N-Best

A critical step in the training process is calculating
the expected feature counts over all parses that gen-
erate the correct regular expression. In §4 we dis-
cussed the trade-off between approximating this cal-
culation using the n-best parses, as our model does,
verses the beam search model used by the past work.
The effect of this trade-off can be seen clearly in Fig-
ure 6. The n-best parser always represents the n-best

parses, which is set to 10,000 in our experiments. In
contrast, on the first iteration, the beam search algo-
rithm fails to represent the top parse almost 20% of
the time and represents less than 15% of the 10,000
most likely parses. Even after 10 iterations it still
only represents 70% of the top parses and fails to
represent the top parse almost 10% of the time. This
difference in representation ability is what provides
the more than 30% difference in accuracy between
the BeamParse-HeuristicUnify version of our model
and the NBestParse-HeuristicUnify version of our
model.

9 Conclusions and Future Work

In this paper, we present a technique for learning
a probabilistic CCG which can parse a natural lan-
guage text search into the regular expression that
performs that search. The key idea behind our ap-
proach is to use a DFA based form of semantic uni-
fication to disambiguate the meaning of the natural
language descriptions. Experiments on a dataset of
natural language regular expression pairs show that
our model significantly outperforms baselines based
on a state-of-the-art model.

We performed our work on the domain of reg-
ular expressions, for which semantic unification is
tractable. In more general domains, semantic uni-
fication is undecidable. Nevertheless, we believe
our work motivates the use of semantic inference
techniques for language grounding in more general
domains, potentially through the use of some form
of approximation or by restricting those domains in
some way. For example, SAT and SMT solvers have
seen significant success in performing semantic in-
ference for program induction and hardware veri-
fication despite the computational intractability of
these problems in the general case.
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Abstract

In natural-language discourse, related events
tend to appear near each other to describe a
larger scenario. Such structures can be formal-
ized by the notion of a frame (a.k.a. template),
which comprises a set of related events and
prototypical participants and event transitions.
Identifying frames is a prerequisite for infor-
mation extraction and natural language gen-
eration, and is usually done manually. Meth-
ods for inducing frames have been proposed
recently, but they typically use ad hoc proce-
dures and are difficult to diagnose or extend.
In this paper, we propose the first probabilistic
approach to frame induction, which incorpo-
rates frames, events, and participants as latent
topics and learns those frame and event transi-
tions that best explain the text. The number
of frame components is inferred by a novel
application of a split-merge method from syn-
tactic parsing. In end-to-end evaluations from
text to induced frames and extracted facts, our
method produces state-of-the-art results while
substantially reducing engineering effort.

1 Introduction

Events with causal or temporal relations tend to oc-
cur near each other in text. For example, a BOMB-
ING scenario in an article on terrorism might be-
gin with a DETONATION event, in which terrorists
set off a bomb. Then, a DAMAGE event might en-
sue to describe the resulting destruction and any
casualties, followed by an INVESTIGATION event

∗This research was undertaken during the author’s internship
at Microsoft Research.

covering subsequent police investigations. After-
wards, the BOMBING scenario may transition into
a CRIMINAL-PROCESSING scenario, which begins
with police catching the terrorists, and proceeds to
a trial, sentencing, etc. A common set of partici-
pants serves as the event arguments; e.g., the agent
(or subject) of DETONATION is often the same as
the theme (or object) of INVESTIGATION and corre-
sponds to a PERPETRATOR.

Such structures can be formally captured by the
notion of a frame (a.k.a. template, scenario), which
consists of a set of events with prototypical transi-
tions, as well as a set of slots representing the com-
mon participants. Identifying frames is an explicit
or implicit prerequisite for many NLP tasks. Infor-
mation extraction, for example, stipulates the types
of events and slots that are extracted for a frame or
template. Online applications such as dialogue sys-
tems and personal-assistant applications also model
users’ goals and subgoals using frame-like represen-
tations. In natural-language generation, frames are
often used to represent contents to be expressed as
well as to support surface realization.

Until recently, frames and related representations
have been manually constructed, which has limited
their applicability to a relatively small number of do-
mains and a few slots within a domain. Furthermore,
additional manual effort is needed after the frames
are defined in order to extract frame components
from text (e.g., in annotating examples and design-
ing features to train a supervised learning model).
This paradigm makes generalizing across tasks dif-
ficult, and might suffer from annotator bias.

Recently, there has been increasing interest in au-
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tomatically inducing frames from text. A notable
example is Chambers and Jurafsky (2011), which
first clusters related verbs to form frames, and then
clusters the verbs’ syntactic arguments to identify
slots. While Chambers and Jurafsky (2011) repre-
sents a major step forward in frame induction, it is
also limited in several aspects. The clustering used
ad hoc steps and customized similarity metrics, as
well as an additional retrieval step from a large ex-
ternal text corpus for slot generation. This makes it
hard to replicate their approach or adapt it to new
domains. Lacking a coherent model, it is also diffi-
cult to incorporate additional linguistic insights and
prior knowledge.

In this paper, we present PROFINDER (PROba-
bilistic Frame INDucER), the first probabilistic ap-
proach to frame induction. PROFINDER defines
a joint distribution over the words in a document
and their frame assignments by modeling frame
and event transitions, correlations among events and
slots, and their surface realizations. Given a set of
documents, PROFINDER outputs a set of induced
frames with learned parameters, as well as the most
probable frame assignments that can be used for
event and entity extraction. The numbers of events
and slots are dynamically determined by a novel
application of the split-merge approach from syn-
tactic parsing (Petrov et al., 2006). In end-to-end
evaluations from text to entity extraction using stan-
dard MUC and TAC datasets, PROFINDER achieved
state-of-the-art results while significantly reducing
engineering effort and requiring no external data.

2 Related Work

In information extraction and other semantic pro-
cessing tasks, the dominant paradigm requires two
stages of manual effort. First, the target representa-
tion is defined manually by domain experts. Then,
manual effort is required to construct an extractor
or to annotate examples to train a machine-learning
system. Recently, there has been a burgeoning body
of work in reducing such manual effort. For exam-
ple, a popular approach to reduce annotation effort is
bootstrapping from seed examples (Patwardhan and
Riloff, 2007; Huang and Riloff, 2012). However,
this still requires prespecified frames or templates,
and selecting seed words is often a challenging task

(Curran et al., 2007). Filatova et al. (2006) construct
simple domain templates by mining verbs and the
named entity type of verbal arguments that are topi-
cal, whereas Shinyama and Sekine (2006) identify
query-focused slots by clustering common named
entities and their syntactic contexts. Open IE (Banko
and Etzioni, 2008) limits the manual effort to de-
signing a few domain-independent relation patterns,
which can then be applied to extract relational triples
from text. While extremely scalable, this approach
can only extract atomic factoids within a sentence,
and the resulting triples are noisy, non-canonicalized
text fragments.

More relevant to our approach is the recent work
in unsupervised semantic induction, such as un-
supervised semantic parsing (Poon and Domingos,
2009), unsupervised semantical role labeling (Swier
and Stevenson, 2004) and induction (Lang and Lap-
ata, 2011, e.g.), and slot induction from web search
logs (Cheung and Li, 2012). As in PROFINDER,
they model distributional contexts for slots and
roles. However, these approaches focus on the se-
mantics of independent sentences or queries, and do
not capture discourse-level dependencies.

The modeling of frame and event transitions in
PROFINDER is similar to a sequential topic model
(Gruber et al., 2007), and is inspired by the suc-
cessful applications of such topic models in sum-
marization (Barzilay and Lee, 2004; Daumé III and
Marcu, 2006; Haghighi and Vanderwende, 2009, in-
ter alia). There are, however, two main differences.
First, PROFINDER contains not a single sequential
topic model, but two (for frames and events, respec-
tively). In addition, it also models the interdepen-
dencies among events, slots, and surface text, which
is analogous to the USP model (Poon and Domin-
gos, 2009). PROFINDER can thus be viewed as a
novel combination of state-of-the-art models in un-
supervised semantics and discourse modeling.

In terms of aim and capability, PROFINDER is
most similar to Chambers and Jurafsky (2011),
which culminated from a series of work for iden-
tifying correlated events and arguments in narratives
(Chambers and Jurafsky, 2008; Chambers and Ju-
rafsky, 2009). By adopting a probabilistic approach,
PROFINDER has a sound theoretical underpinning,
and is easy to modify or extend. For example, in
Section 3, we show how PROFINDER can easily be
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augmented with additional linguistically-motivated
features. Likewise, PROFINDER can easily be used
as a semi-supervised system if some slot designa-
tions and labeled examples are available.

The idea of representing and capturing stereotyp-
ical knowledge has a long history in artificial in-
telligence and psychology, and has assumed vari-
ous names such as frames (Minsky, 1974), schemata
(Rumelhart, 1975), and scripts (Schank and Abel-
son, 1977). In the linguistics and computational
linguistics communities, frame semantics (Fillmore,
1982) uses frames as the central representation of
word meaning, culminating in the development of
FrameNet (Baker et al., 1998), which contains over
1000 manually annotated frames. A similarly rich
lexical resource is the MindNet project (Richard-
son et al., 1998). Our notion of frame is related to
these representations, but there are also subtle differ-
ences. For example, Minsky’s frame emphasizes in-
heritance, which we do not model in this paper1. As
in semantic role labeling, FrameNet focuses on se-
mantic roles and does not model event or frame tran-
sitions, so the scope of its frames is often no more
than an event in our model. Perhaps the most sim-
ilar to our frame is Roger Schank’s scripts, which
capture prototypical events and participants in a sce-
nario such as restaurant dining. In their approach,
however, scripts are manually defined, making it
hard to generalize. In this regard, our work may be
viewed as an attempt to revive a long tradition in AI
and linguistics, by leveraging the recent advances in
computational power, NLP, and machine learning.

3 Probabilistic Frame Induction

In this section, we present PROFINDER, a proba-
bilistic model for frame induction. Let F be a set of
frames, where each frame F = (EF , SF ) comprises
a unique set of events EF and slots SF . Given a
document D and a word w in D, Zw = (f, e) repre-
sents an assignment of w to frame f ∈ F and frame
element e ∈ Ef ∪ Sf . At the heart of PROFINDER

is a generative model Pθ(D,Z) that defines a joint
distribution over document D and the frame assign-
ment to its words Z. Given a set of documents D,

1This should be a straightforward extension — using the
split-and-merge approach, PROFINDER already produces a hi-
erarchy of events and slots in learning, although currently it
makes no use of the intermediate levels.

frame induction in PROFINDER amounts to deter-
mining the number of events and slots in each frame,
as well as learning the parameters θ by summing out
the latent assignments Z to maximize the likelihood
of the document set ∏

D∈D
Pθ(D).

The induced frames identify the key event structures
in the document set. Additionally, PROFINDER can
conduct event and entity extraction by computing
the most probable frame assignment Z. In the re-
mainder of the section, we first present the base
model for PROFINDER. We then introduce sev-
eral linguistically motivated refinements, as well as
efficient algorithms for learning and inference in
PROFINDER.

3.1 Base Model
The probabilistic formulation of PROFINDER makes
it extremely flexible for incorporating linguistic in-
tuition and prior knowledge. In this paper, we design
our PROFINDER model to capture three types of de-
pendencies.

Frame transitions between clauses A sentence
contains one or more clauses, each of which is a
minimal unit expressing a proposition. A clause is
unlikely to straddle different frames, so we stipu-
late that the words in a clause be assigned to the
same frame. On the other hand, frame transitions
can happen between clauses, and we adopt the com-
mon Markov assumption that the frame of a clause
only depends on the previous clause in the docu-
ment. Clauses are automatically extracted from the
dependency parse and further decomposed into an
event head and its syntactic arguments.

Event transitions within a frame Events tend to
transition into related events in the same frame, as
determined by their causal or temporal relations.
Each clause is assigned an event compatible with
its frame assignment (i.e., the event is in the given
frame). Like frame transitions, we assume that the
event assignment of a clause depends only on the
event of the previous clause.

Emission of event heads and slot words Simi-
lar to topics in topic models, each event determines
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a multinomial from which the event head is gener-
ated; e.g., a DETONATION event might use verbs
such as detonate, set off or nouns such as denota-
tion, bombing as its event head. Additionally, as
in USP (Poon and Domingos, 2009), an event also
contains a multinomial of slots for each of its argu-
ment types2; e.g., the agent argument of a DETONA-
TION event is generally the PERPETRATOR slot of
the BOMBING frame. Finally, each slot has its own
multinomials for generating the argument head and
dependency label, regardless of the event.

Formally, let D be a document and C1, · · · , Cl be
its clauses, the PROFINDER model is defined by

Pθ(D,Z) = PF−INIT(F1)×
∏
i

PF−TRAN(Fi+1|Fi)

× PE−INIT(E1|F1)

×
∏
i

PE−TRAN(Ei+1|Ei, Fi+1, Fi)

×
∏
i

PE−HEAD(ei|Ei)

×
∏
i,j

PSLOT(Si,j |Ei,j , Ai,j)

×
∏
i,j

PA−HEAD(ai,j |Si,j)

×
∏
i,j

PA−DEP(depi,j |Si,j)

Here, Fi, Ei denote the frame and event assign-
ment to clause Ci, respectively, and ei denotes the
event head. For the j-th argument of clause i,
Si,j denotes the slot assignment, Ai,j the argument
type, ai,j the head word, and depi,j the dependency
from the event head. PE−TRAN(Ei+1|Ei, Fi+1, Fi) =
PE−INIT(Ei+1|Fi+1) if Fi+1 6= Fi.

Essentially, PROFINDER combines a frame HMM
with an event HMM, where the first models frame
transition and emits events, and the second models
event transition within a frame and emits argument
slots.

3.2 Model refinements
The base model captures the main dependencies in
event narrative, but it can be easily extended to lever-

2USP generates the argument types along with events from
clustering. For simplicity, in PROFINDER we simply classify
a syntactic argument into subject, object, and prepositional ob-
ject, according to its Stanford dependency to the event head.

age additional linguistic intuition. PROFINDER in-
corporates three such refinements.

Background frame Event narratives often con-
tain interjections of general content common to all
frames. For example, in newswire articles, ATTRI-
BUTION is commonplace to describe who said or
reported a particular quote or fact. To avoid con-
taminating frames with generic content, we intro-
duce a background frame with its own events, slots,
and emission distributions, and a binary switch vari-
able Bi ∈ {BKG,CNT} that determines whether
clause i is generated from the actual content frame
Fi (CNT ) or background (BKG). We also stipu-
late that if BKG is chosen, the nominal frame stays
the same as the previous clause.

Stickiness in frame and event transitions Prior
work has demonstrated that promoting topic coher-
ence in natural-language discourse helps discourse
modeling (Barzilay and Lee, 2004). We extend
PROFINDER to leverage this intuition by incorporat-
ing a “stickiness” prior (Haghighi and Vanderwende,
2009) to encourage neighboring clauses to stay in
the same frame. Specifically, along with introducing
the background frame, the frame transition compo-
nent now becomes

PF−TRAN(Fi+1|Fi, Bi+1) = (1)
1(Fi+1 = Fi), if Bi+1 = BKG

β1(Fi+1 = Fi)+

(1− β)PF−TRAN(Fi+1|Fi),
if Bi+1 = CNT

where β is the stickiness parameter, and the event
transition component correspondingly becomes

PE−TRAN(Ei+1|Ei, Fi+1, Fi, Bi+1) = (2)
1(Ei+1 = Ei), if Bi+1 = BKG

PE−TRAN(Ei+1|Ei), if Bi+1 = CNT,Fi = Fi+1

PE−INIT(Ei+1), if Bi+1 = CNT,Fi 6= Fi+1

Argument dependencies as caseframes As no-
ticed in previous work such as Chambers and Juraf-
sky (2011), the combination of an event head and a
dependency relation often gives a strong signal of
the slot that is indicated. For example, bomb >
nsubj (subject argument of bomb) often indicates
a PERPETRATOR. Thus, rather than simply emitting
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Figure 1: Graphical representation of our model. Hyper-
parameters, the stickiness factor, and the frame and event
initial and transition distributions are not shown for clar-
ity.

the dependency from the event head to an event ar-
gument depi,j , our model instead emits the pair of
event head and dependency relation, which we call
a caseframe following Bean and Riloff (2004).

3.3 Full generative story

To summarize, the distributions that are learned by
our model are the default distributions PBKG(B),
PF−INIT(F ), PE−INIT(E); the transition distri-
butions PF−TRAN(Fi+1|Fi), PE−TRAN(Ei+1|Ei);
and the emission distributions PSLOT(S|E,A,B),
PE−HEAD(e|E,B), PA−HEAD(a|S), PA−DEP(dep|S).
We used additive smoothing with uniform Dirich-
let priors for all the multinomials. The overall
generative story of our model is as follows:

1. Draw a Bernoulli distribution for PBKG(B)
2. Draw the frame, event, and slot distributions
3. Draw an event head emission distribution
PE−HEAD(e|E,B) for each frame including the
background frame

4. Draw event argument lemma and caseframe
emission distributions for each slot in each
frame including the background frame

5. For each clause in each document, generate the
clause-internal structure.

The clause-internal structure at clause i is gener-
ated by the following steps:

1. Generate whether this clause is background
(Bi ∈ {CNT,BKG} ∼ PBKG(B))

2. Generate the frame Fi and event Ei from
PF−INIT(F ), PE−INIT(E), or according to
equations 1 and 2

3. Generate the observed event head ei from
PE−HEAD(ei|Ei).

4. For each event argument:
(a) Generate the slot Si,j from

PSLOT(S|E,A,B).
(b) Generate the dependency/caseframe emis-

sion depi,j ∼ PA−DEP(dep|S) and the
lemma of the head word of the event ar-
gument ai,j ∼ PA−HEAD(a|S).

3.4 Learning and Inference
Our generative model admits efficient inference by
dynamic programming. In particular, after collaps-
ing the latent assignment of frame, event, and back-
ground into a single hidden variable for each clause,
the expectation and most probable assignment can
be computed using standard forward-backward and
Viterbi algorithms on fixed tree structures.

Parameter learning can be done using EM by al-
ternating the computation of expected counts and the
maximization of multinomial parameters. In par-
ticular, PROFINDER uses incremental EM, which
has been shown to have better and faster con-
vergence properties than standard EM (Liang and
Klein, 2009).

Determining the optimal number of events and
slots is challenging. One solution is to adopt a non-
parametric Bayesian method by incorporating a hi-
erarchical prior over the parameters (e.g., a Dirich-
let process). However, this approach can impose
unrealistic restrictions on the model choice and re-
sult in intractability which requires sampling or ap-
proximate inference to overcome. Additionally, EM
learning can suffer from local optima due to its non-
convex learning objective, especially when dealing
with a large number hidden states without a good
initialization.

To address these issues, we adopt a novel appli-
cation of the split-merge method previously used in
syntactic parsing for inferring refined latent syntac-
tic categories (Petrov et al., 2006). First, the model
is initialized with a number of frames, which is a
hyperparameter, and each frame is associated with
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one event and two slots. Starting from this mini-
mal structure, EM training begins. After a number
of iterations, each event and slot state is “split” in
two; that is, each original state now becomes two
new states. Each of the new states is generated with
half of the probability of the original, and contains
a duplicate of the associated emission distributions.
Some perturbation is then added to the probabilities
to break symmetry. After splitting, we merge back
a portion of the newly split events and slots that re-
sult in the least improvement in the likelihood of the
training data. For more details on split-merge, see
Petrov et al. (2006)

By adjusting the number of split-merge cycles and
the merge parameters, our model learns the number
of events and slots in a dynamical fashion that is tai-
lored to the data. Moreover, our model starts with a
small number of frame elements, which reduces the
number of local optima and facilitates initial learn-
ing. After each split, the subsequent learning starts
with (a perturbed version of) the previously learned
parameters, which makes a good initialization that
is crucial for EM. Finally, it is also compatible with
the hierarchical nature of events and slots. For ex-
ample, slots can first be coarsely split into persons
versus locations, and later refined into subcategories
such as perpetrators and victims.

4 MUC-4 Entity Extraction Experiments

We first evaluate our model on a standard entity
extraction task, using the evaluation settings from
Chambers and Jurafsky (2011) (henceforth, C&J)
to enable a head-to-head comparison. Specifically,
we use the MUC-4 data set (1992) , which contains
1300 training and development documents on ter-
rorism in South America, with 200 additional doc-
uments for testing. MUC-4 contains four templates:
ATTACK, KIDNAPPING, BOMBING, and ARSON.3

All templates share the same set of predefined slots,
with the evaluation focusing on the following four:
PERPETRATOR, PHYSICAL TARGET, HUMAN TAR-
GET, and INSTRUMENT.

For each slot in a MUC template, the system
first identifies an induced slot that best maps to it
by F1 on the development set. As in C&J, tem-

3Two other templates have negligible counts and are ignored
as in C&J.

plate is ignored in final evaluation, so all the clusters
that belong to the same slot are then merged across
the templates; e.g., the PERPETRATOR clusters for
KIDNAPPING and BOMBING are merged. The fi-
nal precision, recall, and F1 are computed based on
these merged clusters. Correctness is determined by
matching head words, and slots marked as optional
in MUC are ignored when computing recall. All hy-
perparameters are tuned on the development set (see
Appendix A for their values).

Named entity type Named entity type is a useful
feature to filter out entities for particular slots; e.g. a
location cannot be an INSTRUMENT. We thus divide
each induced cluster into four clusters by named
entity type before performing the mapping, follow-
ing C&J’s heuristic and using a named entity recog-
nizer and word lists derived from WordNet: PER-
SON/ORGANIZATION, PHYSICAL OBJECT, LOCA-
TION, and OTHER.

Document classification The MUC-4 dataset
contains many documents that have words related
to MUC slots (e.g., plane and aviation), but are not
about terrorism. To reduce precision errors, C&J
first filtered irrelevant documents based on the speci-
ficity of event heads to learned frames. To estimate
the specificity, they used additional data retrieved
from a large external corpus. In PROFINDER, how-
ever, specificity can be easily estimated using the
probability distributions learned during training. In
particular, we define the probability of an event head
in a frame j as:

PF (w) =
∑
EF∈F

PE−HEAD(w|E)/|F |, (3)

and the probability of a frame given an event head
as:

P (F |w) = PF (w)/
∑
F ′∈F

PF ′(w). (4)

We then follow the rest of C&J’s procedure to
score each learned frame with each MUC document.
Specifically, a document is mapped to a frame if the
average PF (w) in the document is above a threshold
and the document contains at least one trigger word
w′ with P (F |w′) > 0.2. The threshold and the in-
duced frame were determined on the development
set, and were used to filter irrelevant documents in
the test set.
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Unsupervised methods P R F1

PROFINDER (This work) 32 37 34
Chambers and Jurafsky (2011) 48 25 33
With additional information
PROFINDER +doc. classification 41 44 43
C&J 2011 +granularity 44 36 40

Table 1: Results on MUC-4 entity extraction. C&J 2011
+granularity refers to their experiment in which they
mapped one of their templates to five learned clusters
rather than one.

Results Compared to C&J, PROFINDER is con-
ceptually much simpler, using a single probabilis-
tic model and standard learning and inference algo-
rithms, and not requiring multiple processing steps
or customized similarity metrics. It only used the
data in MUC-4, whereas C&J required additional
text to be retrieved from a large external corpus (Gi-
gaword (Graff et al., 2005)) for each event cluster.
It currently does not make use of coreference infor-
mation, whereas C&J did. Remarkably, despite all
these, PROFINDER was still able to outperform C&J
on entity extraction, as shown in Table 1. We also
evaluated PROFINDER’s performance assuming per-
fect document classification (+doc. classification).
This led to a substantially higher precision, suggest-
ing that further improvement is possible from better
document classification.

Figure 2 shows part of a frame learned by
PROFINDER, which includes some slots and events
annotated in MUC. PROFINDER is also able to iden-
tify events and slots not annotated in MUC, a de-
sirable characteristic of unsupervised methods. For
example, it found a DISCUSSION event, an AR-
REST event (call, arrest, express, meet, charge), a
PEACE AGREEMENT slot (agreement, rights, law,
proposal), and an AUTHORITIES slot (police, gov-
ernment, force, command). The background frame
was able to capture many verbs related to attribu-
tion, such as say, continue, add, believe, although it
missed report.

5 Evaluating Frame Induction Using
Guided Summarization Templates

The MUC-4 dataset was originally designed for
information extraction and focuses on a limited
number of template and slot types. To evalu-

Event: Attack Event: Discussion
report, participate, kid-
nap, kill, release

hold, meeting, talk, dis-
cuss, investigate

Slot: Perpetrator Slot: Victim
PERSON/ORG PERSON/ORG

Words: guerrilla, po-
lice, source, person,
group

Words: people, priest,
leader, member, judge

Caseframes:
report>nsubj,
kidnap>nsubj,
kill>nsubj,
participate>nsubj,
release>nsubj

Caseframes:
kill>dobj,
murder>dobj,
release>dobj,
report>dobj,
kidnap>dobj

Figure 2: A partial frame learned by PROFINDER from
the MUC-4 data set, with the most probable emissions for
each event and slot. Labels are assigned by the authors
for readability.

ate PROFINDER’s capabilities in generalizing to
a greater variety of text, we designed and con-
ducted a novel evaluation based on the TAC guided-
summarization dataset. This evaluation was inspired
by the connection between summarization and infor-
mation extraction (White et al., 2001), and reflects a
conceptualization of summarization as inducing and
extracting structured information from source text.
Essentially, we adapted the TAC summarization an-
notation to create gold-standard slots, and used them
to evaluate entity extraction as in MUC-4.

Dataset We used the TAC 2010 guided-
summarization dataset in our experiments
(Owczarzak and Dang, 2010). This data set con-
sists of text from five domains (termed categories
in TAC), each with a template defined by TAC
organizers. In total, there are 46 document clusters
(termed topics in TAC), each of which contains 20
documents and has eight human-written summaries.
Each summary was manually segmented using
the Pyramid method (Nenkova and Passonneau,
2004) and each segment was annotated with a slot
(termed aspect in TAC) from the corresponding
template. Figure 3 shows an example and the full
set of templates is available at http://www.
nist.gov/tac/2010/Summarization/
Guided-Summ.2010.guidelines.html. In
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(a) Accidents and Natural Disasters:
WHAT: what happened
WHEN: date, time, other temporal markers
WHERE: physical location
WHY: reasons for accident/disaster
WHO AFFECTED: casualties...
DAMAGES: ... caused by the disaster
COUNTERMEASURES: rescue efforts...

(b) (WHEN During the night of July 17,)
(WHAT a 23-foot <WHAT tsunami) hit the
north coast of Papua New Guinea (PNG)>,
(WHY triggered by a 7.0 undersea earth-
quake in the area).

(c) WHEN: night WHAT: tsunami, coast
WHY: earthquake

Figure 3: (a) A frame from the TAC Guided Summariza-
tion task with abbreviated slot descriptions. (b) A TAC
text span, segmented into several contributors with slot
labels. Note that the two WHAT contributors overlap, and
are demarcated by different bracket types. (c) The entities
that are extracted for evaluation.

TAC, each annotated segment (Figure 3b) is called
a contributor.

Evaluation Method We converted the contribu-
tors into a form that is more similar to the previ-
ous MUC evaluation, so that we can fairly compare
against previous work such as C&J that were de-
signed to extract information into that form. Specif-
ically, we extracted the head lemma from all the
maximal noun phrases found in the contributor (Fig-
ure 3c) and treated them as gold-standard entity slots
to extract. While this conversion may not be ideal in
some cases, it simplifies the TAC slots and enables
automatic evaluation. We leave the refinement of
this conversion to future work, and believe it could
be done by crowdsourcing.

For each TAC slot in a TAC category, we extract
entities from the summaries that belong to the given
TAC category. A system-induced entity is consid-
ered a match to a TAC-derived entity from the same
document if the head lemma in the former matches
one in the latter. Based on this matching criterion,
the system-induced slots are mapped to the TAC
slots in a way that achieves the best F1 for each
TAC slot. We allow a system slot to map to mul-
tiple TAC slots, due to potential overlaps in entities

1-best 5-best
Systems P R F1 P R F1

PROFINDER 24 25 24 21 38 27
C&J 58 6.1 11 50 12 20

Table 2: Results on TAC 2010 entity extraction with N -
best mapping for N = 1 and N = 5. Intermediate values
of N produce intermediate results, and are not shown for
brevity.

among TAC slots. For example, in a document about
a tsunami, earthquake may appear both in the WHAT

slot as a disaster itself, and in the CAUSE slot as a
cause for the tsunami.

One salient difference between TAC and MUC
slots is that TAC slots are often more general than
MUC slots. For example, TAC slots such as WHY

and COUNTERMEASURES likely correspond to mul-
tiple slots at the granularity of MUC. As a result, we
also consider mapping the N -best system-induced
slots to each TAC slot, for N up to 5.

Experiments We trained PROFINDER and a reim-
plementation of C&J on the 920 full source texts of
TAC 2010, and tested them on the 368 model sum-
maries. We did not provide C&J’s model with access
to external data, in order to enable fair comparison
with our model. Since all of the summary sentences
are expected to be relevant, we did not conduct doc-
ument or sentence relevance classification in C&J or
PROFINDER. We tuned all parameters by two-fold
cross validation on the summaries. We computed the
overall precision, recall, and F1 by taking a micro-
average over the results for each TAC slot.

Results The results are shown in Table 2.
PROFINDER substantially outperformed C&J in F1,
in both 1-best and N -best cases. As in MUC-4, the
precision of C&J is higher, partly because C&J often
did not do much in clustering and produced many
small clusters. For example, in the 1-best setting, the
average number of entities mapped to each TAC slot
by C&J is 21, whereas it is 208 for PROFINDER. For
both systems, the results are generally lower com-
pared to that in MUC-4, which is expected since this
task is harder given the greater diversity in frames
and slots to be induced.
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6 Conclusion

We have presented PROFINDER, the first probabilis-
tic approach to frame induction and shown that it
achieves state-of-the-art results on end-to-end entity
extraction in standard MUC and TAC data sets. Our
model is inspired by recent advances in unsuper-
vised semantic induction and content modeling in
summarization. Our probabilistic approach makes
it easy to extend the model with additional linguistic
insights and prior knowledge. While we have made
a case for unsupervised methods and the importance
of robustness across domains, our method is also
amenable to semi-supervised or supervised learn-
ing if annotated data is available. In future work,
we would like to further investigate frame induction
evaluation, particularly in evaluating event cluster-
ing.
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Appendix A. Hyperparameter Settings

We document below the hyperparameter settings for
PROFINDER that were used to generate the results
in the paper.

Hyperparameter MUC TAC
Number of frames, |F| 9 8
Frame stickiness, β 0.125 0.5
Smoothing (frames, events, slots) 0.5 2
Smoothing (emissions) 0.05 0.2
Number of split-merge cycles 4 2
Iterations per cycle 10 10
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Abstract
In this paper we explore the potential of
quantum theory as a formal framework for
capturing lexical meaning. We present a
novel semantic space model that is syntacti-
cally aware, takes word order into account,
and features key quantum aspects such as
superposition and entanglement. We define
a dependency-based Hilbert space and show
how to represent the meaning of words by den-
sity matrices that encode dependency neigh-
borhoods. Experiments on word similarity
and association reveal that our model achieves
results competitive with a variety of classical
models.

1 Introduction
The fields of cognitive science and natural language
processing have recently produced an ensemble of
semantic models which have an impressive track
record of replicating human behavior and enabling
real-world applications. Examples include simula-
tions of word association (Denhière and Lemaire,
2004; Griffiths et al., 2007), semantic priming (Lund
and Burgess, 1996; Landauer and Dumais, 1997;
Griffiths et al., 2007), categorization (Laham, 2000),
numerous studies of lexicon acquisition (Grefen-
stette, 1994; Lin, 1998), word sense discrimination
(Schütze, 1998), and paraphrase recognition (Socher
et al., 2011). The term “semantic” derives from the
intuition that words seen in the context of a given
word contribute to its meaning (Firth, 1957). Al-
though the specific details of the individual models
differ, they all process a corpus of text as input and
represent words (or concepts) in a (reduced) high-
dimensional space.

In this paper, we explore the potential of quan-
tum theory as a formal framework for capturing lex-
ical meaning and modeling semantic processes such

as word similarity and association (see Section 6
for an overview of related research in this area).
We use the term quantum theory to refer to the ab-
stract mathematical foundation of quantum mechan-
ics which is not specifically tied to physics (Hughes,
1989; Isham, 1989). Quantum theory is in prin-
ciple applicable in any discipline where there is a
need to formalize uncertainty. Indeed, researchers
have been pursuing applications in areas as diverse
as economics (Baaquie, 2004), information theory
(Nielsen and Chuang, 2010), psychology (Khren-
nikov, 2010; Pothos and Busemeyer, 2012), and cog-
nitive science (Busemeyer and Bruza, 2012; Aerts,
2009; Bruza et al., 2008). But what are the features
of quantum theory which make it a promising frame-
work for modeling meaning?

Superposition, entanglement, incompatibility,
and interference are all related aspects of quantum
theory, which endow it with a unique character.1 Su-
perposition is a way of modeling uncertainty, more
so than in classical probability theory. It contains in-
formation about the potentialities of a system’s state.
An electron whose location in an atom is uncertain
can be modeled as being in a superposition of loca-
tions. Analogously, words in natural language can
have multiple meanings. In isolation, the word pen
may refer to a writing implement, an enclosure for
confining livestock, a playpen, a penitentiary or a fe-
male swan. However, when observed in the context
of the word ink the ambiguity resolves into the sense
of the word dealing with writing. The meanings of
words in a semantic space are superposed in a way
which is intuitively similar to the atom’s electron.

Entanglement concerns the relationship between

1It is outside the scope of the current paper to give a detailed
introduction on the history of quantum mechanics. We refer
the interested reader to Vedral (2006) and Kleppner and Jackiw
(2000) for comprehensive overviews.
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systems for which it is impossible to specify a joint
probability distribution from the probability distri-
butions of their constituent parts. With regard to
word meanings, entanglement encodes (hidden) re-
lationships between concepts. The different senses
of a word “exist in parallel” until it is observed
in some context. This reduction of ambiguity has
effects on other concepts connected via entangle-
ment. The notion of incompatibility is fundamen-
tal to quantum systems. In classical systems, it is
assumed by default that measurements are compati-
ble, that is, independent, and as a result the order in
which these take place does not matter. By contrast
in quantum theory, measurements may share (hid-
den) order-sensitive inter-dependencies and the out-
come of the first measurement can change the out-
come of the second measurement.

Interference is a feature of quantum probability
that can cause classical assumptions such as the law
of total probability to be violated. When concepts
interact their joint representation can exhibit non-
classical behavior, e.g., with regard to conjunction
and disjunction (Aerts, 2009). An often cited ex-
ample is the “guppy effect”. Although guppy is an
example of a pet-fish it is neither a very typical pet
nor fish (Osherson and Smith, 1981).

In the following we use the rich mathematical
framework of quantum theory to model semantic in-
formation. Specifically, we show how word mean-
ings can be expressed as quantum states. A word
brings with it its own subspace which is spanned by
vectors representing its potential usages. We present
a specific implementation of a semantic space that is
syntactically aware, takes word order into account,
and features key aspects of quantum theory. We em-
pirically evaluate our model on word similarity and
association and show that it achieves results com-
petitive with a variety of classical models. We be-
gin by introducing some of the mathematical back-
ground needed for describing our approach (Sec-
tion 2). Next, we present our semantic space model
(Section 3) and our evaluation experiments (Sec-
tions 4 and 5). We conclude by discussing related
work (Section 6).

2 Preliminaries

Let c = r eiθ be a complex number, expressed in po-
lar form, with absolute value r = |c| and phase θ. Its
complex conjugate c∗ = r e−iθ has the inverse phase.
Thus, their product cc∗ = (r eiθ)(r e−iθ) = r2 is real.

2.1 Vectors

We are interested in finite-dimensional, complex-
valued vector spaces Cn with an inner product, oth-
erwise known as Hilbert space. A column vector−→
ψ ∈ Cn can be written as an ordered vertical array
of its n complex-valued components, or alternatively
as a weighted sum of base vectors:

−→
ψ =


ψ1
ψ2
...

ψn

=ψ1


1
0
...
0

+ . . .+ψn


0
...
0
1

 (1)

Whereas Equation (1) uses base vectors from the
standard base Bstd = {

−→
b1 , ...,

−→
bn}, any other set of n

orthonormal vectors serves just as well as a base for
the same space. Dirac (1939) introduced the so-
called bra-ket notation which is equally expressive
but notationally more convenient. A column vector
becomes a ket:

−→
ψ ≡ |ψ〉= ψ1|b1〉+ψ2|b2〉+ . . .+ψn|bn〉 (2)

and a row vector becomes a bra 〈ψ|. Transposing
a complex-valued vector or matrix (via the super-
script “†”) involves complex-conjugating all compo-
nents:

|ψ〉† = 〈ψ|= ψ
∗
1〈b1|+ψ

∗
2〈b2|+ . . .+ψ

∗
n〈bn| (3)

The Dirac notation for the inner product 〈·|·〉 il-
lustrates the origin of the terminology “bra-ket”.
Since Bstd’s elements are normalised and pairwise
orthogonal their inner product is:

〈bi|b j〉=
{

1, if i = j
0, otherwise (4)

The inner product is also applicable to pairs of non-
base kets:

(ψ∗1 ψ∗2 · · · ψ∗n)


φ1
φ2
...

φn

≡ 〈ψ|φ〉
= (∑i ψ∗i 〈bi|)

(
∑ j φ j|b j〉

)
= ∑i, j ψ∗i φ j〈bi|b j〉= ∑i ψ∗i φi〈bi|bi〉

= ∑i ψ∗i φi

(5)
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Reversing the order of an inner product complex-
conjugates it:

(〈ψ|φ〉)∗ = 〈φ|ψ〉 (6)

2.2 Matrices

Matrices are sums of outer products |·〉〈·|. For ex-
ample, the matrix (Mi, j)i, j can be thought of as
the weighted sum of “base-matrices” Bi, j ≡ |bi〉〈b j|,
whose components are all 0 except for a 1 in the i-th
row and j-th column. The outer product extends lin-
early to non-base kets in the following manor:

|ψ〉〈φ|= (∑i ψi|bi〉)
(

∑ j φ∗j〈b j|
)

= ∑i, j ψiφ
∗
j |bi〉〈b j|

(7)

This is analogous to the conventional multiplication: ψ1
...

ψn

(φ∗1 · · · φ
∗
n)=

 ψ1φ∗1 · · · ψ1φ∗n
...

. . .
...

ψnφ∗1 · · · ψnφ∗n

 (8)

We will also make use of the tensor product. Its ap-
plication to kets, bras and outer products is linear:

(|a〉+ |b〉)⊗|c〉= |a〉⊗ |c〉+ |b〉⊗ |c〉

(〈a|+ 〈b|)⊗〈c|= 〈a|⊗ 〈c|+ 〈b|⊗ 〈c|

(|a〉〈b|+ |c〉〈d|)⊗|e〉〈 f |=

(|a〉⊗ |e〉)(〈b|⊗ 〈 f |)+(|c〉⊗ |e〉)(〈d|⊗ 〈 f |)

(9)

For convenience we omit “⊗” where no confusion
arises, e.g., |a〉 ⊗ |b〉 = |a〉|b〉. When applied to
Hilbert spaces, the tensor product creates the com-
posed Hilbert space H = H1⊗ ...⊗Hn whose base
kets are simply induced by the tensor product of its
subspaces’ base kets:

base(H1⊗ ...⊗Hn) ={
nO

i=1

|b〉i : |b〉i ∈ base(Hi), 1≤ i≤ n

} (10)

Whereas the order of composed kets |a〉|b〉|c〉 usu-
ally suffices to identify which subket lives in which
subspace, we make this explicit by giving subkets

the same subscript as the corresponding subspace.
Thus, the order no longer matters, as in the follow-
ing inner product of composed kets:

(〈a|1〈b|2〈c|3)(|e〉3|d〉1| f 〉2) = 〈a|d〉〈b| f 〉〈c|e〉 (11)

Definition 1. Self-adjoint Matrix

A matrix M is self-adjoint iff Mi, j = M∗j,i for all i, j.
Consequently, all diagonal elements are real-valued,
and M = M† is its own transpose conjugate.

Definition 2. Density Matrix

A self-adjoint matrix M is a density matrix iff
it is positive semi-definite, i.e., 〈φ|M|φ〉 ≥ 0 for
all |φ〉 ∈ Cn, and it has unit trace, i.e., Tr(M) =
∑|b〉∈B 〈b|M|b〉= 1.

The term “density matrix” is synonymous with
“density operator”. Any density matrix ρ can
be decomposed arbitrarily as ρ = ∑i pi|si〉〈si|, the
weighted sum of sub-matrices |si〉〈si| with pi ∈ R>0
and 〈si|si〉= 1. The pi need not sum to 1. In fact the
decomposition where the pi sum to 1 and the |si〉 are
mutually orthogonal is unique and is called the eigen
decomposition. Consequently Beig = {|si〉}i consti-
tutes an orthonormal base, ρ’s so-called eigen base.
Density operators are used in quantum theory to de-
scribe the state of some system. If the system’s state
ρ is certain we call it a pure state and write ρ = |s〉〈s|
for some unit ket |s〉. Systems whose state is uncer-
tain are described by a mixed state ρ = ∑i pi|si〉〈si|
which represents an ensemble of substates or pure
states {(pi,si)}i where the system is in substate si
with probability pi. Hence, the term “density” as in
probability density.

It is possible to normalize a density matrix
without committing to any particular decomposi-
tion. Only the trace function is required, because
norm(ρ) = ρ/Tr(ρ). Definition 2 mentions what the
trace function does. However, notice that the same
result is produced for any orthonormal base B , in-
cluding ρ’s eigen base Beig = {|ei〉}i. Even though
we do not know the content of Beig, we know that it
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exists. So we use it to show that dividing ρ by:

Tr(ρ) = Tr(∑i pi|ei〉〈ei|)

= ∑ j〈e j|(∑i pi|ei〉〈ei|)|e j〉

= ∑i, j pi〈e j|ei〉〈ei|e j〉

= ∑i pi〈ei|ei〉〈ei|ei〉= ∑i pi

(12)

normalizes its probability distribution over eigen
kets:

ρ

Tr(ρ) = ∑i pi|ei〉〈ei|
∑ j p j

=

∑i
pi

∑ j p j
|ei〉〈ei|

(13)

3 Semantic Space Model

We represent the meaning of words by density ma-
trices. Specifically, a lexical item w is modeled as
an ensemble Uw = {(pi,ui)}i of usages ui and the
corresponding probabilities pi that w gets used “in
the i-th manor”. A word’s usage is comprised of
distributional information about its syntactic and se-
mantic preferences, in the form of a ket |ui〉. The
density matrix ρw = ∑i pi|ui〉〈ui| represents the en-
semble Uw. This section explains our method of ex-
tracting lexical density matrices from a dependency-
parsed corpus. Once density matrices have been
learned, we can predict the expected usage similar-
ity of two words as a simple function of their density
matrices. Our explication will be formally precise,
but at the same time illustrate each principle through
a toy example.

3.1 Dependency Hilbert Space
Our model learns the meaning of words from a
dependency-parsed corpus. Our experiments have
used the Stanford parser (de Marneffe and Man-
ning, 2008), however any other dependency parser
with broadly similar output could be used instead.
A word’s usage is learned from the type of depen-
dency relations it has with its immediate neighbors
in dependency graphs. Its semantic content is thus
approximated by its “neighborhood”, i.e., its co-
occurrence frequency with neighboring words.

Neighborhoods are defined by a vocabu-
lary V = {w1, ...,wnV } of the nV most fre-
quent (non-stop) words in the corpus. Let
Rel = {sub−1,dobj−1,amod,num,poss, ...} denote

Document 1:

(1a)
the man see two angry jaguar

det subj

dobj

num

anod

(1b)
we see two angry elephant

subj

dobj

num

amod

(1c)
two elephant run

num nsubj

Document 2:

(2a)
she buy a nice new jaguar

subj

dobj

det

amod

amod

(2b)
I like my jaguar

subj

dobj

poss

Figure 1: Example dependency trees in a toy corpus. Dot-
ted arcs are ignored because they are either not connected
to the target words jaguar and elephant or because their
relation is not taken into account in constructing the se-
mantic space. Words are shown as lemmas.

a subset of all dependency relations provided by
the parser and their inverses. The choice of Rel is a
model parameter. We considered only the most fre-
quently occuring relations above a certain threshold,
which turned out to be about half of the full inven-
tory. Relation symbols with the superscript “−1”
indicate the inversion of the dependency direction
(dependent to head). All other relation symbols
have the conventional direction (head to dependent).

Hence, w
xyz→ v is equivalent to v

xyz−1→ w. We then
partition Rel into disjoint clusters of syntactically
similar relations Part = {RC1, ...,RCnPart}. For
example, we consider syntactically similar relations
which connect target words with neighbors with
the same part of speech. Each relation cluster RCk
is assigned a Hilbert space Hk whose base kets
{|w(k)

j 〉} j correspond to the words in V = {w j} j.
Figure 1 shows the dependency parses for a

toy corpus consisting of two documents and five
sentences. To create a density matrix for the target
words jaguar and elephant, let us assume that we
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will consider the following relation clusters:
RC1 = {dobj−1,iobj−1,agent−1,nsubj−1, ...},
RC2 = {advmod,amod,tmod, ...} and RC3 = {nn,
appos,num,poss, ...}.

3.2 Mapping from Dependency Graphs to Kets

Next, we create kets which encode syntactic and se-
mantic relations as follows. For each occurrence of
the target word w in a dependency graph, we only
consider the subtree made up of w and the immedi-
ate neighbors connected to it via a relation in Rel.
In Figure 1, arcs from the dependency parse that we
ignore are shown as dotted. Let the subtree of in-
terest be st = {(RC1,v1), ...,(RCnPart ,vnPart )}, that is,
w is connected to vk via some relation in RCk, for
k ∈ {1, ...,nPart}. For any relation cluster RCk that
does not feature in the subtree, let RCk be paired with
the abstract symbol w /0 in st. This symbol represents
uncertainty about a potential RCk-neighbor.

We convert all subtrees st in the corpus for the tar-
get word w into kets |ψst〉 ∈ H1⊗ ...⊗HnPart . These
in turn make up the word’s density matrix ρw. Be-
fore we do so, we assign each relation cluster RCk
a complex value αk = eiθk . The idea behind these
values is to control for how much each subtree con-
tributes to the overall density matrix. This becomes
more apparent after we formulate our method of in-
ducing usage kets and density matrices.

|ψst〉= αst
O

(RCk,v)∈st

|v〉k, (14)

where αst = ∑(RCk,v)∈st,v 6=w /0
αk. Every RCk paired

with some neighbor v ∈ V induces a basic subket
|v〉k ∈ base(Hk), i.e., a base ket of the k-th sub-
space or subsystem. All other subkets |w /0〉k =
∑v∈V |V |−

1
2 |v〉k are in a uniformly weighted super-

position of all base kets. The factor |V |− 1
2 ensures

that 〈w /0|w /0〉 = 1. The composed ket for the sub-
tree st is again weighted by the complex-valued αst .

αst is the sum of complex values αk = eiθk , each
with absolute value 1. Therefore, its own abso-
lute value depends highly on the relative orienta-
tion θk among its summands: equal phases reinforce
absolute value, but the more phases are opposed
(i.e., their difference approaches π), the more they
cancel out the sum’s absolute value. Only those αk
contribute to this sum whose relation cluster is not
paired with w /0. The choice of the parameters θk al-
lows us to put more weight on some combinations

(a)

〈ψst1 | 〈ψst2 | 〈ψst3 |
|ψst1〉
|ψst2〉
|ψst3〉

6= 0 6= 0 6= 0
6= 0 6= 0 6= 0
6= 0 6= 0 6= 0

(b)

〈ψst1 | 〈ψst2 | 〈ψst3 |
|ψst1〉
|ψst2〉
|ψst3〉

6= 0 0 0
0 6= 0 0
0 0 6= 0

Figure 2: Excerpts of density matrices that result from
the dependency subtrees st1,st2,st3. Element mi, j in row i
and column j is mi, j|ψsti〉〈ψst j | in Dirac notation. (a) All
three subtrees are in the same document. Thus their kets
contribute to diagonal and off-diagonal matrix elements.
(b) Each subtree is in a separate document. Therefore
their kets do not group, affecting only diagonal matrix
elements.

of dependency relations than others.
Arbitrarily choosing θ1 = π

4 , θ2 = 7π

4 ,
and θ3 = 3π

4 renders the subtrees in Fig-
ure 1 as |ψst1a〉 = eiπ/4|see〉1|angry〉2|two〉3,
|ψst2a〉=

√
2|buy〉1(|nice〉2 + |new〉2)|w /0〉3, |ψst2b〉=√

2eiπ/2|like〉1|w /0〉2|my〉3, which are relevant for
jaguar, and |ψst1b〉 = eiπ/4|see〉1|angry〉2|two〉3,
|ψst1c〉 =

√
2eiπ/2|run〉1|w /0〉2|two〉3, which are

relevant for elephant. The subscripts outside of the
subkets correspond to those of the relation clusters
RC1,RC2,RC3 chosen in Section 3.1.

In sentence 2a, jaguar has two neighbors under
RC2. Therefore the subket from H2 is a superpo-
sition of the base kets |nice〉2 and |new〉2. This is
a more intuitive formulation of the equivalent ap-
proach which first splits the subtree for buy nice new
jaguar into two similar subtrees for buy nice jaguar
and for buy new jaguar, and then processes them as
seperate subtrees within the same document.

3.3 Creating Lexical Density Matrices
We assume that a word’s usage is uniform through-
out the same document. In our toy corpus in Fig-
ure 1, jaguar is always the direct object of the main
verb. However, in Document 1 it is used in the an-
imal sense, whereas in Document 2 it is used in the
car sense. Even though the usage of jaguar in sen-
tence (2b) is ambiguous, we group it with that of
sentence (2a).

These considerations can all be comfortably en-
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ρ jaguar = (|ψst1a〉〈ψst1a |+(|ψst2a〉+ |ψst2b〉)(〈ψst2a |+ 〈ψst2b |))/7 =
0.14|see〉1|angry〉2|two〉3〈see|1〈angry|2〈two|3+ 0.29|buy〉1|nice〉2|w /0〉3〈buy|1〈nice|2〈w /0|3+
0.29|buy〉1|nice〉2|w /0〉3〈buy|1〈new|2〈w /0|3+ 0.29|buy〉1|new〉2|w /0〉3〈buy|1〈nice|2〈w /0|3+
0.29|buy〉1|new〉2|w /0〉3〈buy|1〈new|2〈w /0|3+ 0.29eπ/2|like〉1|w /0〉2|my〉3〈buy|1〈nice|2〈w /0|3+
0.29eπ/2|like〉1|w /0〉2|my〉3〈buy|1〈new|2〈w /0|3+ 0.29e−π/2|buy〉1|nice〉2|w /0〉3〈like|1〈w /0|2〈my|3+
0.29e−π/2|buy〉1|new〉2|w /0〉3〈like|1〈w /0|2〈my|3+ 0.29|like〉1|w /0〉2|my〉3〈like|1〈w /0|2〈my|3

ρelephant = ((|ψst1b〉+ |ψst1c〉)(〈ψst1b |+ 〈ψst1c |))/3 =
0.33|see〉1|angry〉2|two〉3〈see|1〈angry|2〈two|3+ 0.47eπ/4|run〉1|w /0〉2|two〉3〈see|1〈angry|2〈two|3+
0.47e−π/4|see〉1|angry〉2|two〉3〈run|1〈w /0|2〈two|3+ 0.67|run〉1|w /0〉2|two〉3〈run|1〈w /0|2〈two|3

Tr(ρ jaguarρelephant)=Tr(0.05|ψst1a〉〈ψst1b |+0.05eiπ/4|ψst1a〉〈ψst1c |)=Tr(0.05|see〉1|angry〉2|two〉3〈see|1〈angry|2〈two|3+
0.07e−π/4|see〉1|angry〉2|two〉3〈run|1〈w /0|2〈two|3) = ∑

|b〉∈base(H1⊗H2⊗H3)
〈b|(0.05|see〉1|angry〉2|two〉3〈see|1〈angry|2〈two|3+

0.07e−π/4|see〉1|angry〉2|two〉3〈run|1〈w /0|2〈two|3)|b〉= 0.05

Figure 3: Lexical density matrices for the words jaguar and elephant and their similarity.

coded in a density matrix. This is simply gener-
ated via the outer product of our subtree kets |ψst〉.
For example, ρD1, jaguar = |ψst1a〉〈ψst1a | represents
the contribution that document D1 makes to ρ jaguar.
Document D2, however, has more than one ket
relevant to ρ jaguar. Due to our assumption of
document-internal uniformity of word usage, we
group D2’s subtree-kets additively: ρD2, jaguar =
(|ψst2a〉+ |ψst2b〉)(〈ψst2a |+〈ψst2b |). The target word’s
density matrix ρw is the normalized sum of all den-
sity matrices ρD,w obtained from each D:

ρD,w =

(
∑

st∈STD,w

|ψst〉

)(
∑

st∈STD,w

〈ψst |

)
(15)

where STD,w is the set of all subtrees for target
word w in document D. To illustrate the differ-
ence that this grouping makes, consider the den-
sity matrices in Figure 2. Whereas in (a) the sub-
trees st1,st2,st3 share a document, in (b) they are
from distinct documents. This grouping causes them
to not only contribute to diagonal matrix elements,
e.g., |ψst2〉〈ψst2 |, as in (b), but also to off diagonal
ones, e.g., |ψst2〉〈ψst1 |, as in (a).

Over the course of many documents the summa-
tion of all contributions, no matter how small or
large the groups are, causes “clusters of weight”
to form, which hopefully coincide with word us-
ages. As mentioned in Section 3.2, adding complex-
valued matrix elements increases or decreases the
sum’s absolute value depending on relative phase
orientation. This makes it possible for interference

to occur. Since the same word appears in varying
contexts, the corresponding complex-valued outer
products interact upon summation. Finally, the den-
sity matrix gets normalized, i.e., divided by its trace.
This leaves the distributional information intact and
merely normalizes the probabilities. Figure 3 illus-
trates the estimation of the density matrices for the
words jaguar and elephant from the toy corpus in
Figure 1.

3.4 Usage Similarity

Decomposing the density matrix of the target
word w, ρw = ∑i pi|ui〉〈ui| recovers the usage ensem-
ble Uw = {(pi,ui)}i. However, in general there are
infinitely many possible ensembles which ρw might
represent. This subsection explains our metric for
estimating the usage similarity of two words. The
math involved shows that we can avoid the question
of how to best decompose ρw.

We compute the usage similarity of two words w
and v by comparing each usage of w with each us-
age of v and weighting these similarity values with
the corresponding usage probabilities. Let ρw =
∑i p(w)

i |u
(w)
i 〉〈u

(w)
i | and ρv = ∑i p(v)

i |u
(v)
i 〉〈u

(v)
i |. The

similarity of some usage kets |u(w)
i 〉 and |u(v)

j 〉 is ob-
tained, as is common in the literature, by their in-
ner product 〈u(w)

i |u
(v)
j 〉. However, as this is a com-

plex value, we multiply it with its complex conju-
gate, rendering the real value 〈u(v)

j |u
(w)
i 〉〈u

(w)
i |u

(v)
j 〉=

|〈u(w)
i |u

(v)
j 〉|2. Therefore, in total the expected simi-

larity of w and v is:

852



(16)sim(w,v) = ∑
i, j

p(w)
i p(v)

j 〈u
(v)
j |u

(w)
i 〉〈u

(w)
i |u

(v)
j 〉

= Tr

(
∑
i, j

p(w)
i p(v)

j |u
(w)
i 〉〈u

(w)
i |u

(v)
j 〉〈u

(v)
j |

)
=

Tr

(
(∑

i
p(w)

i |u
(w)
i 〉〈u

(w)
i |)(∑

j
p(v)

j |u
(v)
j 〉〈u

(v)
j |)

)
= Tr(ρwρv)

We see that the similarity function simply reduces to
multiplying ρw with ρv and applying the trace func-
tion. The so-called cyclic property of the trace func-
tion (i.e., Tr(M1M2) = Tr(M2M1) for any two matri-
ces M1,M2) gives us the corollary that this particular
similarity function is symmetric.

Figure 3 (bottom) shows how to calculate the sim-
ilarity of jaguar and elephant. Only the coefficient
of the first outer product survives the tracing pro-
cess because its ket and bra are equal modulo trans-
pose conjugate. As for the second outer product,
0.05eiπ/4〈b|ψst1a〉〈ψst1c |b〉 is 0 for all base kets |b〉.

3.5 What Does This Achieve?

We represent word meanings as described above for
several reasons. The density matrix decomposes into
usages each of which are a superposition of combi-
nations of dependents. Internally, these usages are
established automatically by way of “clustering”.

Our model is parameterized with regard to the
phases of sub-systems (i.e., clusters of syntactic re-
lations) which allows us to make optimal use of in-
terference, as this plays a large role in the over-
all quality of representation. It is possible for a
combination of (groups of) dependents to get en-
tangled if they repeatedly appear together under the
same word, and only in that combination. If the
co-occurence of (groups of) dependents is uncorre-
lated, though, they remain unentangled. Quantum
entanglement gives our semantic structures the po-
tential for long-distance effects, once quantum mea-
surement becomes involved. This is in analogy to
the nonlocal correlation between properties of sub-
atomic particles, such as the magnetic spin of elec-
trons or the polarization of photons. Such an exten-
sion to our implementation will also uncover which
sets of measurements are order-sensitive, i.e., in-
compatible.

Our similarity metric allows two words to “select”
each other’s usages via their pairwise inner prod-

ucts. Usage pairs with a high distributional simi-
larity roughly “align” and then get weighted by the
probabilities of those usages. Two words are similar
if they are substitutable, that is, if they can be used
in the same syntactic environment and have the same
meaning. Hopefully, this leads to more accurate es-
timation of distributional similarity and can be used
to compute word meaning in context.

4 Experimental Setup

Data All our experiments used a dependency
parsed and lemmatized version of the British Na-
tional Corpus (BNC). As mentioned in Section 3, we
obtained dependencies from the output of the Stan-
ford parser (de Marneffe and Manning, 2008). The
BNC comprises 4,049 texts totalling approximately
100 million words.

Evaluation Tasks We evaluated our model on
word similarity and association. Both tasks are em-
ployed routinely to assess how well semantic models
predict human judgments of word relatedness. We
used the WordSim353 test collection (Finkelstein et
al., 2002) which consists of similarity judgments for
word pairs. Participants gave each pair a similar-
ity rating using a 0 to 10 scale (e.g., tiger–cat are
very similar, whereas delay–racism are not). The
average rating for each pair represents an estimate of
the perceived similarity of the two words. The col-
lection contains ratings for 437 unique words (353
pairs) all of which appeared in our corpus. Word as-
sociation is a slightly different task: Participants are
given a cue word (e.g., rice) and asked to name an
associate in response (e.g., Chinese, wedding, food,
white). We used the norms collected by Nelson et
al. (1998). We estimated the strength of association
between a cue and its associate, as the relative fre-
quency with which it was named. The norms con-
tain 9,968 unique words (70,739 pairs) out of which
9,862 were found in our corpus, excluding multi-
word expressions.

For both tasks, we used correlation analysis to ex-
amine the degree of linear relationship between hu-
man ratings and model similarity values. We report
correlation coefficients using Spearman’s rank cor-
relation coefficient.

Quantum Model Parameters The quantum
framework presented in Section 3 is quite flexible.
Depending on the choice of dependency rela-
tions Rel, dependency clusters RC j, and complex
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values α j = eiθ j , different classes of models can be
derived. To explore these parameters, we partitioned
the WordSim353 dataset and Nelson et al.’s (1998)
norms into a development and test set following
a 70–30 split. We tested 9 different intuitively
chosen relation partitions {RC1, ...,RCnPart}, cre-
ating models that considered only neighboring
heads, models that considered only neighboring
dependents, and models that considered both. For
the latter two we experimented with partitions of
one, two or three clusters. In addition to these more
coarse grained clusters, for models that included
both heads and dependents we explored a partition
with twelve clusters broadly corresponding to
objects, subjects, modifiers, auxiliaries, determiners
and so on. In all cases stopwords were not taken
into account in the construction of the semantic
space.

For each model variant we performed a grid
search over the possible phases θ j = kπ with range
k = 0

4 , 1
4 , ..., 7

4 for the complex-valued α j assigned
to the respective relation cluster RC j (see Section
3.2 for details). In general, we observed that the
choice of dependency relations and their clustering
as well as the phases assigned to each cluster greatly
influenced the semantic space. On both tasks, the
best performing model had the relation partition de-
scribed in Section 3.1. Section 5 reports our results
on the test set using this model.

Comparison Models We compared our quantum
space against three classical distributional models.
These include a simple semantic space, where a
word’s meaning is a vector of co-occurrences with
neighboring words (Mitchell and Lapata, 2010), a
syntax-aware space based on weighted distributional
triples that encode typed co-occurrence relations
among words (Baroni and Lenci, 2010) and word
embeddings computed with a neural language model
(Bengio, 2001; Collobert and Weston, 2008) For all
three models we used parameters that have been re-
ported in the literature as optimal.

Specifically, for the simple co-occurrence-based
space we follow the settings of Mitchell and Lapata
(2010): a context window of five words on either
side of the target word and 2,000 vector dimensions
(i.e., the 2000 most common context words in the
BNC). Vector components were set to the ratio of
the probability of the context word given the target
word to the probability of the context word overall.
For the neural language model, we adopted the best

Models WordSim353 Nelson Norms

SDS 0.433 0.151
DM 0.318 0.123
NLM 0.196 0.091
QM 0.535 0.185

Table 1: Performance of distributional models on Word-
Sim353 dataset and Nelson et al.’s (1998) norms (test
set). Correlation coefficients are all statistically signifi-
cant (p < 0.01).

performing parameters from our earlier comparison
of different vector sources for distributional seman-
tics (Blacoe and Lapata, 2012) where we also used
the BNC for training. There we obtained best results
with 50 dimensions, a context window of size 4,
and an embedding learning rate of 10−9. Our third
comparison model uses Baroni and Lenci’s (2010)
third-order tensor2 which they obtained from a very
large dependency-parsed corpus containing approxi-
mately 2.3 billion words. Their tensor assigns a mu-
tual information score to instances of word pairs w,v
and a linking word l. We obtained vectors −→w from
the tensor following the methodology proposed in
Blacoe and Lapata (2012) using 100 (l,v) contexts
as dimensions.

5 Results

Our results are summarized in Table 1. As can
be seen, the quantum model (QM) obtains perfor-
mance superior to other better-known models such
as Mitchell and Lapata’s (2010) simple semantic
space (SDS), Baroni and Lenci’s (2010) distribu-
tional memory tensor (DM), and Collobert and We-
ston’s (2008) neural language model (NLM). Our
results on the association norms are comparable to
the state of the art (Silberer and Lapata, 2012; Grif-
fiths et al., 2007). With regard to WordSim353,
Huang et al. (2012) report correlations in the range
of 0.713–0.769, however they use Wikipedia as a
training corpus and a more sophisticated version of
the NLM presented here, that takes into account
global context and performs word sense discrimi-
nation. In the future, we also plan to evaluate our
model on larger Wikipedia-scale corpora. We would
also like to model semantic composition as our ap-
proach can do this easily by taking advantage of the
notion of quantum measurement. Specifically, we

2Available at http://clic.cimec.unitn.it/dm/.
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Models bar order
SDS pub, snack, restau-

rant, grill, coctail
form, direct, proce-
dure, plan, request

DM counter, rack, strip,
pipe, code

court, demand, form,
law, list

NLM room, pole, drink,
rail, coctail

direct, command,
plan, court, demand

QM prison, liquor, beer,
club, graph

organization, food,
law, structure,
regulation

HS drink, beer, stool, al-
cohol, grill

food, form, law, heat,
court

Table 2: Associates for bar and order ranked according to
similarity. Underlined associates overlap with the human
responses (HS).

can work out the meaning of a dependency tree by
measuring the meaning of its heads in the context of
their dependents.

Table 2 shows the five most similar associates (or-
dered from high to low) for the cues bar and order
for the quantum model and the comparison models.
We also show the human responses (HS) according
to Nelson et al.’s (1998) norms. The associates gen-
erated by the quantum model correspond to several
different meanings correlated with the target. For
example, prison refers to the “behind bars” sense
of bar, liquor and beer refer to what is consumed
or served in bars, club refers to the entertainment
function of bars, whereas graph refers to how data
is displayed in a chart.

6 Related Work

Within cognitive science the formal apparatus of
quantum theory has been used to formulate models
of cognition that are superior to those based on tra-
ditional probability theory. For example, conjunc-
tion fallacies3 (Tversky and Kahneman, 1983) have
been explained by making reference to quantum the-
ory’s context dependence of the probability assess-
ment. Violations of the sure-thing principle4 (Tver-
sky and Shafir, 1992) have been modeled in terms of
a quantum interference effect. And the asymmetry
of similarity relations has been explained by pos-
tulating that different concepts correspond to sub-
spaces of different dimensionality (Pothos and Buse-
meyer, 2012). Several approaches have drawn on

3A conjunction fallacy occurs when it is assumed that spe-
cific conditions are more probable than a single general one.

4The principle is the expectation that human behavior ought
to conform to the law of total probability

quantum theory in order to model semantic phe-
nomena such as concept combination (Bruza and
Cole, 2005), the emergence of new concepts (Aerts
and Gabora, 2005), and the human mental lexicon
(Bruza et al., 2009). Chen (2002) captures syllo-
gisms in a quantum theoretic framework; the model
takes statements like All whales are mammals and
all mammals are animals as input and outputs con-
clusions like All whales are animals.

The first attempts to connect the mathematical
basis of semantic space models with quantum the-
ory are due to Aerts and Czachor (2004) and Bruza
and Cole (2005). They respectively demonstrate
that Latent Semantic Analysis (Landauer and Du-
mais, 1997) and the Hyperspace Analog to Lan-
guage model (Lund and Burgess, 1996) are essen-
tially Hilbert space formalisms, without, however,
providing concrete ways of building these models
beyond a few hand-picked examples. Interestingly,
Bruza and Cole (2005) show how lexical operators
may be contrived from corpus co-occurrence counts,
albeit admitting to the fact that their operators do not
provide sensical eigenkets, most likely because of
the simplified method of populating the matrix from
corpus statistics. Grefenstette et al. (2011) present a
model for capturing semantic composition in a quan-
tum theoretical context, although it appears to be
reducible to the classical probabilistic paradigm. It
does not make use of the unique aspects of quantum
theory (e.g., entanglement, interference, or quantum
collapse).

Our own work follows Aerts and Czachor (2004)
and Bruza and Cole (2005) in formulating a model
that exhibits important aspects of quantum theory.
Contrary to them, we present a fully-fledged seman-
tic space rather than a proof-of-concept. We obtain
quantum states (i.e., lexical representations) for each
word by taking its syntactic context into account.
Quantum states are expressed as density operators
rather than kets. While a ket can only capture one
pure state of a system, a density operator contains
an ensemble of pure states which we argue is advan-
tageous from a modeling perspective. Within this
framework, not only can we compute the meaning of
individual words but also phrases or sentences, with-
out postulating any additional operations. Compo-
sitional meaning reduces to quantum measurement
at each inner node of the (dependency) parse of the
structure in question.
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Abstract

Our goal is to extract answers from pre-
retrieved sentences for Question Answering
(QA). We construct a linear-chain Conditional
Random Field based on pairs of questions
and their possible answer sentences, learning
the association between questions and answer
types. This casts answer extraction as an an-
swer sequence tagging problem for the first
time, where knowledge of shared structure be-
tween question and source sentence is incor-
porated through features based on Tree Edit
Distance (TED). Our model is free of man-
ually created question and answer templates,
fast to run (processing 200 QA pairs per sec-
ond excluding parsing time), and yields an F1
of 63.3% on a new public dataset based on
prior TREC QA evaluations. The developed
system is open-source, and includes an imple-
mentation of the TED model that is state of the
art in the task of ranking QA pairs.

1 Introduction

The success of IBM’s Watson system for Question
Answering (QA) (Ferrucci et al., 2010) has illus-
trated a continued public interest in this topic. Wat-
son is a sophisticated piece of software engineering
consisting of many components tied together in a
large parallel architecture. It took many researchers
working full time for years to construct. Such re-
sources are not available to individual academic re-
searchers. If they are interested in evaluating new
ideas on some aspect of QA, they must either con-
struct a full system, or create a focused subtask

∗Performed while faculty at Johns Hopkins University.

paired with a representative dataset. We follow the
latter approach and focus on the task of answer ex-
traction, i.e., producing the exact answer strings for
a question.

We propose the use of a linear-chain Conditional
Random Field (CRF) (Lafferty et al., 2001) in or-
der to cast the problem as one of sequence tagging
by labeling each token in a candidate sentence as ei-
ther Beginning, Inside or Outside (BIO) of an an-
swer. This is to our knowledge the first time a
CRF has been used to extract answers.1 We uti-
lize not only traditional contextual features based on
POS tagging, dependency parsing and Named Entity
Recognition (NER), but most importantly, features
extracted from a Tree Edit Distance (TED) model
for aligning an answer sentence tree with the ques-
tion tree. The linear-chain CRF, when trained to
learn the associations between question and answer
types, is a robust approach against error propaga-
tion introduced in the NLP pipeline. For instance,
given an NER tool that always (i.e., in both train-
ing and test data) recognizes the pesticide DDT as
an ORG, our model realizes, when a question is
asked about the type of chemicals, the correct an-
swer might be incorrectly but consistently recog-
nized as ORG by NER. This helps reduce errors in-
troduced by wrong answer types, which were esti-
mated as the most significant contributer (36.4%)
of errors in the then state-of-the-art QA system of
Moldovan et al. (2003).

The features based on TED allow us to draw the

1CRFs have been used in judging answer-bearing sentences
(Shima et al., 2008; Ding et al., 2008; Wang and Manning,
2010), but not extracting exact answers from these sentences.
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connection between the question and answer sen-
tences before answer extraction, whereas tradition-
ally the exercise of answer validation (Magnini et
al., 2002; Penas et al., 2008; Rodrigo et al., 2009)
has been performed after as a remedy to ensure the
answer is really “about” the question.

Motivated by a desire for a fast runtime,2 we
base our TED implementation on the dynamic-
programming approach of Zhang and Shasha
(1989), which helps our final system process 200
QA pairs per second on standard desktop hardware,
when input is syntactically pre-parsed.

In the following we first provide background on
the TED model, going on to evaluate our implemen-
tation against prior work in the context of question
answer sentence ranking (QASR), achieving state of
the art in that task. We then describe how we cou-
ple TED features to a linear-chain CRF for answer
extraction, providing the set of features used, and fi-
nally experimental results on an extraction dataset
we make public (together with the software) to the
community.3 Related prior work is interspersed
throughout the paper.

2 Tree Edit Distance Model

Tree Edit Distance (§2.1) models have been shown
effective in a variety of applications, including tex-
tual entailment, paraphrase identification, answer
ranking and information retrieval (Reis et al., 2004;
Kouylekov and Magnini, 2005; Heilman and Smith,
2010; Augsten et al., 2010). We chose the variant
proposed by Heilman and Smith (2010), inspired by
its simplicity, generality, and effectiveness. Our ap-
proach differs from those authors in their reliance
on a greedy search routine to make use of a complex
tree kernel. With speed a consideration, we opted
for the dynamic-programming solution of Zhang
and Shasha (1989) (§2.1). We added new lexical-
semantic features §(2.2) to the model and then eval-
uated our implementation on the QASR task, show-
ing strong results §(2.3).

Feature Description
distance tree edit distance from answer

sentence to question
renNoun
renVerb
renOther

# edits changing POS from or to
noun, verb, or other types

insN, insV,
insPunc,
insDet,
insOtherPos

# edits inserting a noun, verb,
punctuation mark, determiner
or other POS types

delN, delV, ... deletion mirror of above
ins{N,V,P}Mod
insSub, insObj
insOtherRel

# edits inserting a modifier for
{noun, verb, preposition}, sub-
ject, object or other relations

delNMod, ... deletion mirror of above
renNMod, ... rename mirror of above
XEdits # basic edits plus sum of in-

s/del/ren edits
alignNodes,
alignNum,
alignN, alignV,
alignProper

# aligned nodes, and those that
are numbers, nouns, verbs, or
proper nouns

Table 1: Features for ranking QA pairs.

2.1 Cost Design and Edit Search

Following Bille (2005), we define an edit script be-
tween trees T1, T2 as the edit sequence transforming
T1 to T2 according to a cost function, with the total
summed cost known as the tree edit distance. Basic
edit operations include: insert, delete and rename.

With T a dependency tree, we represent each node
by three fields: lemma, POS and the type of depen-
dency relation to the node’s parent (DEP). For in-
stance, Mary/nnp/sub is the proper noun Mary in
subject position.

Basic edits are refined into 9 types, where the
first six (INS LEAF, INS SUBTREE, INS, DEL LEAF,
DEL SUBTREE, DEL) insert or delete a leaf node, a
whole subtree, or a node that is neither a leaf nor
part of a whole inserted subtree. The last three
(REN POS, REN DEP, REN POS DEP) serve to re-
name a POS tag, dependency relation, or both.

2For instance, Watson was designed under the constraint of
a 3 second response time, arising from its intended live use in
the television gameshow, Jeopardy!.

3http://code.google.com/p/jacana/
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prd
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cd
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Tennis player Jennifer Capriati is 23

TreeEdit 
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capriati
nnp
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vmod vmod

nmod

What sport does 
Jennifer Capriati play

insSubTree:

ins(play/vbz/vmod)
ins(do/vbz/root)

WordNet

Figure 1: Edits transforming a source sentence (left) to a question (right). Each node consists of: lemma, POS tag
and dependency relation, with root nodes and punctuation not shown. Shown includes deletion (× and strikethrough
on the left), alignment (arrows) and insertion (shaded area). Order of operations is not displayed. The standard TED
model does not capture the alignment between tennis and sport (see Section 2.2).

We begin by uniformly assigning basic edits a
cost of 1.0,4 which brings the cost of a full node in-
sertion or deletion to 3 (all the three fields inserted or
deleted). We allow renaming of POS and/or relation
type iff the lemmas of source and target nodes are
identical.5 When two nodes are identical and thus
do not appear in the edit script, or when two nodes
are renamed due to the same lemma, we say they are
aligned by the tree edit model (see Figure 1).

We used Zhang and Shasha (1989)’s dynamic
programming algorithm to produce an optimal edit
script with the lowest tree edit distance. The ap-
proach explores both trees in a bottom-up, post-
order manner, running in time:

O(|T1| |T2|min(D1, L1) min(D2, L2))

where |Ti| is the number of nodes, Di is the depth,
and Li is the number of leaves, with respect to tree
Ti.

Additionally, we fix the cost of stopword renam-
ing to 2.5, even in the case of identity, regardless
of whether two stopwords have the same POS tags
or relations. Stopwords tend to have fixed POS tags
and dependency relations, which often leads to less
expensive alignments as compared to renaming con-

4This applies separately to each element of the tripartite
structure; e.g., deleting a POS entry, inserting a lemma, etc.

5This is aimed at minimizing node variations introduced by
morphology differences, tagging or parsing errors.

tent terms. In practice this gave stopwords “too
much say” in guiding the overall edit sequence.

The resultant system is fast in practice, processing
10,000 pre-parsed tree pairs per second on a contem-
porary machine.6

2.2 TED for Sentence Ranking

The task of Question Answer Sentence Ranking
(QASR) takes a question and a set of source sen-
tences, returning a list sorted by the probability
likelihood that each sentence contains an appropri-
ate answer. Prior work in this includes that of:
Punyakanok et al. (2004), based on mapping syn-
tactic dependency trees; Wang et al. (2007) utiliz-
ing Quasi-Synchronous Grammar (Smith and Eis-
ner, 2006); Heilman and Smith (2010) using TED;
and Shima et al. (2008), Ding et al. (2008) and Wang
and Manning (2010), who each employed a CRF in
various ways. Wang et al. (2007) made their dataset
public, which we use here for system validation. To
date, models based on TED have shown the best per-
formance for this task.

Our implementation follows Heilman and Smith
(2010), with the addition of 15 new features beyond
their original 33 (see Table 1). Based on results

6In later tasks, feature extraction and decoding will slow
down the system, but the final system was still able to process
200 pairs per second.
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set source #ques. #pairs %pos. len.
TRAIN-ALL TREC8-12 1229 53417 12.0 any

TRAIN TREC8-12 94 4718 7.4 ≤ 40

DEV TREC13 82 1148 19.3 ≤ 40

TEST TREC13 89 1517 18.7 ≤ 40

Table 2: Distribution of data, with imbalance towards
negative examples (sentences without an answer).

in DEV, we extract edits in the direction from the
source sentence to the question.

In addition to syntactic features, we incorporated
the following lexical-semantic relations from Word-
Net: hypernym and synonym (nouns and verbs); en-
tailment and causing (verbs); and membersOf, sub-
stancesOf, partsOf, haveMember, haveSubstance,
havePart (nouns). Such relations have been used
in prior approaches to this task (Wang et al., 2007;
Wang and Manning, 2010), but not in conjunction
with the model of Heilman and Smith (2010).

These were made into features in two ways:
WNsearch loosens renaming and alignment within
the TED model from requiring strict lemma equal-
ity to allowing lemmas that shared any of the
above relations, leading to renaming operations such
as REN ...(country, china) and REN ...(sport,
tennis); WNfeature counts how many words be-
tween the sentence and answer sentence have each
of the above relations, separately as 10 independent
features, plus an aggregate count for a total of 11
new features beyond the earlier 48.

These features were then used to train a logistic
regression model using Weka (Hall et al., 2009).

2.3 QA Sentence Ranking Experiment

We trained and tested on the dataset from Wang et
al. (2007), which spans QA pairs from TREC QA
8-13 (see Table 2). Per question, sentences with
non-stopword overlap were first retrieved from the
task collection, which were then compared against
the TREC answer pattern (in the form of Perl regu-
lar expressions). If a sentence matched, then it was
deemed a (noisy) positive example. Finally, TRAIN,
DEV and TEST were manually corrected for errors.
Those authors decided to limit candidate source sen-

System MAP MRR
Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917
Wang and Manning (2010) 0.5951 0.6951
this paper (48 features) 0.6319 0.7270
+WNsearch 0.6371 0.7301
+WNfeature (11 more feat.) 0.6307 0.7477

Table 3: Results on the QA Sentence Ranking task.

tences to be no longer than 40 words.7 Keeping
with prior work, those questions with only positive
or negative examples were removed, leaving 94 of
the original 100 questions for evaluation.

The data was processed by Wang et al. (2007)
with the following tool chain: POS tags via MX-
POST (Ratnaparkhi, 1996); parse trees via MST-
Parser (McDonald et al., 2005) with 12 coarse-
grained dependency relation labels; and named enti-
ties via Identifinder (Bikel et al., 1999). Mean Av-
erage Precision (MAP) and Mean Reciprocal Rank
(MRR) are reported in Table 3. Our implementa-
tion gives state of the art performance, and is fur-
thered improved by our inclusion of semantic fea-
tures drawn from WordNet.8

3 CRF with TED for Answer Extraction

In this section we move from ranking source sen-
tences, to the next QA stage: answer extraction.
Given our competitive TED-based alignment model,
the most obvious solution to extraction would be to
report those spans aligned from a source sentence
to a question’s wh- terms. However, we show that
this approach is better formulated as a (strongly in-
dicative) feature of a larger set of answer extraction
signals.

3.1 Sequence Model
Figure 2 illustrates the task of tagging each token in
a candidate sentence with one of the following la-

7TRAIN-ALL is not used in QASR, but later for answer ex-
traction; TRAIN comes from the first 100 questions of TRAIN-
ALL.

8As the test set is of limited size (94 questions), then while
our MAP/MRR scores are 2.8% ∼ 5.6% higher than prior
work, this is not statistically significant according to the Paired
Randomization Test (Smucker et al., 2007), and thus should be
considered on par with the current state of the art.
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Tennis player Jennifer Capriati is 23

B-ANS O O O O O

Figure 2: An example of linear-chain CRF for an-
swer sequence tagging.

bels: B-ANSWER (beginning of answer), I-ANSWER

(inside of answer), O (outside of answer).
Besides local POS/NER/DEP features, at each to-

ken we need to inspect the entire input to connect the
answer sentence with the question sentence through
tree edits, drawing features from the question and
the edit script, motivating the use of a linear-chain
CRF model (Lafferty et al., 2001) over HMMs. To
the best of our knowledge this is the first time a
CRF has been used to label answer fragments, de-
spite success in other sequence tagging tasks.

3.2 Feature Design

In this subsection we describe the local and global
features used by the CRF.

Chunking We use the POS/NER/DEP tags directly
just as one would in a chunking task. Specifically,
suppose t represents the current token position and
pos[t] its POS tag, we extract unigram, bigram and
trigram features over the local context, e.g., pos[t−
2], pos[t − 2] : pos[t − 1], and pos[t − 2] : pos[t −
1] : pos[t]. Similar features are extracted for named
entity types (ner[t]), and dependency relation labels
(dep[t]).

Our intuition is these chunking features should al-
low for learning which types of words tend to be
answers. For instance, we expect adverbs to be as-
signed lower feature weights as they are rarely a
part of answer, while prepositions may have differ-
ent feature weights depending on their context. For
instance, of in kind of silly has an adjective on the
right, and is unlikely to be the Beginning of an an-
swer to a TREC-style question, as compared to in
when paired with a question on time, such as seen in
an answer in 90 days, where the preposition is fol-
lowed by a number then a noun.

Feature Description
edit=X type of edit feature. X: DEL,

DEL SUBTREE, DEL LEAF,
REN POS, REN DEP, REN POS DEP

or ALIGN.
X pos=?
X ner=?
X dep=?

Delete features. X is either DEL,
DEL SUBTREE or DEL LEAF. ?

represents the corresponding
POS/NER/DEP of the current token.

Xpos from=?f
Xpos to=?t

Xpos f t=?f ?t
Xner from=?f

Xner to=?t
Xner f t=?f ?t
Xdep from=?f

Xdep to=?t
Xdep f t=?f ?t

Rename features. X is either
REN POS, REN DEP or

REN POS DEP. Suppose word f in
answer is renamed to word t in

question, then ?f and ?t represent
corresponding POS/NER/DEP of f

and t.

align pos=?
align ner=?
align dep=?

Align features. ? represents the
corresponding POS/NER/DEP of the

current token.

Table 4: Features based on edit script for answer se-
quence tagging.

Question-type Chunking features do not capture
the connection between question word and an-
swer types. Thus they have to be combined
with question types. For instance, how many
questions are usually associated with numeric an-
swer types. We encode each major question-
type: who, whom, when, where, how many, how
much, how long, and then for each token, we
combine the question term with its chunking fea-
tures described in (most tokens have different fea-
tures because they have different POS/NER/DEP

types). One feature example of the QA pair
how much/100 dollars for the word 100 would be:
qword=how much|pos[t]=CD|pos[t+1]=NNS. We ex-
pect high weight for this feature since it is a good
pattern for matching question type and answer type.
Similar features also apply to what, which, why and
how questions, even though they do not indicate an
answer type as clearly as how much does.

Some extra features are designed for what/which
questions per required answer types. The question
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dependency tree is analyzed and the Lexical Answer
Type (LAT) is extracted. The following are some
examples of LAT for what questions:

• color: what is Crips’ gang color?
• animal: what kind of animal is an agouti?

The extra LAT=? feature is also used with chunking
features for what/which questions.

There is significant prior work in building spe-
cialized templates or classifiers for labeling question
types (Hermjakob, 2001; Li and Roth, 2002; Zhang
and Lee, 2003; Hacioglu and Ward, 2003; Metzler
and Croft, 2005; Blunsom et al., 2006; Moschitti
et al., 2007). We designed our shallow question
type features based on the intuitions of these prior
work, with the goal of having a relatively compact
approach that still extracts useful predictive signal.
One possible drawback, however, is that if an LAT is
not observed during training but shows up in testing,
the sequence tagger would not know which answer
type to associate with the question. In this case it
falls back to the more general qword=? feature and
will most likely pick the type of answers that are
mostly associated with what questions in training.

Edit script Our TED module produces an edit
trace for each word in a candidate sentence: the
word is either deleted, renamed (if there is a word
of the same lemma in the question tree) or strictly
aligned (if there is an identical node in the question
tree). A word in the deleted edit sequence is a cue
that it could be the answer. A word being aligned
suggests it is less likely to be an answer. Thus for
each word we extract features based on its edit type,
shown in Table 4.

These features are also appended with the token’s
POS/NER/DEP information. For instance, a deleted
noun usually carries higher edit feature weights than
an aligned adjective.

Alignment distance We observed that a candidate
answer often appears close to an aligned word (i.e.,
answer tokens tend to be located “nearby” portions
of text that align across the pair), especially in com-
pound noun constructions, restrictive clauses, prepo-
sition phrases, etc. For instance, in the following
pair, the answer Limp Bizkit comes from the leading
compound noun:

• What is the name of Durst ’s group?
• Limp Bizkit lead singer Fred Durst did a lot ...

Past work has designed large numbers of specific
templates aimed at these constructions (Soubbotin,
2001; Ravichandran et al., 2003; Clark et al., 2003;
Sneiders, 2002). Here we use a single general fea-
ture that we expect to pick up much of this signal,
without the significant feature engineering.

Thus we incorporated a simple feature to roughly
model this phenomenon. It is defined as the distance
to the nearest aligned nonstop word in the original
word order. In the above example, the only aligned
nonstop word is Durst. Then this nearest alignment
distance feature for the word Limp is:

nearest dist to align(Limp):5
This is the only integer-valued feature. All other

features are binary-valued. Note this feature does
not specify answer types: an adverb close to an
aligned word can also be wrongly taken as a strong
candidate. Thus we also include a version of the
POS/NER/DEP based feature for each token:

• nearest dist pos(Limp)=NNP
• nearest dist dep(Limp)=NMOD
• nearest dist ner(Limp)=B-PERSON

3.3 Overproduce-and-vote

We make an assumption that each sentence produces
a candidate answer and then vote among all answer
candidates to select the most-voted as the answer to
the original question. Specifically, this overproduce-
and-vote strategy applies voting in two places:

1. If there are overlaps between two answer candi-
dates, a partial vote is performed. For instance,
for a when question, if one answer candidate is
April , 1994 and the other is 1994, then besides
the base vote of 1, both candidates have an ex-
tra partial vote of #overlap/#total words = 1/4. We
call this adjusted vote.

2. If the CRF fails to find an answer, we still try to
“force” an answer out of the tagged sequence,
O’s). thus forced vote. Due to its lower credi-
bility (the sequence tagger does not think it is
an answer), we manually downweight the pre-
diction score by a factor of 0.1 (divide by 10).
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During what war d id Nimi tz serve ?
O O:0.921060 Conant
O O:0.991168 had
O O:0.997307 been
O O:0.998570 a
O O:0.998608 photographer
O O:0.999005 f o r
O O:0.877619 Adm
O O:0.988293 .
O O:0.874101 Chester
O O:0.924568 Nimi tz
O O:0.970045 dur ing
B−ANS O:0.464799 World
I−ANS O:0.493715 War
I−ANS O:0.449017 I I
O O:0.915448 .

Figure 3: A sample sequence tagging output that
fails to predict an answer. From line 2 on, the first
column is the reference output and the second col-
umn is the model output with the marginal probabil-
ity for predicated labels. Note that World War II has
much lower probabilities as an O than others.

The modified score for an answer candidate is thus:
total vote = adjusted vote + 0.1 × forced vote. To
compute forced vote, we make the following obser-
vation. Sometimes the sequence tagger does not tag
an answer in a candidate sentence at all, if there
is not enough probability mass accumulated for B-
ANS. However, a possible answer can still be caught
if it has an “outlier” marginal probability. Figure 3
shows an example. The answer candidate World War
II has a much lower marginal probability as an “O”
but still not low enough to be part of B-ANS/I-ANS.

To catch such an outlier, we use Median Absolute
Deviation (MAD), which is the median of the abso-
lute deviation from the median of a data sequence.
Given a data sequence x, MAD is defined as:

MAD(x) = median(| x−median(x) |)
Compared to mean value and standard deviation,

MAD is more robust against the influence of out-
liers since it does not directly depend on them. We
select those words whose marginal probability is 50
times of MAD away from the median of the whole
sequence as answer candidates. They contribute to
the forced vote. Downweight ratio (0.1) and MAD

System Train Prec.% Rec.% F1%

CRF TRAIN 55.7 43.8 49.1
TRAIN-ALL 67.2 50.6 57.7

CRF
+WNsearch

TRAIN 58.6 46.1 51.6
TRAIN-ALL 66.7 49.4 56.8

CRF forced TRAIN 54.5 53.9 54.2
TRAIN-ALL 60.9 59.6 60.2

CRF forced
+WNsearch

TRAIN 55.2 53.9 54.5
TRAIN-ALL 63.6 62.9 63.3

Table 5: Performance on TEST. “CRF” only takes
votes from candidates tagged by the sequence tag-
ger. “CRF forced” (described in §3.3) further col-
lects answer candidates from sentences that CRF
does not tag an answer by detecting outliers.

ratio (50) were hand-tuned on DEV.9

4 Experiments

4.1 QA Results

The dataset listed in Table 2 was not designed to
include an answer for each positive answer sen-
tence, but only a binary indicator on whether a sen-
tence contains an answer. We used the answer pat-
tern files (in Perl regular expressions) released along
with TREC8-13 to pinpoint the exact answer frag-
ments. Then we manually checked TRAIN, DEV, and
TEST for errors. TRAIN-ALL already came as a noisy
dataset so we did not manually clean it, also due to
its large size.

We trained on only the positive examples of
TRAIN and TRAIN-ALL separately with CRFsuite
(Okazaki, 2007). The reason for training solely with
positive examples is that they only constitute 10% of
all training data and if trained on all, the CRF tagger
was very biased on negative examples and reluctant
to give an answer for most of the questions. The
CRF tagger attempted an answer for about 2/3 of all
questions when training on just positive examples.

DEV was used to help design features. A practi-
cal benefit of our compact approach is that an entire
round of feature extraction, training on TRAIN and
testing on DEV took less than one minute. Table 5

9One might further improve this by leveraging the probabil-
ity of a sentence containing an answer from the QA pair ranker
described in Section 2 or via the conditional probability of the
sequence labels, p(y | x), under the CRF.
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reports F1 scores on both the positive and negative
examples of TEST.

Our baseline model, which aligns the question
word with some content word in the answer sen-
tence,10 achieves 31.4% in F1. This model does not
require any training. “CRF” only takes votes from
those sentences with an identified answer. It has the
best precision among all models. “CRF forced” also
detects outliers from sentences not tagged with an
answer. Large amount of training data, even noisy,
is helpful. In general TRAIN-ALL is able to boost the
F1 value by 7 ∼ 8%. Also, the overgenerate-and-
vote strategy, used by the “forced” approach, greatly
increased recall and achieved the best F1 value.

We also experimented with the two methods uti-
lizing WordNet in Section 2.2 , i.e., WNsearch and
WNfeature. In general, WNsearch helps F1 and
yields the best score (63.3%) for this task. For
WNfeature11 we observed that the CRF model con-
verged to a larger objective likelihood with these
features. However, it did not make a difference in
F1 after overgenerate-and-vote.

Finally, we found it difficult to do a head-to-head
comparison with other QA systems on this task.12

Thus we contribute this dataset to the community,
hoping to solicit direct comparisons in the future.
Also, we believe our chunking and question-type
features capture many intuitions most current QA
systems rely on, while our novel features are based
on TED. We further conduct an ablation test to com-
pare traditional and new QA features.

4.2 Ablation Test

We did an ablation test for each of the four types of
features. Note that the question type features are
used in combination with chunking features (e.g.,
qword=how much|pos[t]=CD|pos[t+1]=NN), while
the chunking feature is defined over POS/NER/DEP

10This only requires minimal modification to the original
TED algorithm: the question word is aligned with a certain
word in the answer tree instead of being inserted. Then the
whole subtree headed by the aligned word counts as the answer.

11These are binary features indicating whether an answer
candidate has a WordNet relation ( c.f. §2.2) with the LAT.
For instance, tennis is a hyponym of the LAT word sport in the
what sport question in Figure 1.

12Reasons include: most available QA systems either retrieve
sentences from the web, have different preprocessing steps, or
even include templates learned from our test set.

CRF Forced CRF Forced
All 49.1 54.2 -above 3 19.4 25.3
-POS 44.7 48.9 -EDIT 44.3 47.5
-NER 44.0 50.8 -ALIGN 47.4 51.1
-DEP 49.4 54.5 -above 2 40.5 42.0

Table 6: F1 based on feature ablation tests.

NONE CHUNKING CHUNKING+TED
Features Used

0
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20
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40

50
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F1
(%

) 31.4

40.5

49.1

42.0

54.2

F1 with Different Features

Baseline

CRF

CRF forced

Figure 4: Impact of adding features based on chunk-
ing and question-type (CHUNKING) and tree edits
(TED), e.g., EDIT and ALIGN.

separately. We tested the CRF model with deletion
of one of the following features each time:

• POS, NER or DEP. These features are all com-
bined with question types.
• The three of the above. Deletion of these fea-

tures also deletes question type feature implic-
itly.
• EDIT. Features extracted from edit script.
• ALIGN. Alignment distance features.
• The two of the above, based on the TED model.

Table 6 shows the F1 scores of ablation test when
trained on TRAIN. NER and EDIT are the two single
most significant features. NER is important because
it closely relates question types with answer entity
types (e.g., qword=who|ner[t]=PERSON). EDIT is
also important because it captures the syntactic asso-
ciation between question tree and answer tree. Tak-
ing out all three POS/NER/DEP features means the
chunking and question type features do not fire any-
more. This has the biggest impact on F1. Note the
feature redundancy here: the question type features
are combined with all three POS/NER/DEP features
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thus taking out a single one does not decrease per-
formance much. However, since TED related fea-
tures do not combine question type features, taking
out all three POS/NER/DEP features decreases F1 by
30%. Without TED related features (both EDIT and
ALIGN) F1 also drops more than 10%.

Figure 4 is a bar chart showing how much im-
provement each feature brings. While having a
baseline model with 31.4% in F1, traditional fea-
tures based on POS/DEP/NER and question types
brings a 10% increase with a simple sequence tag-
ging model (second bar labeled “CHUNKING” in
the figure). Furthermore, adding TED based features
to the model boosted F1 by another 10%.

5 Conclusion

Answer extraction is an essential task for any text-
based question-answering system to perform. In this
paper, we have cast answer extraction as a sequence
tagging problem by deploying a fast and compact
CRF model with simple features that capture many
of the intuitions in prior “deep pipeline” approaches.
We introduced novel features based on TED that
boosted F1 score by 10% compared with the use of
more standard features. Besides answer extraction,
our modified design of the TED model is the state
of the art in the task of ranking QA pairs. Finally,
to improve the community’s ability to evaluate QA
components without requiring increasingly imprac-
tical end-to-end implementations, we have proposed
answer extraction as a subtask worth evaluating in
its own right, and contributed a dataset that could
become a potential standard for this purpose. We
believe all these developments will contribute to the
continuing improvement of QA systems in the fu-
ture.
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Abstract

Traditional relation extraction seeks to iden-
tify pre-specified semantic relations within
natural language text, while open Information
Extraction (Open IE) takes a more general ap-
proach, and looks for a variety of relations
without restriction to a fixed relation set. With
this generalization comes the question, what
is a relation? For example, should the more
general task be restricted to relations medi-
ated by verbs, nouns, or both? To help answer
this question, we propose two levels of sub-
tasks for Open IE. One task is to determine if
a sentence potentially contains a relation be-
tween two entities? The other task looks to
confirm explicit relation words for two enti-
ties. We propose multiple SVM models with
dependency tree kernels for both tasks. For
explicit relation extraction, our system can ex-
tract both noun and verb relations. Our results
on three datasets show that our system is su-
perior when compared to state-of-the-art sys-
tems like REVERB and OLLIE for both tasks.
For example, in some experiments our system
achieves 33% improvement on nominal rela-
tion extraction over OLLIE. In addition we
propose an unsupervised rule-based approach
which can serve as a strong baseline for Open
IE systems.

1 Introduction

Relation Extraction (RE) systems are designed to
discover various semantic relations (e.g. <Obama,
president, the United States>) from natural lan-
guage text. Traditional RE systems extract spe-
cific relations for prespecified name-entity types
(Bunescu and Mooney, 2005; Chan and Dan, 2011;

Zhou and Zhu, 2011). To train such systems, ev-
ery relation needs manually annotated training ex-
amples, which supports limited scope and is diffi-
cult to extend. For this reason, Banko et al. (2007)
proposed Open Information Extraction (Open IE),
whose goal is to extract general relations for two en-
tities. The idea is to avoid the need for specific train-
ing examples, and to extract a diverse range of rela-
tions. This generalized form has received significant
attention, e.g., (Banko et al., 2007; Akbik, 2009; Wu
and Weld, 2010; Fader et al., 2011; Mausam et al.,
2012).

Because Open IE is not guided by or not restricted
to a prespecified list of relations, the immediate chal-
lenge is determining about what counts as a relation?
Most recent Open IE systems have targeted verbal
relations (Banko et al., 2007; Mausam et al., 2012),
claiming that these are the majority. However, Chan
and Dan (2011) show that only 20% of relations in
the ACE programs Relation Detection and Charac-
terization (RDC) are verbal. Our manually extracted
relation triple set from the Penn Treebank shows that
there are more nominal relations than verbal ones,
3 to 2. This difference arises because of the ambi-
guity of what constitutes a relation in Open IE. It
is often difficult even for humans to agree on what
constitutes a relation, and which words in the sen-
tence establish a relation between a pair of entities.
For example, in the sentence “Olivetti broke Cocom
rules” is there a relation between Olivetti and Co-
com? This ambiguity in the problem definition leads
to significant challenges and confusion when eval-
uating and comparing the performance of different
methods and systems. An example are the results
in Fader et al. (2011) and Mausam et al. (2012). In
Fader et al. (2011), REVERB ”is reported” as su-
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perior to WOEparse, a system proposed in Wu and
Weld (2010); while in Mausam et al. (2012), it is
reported the opposite.

To better answer the question, what counts as a
relation? we propose two tasks for Open IE. The
first task seeks to determine whether there is a re-
lation between two entities (called “Binary task”).
The other is to confirm whether the relation words
extracted for the two entities are appropriate (the
“Triple task”). The Binary task does not restrict re-
lation word forms, whether they are mediated by
nouns, verbs, prepositions, or even implicit rela-
tions. The Triple task requires an abstract repre-
sentation of relation word forms, which we develop
here. We assume that relation words are nouns or
verbs; in our data, these two types comprise 71% of
explicit relations.

We adapt an SVM dependency tree kernel model
(Moschitti, 2006) for both tasks. The input to our
tasks is a dependency parse, created by Stanford
Parser. Selecting relevant features from a parse tree
for semantic tasks is difficult. SVM tree kernels
avoid extracting explicit features from parse trees
by calculating the inner product of the two trees.
For the Binary task, our dependency path is the path
between two entities. For the Triple task, the path
is among entities and relation words (i.e. relation
triples). Tree kernels have been used in traditional
RE and have helped achieve state of the art perfor-
mance (Culotta and Sorensen, 2004; Bunescu and
Mooney, 2005; Wang, 2008; Nguyen et al., 2009;
Zhou and Zhu, 2011). But one challenge of using
tree kernels on Open IE is that the lexicon of re-
lations is much larger than those of traditional RE,
making it difficult to include the lexical information
as features. Here we proposed an unlexicalized tree
structure for Open IE. As far as we know, this is the
first time an SVM tree kernel has been applied in
Open IE. Experimental results on multiple datasets
show our system outperforms state-of-the-art sys-
tems REVERB and OLLIE. Typically an Open IE
system is tested on one dataset. However, because
the definition of relation is ambiguous, we believe
that is necessary to test with multiple datasets.

In addition to the supervised model, we also pro-
pose an unsupervised model which relies on several
heuristic rules. Results with this approach show that
this simple unsupervised model provides a robust

strong baseline for other approaches.
In summary, our main contributions are:

• Use SVM tree kernels for Open IE. Our sys-
tem is robust comparing with other Open IE
systems, achieving superior scores in two test
sets and comparative scores in another set.

• Extend beyond verbal relations, which are
prevalent in current systems. Analyze implicit
relation problem in Open IE, which is ignored
by other work.

• Propose an unsupervised model for Open IE,
which can be a strong baseline for other ap-
proaches.

The rest of this paper is organized as follows. Sec-
tion 2 provides the problem description and system
structure, before summarizing previous work in Sec-
tion 3. Section 4 defines our representation of rela-
tion word patterns crucial to our task two, and Sec-
tion 5 describes tree kernels for SVM. Section 6 de-
scribes the unsupervised model, and Section 7 ex-
plains our experiment design and results. Section 8
concludes with a summary, and anticipation of fu-
ture work.

2 Problem Definition and System
Structure

The common definition of the Open IE task is a
function from a sentence, s, to a set of triples,
{< E1, R, E2 >}, where E1 and E2 are entities
(noun phrases) and R is a textual fragment indicat-
ing a semantic relation between the two entities. Our
“Triple task” is within this definition. However it is
often difficult to determine which textual fragments
to extract. In addition, semantic relations can be im-
plicit, e.g., consider the located in relation in the sen-
tence fragment “Washington, US.” To illustrate how
much information is lost when restricting the rela-
tion forms, we add another task (the “Binary task”),
determining if there is a relation between the two en-
tities. It is a function from s, to a set of binary rela-
tions over entities, {< E1, E2 >}. This binary task
is designed to overcome the disadvantage of current
Open IE systems, which suffer because of restricting
the relation form, e.g., to only verbs, or only nouns.
The two tasks are independent to each other.
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Figure 1: Our Open IE system structure.

Figure 1 presents our Open IE system structure.
Both tasks need pre-processing with the Stanford
NLP tools 1. Entities and pairs within a certain
distance are extracted2, and sentences are parsed.
We employ the typed collapsed dependency parse
(De Marneffe et al., 2006), which is computed from
the constituent parsing and has proved to be useful
for semantic tasks (MacCartney et al., 2006). For the
Binary task, an SVM model is employed to filter out
the extracted entity pair candidates, and output pairs
which have certain relations. For the Triple task, we
identify relation word candidates of the pairs, based
on regular expression patterns. Then another SVM
model is employed to decide if the relation triples
are correct or not.

3 Related Work

In traditional relation extraction, SVM tree kernel
models are the basis for the current state of the art
(Culotta and Sorensen, 2004; Bunescu and Mooney,
2005; Wang, 2008; Nguyen et al., 2009; Zhou and
Zhu, 2011). But there is more recent work on Open
IE (Banko et al., 2007; Akbik, 2009; Wu and Weld,
2010; Christensen et al., 2011; Fader et al., 2011;
Mausam et al., 2012).

1Other equivalent tools such as Open NLP could be used.
2Here distance means number of tokens in between
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Figure 2: Relation Pattern Form (RelW represents
relation words, E1 and E2 are two entities.)

Fader et al. (2011) have developed REVERB,
which solves the problem of incoherent extractions
and uninformative extractions of two previous sys-
tems. Instead of extracting entities first, they extract
verbal relation sequences based on a set of POS pat-
terns. Then entities are identified around the relation
sequence, so their system only extracts relation to-
kens between two entities tokens, e.g. relations such
as <he, live in, city> in “Living in this city, he loves
the city.” are ignored. Finally, relation triple candi-
date noise is filtered by a supervised model which is
based on lexical and POS features.

Mausam et al. (2012) present an improved sys-
tem called OLLIE, which relaxes the previous sys-
tems’ constraints that relation words are mediated by
verbs, or relation words that appear between two en-
tities. OLLIE creates a training set which includes
millions of relations extracted by REVERB with
high confidence. Then OLLIE learns relation pat-
terns composed of dependency path and lexicon in-
formation. Relations matching the patterns can then
be extracted.

Both REVERB and OLLIE output a confidence
value for every relation triples, instead of classifying
them as true or false.

4 Relation Candidate Extraction

For the Triple task, we extract textual fragments
which matches certain POS patterns in an entity
pair’s context as relation candidates for that pair.
In our experiments, the fragments are n-grams with
n < 5 and between the pairs or in a window size of
10 before the first entity or after the second entity,
which is experimentally a good choice to minimize
noise while attaining maximum number of relations.

Our representation of POS regular expression pat-
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tern sets expands that of Fader et al. (2011). The
patterns are composed of verb and noun phrases (see
Figure 2). A relation candidate can consist of words
before, between, or after the pair, or the combina-
tion of two consecutive positions. Instead of ex-
tracting only verbal relations (e.g. give birth to),
our patterns also extract relations specified through
noun phrases. In the sentence “Obama, the president
of the United States, made a speech” the relation
“president” matches the relational form “RelW=N,
N=noun”. Our method can also extract relation
words interspersed between the two entities: e.g.,
ORG has NUM employees, which matches the pat-
tern “E1 RelW E2 RelW”; the first RelW matches V,
with V=verb, and the second RelW matches N, with
N=noun. We choose not to use the dependency path
for relation word extraction because of the reason
mentioned in (Fader et al., 2011). The dependency
method will create incoherent relations. For exam-
ple, in the sentence “They recalled that Nungesser
began his career as a precinct leader.” recall began
will be extracted as a relation because the two words
are linked. Although this pattern based method has
limitations, finding further improvements remains
future work.

5 Tree Kernels

Many methods recognize the value of leveraging
parsing information in support of semantic tasks.
But selecting relevant features from a parse tree is a
difficult task. With kernel-based SVMs, both learn-
ing and classification relies on the inner-product be-
tween instances. SVM tree kernels avoid extract-
ing explicit features from parse trees by calculating
the inner product of the two trees, so the tree kernel
value depends on the common substructure of two
trees. A tree kernel function over Tree T1 and T1 is

K(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2),
NT1 and NT2 are the set of trees’ nodes (Collins and
Duffy, 2001). The ∆ function provides the basis for
identifying subtrees of nodes, which is the essential
distinction between different tree kernel functions.
Here we adapt the partial tree kernel (PTK) proposed
by Moschitti (2006)3, which can be used with both
constituent and dependency parse trees. The com-

3Thanks to Prof. Moschitti for his PTK package.
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(d) unlexicalized
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Figure 3: Example trees for shortest dependency
path between J.P. Bolduc and W.R.Grace Co. in sen-
tence “J.P. Bolduc, vice chairman of W.R.Grace Co.,
comes here.” Figure (a) is the shortest dependency
tree path (SDTP), (b) is the collapsed form, (c) is the
GRCT, (d) is an unlexicalized GRCT with “NE”.

putation of ∆ function of PTK is

(
∑

J1,J2,l(J1)=l(J2)

λd(J1)+d(J2)

l(J1)∏
i=1

∆(cn1(J1i), cn2(J2i))

+λ2)µ

(1)

when the node labels of n1 and n2 are the same,
∆ = 0 when they are different. cn1 and cn2 are child
sequences of nodes n1 and n2 respectively, J1 =<
J11, J12, J13... > and J2 =< J21, J22, J23... > are
index sequences of the two child sequences, J1i and
J2i are the i-th children of the two sequences. l()
means the sequence length, d(J1) = J1l(J1) − J11

and d(J2) = J2l(J2) − J21. µ and λ are two decay
factors for the height of the tree and the length of the
child sequences respectively, which we choose the
default setting in the experiments. For a more de-
tailed description of PTK, please refer to (Moschitti,
2006).

Now we present our unlexicalized dependency
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tree structures for the tree kernel. One question aris-
ing in the conversion dependency structures (e.g.,
Figure 3a) for the tree kernel is how should we add
POS tags and dependency link labels? The kernel
cannot process labels on the arcs; they must be as-
sociated with tree nodes. Our conversion is similar
to the idea of a Grammatical Relation Centered Tree
(GRCT) of Croce et al. (2011). First we order the
nodes of dependency trees so that the dominant, i.e.
the parent of the dependency link is on the top, the
dependent, i.e. the child at the bottom. At this stage,
the link label is with the corresponding dependent
POS-tag and the word (Figure 3b). If a dominant has
more than one child, the children will be ordered ac-
cording to their position in the sentence, from left to
right. Next, every node is expanded such that the de-
pendent POS-tags are the children of the link labels
and parent of their words. For example, in Figure 3c,
NN is the child of appos, parent of chairman. It is
on the left of prep of because chairman is on the left
of W.R.Grace Co. in the sentence. As customary in
Open IE, we do not add content words, while func-
tion words are optional. The unlexicalized GRCT is
shown in Figure 3d. Note that for the root node, the
link label is replaced by the POS-tag of the fist node
in the path.

Recall that we have two tasks: detecting whether
there is a relation between two entities (the Binary
task), and whether the relation triple <E1, relation,
E2> is correct (the Triplet task). We define two ex-
panded versions of unlexicalized GRCT for the two
tasks. The two versions contain different fragments
of a dependency tree of a sentence.

For the Binary task, the shortest path between
two entities’ heads4 is extracted and represented as a
GRCT. The root node is the POS-tag of the fist node
in the path. “NE” is used to represent the position of
two entities while relation words are not specified.
Figure 3d shows the example final outcome of our
tree structure. It is used to decide if there is a rela-
tion between the entities Bolduc J.P. and W.R.Grace
Co.

For the Triple task, we first extract relation words
based on regular expression patterns as indicated in
Section 4. If any relation word is between the short-

4The head words of phrases are words which do not depend
on any words in the phrases.
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(b) Example 2.

Figure 4: Tree structure with “R” added. Figure (a)
is the example 1, which has R in the SDTP of the
entity pair. Figure (b) is the example 2, with R not
in the SDTP of the entity pair.

est path of the two entities, the path is chosen as
the input for SVM. Otherwise, two shortest paths
between two entities and relation words will be ex-
tracted separately. The shortest one will be attached
to the path between two entities. In our representa-
tion, relation words are tagged by having “R” as the
child. Figure 4a shows the path form of the previous
example. Figure 4b shows another example where
“R” is not in the shortest path of the pair. The triple
is <United States, president, Obama> for the sen-
tence “United States President Barack Obama says
so.” The figure on the left is the dependency path.
The figure on the right is the final tree for the triple
task. The root is the POS-tag for Obama.

For the Triple task we combine the tree kernel
with a polynomial kernel (Moschitti, 2005) applied
to a feature vector. The feature set is in Table 1. F3
tries to preserve the semantic link between two dis-
continuous relation word segments. F6 constrains
relation words to include only necessary preposi-
tions. For verbal relations, if there is a preposi-
tion at the end of the relation word sequence, then
there must be a preposition link between the rela-
tion and any of the two entities, and vice versa. For
instance, in the sentence “Bob teaches at the Univer-
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sity” <Bob, teach at, University> is correct while
<Bob, teach, University> is wrong. For nominal
relations, inclusion of the head word is necessary.
Prepositions can be ignored, but if they exist, they
must match with the dependency link. We concen-
trate on verb prepositions because prepositions are
more attached to noun phrases than verb phrases.
Verb relations have more preposition choices, and
different choices have different semantic impact, for
example, the subject or object. But noun relations’
preposition are more fixed, such as “president of”.
The last two features F7 and F8 are added according
to the observation of experiment results in a develop-
ment set: we note that one problem is the apposition
or conjunction structure between entities 5.

6 Unsupervised Method

We also propose the use of an unsupervised method
based on heuristic rules to produce a relation word
noise filter, as an alternative to using SVM in the
Triple task. The heuristic rules are also based on the
Stanford collapsed dependency parsing. There are
two parts in the noise filter: one is that the relation
words should have necessary links with two entities
and the other is that relation words should be consis-
tent.

We first mention the heuristic rules for necessary
dependency links. The intuition is from Chan and
Dan (2011), they classified relations into 5 different
syntactic structures; premodifier, possessive, prepo-
sition, formulaic, and verbal. They proposed heuris-
tic POS patterns covering the first four patterns with
the exception of the verbal structure.

We present heuristic rules based on dependency
paths instead of POS for the structures, except the
category formulaic, which are implicit relations. In
a premodifier structure one entity and the relation
are modifiers of the other entity, (e.g., US. Presi-
dent Obama). In a possessive structure one entity
is in a possessive case (e.g., Microsoft’s CEO Steve
Ballmer). In a preposition structure, relation words
are related with one entity by a preposition (e.g.,
Steve Ballmer, CEO of Microsoft). In a verbal struc-
ture relations are verb phrases.

The heuristic rules are presented in Figure 5. The

5But adding the two features seems does not solve the prob-
lem.
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Figure 5: Dependent link heuristics for relation de-
tection.

premodifier and possessive relation words are not in
the Stanford collapsed form of the dependency path
between two entities. When there is a direct depen-
dency link between two entities that is labelled nn
or poss, there should be an nn link between the sec-
ond entity and the relation candidate (in Figure 5’s
top two rows). Otherwise, there should be links be-
tween the two entities and the relation, respectively
(in Figure 5’s last row). In this case, link types and
directions are not constrained. For example, both
E1←(nsubj) R→(dobj) E2 for the triple <Obama,
visit, Canada> in “Obama visited Canada.” and E1
→(appos) R→(prep of) E2 for the triple <Obama,
president, United States> in “Obama, the president
of the United States, visited Canada.” belong to that
structure. To refine the verbal pattern, the link be-
tween the relation words and entities cannot be a
conjunction.

Next, we need to check the consistency of relation
words. Two separated sequences of relation words
should have a dependency link between each other
to confirm that they are semantically related. Rela-
tion sequences should include only necessary prepo-
sitions.

7 Experiments

We compared the unsupervised heuristic rule
method and the supervised SVM method discussed
above against REVERB (Fader et al., 2011) and OL-
LIE (Mausam et al., 2012), using three datasets. One
dataset consists of sentences from the Penn Tree-
bank, and the other two are the experiment datasets
of each of the two systems being compared.
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E feature F1 the dependency link label between two entities, null if none.

R features F2 whether relation is a noun phrase or a verb phrase
F3 whether there is a link between the two segments (if there are two discontinuous segments)

between E and R F4 whether there is a link between entities and the relation
F5 the shortest dependency path distance between entities and the relation (1,2,3,4, or >4)
F6 the preposition link and the last preposition word of relation (if there is such a link or word)
F7 whether there is a conjunction link in the shortest path between entities and the relation
F8 whether there is a apposition link in the shortest path between entities and the relation

Table 1: Noise filter feature vector.

7.1 Treebank Set

7.1.1 Preparing Data

Within the research community, it is difficult to
find Open IE test data which includes all kinds of
relations. So we have created our own data from the
Penn Treebank for evaluation6. We assess the drop
in performance introduced by using a tool to parse
sentences compared to using ”ideal” parse trees pro-
vided in the Penn Treebank. Named entities are
tagged for every sentence using the Stanford NLP
tool. Candidate NE pairs are extracted within a cer-
tain distance7. We randomly selected 756 sentences
from WSJ Sections 2-21 as our training set, 100 each
from Section 22 and Section 23-24 as the develop-
ment and the test set, respectively. This is also the
setting for most parsers.

We manually annotated whether there is a relation
between two entities in a sentence (for evaluation
of the Binary task). If there is a relation between
two entities, the annotator needs to indicate which
words are relation words (for evaluation of the Triple
task). There is no restriction of relation forms for the
annotator in this task.

We manually analyzed 417 relation instances
from our training set. 28% are implicit relations, i.e.,
relations without words or with prepositions. Less
than 1% are with adjectives, while 71% are noun or
verb phrases. In the 71%, 60% are noun relations
and 40% are verbal. The relation pattern in Section
4 can extract 80% of them. Our data contains more
verbal relations than the ACE’s RDC, less than cor-
pora in other Open IE papers.

We compare every system by recall, precision,
and F-score. The evaluation of the Binary task is

6The data can be downloaded from http://cs.ualberta.ca/˜
yx2/

7Here we set the distance as 20, determined by empirical
evidence, a majority of the relations are within this distance.

based on entity pairs and is straightforward. The
evaluation of the Triple task is based on relation
triples. We need to manually compare the triples
extracted by each system and the gold standard to
avoid double-counting. For instance, if both vice
president and president are extracted, it is counted
as one8. Several entity pairs have multiple relations,
such as “A is CEO and founder of B.” Any relation
which can not be represented by a verb or noun is
counted as one miss in the Triple task.

To compare with the REVERB system, NE pairs
are labelled as two noun phrase chunks for the sys-
tem input. It is difficult to compare with OLLIE,
as the system is a black box with integrated entity
extraction and parsing. We compared manually the
pairs extracted by OLLIE and the tagged data. Only
results of intersection entity pairs are considered.
The threshold of OLLIE and REVERB confidence
is set to achieve the best F-score in the development
set.

7.1.2 Results
The Binary task results on the test set are shown

in Table 2. Each system decides whether there is
a relation between two entities. The heuristic rule
(DP rules) method, REVERB, and OLLIE each tag
pairs containing a relation if any relation candidates
are identified. As indicated, the SVM method per-
forms the best with DP rules ranking second. Note
that OLLIE uses MaltParser, so it’s better to com-
pare with the coupling of SVM with Stanford Parser,
but that comparison doesn’t change the result.

The Triple task results are shown in Table 3. Each
system extracts relation triples from sentences. The
SVM features include both tree (Figure 4) and vector
features (Table 1). All relations in the table include
nominal, verbal, and implicit relations. To scrutinize

8It is difficult to decide if president in this case is wrong.
This is related to multi-word expression and will be future work.
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P R F-score
Treebank parsing + DP rules 0.833 0.549 0.662
Treebank parsing + SVM 0.896 0.767 0.826
Stanford parsing + DP rules 0.783 0.522 0.627
Stanford parsing + SVM 0.744 0.711 0.727
REVERB (no parsing) 0.333 0.1 0.153
OLLIE (MaltParser) 0.583 0.389 0.467

Table 2: Relation extraction results on Treebank set
(Binary)

All relations P R F-score
Treebank parsing + DP rules 0.741 0.467 0.573
Treebank parsing + SVM 0.824 0.462 0.592
Stanford parsing + SVM 0.75 0.433 0.549
OLLIE (MaltParser) 0.583 0.389 0.467
Noun relations P R F-score
Treebank parsing + DP rules 0.75 0.735 0.742
Treebank parsing + SVM 0.829 0.708 0.764
Stanford parsing + SVM 0.756 0. 689 0.721
OLLIE (MaltParser) 0.8 0.408 0.54
Verb relations P R F-score
Treebank parsing + DP rules 0.7 0.368 0.483
Treebank parsing + SVM 0.727 0.381 0.5
Stanford parsing + SVM 0.727 0.32 0.444
REVERB (no parsing) 0.286 0.381 0.327
OLLIE (MaltParser) 0.429 0.714 0.536

Table 3: Relation extraction results on Treebank set
(Triple)

the result, we also show the results on noun and verb
relations separately. The SVM model achieves best
performance, 33% improvement on nominal relation
extractions over OLLIE.

The loss of recall for systems (except SVM) in the
Binary task can be explained by the fact that nearly
20% of relations are implicit.

In both the Binary and Triple tasks, one source of
failure arose from conjunction and apposition struc-
tures. For example, in the sentence “...industry ex-
ecutives analyzed the appointment of the new chief
executive, Robert Louis-Dreyfus, who joins Saatchi
...” the method can detect the relation <chief ex-
ecutive, joins, Saatchi>, but not <Robert Louis-
Dreyfus, joins, Saatchi>. We attempted to address
this problem by adding features into SVM linear ker-
nel (Table 1), but this has not worked in our tests.

One cause of recall loss in the Triple task for RE-
VERB and our two approaches is that verbal rela-
tion words can be non-consecutive. For instance, the
preposition might be far away from the related verb
in one sentence, in which case both our methods and
REVERB can not confirm that extraction. OLLIE

P R F-score
Stanford parsing + DP rules 0.711 0.811 0.756
Stanford parsing + SVM 0.718 0.859 0.781
REVERB 0.577 0.95 0.716

Table 4: Relation extraction results on REVERB set
(Triple).

has better results on verb relations mainly because
they use dependency link patterns to extract relation
words, which alleviate the problem. On the other
side, one drawback of OLLIE is that it failed to ex-
tract a few premodifer structure relations, e.g. “U.S.
President Obama.” That may happen because they
do not have an independent step for named entity
extraction, which is crucial for that type of relations.

7.2 REVERB Set

The authors of the REVERB method provide 1000
tagged training sentences and 500 test sentences.
They also provide REVERB’s extracted relations
and instances’ confidence for the 500 test sentences.
The 500 test sentences are segmented into 5 folds for
a significance t-test. At each iteration, the remaining
400 sentences are used as a development set to set
the threshold of REVERB confidence.

To compare with REVERB, we use as input the
sentences parsed by the Stanford parser and rela-
tion triples extracted by REVERB for both train-
ing and testing. The output of our system is true
or false for every triple by using the tree kernel9.
The SVM system is trained on the 1000 training sen-
tences. The results are shown in Table 4. Only SVM
is statistically significant better than REVERB (with
α = 0.05)10.

7.3 OLLIE set

The authors of the OLLIE system provide a test set
which has 300 sentences and OLLIE extracted 900
triples. Experiment setting is similar to that of RE-
VERB set. The SVM tree kernel model is trained on
OLLIE’s leave one out dataset. The results in Table

9The polynomial kernel is not used for REVERB and OL-
LIE data as the their relation word form is simpler than ours.

10Note that the results here seem better than the results shown
on (Fader et al., 2011). It is because our evaluation is based on
the set REVERB extracted, as we only want to compare noise
filters not with entity extraction, while the results in (Fader et
al., 2011) is based on the union relation set of several systems.
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P R F-score
Stanford parsing + SVM 0.685 0.941 0.793
OLLIE 0.667 0.961 0.787

Table 5: Relation extraction results on OLLIE set
(Triple).

5 show our method achieves slightly better perfor-
mance, although not statistically significant.

Besides errors caused by parsing, one main cause
of loss of precision is that our system is unable to
detect entities that are wrong as we only concern the
head of the entity. For instance, “Bogan ’s Birming-
ham Busters , before moving to Los Angeles , Cal-
ifornia” is one entity in one OLLIE relation, where
only “Bogan ’s Birmingham Busters” is the correct
entity.

8 Conclusion

We have described some of the limits of current
Open IE systems, which concentrate on identifying
explicit relations, i.e., relations which are mediated
by open class words. This strategy ignores what we
describe as implicit relations, e.g., locate relations
in “Washington, U.S.” We propose two subtasks for
Open IE: first confirming whether there is a rela-
tion between two entities, and then whether a rela-
tion thus extracted is correct. The first task include
both implicit and explicit relations; the second task
is common in the previous Open IE which deals with
explicit relations. In our case we have developed an
Open IE system which uses SVM tree kernels ap-
plied to dependency parses for both tasks. Our sys-
tem achieves superior results on several datasets. We
also propose an unsupervised method which is based
on heuristic rules from dependency parse links, and
compared that with our SVM tree kernel methods.
Our experiments show it is a strong baseline for
Open IE.

For further work, we intend to improve Open IE
by tackling the conjunction and apposition structure
problem. Another direction will be to extract re-
lation words for implicit relations. Relation words
such as locate for “Washington, U.S.” will be con-
sidered.
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Abstract

In natural language question answering (QA)
systems, questions often contain terms and
phrases that are critically important for re-
trieving or finding answers from documents.
We present a learnable system that can ex-
tract and rank these terms and phrases (dubbed
mandatory matching phrases or MMPs), and
demonstrate their utility in a QA system on In-
ternet discussion forum data sets. The system
relies on deep syntactic and semantic analysis
of questions only and is independent of rele-
vant documents. Our proposed model can pre-
dict MMPs with high accuracy. When used in
a QA system features derived from the MMP
model improve performance significantly over
a state-of-the-art baseline. The final QA sys-
tem was the best performing system in the
DARPA BOLT-IR evaluation.

1 Introduction

In most question answering (QA) systems and
search engines term-weights are assigned in a con-
text independent fashion using simple TF-IDF like
models (Robertson and Walker, 1994; Ponte and
Croft, 1998). Even the more recent advances
in information retrieval techniques for query term
weighting (Bendersky et al., 2010; Bendersky, 2011)
typically rely on bag-of-words models and cor-
pus statistics, such as inverse-document-frequency
(IDF), to assign weights to terms in questions. While
such solutions may work for keyword queries of the
type common on search engines such as Google,
they do not exploit syntactic and semantic informa-
tion when it comes to well formed natural language

questions. In this paper we propose a new model
that identifies important terms and phrases in a natu-
ral language question, providing better query analy-
sis that ultimately leads to significant improvements
in a QA system.

To motivate the work presented here, consider the
query “How does one apply for a New York day care
license?”. A bag-of-words model would likely as-
sign a high score to “New licensesfor day carecen-
ters inYork county, PA” because of high word over-
lap, but it does not answer the question, and also
the state is wrong. A matching component that uses
the phrases “New York,” “day care,” and “license”
is likely to do better. However, a better matching
component will understand thatin the context of this
query all three phrases “New York,” “day care” and
“license” are important, and that “New York” needs
to modify “day care.” A snippet that does notcon-
tain1 these important phrases, is unlikely an answer.
We call these important phrasesmandatory match-
ing phrases (MMPs).

In this paper, we explore deep syntactic and se-
mantic analyses of questions to determine and rank
MMPs. Unlike existing work (Zhao and Callan,
2010; Bendersky et al., 2010; Bendersky, 2011),
where term/concept weights are learned from a set
of questions and judged documents based oncorpus-
based statistics, we annotatequestions and build a
trainable system to select and score MMPs. This
model relies heavily on existing syntactic parsers
and semantic-oriented named-entity recognizers, but
does not need question answer pairs. This is espe-

1“contain” here means semantic equivalence or entailment,
not necessarily the exact words or phrases.
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cially attractive at the initial system-building stage
when no or little answer data is available.

The main contributions of this paper are: firstly,
we propose a framework to select and rank impor-
tant question phrases (MMPs) for question answer-
ing in Section 3. This framework seamlessly incor-
porates lexical, syntactic and semantic information,
resulting in an MMP prediction F-measure as high
as88.6%. Secondly, we show that features derived
from identified MMPs improve significantly a rele-
vance classification model, in Section 4.2. Thirdly,
we show that using the improved relevance model
into our QA system results in a statistically signifi-
cant 5 point improvement in F-measure, in Section
5. This finding is further corroborated by the results
on the official 2012 BOLT IR (IR, 2012) task where
the combined system yielded the best performance
in the evaluation.

2 Related Work

Popular information retrieval systems like
BM25 (Robertson and Walker, 1994) and language
models (Ponte and Croft, 1998) use unsupervised
techniques based on corpus statistics for term
weighting. Many of these techniques are variants
of the one proposed by (Luhn, 1958). Recently,
several researchers have studied approaches for term
weighting using supervised learning techniques.
However, much of this research has focused on
information retrieval task rather than on question
answering problems of the nature addressed in
this paper. (Bendersky and Croft, 2008) restricted
themselves to predicting key noun phrases, which
is perhaps sufficient for a retrieval task. However,
for questions like “Find comments about how
American hedge funds legally avoid taxes,” the verb
“avoid” is perhaps as important as the noun phrase
“American hedge funds” and “taxes”. Works like
that of (Lease et al., 2009) and (Zhao and Callan,
2010) predict importance at the word level. While
word level importance is perhaps sufficient for
an IR task, predicting the importance of phrases,
especially those derived from a parse tree, gives
a much richer representation that might also be
useful for better question understanding and thus
generate more relevant answers. Both (Lease et al.,
2009; Zhao and Callan, 2010) propose supervised

methods that learn from a large set of queries and
relevance judgments on their answers. While this is
possible in a TREC Ad-hoc-retrieval-like task, such
a large training corpus of question-answer pairs is
unavailable for most scenarios. (Monz, 2007) learns
term weights for the IR component of a question
answering task. His work unlike ours does not aim
to find the answers to the questions.

Most QA systems in the literature have dealt
with answering factoid questions, where the an-
swer is a noun phrase in response to questions of
the form “Who,” “Where,” “When.” Most sys-
tems have a question analysis component that rep-
resents the question as syntactic relations in a parse
or as deep semantic relations in a handcrafted on-
tology (Hermjakob et al., 2000; Chu-carroll et al.,
2003; Moldovan et al., 2003). In addition certain
systems (Bunescu and Huang, 2010) aim to find the
“focus” of the question, that is, the noun-phrases in
the question that would co-refer with answers. Ad-
ditionally, much past work has focused on finding
the lexical answer type (Pinchak, 2006; Li and Roth,
2002). Since these papers considered a small num-
ber of answer types, rules over the detected relations
and answer types could be applied to find the rel-
evant answer. However, since our system answers
non-factoid questions that can have answer of arbi-
trary types, we want to use as few rules as possible.
The MMPs therefore become a critical component
of our system, both for question analysis and for rel-
evance detection.

3 Question Data and MMP Model

To train the MMP model, we first create a set of
questions and label their MMPs. The labeled data
is then used to train a statistical model to predict
MMPs for new questions as discussed next.

3.1 Question Corpus

We use a subset of the DARPA BOLT corpus (see
Section 5.1) containing forum postings in English.
Four annotators use a search tool to explore this
document collection. They can perform keyword
searches and retrieve forum threads from which they
generate questions. The program participants de-
cided a basic set of question types that are out-of-
scope of the current research agenda. Accordingly,
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annotators cannot generate questions (1) that require
reasoning or calculation over the data to compute
the answers; (2) that are vague or ambiguous; (3)
that can be broken into multiple disjoint questions;
(4) that are multiple choice questions; (5) that are
factoid questions—the kinds that have already been
well studied in TREC (Voorhees, 2004). Any other
kind of question is allowed. Two other annotators,
who have neither browsed the corpus nor generated
the questions, mark selected spans of the questions
into one of two categories—MMP-Must andMMP-
maybe. The annotation tool allows arbitrary spans
to be highlighted and the annotators are instructed to
select spans corresponding to the smallest semantic
units. The phrases that are very likely to appear con-
tiguously in a relevant answer are marked asMMP-
Must. Annotators can mark multiple spans per ques-
tion, but not overlapping spans. We generated 201
annotated questions using this process.

Figure 1 contains an example, where “American,”
“hedge fund,” and “legally avoid taxes” are required
elements to find answers and are thus marked as
MMP-Musts (signified by enclosing rectangles). We
purposely annotate MMPs at the word level and not
in the parse tree, because this requires minimal lin-
guistic knowledge. We do, however, employ an
automatic procedure to attach MMPs to parse tree
nodes when generating MMP training instances.

3.2 MMP Training

Questions annotated in Section 3.1 are first pro-
cessed by an information extraction (IE) pipeline
consisting of syntactic parsing, mention detection
and coreference resolution (Florian et al., 2004; Luo
et al., 2004; Luo and Zitouni, 2005). After IE, we
have access to the syntactic structure represented by
a parse tree and semantic information represented
by coreferenced mentions (including those of named
entities).

To take advantage of the availability of the syn-
tactic and semantic information, we first attach the
MMP annotations to parse tree nodes of a question,
and, if necessary, we augment the parse tree.

There are several reasons why we want to embed
the MMPs into a parse tree. First, many constituents
in parse trees correspond to important phrases we
want to capture, especially proper names. Second,
after an MMP is attached to a tree node, the problem
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Figure 1: MMPs are aligned with tree nodes: MMPs
are shown in rectangular boxes along with their aligned
nodes (with slanted labels); augmented parse tree nodes
(i.e., NP1, NP2) in dashed nodes. Dotted edges under
NP0 are the structure before the tree is augmented.

of predicting MMPs reduces to classifying parse tree
nodes, and syntactic information can be naturally
built into the MMP classifier. Lastly, and more im-
portantly, associating MMPs with tree nodes opens
the door to explore features derived from the syn-
tactic parse tree. For instance, it is easy to read
bilexical dependencies from a parse tree (provided
that head information is propagated); with MMPs
aligned with the parse tree, bilexical dependencies
can be ranked by examining whether or not an MMP
phrase is a head or a dependent. This way, not
only are the dependencies in a question captured, but
MMP scores or ranks can be propagated to depen-
dencies as well. We will discuss more how MMP
features are computed in Section 4.2.2.

Annotators can mark MMPs that are not perfectly
aligned with a tree node. Hence, care has to be taken
when generating MMP training instances. As an ex-
ample, In Figure 1, “American” and “hedge funds”
are marked as two separate MMPs, but the Penn-
Tree-style parse tree has a flat “NP0” constituent
spanning directly on “American hedge fund,” illus-
trated in Figure 1 as dotted edges.

To anchor MMPs in the parse tree, weaugment
it by combining the IE output and the MMP anno-
tation. In the aforementioned example, “American”
is a named mention with the entity type GPE (geo-
political entity) and there is no non-terminal node
spanning it: so, a new node “NP1” is created; “hedge
funds” is marked as an MMP: so, a second node
(“NP2”) is created to anchor it.
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A training instance for building the MMP model
is defined as a span along with an MMP label. For
instance, “hedge funds” in Figure 1 will generate a
positive training instance as〈(5,6), +1〉, where
(5,6) is the span of “hedge funds” in the question
sentence, and+1 signifies that it is a positive train-
ing instance. For the purpose of this paper we use
only binary labels, mapping all MMP-Must to+1
and MMP-Skip and MMP-Maybe to−1.

Formally, we use the following procedure to gen-
erate training instances:

Algorithm 1 Pseudo code to generate MMP training
instances.
Input : An input question tree with detected men-
tions and marked MMPs
Output : A list of MMP training instances
1: Foreach mentionm in the question
2: if no node spansm, andm does not cross bracket
3: Find lowest nodeN dominatingm

4: Insert a child node ofN that spans exactlym
5: Foreach mentionp in marked MMPs
6: Find lowest non-terminalNp dominatingp

7: Generate a positive training example forNp

8: MarkNp as visited
9: Recursively generate instances forNp’s children
10: Generate a negative training instance for all un-
visited nodes in Step 5-9

Steps 1 to 4 augment the question tree by creating
a node for each named mention, provided that no ex-
isting node spans exactly the mention and the men-
tion does not cross-bracket tree constituents. Steps 5
to 8 generate positive training instances for marked
MMPs; step 9 recursively generates positive training
instances2 for tree nodes dominated byNp, where
Np is the lowest non-terminal node dominating the
marked MMPp.

After MMP training instances are generated we
design and compute features for each instance, and
use them to train a classifier.

3.3 MMP Features and Classifier

We compute four types of features that will be used
in a statistical classifier. These features are designed
to characterize a phrase from the lexical, syntactic,

2One exception to this step is that if a node spans a single
stop word, then a negative training instance is generated.

semantic and corpus-level aspect. The weights asso-
ciated with these features are automatically learned
from training data.

We will use “(NP1 American)” in Figure 1 as the
running example below.
Lexical Features:Lexical features are motivated by
the observation that spellings in English sometimes
offer important cues about word significance. For
example, an all-capitalized word often signifies an
acronym; an all-digit word in a question is likely a
year, etc. We compute the following lexical features
for a candidate MMP:
CaseFeatures: is the first word of an MMP
upper-case? Is it all capital letters? Does it contain
numeric letters? For “(NP American)” in Figure 1,
the upper-case feature fires.
CommonQWord: Does the MMP contain question
words, including “What,” “When,” “Who,” etc.
Syntactic Features:The second group of features
are computed from syntactic parse trees after anno-
tated MMPs are aligned with question parse-trees
as described previously.
PhraseLabel: this feature returns the phrasal label
of the MMP. For “(NP American)” in Figure 1, the
feature value is “NP.” This captures that an NP is
more likely an MMP than, say, an ADVP.
NPUnique: this Boolean feature fires if a phrase
is the only NP in a question, indicating that this
constituent probably should be matched. For “(NP
American),” the feature value would be false.
PosOfPTN: these features characterize the position
of the parse tree node to which an MMP is anchored.
They compute: (1) the position of the left-most
word of the node; (2) whether the left-most word is
the beginning of the question; (3) the depth of the
anchoring node, defined as the length of the path to
the root node. For “(NP American)” in Figure 1, the
features state that it is the 5th word in the sentence;
it is not the first word of the sentence; and the depth
of the node is 6 (where root has depth 0).
PhrLenToQLenRatio: This feature computes the
number of words in an MMP, and its relative ratio to
the sentence length. This feature controls the length
of MMPs at decoding time, since most of MMPs
are short.
Semantic Features (NETypes):The third group of
features are computed from named entities and aim
to capture semantic information. The feature tests if
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a phrase is or contains a named entity, and, if this
is the case, the value is the entity type. For “(NP
American)” in Figure 1, the feature value would be
“GPE.”
Corpus-based Features ( AvgCorpusIDF): This
group of features computes the average of the IDFs
of the words in this phrase. From the corpus IDF,
we also compute the ratio between the number of
stop words and the total number of words in the
MMP, and use it as another feature.

3.4 MMP Classification Results

We now show that we can reliably predict MMPs of
questions. We split our set of 201 annotated ques-
tions into a training set consisting of 174 questions
and a test set with the remaining 27 questions. We
use the procedure and features described in Sec-
tion 3 to train a logistic regression binary classifier
using WEKA. Then, the trained MMP classifier is
applied to the test set question trees. Since the class
bias is quite skewed (only16% of the phrases are
marked as MMP-Must) we also use re-sampling at
training time to balance the prior probability of the
two classes. At testing time, a parser and a men-
tion detection algorithm (Florian et al., 2004; Luo et
al., 2004; Luo and Zitouni, 2005) are run on each
question. The detected mentions are then used to
augment the question parse trees. The MMP classi-
fier achieves an88.6% F-measure (cf. Table 1, with
91.6% precision). This is a respectable number, con-
sidering the limited amount of training data. We ex-
perimented with decision trees and bagging as well
but found logistic regression to work the best.

Feature P R F1
AvgCorpusIDF 0.849 0.634 0.725
+NPUnique 0.868 0.634 0.732
+NETypes 0.867 0.662 0.750
+PhraseLabel 0.890 0.705 0.783
+CaseFeatures 0.829 0.820 0.824
+PosOfPTN 0.911 0.852 0.880
+PhrLenToQLenRatio 0.915 0.855 0.883
+commonQWord 0.916 0.858 0.886

Table 1: The performances of the MMP classifier while
incrementally adding features.

The examples in Table 2 illustrate the top three
MMPs produced by the model on two questions.

These results are encouraging: in the first exam-
ple the word AIDS is clearly the most “important”
word, but IDF alone is not adequate to place it in the
top since AIDS is also a common verb (words are
lower-cased before IDF look-up). Similarly, in the
third example, the phrase “the causes” has a much
higher MMP score than the phrase “the concerns”
(MMP score of 0.109), even though the words “con-
cerns” has a slightly higher IDF,2.80, than the word
“causes”(2.68). However, in this question, under-
standing that the word “causes” is critical to the
meaning of the question is critical and is captured
by the MMP model.

We analyzed feature importance for MMP classi-
fication by incrementally adding each feature group
to the model. The result is tabulated in Table 1. Not
surprisingly, syntactical (i.e., “NPUnique,” “Phrase-
Label” and “PosOfPTN”) and semantic features
(i.e., “NETypes”) are complementary to the corpus-
based statistics features (i.e., average IDF). Lexical
features also improve recall: the addition of “Case-
Features” boosts the F-measure by 4 points. At first
sight, it is surprising that the feature group “PosOf-
PTN,” which characterize the position of a candi-
date MMP relative to the sentence and relative to the
parse tree, has such a large impact—it improves the
F-measure by 5.6 points. However, a cursory brows-
ing of the training questions reveals that most MMPs
are short and concentrate towards the end of the sen-
tence. So this feature group helps by directing the
model to predict MMPs at the end of the sentence
and to prefer short phrases versus long ones.

4 Relevance Model with MMPs

We now validate our second hypothesis that MMPs
are effective for open domain question answering.
We demonstrate this through the improvement in
performance on relevance prediction. More specif-
ically, given a natural language question, the task
is one of finding relevant sentences in posts on on-
line forums. The relevance prediction component
is critical for question answering as has been seen
in TREC(Ittycheriah and Roukos, 2001) and more
recently in the Jeopardy challenge(Gondek et al.,
2012). The improved relevance model further im-
proves our question answering system as seen in
Section 5.
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Question Top 3 MMPs MMP-
score

Top words
by IDF

List statistics about changes in the de-
mographics of AIDS.

1: AIDS 0.955 demographics
2: changes 0.525 AIDS
3: the demographics 0.349 statistics

What are the concerns about the
causes of autism?

1: autism 0.989 autism
2: the causes 0.422 concerns
3: the causes of autism 0.362 causes

Table 2: Example questions and the top-3 phrases ranked by the MMP model.

4.1 Data for Relevance Model

The data to train and test the relevance model is ob-
tained as follows. First, a rudimentary version (i.e.,
key word search) of a QA system using Lucene is
built. The Lucene index comprised of a large num-
ber of threads in online forums released to the par-
ticipants of the BOLT-IR task(IR, 2012) for devel-
opment of our systems. The corpus is described in
more detail in Sec. 5. Top snippets returned by the
search engine are judged for relevancy by our an-
notators. The initial (small) batch of data is used
to train a relevance model which is deployed in the
system. The new model is in turn used to create
more answers for new questions. When more data
is collected, the relevance model is retrained and re-
deployed to collect more data. The process is iter-
ated for several months, and at the end of this pro-
cess, a total of 390 training questions are created and
about 28,915 snippets are judged by human annota-
tors, out of which about 6,528 are relevant answers.
These question-answers pairs are used to train the fi-
nal relevance model used in our question-answering
system. A separate held-out test set of 59 questions
is created and its system output is also judged by hu-
mans. This data set is our test set.

4.2 Relevance Prediction

A key component in our question-answering sys-
tem is the snippet relevance model, which is used
to compute the probability that a snippet is relevant
to a question. The relevance model is a conditional
distribution P (r|q, s;D), wherer is a binary ran-
dom variable indicating if the candidate snippets is
relevant to the questionq. D is the document where
the snippets is found.

In our question answering system, MMPs ex-

tracted from questions are used to compute the fea-
tures for the relevance model. To test their effective-
ness, we conduct a controlled experiment by com-
paring the system with MMP features with 2 base-
lines: (1) a system without MMP features; (2) a
baseline with each word as an MMP and the word’s
IDF as the MMP score.

4.2.1 Baseline Features

We list the features used in our baseline system,
where no MMP feature is used. The features can
be categorized into the following types.(1) Text
Match Features: One set of features are the cosine
scores between different representations of the query
and the snippet. In one version the query and snip-
pet words are used as is; in another version the query
and snippet are stemmed using porter stemmer; in
yet another the words are morphed to their roots by
a table extracted from WordNet. We also compute
the inclusion scores (the proportion of query words
found in the snippet) and other word overlap fea-
tures. (2) Answer Type Features: The top 3 pre-
dictions of a statistical classifier trained to predict
answer categories were used as features.(3) Men-
tion Match Featurescompute whether a named en-
tity in the query occurs in the snippet. The matching
takes into consideration the results from within and
cross document coreference resolution components
for nominal and pronominal mentions.(4) Event
match featuresuse several hand-crafted dictionar-
ies containing terms exclusive to various types of
events like ”violence”, ”legal”, ”election”. Accord-
ingly a set of features that take a value of ”1” if
both the query and snippet contain the same event
type were designed.(5) Snippet Statistics:Several
features based on snippet length, the position of the
snippet in the post etc were created.
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4.2.2 Features Derived from MMP

The MMPs extracted from questions are used to
compute features in the following ways.

As MMPs are aligned with a question’s syntactic
tree, they can be used to find answers by matching
a question constituent with that of a candidate snip-
pet. The MMP model also returns a score for each
phrase, which can be used to compute the degree to
which a question matches a candidate snippet.

In this section, we uses = wn
1 to denote a snip-

pet with wordsw1, w2, · · · , wn, and m to denote
a phrase from the MMP model along with a score
M(m). The features are listed below:
HardMatch: Let I(m ∈ s) be a1 or 0 function
indicating if a snippet contains the MMPm, then
the hard match score is computed as:

HM(q, s) =

∑

m∈q M(m)I(m ∈ s)
∑

m∈q M(m)
.

SoftLMMatch: The SoftLMMatch score is a
language-model (LM) based score, similar to that
used in (Bendersky and Croft, 2008), except that
MMPs play the role of concepts. The snippet-side
language model scoreLM(v|s) is computed as:

LM(v|s) =

∑n
i=1 I(wi = v) + 0.05

n + 0.05|V |
,

wherewi is the ith in snippets; I(wi = v) is an
indicator function, taking value1 if wi is v and 0
otherwise;|V | is the vocabulary size.

The soft match score between a questionq and a
snippets is then:

SM(q, s) =

∑

m∈q

(

M(m)
∏

w∈m LM(w|s)
)

∑

m∈q M(m)
,

wherem ∈ q denotes all MMPs in questionq, and
similarly, w ∈ m signifying words inm.
MMPInclScore: An MMP m’s inclusion score is:

IS(m, s) =

∑

w∈m I(l(w, s) > δ)IDF (w)
∑

w∈m IDF (w)
,

wherew ∈ m are the words inm; I(·) is the in-
dicator function taking value1 when the argument
is true and0 otherwise;δ is a constant threshold;
IDF (w) is the IDF of wordw. l(w, s) is the sim-
ilarity of word w to the snippets as: l(w, s) =

maxv∈sJW (w, v), where JW (w, v) is the Jaro
Winkler similarity score between wordsw andv.

The MMP weighted inclusion score between the
questionq and snippets is computed as:

IS(q, s) =

∑

m∈q M(m)IS(m, s)
∑

m∈q M(m)

MMPRankDep: This feature,RD(q, s) first tests
if there exists a matched bilexcial dependency be-
tweenq ands; if yes, it further tests if the head or
dependent in the matched dependency is the head of
any MMP.

Let m(i) be theith ranked MMP; let〈wh, wd|q〉
and〈uh, ud|s〉 be bilexical dependencies fromq and
s, respectively, wherewh anduh are the heads and
wd and ud are the dependents; letEQ(w, u) be a
function testing if the question wordw and snip-
pet word u are a match. In our implementation,
EQ(w, u) is true if eitherw andu are exactly the
same, or their morphs are the same, or they head
the same entity, or their synset in WordNet overlap.
With these notations,RD(q, s) is true if and only if

EQ(wh, uh) ∧ EQ(wd, ud) ∧ wh ∈ m(i) ∧ wd ∈ m(j)

is true for some〈wh, wd|q〉, for some〈uh, ud|s〉 and
for somei andj.

EQ(wh, uh)∧EQ(wd, ud) requires that the ques-
tion dependency〈wh, wd|q〉 and the snippet depen-
dency〈uh, ud|s〉 match;wh ∈ m(i) ∧wd ∈ m(j) re-
quires that the head word and dependent word are in
theith-rank andjth rank MMP, respectively. There-
fore, RD(q, s) is a dependency feature enhanced
with MMPs.

To test the effectiveness of the MMP features, we
trained 3 snippet classifiers on the data described
in Section 4.1: one baseline system without MMP
features (henceforth “no-MMP”); a second baseline
with words as MMPs and their IDFs as the scores
in the MMP model(henceforth “IDF-as-MMP”); the
third system uses the MMPs generated by the model
from Section 3 and all MMP features described in
this section. We used two types of classifiers: deci-
sion tree (DTree) and logistic regression (Logit).

The classification results on a set of 59 questions
disjoint from the training set are shown in Table 3.
The numbers in the table are F-measure on answer
snippets (or positive snippets). Within a machine
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Learner
Model DTree Logit
noMMP 0.426 0.458
IDF-as-MMP 0.413 0.455
MMP 0.451 0.470

Table 3: F-measure for Relevance Prediction.

learning method, the model with MMP features is
always the best. Between the two classifiers, the lo-
gistic regression models are consistently better than
the decision tree ones. The results show that MMP
features are very helpful to the relevance model.

5 End-to-End System Results

The question-answering system is used in the 2012
BOLT IR evaluation (IR, 2012). The task is to an-
swer questions against a corpus of posts collected
from Internet discussion forums in 3 languages:
Arabic, Chinese and English. There are 499K, 449K
and 262K threads in each of these languages. The
Arabic and Chinese posts were first translated into
English before being processed. We now describe
our experiments on the set of 59 questions devel-
oped internally and demonstrate the effectiveness of
an MMP based relevance model in the end-to-end
system. In the next subsection we discuss our per-
formance in the BOLT-IR evaluation done by NIST
for DARPA.

We now briefly describe the question-answering
system we developed for the DARPA BOLT IR task,
where we applied the MMP classifier and its fea-
tures. Users submit questions to the system in natu-
ral language; the BOLT program mandates that these
questions comply with the restrictions described in
Section 3.1. Questions are analyzed by a query pre-
processing stage that includes our MMP extraction
classifier. The preprocessed queries are converted
to search queries. These are sent to an Indri-based
search engine (Strohman et al., 2005), which re-
turns candidate passages, typically spanning numer-
ous sentences. Each sentence of the retrieved pas-
sages is analyzed by a relevance detection module,
consisting of a statistical classifier that uses, among
others, features computed from the MMPs extracted
from the questions. Sentences or spans that are
deemed relevant to the question by the relevance de-

tection module are further grouped into equivalence
classes that provide different information about the
answers. The system generates a single answer for
each equivalence class, since elements of the same
class are redundant with respect to each other. The
elements of each equivalence class are converted
into citations that support the corresponding answer.

The ultimate goal of the MMP model is to im-
prove the performance of our question-answering
system. To test the effectiveness of the MMP model,
we contrast the model trained in Section3 with an
IDF baseline, where each non-stop word in a ques-
tion is an MMP and its score is the corpus IDF. The
IDF baseline is what a typical question answering
system would do in absence of deep question analy-
sis. To have a fair comparison, the two systems are
tested on the same set of 59 questions as the rele-
vance model.

The results of the IDF baseline and MMP system
are tabulated in Table 4. Note that the recalls are
less than 1.0 because (1) annotated snippets come
from both systems; (2) the annotation is done for all
snippets in a window surrounding system snippets.

As can be seen from Table 4, the MMP system is
about 5 points better than the baseline system. The
precision is notably better by 2 points, and the re-
call is far better (by 7.7%) than that of the baseline.
We also compute the question-level F-measures and
conduct a Wilcoxon signed-rank test for paired sam-
ples. The test indicates that the MMP system is bet-
ter than the baseline system atp < 0.00066. There-
fore, the MMP system has a clear advantage over the
baseline system.

System Prec Recall F1
baseline .4228 .3679 .3935
MMP .4425 .4452 .4438

Table 4: End-to-End system result on 59 questions.

5.1 BOLT Evaluation Results

The BOLT evaluation consists of 146 questions,
mostly event- or topic- related, e.g., “What are peo-
ple saying about the ending of NASA’s space shuttle
program?”. A system answer, if correct, is mapped
manually to a facet, which is one semantic unit that
answers the question. For each question, facets
are collected across all participants’ submission. A
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facet-based F-measure is computed for each partic-
ipating site. The recall from which the official F-
measure is computed is weighted by snippet cita-
tions (a citation is a reference to the original docu-
ment that supports the correct facet). In other words,
a snippet with more citations leads to a higher recall
than one with less citations. The performances of
4 participating sites are listed in Table 5. Note that
the F-measure is weighted and is not necessarily a
number between the precision and the recall.

Facet Metric
Site Precision Recall (Weighted) F

SITE 1 0.2713 0.1595 0.1713
SITE 2 0.1500 0.1316 0.1109
SITE 3 0.1935 0.2481 0.1734
Ours 0.2729 0.2195 0.2046

Table 5: Official BOLT 2012 IR evaluation results.
.

Among 4 participating sites, our system has the
highest performance. SITE 1 has about the same
level of precision, with lower recall, while SITE 3
has the best recall, but lower precision. The results
validate that the MMP question analysis technique
presented in this paper is quite effective.

6 Conclusions

We propose a framework to select and rank manda-
tory matching phrases (MMP) for question answer-
ing. The framework makes full use of the lexical,
syntactic and semantic information in a question and
does not require answer data.

The proposed MMP framework is tested at 3 lev-
els in a full QA system and is shown to be very effec-
tive to improve its performance: first, we show that
it is possible to reliably predict MMPs from ques-
tions alone: the MMP classifier can achieve an F-
measure as high as88.6%; second, phrases proposed
by the MMP model are incorporated into a snippet
relevance model and we show that it improves its
performance; third, the MMP framework is used in
an question answering system which achieved the
best performance in the official 2012 BOLT IR (IR,
2012) evaluation.
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Abstract

In a meeting, it is often desirable to extract
keywords from each utterance as soon as it is
spoken. Thus, this paper proposes a just-in-
time keyword extraction from meeting tran-
scripts. The proposed method considers two
major factors that make it different from key-
word extraction from normal texts. The first
factor is the temporal history of preceding ut-
terances that grants higher importance to re-
cent utterances than old ones, and the sec-
ond is topic relevance that forces only the pre-
ceding utterances relevant to the current utter-
ance to be considered in keyword extraction.
Our experiments on two data sets in English
and Korean show that the consideration of the
factors results in performance improvement in
keyword extraction from meeting transcripts.

1 Introduction

A meeting is generally accomplished by a number
of participants and a wide range of subjects are dis-
cussed. Therefore, it would be helpful to meeting
participants to provide them with some additional
information related to the current subject. For in-
stance, assume that a participant is discussing a spe-
cific topic with other participants at a meeting. The
summary of previous meetings on the topic is then
one of the most important resources for her discus-
sion.

In order to provide information on a topic to par-
ticipants, keywords should be first generated for the
topic since keywords are often representatives of a
topic. A number of techniques have been proposed

for automatic keyword extraction (Frank et al., 1999;
Turney, 2000; Mihalcea and Tarau, 2004; Wan et al.,
2007), and they are designed to extract keywords
from a written document. However, they are not
suitable for meeting transcripts. In a meeting, it is
often desirable to extract keywords at the time at
which a new utterance is made for just-in-time ser-
vice of additional information. Otherwise, the ex-
tracted keywords become just the important words
at the end of the meeting.

Two key factors for just-in-time keyword extrac-
tion from meeting transcripts are time of preceding
utterances and topic of current utterance. First, cur-
rent utterance is affected by temporal history of pre-
ceding utterances. That is, when a new utterance
is made it is likely to be related more closely with
latest utterances than old ones. Second, the preced-
ing utterances which carry similar topics to current
utterance are more important than irrelevant utter-
ances. Since a meeting consists of several topics,
the utterances that have nothing to do with current
utterance are inappropriate as a history of the cur-
rent utterance.

This paper proposes a graph-based keyword ex-
traction to reflect these factors. The proposed
method represents an utterance as a graph of which
nodes are candidate keywords. The preceding utter-
ances are also expressed as a history graph in which
the weight of an edge is the temporal importance
of the keywords connected by the edge. To reflect
the temporal history of utterances, forgetting curve
(Wozniak, 1999) is adopted in updating the weights
of edges in the history graph. It expresses effectively
not only the reciprocal relation between memory re-
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tention and time, but also active recall that makes
frequent words more consequential in keyword ex-
traction. Then, a subgraph that is relevant to the
current utterance is derived from the history graph,
and used as an actual history of the current utterance.
The keywords of the current utterance are extracted
by TextRank (Mihalcea and Tarau, 2004) from the
merged graph of the current utterance and the his-
tory graphs.

The proposed method is evaluated with two kinds
of data sets: the National Assembly transcripts
in Korean and the ICSI meeting corpus (Janin et
al., 2003) in English. The experimental results
show that it outperforms both the TFIDF frame-
work (Frank et al., 1999; Liu et al., 2009) and the
PageRank-based graph model (Wan et al., 2007).
One thing to note is that the proposed method im-
proves even the supervised methods that do not re-
flect utterance time and topic relevance for the ICSI
corpus. This proves that it is critical to consider time
and content of utterances simultaneously in keyword
extraction from meeting transcripts.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the related studies on keyword extrac-
tion. Section 3 explains the overall process of the
proposed method, and Section 4 addresses its de-
tailed description how to reflect meeting character-
istics. Experimental results are presented in Section
5. Finally, Section 6 draws some conclusions.

2 Related Work

Keyword extraction has been of interest for a long
time in various fields such as information retrieval,
document clustering, summarization, and so on.
Thus, there have been many studies on automatic
keyword extraction. The frequency-based key-
word extraction with TFIDF weighting (Frank et al.,
1999) and the graph-based keyword extraction (Mi-
halcea and Tarau, 2004) are two base models for this
task. Many studies recently tried to extend them by
incorporating specific information such as linguistic
knowledge (Hulth, 2003), web-based resource (Tur-
ney, 2003), and semantic knowledge (Chen et al.,
2010). As a result, they show good performance on
written text. However, it is difficult to use them di-
rectly for spoken genres, since spoken genres have
significantly different characteristics from written

text.

There have been a few studies focused on key-
word extraction from spoken genres. Among them,
the extraction from meetings has attracted more con-
cern, since the need for grasping important points
of a meeting or an opinion of each participant has
increased. The studies on meetings focused on
the exterior features of meeting dialogues such as
unstructured and ill-formed sentences. Liu et al.
(2009) used some knowledge sources such as Part-
of-Speech (POS) filtering, word clustering, and sen-
tence salience to reflect dialogue features, and they
found out that a simple TFIDF-based keyword ex-
traction using these knowledge sources works rea-
sonably well. They also extended their work by
adopting various features such as decision making
sentence features, speech-related features, and sum-
mary features that reflect meeting transcripts better
(Liu et al., 2011). Chen et al. (2010) extracted key-
words from spoken course lectures. In this study,
they considered prosodic information from HKT
forced alignment and topics in a lecture generated
by Probabilistic Latent Semantic Analysis (pLSA).
These studies focused on the exterior characteris-
tics of spoken genres, since they assumed that entire
scripts are given in advance and then they extracted
keywords that best describe the scripts. However, to
the best of our knowledge, there is no previous study
considered time of utterances which is an intrinsic
element of spoken genres.

The relevance between current utterance and pre-
ceding utterances is also a critical feature in keyword
extraction from meeting transcripts. The study that
considers this relevance explicitly is CollabRank
proposed by Wan and Xiao (2008). This is collabo-
rative approach to extract keywords in a document.
In this study, it is assumed that a few neighbor doc-
uments close to a current document can help extract
keywords. Therefore, they applied a clustering al-
gorithm to a document set and then extracted words
that are reinforced by the documents within a clus-
ter. However, this method also does not consider the
utterance time, since it is designed to extract key-
words from normal documents. As a result, if it is
applied to meeting transcripts, all preceding utter-
ances would affect the current utterance uniformly,
which leads to a poor performance.
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Figure 1: The overall process of the just-in-time keyword extraction from meeting transcripts.

3 Just-In-Time Keyword Extraction for a
Meeting

Figure 1 depicts the overall process of extracting
keywords from an utterance as soon as it is spo-
ken. We represent all the components in a meeting
as graphs. This is because graphs are effective to ex-
press the relationship between words, and the graph
operations that are required for keyword extraction
are also efficiently performed. That is, whenever an
utterance is spoken, it is represented as a graph (G1)
of which nodes are the potential keywords in the ut-
terance. This graph is named as current utterance
graph.

The summary of all preceding utterances is also
represented as a history graph (G2). We assume that
only the preceding utterances that are directly re-
lated with the current utterance are important for ex-
tracting keywords from the current utterance. There-
fore, a subgraph of G2 that maximally covers the
current utterance graph (G1) is extracted. This sub-
graph is labeled as G3 in Figure 1. Then, the current
utterance graph G1 is expanded by merging it and
G3. This expanded graph (G4) is a combined rep-
resentation of the current and preceding utterances,

and then the keywords of the current utterance is ex-
tracted from this graph. The keywords are so-called
hub nodes of G4.

After keywords are extracted from the current ut-
terance, the current utterance becomes a part of the
history graph for the next utterance. For this, the
extracted keywords are also represented as a graph
(G5), and it is merged into the current history G2.
This merged graph becomes a new history graph
for the next utterance. In merging two graphs, the
weight of each edge in G2 is updated to reflect the
temporal history. If an edge is connecting two nouns
from an old utterance, its weight becomes small. In
the same way, the weights for the edges from recent
utterances get large. The weights of the edges from
G5 are 1, the largest possible value.

4 Graph Representation and Weight
Update

4.1 Current Utterance Graph and History
Graph

Current utterance graph is a graph-representation of
the current utterance. When current utterance con-
sists of m words, we first extract the potential key-
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words from the current utterance. Since all words
within the current utterance are not keywords, some
words are filtered out. For this filtering out, we fol-
low the POS filtering approach proposed by Liu et
al. (2009). This approach filters out non-keywords
using a stop-word list and POS tags of the words.
Assume that n words remain after the filtering out,
where n ≤ m. These n words become the vertices
of the current utterance graph.

Formally, the current utterance graph G1 =
(V1, E1) is an undirected graph, where |V1| = n.
E1 is a set of edges and each edge implies that the
nouns connected by the edge co-occur within a win-
dow sizedW . For each e1ij ∈ E1 that connects nodes
v1
i and v1

j , its weight is given by

w1
ij =

{
1 if v1

i &v1
j cooccur within the window,

0 otherwise.
(1)

In a meeting, preceding utterances affect the cur-
rent utterance. We assume that only the keywords
of preceding utterances are effective. Therefore, the
history graph G2 = (V2, E2) is an undirected graph
of keywords in the preceding utterances. That is,
all vertices in V2 are keywords extracted from one
or more previous utterances, and the edge between
two keywords implies that they co-occurred at least
once. Every edge in E2 has a weight that represents
its temporal importance.

The history graph is updated whenever keywords
are extracted from a new utterance. This is because
the current utterance becomes a part of the history
graph for the next utterance. As a history, old ut-
terances are less important than recent ones. Thus,
the temporal importance should decrease gradually
according to the passage of time. In addition, the
keywords which occur frequently at a meeting are
more important than those mentioned just once or
twice. Since the frequently-mentioned keywords are
normally major topics of the meeting, their influence
should last for a long time.

To model these characteristics, the forgetting
curve (Wozniak, 1999) is adopted in updating the
history graph. It models the decline of memory re-
tention in time. Figure 2 shows a typical represen-
tation of the forgetting curve. The X-axis of this
figure is time and the Y-axis is memory retention.
As shown in this figure, memory retention of new

Time

M
e
m
o
r
y

R
e
te
n
ti
o
n

Figure 2: Memory retention according to time.

information decreases gradually by the exponential
nature of forgetting. However, whenever the infor-
mation is repeated, it is recalled longer. This is for-
mulated as

R = e−
t
S ,

where R is memory retention, t is time, and S is the
relative strength of memory.

Based on the forgetting curve, the weight of each
edge e2ij ∈ E2 between keywords v2

i and v2
j is set as

w2
ij = exp

− t
f(vi,vj) , (2)

where t is the elapse of utterance time and f(vi, vj)
is the frequency that vi and vj co-occur from the
beginning of the meeting to now. According to
this equation, the temporal importance between key-
words decreases gradually as time passes by, but the
keyword relations repeated during the meeting are
remembered for a long time in the history graph.

4.2 Keyword Extraction by Merging Current
Utterance and History Graphs

All words within the history graph are not equally
important in extracting keywords from the current
utterance. In general, many participants discuss a
wide range of topics in a meeting. Therefore, some
preceding utterances that shares topics with the cur-
rent utterance are more significant. We assume that
the preceding utterances that contain the nouns in
the current utterance share topics with the current
utterance. Thus, only a subgraph of G2 that contain
words in G1 is relevant for keyword extraction from
G1.
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Given the current utterance graph G1 = (V1, E1)
and the history graph G2 = (V2, E2), the relevant
graph G3 = (V3, E3) is a subgraph of G2. Here,
V3 = (V1∩V2)∪adjacency(V1) and adjacency(V1)
is a set of vertices from G2 which are directly con-
nected to the words in V1. That is, V3 contains
the words of G1 and their direct neighbor words in
G2. E3 is a subset of E2. Only the edges that ap-
pear in E2 are included in E3. The weight w3

ij of
each e3ij ∈ E3 is also borrowed from G2. That is,
w3

ij = w2
ij . Therefore, G3 is a 1-walk subgraph1 of

G2 in which words in G1 and their neighbor words
appear.

The keywords of the current utterance should re-
flect the relevant history as well as the current utter-
ance itself. For this purpose, G1 is expanded with
respect to G3. The expanded graph G4 = (V4, E4)
of G1 is defined as

V4 = V1 ∪ V3,

E4 = E1 ∪ E3.

For each edge e4ij ∈ E4, its weightw4
ij is determined

to be the larger value between w1
ij and w3

ij if it ap-
pears in both G1 and G3. When it appears in only
one of the graphs, w4

ij is set to be the weight of its
corresponding graph. That is,

w4
ij =


max(w1

ij , w
3
ij) if e4ij ∈ E1 and e4ij ∈ E3,

w1
ij if e4ij ∈ E1 and e4ij /∈ E3,

w3
ij otherwise.

From this expanded graph G4, the keywords are
extracted by TextRank (Mihalcea and Tarau, 2004).
TextRank is an unsupervised graph-based method
for keyword extraction. It singles out the key ver-
tices of a graph by providing a ranking mechanism.
In order to rank the vertices, it computes the score
of each vertex v4

i ∈ V4 by

S(v4
i ) = (1− d) + d ·

∑
v4

j
∈adj(v4

i
)

w4
ji∑

v4
k
∈adj(v4

j
) w

4
jk

S(v4
j ),

(3)
1If a m-walk subgraph (m > 1) is used, more affluent his-

tory is used. However, this graph contains some words irrel-
evant to the current utterance. According to our experiments,
1-walk subgraph outperforms other m-walk subgraphs where
m > 1. In addition, extracting G3 becomes expensive for large
m.

where 0 ≤ d ≤ 1 is a damping factor and adj(vi)
denotes vi’s neighbors. Finally, the words whose
score is larger than a specific threshold θ are cho-
sen as keywords. Especially when the current utter-
ance is the first utterance of a meeting, the history
graph does not exist. In this case, the current utter-
ance graph becomes the expanded graph (G4 = G1),
and keywords are extracted from the current utter-
ance graph.

The proposed method extracts keywords when-
ever an utterance is spoken. Thus, it tries to extract
keywords even if the current utterance is not related
to the topics of a meeting or is too short. However,
if the current utterance is irrelevant to the meeting,
it has just a few connections with other previous ut-
terances, and thus the potential keywords in this ut-
terance are apt to have a low score. The proposed
method, however, does not select the words whose
score is smaller than the threshold θ as keywords.
As a result, it extracts only the relevant keywords
during the meeting.

Since the keywords for the current utterance
should be the history for the next utterance, they
have to be reflected into the history graph. There-
fore, a keyword graph G5 = (V5, E5) is constructed
from the keywords. Here, V5 is a set of keywords
extracted from G4, and E5 is a subset of E4 that
corresponds to V5. The weights of edges in E5 are
same with those in E4. That is, w5

ij = w4
ij . The key-

word graph G5 is then merged into the history graph
G2 in the same way that G1 and G3 are merged. As
stated above, the weights of the edges in the history
graph G2 are updated by Equation (2). Therefore,
before merging G5 and G2, all weights of G2 are
updated by increasing t as t + 1 to reflect temporal
importance of preceding utterances.

5 Experiments

The proposed method is evaluated with two kinds of
data sets: the National Assembly transcripts in Ko-
rean and the ICSI meeting corpus in English. Both
data sets are the records of meetings that are manu-
ally dictated by human transcribers.
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Table 1: Simple statistics of the National Assembly transcripts
the first meeting the second meeting

No. of utterances 1,280 573
Average No. of words per utterance 7.22 10.17

5.1 National Assembly Transcripts in Korean
The first corpus used to evaluate our method is the
National Assembly transcripts2. This corpus is ob-
tained from the Knowledge Management System
of the National Assembly of KoreaIt is transcribed
from the 305th assembly record of the Knowledge
Economy Committee in 2012. Table 1 summa-
rizes simple statistics of the National Assembly tran-
scripts. The 305th assembly record actually consists
of two meetings. The first meeting contains 1,280
utterances and the second has 573 utterances. The
average number of words per utterance in the first
meeting is 7.22 while the second meeting contains
10.17 words per utterance on average. The second
meeting transcript is used as a development data set
to determine window size W of Equation (1), the
damping factor d of Equation (3), and the threshold
θ. For all experiments below, d is set 0.85, W is 10,
and θ is 0.28. The remaining first meeting transcript
is used as a data set to extract keywords since this
transcript contains more utterances. Only nouns are
considered as potential keywords. That is, only the
words whose POS tag is NNG (common noun) or
NNP (proper noun) can be a keyword.

Three annotators are engaged to extract keywords
manually for each utterance in the first meeting
transcript, since the Knowledge Management Sys-
tem does not provide the keywords3. The aver-
age number of keywords per utterance is 2.58. To
see the inter-judge agreement among the annotators,
the Kappa coefficient (Carletta, 1996) was investi-
gated. The kappa agreement of the National Assem-
bly transcript is 0.31 that falls under the category of
‘Fair’. Even though all congressmen in the transcript
belong to the same committee, they discussed vari-
ous topics at the meeting. As a result, the keywords
are difficult to be agreed unanimously by all three

2The data set is available: http://ml.knu.ac.kr/
dataset/keywordextraction.html

3A guideline was given to the annotators that keywords must
be a single word and the maximum number of keywords per
utterance is five.

annotators. Therefore, in this paper the words that
are recommended by more than two annotators are
chosen as keywords.

The evaluation is done with two metics: F-
measure and the weighted relative score (WRS).
Since the previous work by Liu et al. (2009) re-
ported only F-measure and WRS, F-measure instead
of precision/recall are used for the comparison with
their method. The weighted relative score is de-
rived from Pyramid metric (Nenkova and Passon-
neau, 2004). When a keyword extraction system
generates keywords which many annotators agree,
a higher score is given to it. On the other hand, a
lower score is given if fewer annotators agree.

The proposed method is compared with two base-
line models to see its relative performance. One is
the frequency-based keyword extraction with TFIDF
weighting (Frank et al., 1999) and the other is Tex-
tRank in which the weight of edges is mutual in-
formation between vertices (Wan et al., 2007). In
TFIDF, each utterance is considered as a document,
and thus all utterances including the current one
are regarded as whole documents. The frequency-
based TFIDF chooses top-K words according to
their TFIDF value from the set of words appearing in
the meeting transcript. Since the human annotators
are restricted to extract up to five keywords, the key-
word extraction systems including our method are
also requested to select top-5 keywords when more
than five keywords are produced.

In order to see the effect of preceding utterances in
baseline models, the performances are measured ac-
cording to the number of preceding utterances used.
Figure 3 shows the results. The X-axis of this fig-
ure is the number of preceding utterances and the Y-
axis represents F-measures. As shown in this figure,
the performance of the baseline models improves
monotonically at first as the number of preceding
utterances increases. However, the performance im-
provement stops when many preceding utterances
are involved, and the performance begins to drop
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Figure 3: The performance of baseline models according
to the number of preceding utterances

Table 2: The experimental results on the National Assem-
bly transcripts

Methods F-measure WRS
TextRank 0.478 0.387

TFIDF 0.481 0.394
Proposed method 0.533 0.421

when too many utterances are considered. The per-
formance of TextRank model drops from 20 preced-
ing utterances, while that of TFIDF model begins to
drops at 50 utterances. When too many preceding
utterances are taken into account, it is highly pos-
sible that some of their topics are irrelevant to the
current utterance, which leads to performance drop.

Table 2 compares our method with the baseline
models on the National Assembly transcripts. The
performances of baseline models are obtained when
they show the best performance for various number
of preceding utterances. TextRank model achieves
F-measure of 0.478 and weighted relative score of
0.387, while TFIDF reports its best F-measure of
0.481 and weighted relative score of 0.394. Thus,
the difference between TFIDF and TextRank is not
significant. However, F-measure and weighted rel-
ative score of the proposed method are 0.533 and
0.421 respectively, and they are much higher than
those of baseline models. In addition, our method
achieves precision of 0.543 and recall of 0.523 and

Table 3: The importance of temporal history
F-measure WRS

With Temporal History 0.533 0.421
Without Temporal History 0.518 0.413

this is much higher performance than TextRank
whose precision is just 0.510. Since the proposed
method uses, as history, the preceding utterances
relevant to the current utterance, its performance is
kept high even if whole utterances are used. There-
fore, it could be inferred that it is important to adopt
only the relevant history in keyword extraction from
meeting transcripts.

One of the key factors of our method is the tem-
poral history. Its importance is given in Table 3. As
explained above, the temporal history is achieved by
Equation (2). Thus, the proposed model does not
reflect the temporal importance of preceding utter-
ances if w2

ij = 1 always. That is, under w2
ij = 1,

old utterances are regarded as important as recent ut-
terances. Without temporal history, F-measure and
weighted relative score are just 0.518 and 0.413 re-
spectively. These poor performances prove the im-
portance of the temporal history in keyword extrac-
tion from meeting transcripts.

5.2 ICSI Meeting Corpus in English
The proposed method is also evaluated on the ICSI
meeting corpus (Janin et al., 2003) which consists of
naturally occurring meetings recordings. This cor-
pus is widely used for summarizing and extracting
keywords of meetings. We followed all the exper-
imental settings proposed by Liu et al. (2009) for
this corpus. Among 26 meeting transcripts chosen
by Liu et al. from 161 transcripts of the ICSI meet-
ing corpus, 6 transcripts are used as development
data and the remaining transcripts are used as data
to extract keywords. The parameters for the ICSI
meeting corpus are set to be d = 0.85,W = 10,
and θ = 0.20. Each meeting of the corpus consists
of several topic segments, and every topic segment
contains three sets of keywords that are annotated by
three annotators. Up to five keywords are annotated
for a topic segment.

Table 4 shows simple statistics of the ICSI meet-
ing data. Total number of topic segments in the 26
meetings is originally 201, but some of them do not
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Table 4: Simple statistics of the ICSI meeting data
Information Value

# of meetings 26
# of topic segments 201

# of topic segments used actually 140
Average # of utterances per topic segment 260

Average # of words per utterance 7.22

Table 5: The experimental results on the ICSI corpus
Methods F-measure WRS

TFIDF-Liu 0.290 0.404
TextRank-Liu 0.277 0.380

ME model 0.312 0.401
Proposed method 0.334 0.533

have keywords. Such segments are discarded, and
the remaining 140 topic segments are actually used.
The average number of utterances in a topic segment
is 260 and the average number of words per utter-
ance is 7.22.

Unlike the National Assembly transcripts, the
keywords of the ICSI meeting corpus are annotated
at the topic segment level, not the utterance level.
Therefore, the proposed method which extracts key-
words at the utterance level can not be applied di-
rectly to this corpus. In order to obtain keywords
for a topic segment with the proposed method, the
keywords are first extracted from each utterance in
the segment by the proposed method and then they
are all accumulated. The proposed method extracts
keywords for a topic segment from these accumu-
lated utterance-level keywords as follows. Assume
that a topic segment consists of l utterances. Since
our method can extract up to 5 keywords for each
utterance, the number of keywords for the segment
can reach to 5 · l. From these keywords, we select
top-5 keywords ranked by Equation (3).

The proposed method is compared with three pre-
vious studies. The first two are the methods pro-
posed by Liu et al. (2009) One is the frequency-
based method of TFIDF weighting with the fea-
tures such as POS filtering, word clustering, and sen-
tence salience score, and the other is the graph-based
method with POS filtering. The last method is a
maximum entropy model applied to this task (Liu
et al., 2008). Note that the maximum entropy is a
supervised learning model.

Table 6: The effect of considering topic relevance
Methods F-measure WRS

With topic relevance 0.334 0.533
Without topic relevance 0.291 0.458

Table 5 summarizes the comparison results. As
shown in this table, the proposed method outper-
forms all previous methods. Our method achieves
precision of 0.311 and recall of 0.361, and thus
the F-score is 0.334. The weight relative score
of the proposed method is 0.533. This is the im-
provement of up to 0.044 in F-measure and 0.129
in weighted relative score over other unsupervised
methods (TFIDF-Liu and TextRank-Liu). It should
be also noted that the proposed method outperforms
even the supervised method (ME model). The differ-
ence between our method and the maximum entropy
model in weighted relative score is 0.132.

One possible variant of the proposed method for
the ICSI corpus is to simply merge the current utter-
ance graph (G1) with the history graph (G2) rather
than to extract keywords from each utterance. Af-
ter the current utterance graph of the last utterance
in a topic segment is merged into the history graph,
the keywords for the segment are extracted from the
history graph. This variant and the proposed method
both rely on the temporal history, but the difference
is that the history graph of the variant accumulates
all information within the topic segment. Thus, the
keywords extracted from the history graph by this
variant are those without consideration of topic rel-
evance.

Table 6 compares the proposed method with the
variant. The performance of the variant is higher
than those of TFIDF-Liu and TextRank-Liu. This
proves the importance of the temporal history in
keyword extraction from meeting transcripts. How-
ever, the proposed method still outperforms the vari-
ant, and it demonstrates the importance of topic rel-
evance. Therefore, it can be concluded that the con-
sideration of temporal history and topic relevance
is critical in keyword extraction from meeting tran-
scripts.
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6 Conclusion

In this paper, we have proposed a just-in-time key-
word extraction from meeting transcripts. Whenever
an utterance is spoken, the proposed method extracts
keywords from the utterance that best describe the
utterance. Based on the graph representation of all
components in a meeting, the proposed method ex-
tracts keywords by TextRank with some graph oper-
ations.

Temporal history and topic of the current utter-
ance are two major factors especially in keyword ex-
traction from meeting transcripts. This is because re-
cent utterances are more important than old ones and
only the preceding utterances of which topic is rele-
vant to the current utterance are important. To model
the temporal importance of the preceding utterances,
the concept of forgetting curve is used in updating
the history graph of preceding utterances. In addi-
tion, the subgraph of the history graph that shares
words appearing in the current utterance graph is
used to extract keywords rather than whole history
graph. The proposed method was evaluated with the
National Assembly transcripts and the ICSI meeting
corpus. According to our experimental results on
these data sets, the performance of keyword extrac-
tion is improved when we consider temporal history
and topic relevance.
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Abstract

Coreference resolution systems rely heav-
ily on string overlap (e.g., Google Inc. and
Google), performing badly on mentions with
very different words (opaque mentions) like
Google and the search giant. Yet prior at-
tempts to resolve opaque pairs using ontolo-
gies or distributional semantics hurt precision
more than improved recall. We present a new
unsupervised method for mining opaque pairs.
Our intuition is to restrict distributional se-
mantics to articles about the same event, thus
promoting referential match. Using an En-
glish comparable corpus of tech news, we built
a dictionary of opaque coreferent mentions
(only 3% are in WordNet). Our dictionary can
be integrated into any coreference system (it
increases the performance of a state-of-the-art
system by 1% F1 on all measures) and is eas-
ily extendable by using news aggregators.

1 Introduction

Repetition is one of the most common coreferential
devices in written text, making string-match features
important to all coreference resolution systems. In
fact, the scores achieved by just head match and a
rudimentary form of pronominal resolution1 are not
far from that of state-of-the-art systems (Recasens
and Hovy, 2010). This suggests that opaque men-
tions (i.e., lexically different) such as iPad and the
Cupertino slate are a serious problem for modern
systems: they comprise 65% of the non-pronominal

1Closest NP with the same gender and number.

errors made by the Stanford system on the CoNLL-
2011 data. Solving this problem is critical for over-
coming the recall gap of state-of-the-art systems
(Haghighi and Klein, 2010; Stoyanov et al., 2009).

Previous systems have turned either to ontologies
(Ponzetto and Strube, 2006; Uryupina et al., 2011;
Rahman and Ng, 2011) or distributional semantics
(Yang and Su, 2007; Kobdani et al., 2011; Bansal
and Klein, 2012) to help solve these errors. But nei-
ther semantic similarity nor hypernymy are the same
as coreference: Microsoft and Google are distribu-
tionally similar but not coreferent; people is a hy-
pernym of both voters and scientists, but the peo-
ple can corefer with the voters, but is less likely
to corefer with the scientists. Thus ontologies lead
to precision problems, and to recall problems like
missing NE descriptions (e.g., Apple and the iPhone
maker) and metonymies (e.g., agreement and word-
ing), while distributional systems lead to precision
problems like coreferring Microsoft and the Moun-
tain View giant because of their similar vector rep-
resentation (release, software, update).

We increase precision by drawing on the intuition
that referents that are both similar and participate in
the same event are likely to corefer. We restrict dis-
tributional similarity to collections of articles that
discuss the same event. In the following two doc-
uments on the Nexus One from different sources,
we take the subjects of the identical verb release—
Google and the Mountain View giant—as coreferent.
Document 1: Google has released a software update.

Document 2: The Mountain View giant released an update.

Based on this idea, we introduce a new unsuper-
vised method that uses verbs in comparable corpora
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as pivots for extracting the hard cases of corefer-
ence resolution, and build a dictionary of opaque
coreferent mentions (i.e., the dictionary entries are
pairs of mentions). This dictionary is then inte-
grated into the Stanford coreference system (Lee et
al., 2011), resulting in an average 1% improvement
in the F1 score of all the evaluation measures.

Our work points out the importance of context to
decide whether a specific mention pair is coreferent.
On the one hand, we need to know what semantic
relations are potentially coreferent (e.g., content and
video). On the other, we need to distinguish contexts
that are compatible for coreference—(1) and (2-a)—
from those that are not—(1) and (2-b).

(1) Elemental helps those big media entities process
content across a full slate of mobile devices.

(2) a. Elemental provides the picks and shovels to
make video work across multiple devices.

b. Elemental is powering the video for HBO Go.

Our dictionary of opaque coreferent pairs is our so-
lution to the first problem, and we report on some
preliminary work on context compatibility to ad-
dress the second problem.

2 Building a Dictionary for Coreference

To build a dictionary of semantic relations that are
appropriate for coreference we will use a cluster of
documents about the same news event, which we
call a story. Consider as an example the story Sprint
blocks out vacation days for employees. We deter-
mine using tf-idf the representative verbs for this
story, the main actions and events of the story (e.g.,
block out). Since these verbs are representative of
the story, different instances across documents in the
cluster are likely to refer to the same events (Sprint
blocks out. . . and the carrier blocks out. . . ). By the
same logic, the subjects and objects of the verbs are
also likely to be coreferent (Sprint and the carrier).

2.1 Comparable corpus

To build our dictionary, we require a monolingual
comparable corpus, containing clusters of docu-
ments from different sources that discuss the same
story. To ensure likely coreference, the story must
be the very same; documents that are merely clus-
tered by (general) topic do not suffice. The corpus

does not need to be parallel in the sense that docu-
ments in the same cluster do not need to be sentence
aligned.

We used Techmeme,2 a news aggregator for tech-
nology news, to construct a comparable corpus. Its
website lists the major tech stories, each with links
to several articles from different sources. We used
the Readability API3 to download and extract the ar-
ticle text for each document. We scraped two years
worth of data from Techmeme and only took stories
containing at least 5 documents. Our corpus con-
tains approximately 160 million words, 25k stories,
and 375k documents. Using a corpus from Tech-
meme means that our current coreference dictionary
is focused on the technological domain. Our method
can be easily extended to other domains, however,
since getting comparable corpora is relatively sim-
ple from the many similar news aggregator sites.

2.2 Extraction

After building our corpus, we used Stanford’s
CoreNLP tools4 to tokenize the text and annotate it
with POS tags and named entity types. We parsed
the text using the MaltParser 1.7, a linear time de-
pendency parser (Nivre et al., 2004).5

We then extracted the representative verbs of each
story by ranking the verbs in each story according
to their tf-idf scores. We took the top ten to be the
representative set. For each of these verbs, we clus-
tered together its subjects and objects (separately)
across instances of the verb in the document clus-
ter, excluding pronouns and NPs headed by the same
noun. For example, suppose that crawl is a represen-
tative verb and that in one document we have Google
crawls web pages and The search giant crawls sites
in another document. We will create the clusters
{Google, the search giant} and {web pages, sites}.

When detecting representative verbs, we kept
phrasal verbs as a unit (e.g., give up) and excluded
auxiliary and copular verbs,6 light verbs,7 and report

2http://www.techmeme.com
3http://www.readability.com/developers/api
4http://nlp.stanford.edu/software/corenlp.shtml
5http://www.maltparser.org
6Auxiliary and copular verbs include appear, be, become,

do, have, seem.
7Light verbs include do, get, give, go, have, keep, make, put,

set, take.
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verbs,8 as they are rarely representative of a story
and tend to add noise to our dictionary. To increase
recall, we also considered the synonyms from Word-
Net and nominalizations from NomBank of the rep-
resentative verbs, thus clustering together the sub-
jects and objects of any synonym as well as the ar-
guments of nominalizations.9 We used syntactic re-
lations instead of semantic roles because the Malt-
Parser is faster than any SRL system, but we checked
for frequent syntactic structures in which the agent
and patient are inverted, such as passive and ergative
constructions.10

From each cluster of subject or object mentions,
we generated all pairs of mentions. This forms the
initial version of our dictionary. The next sections
describe how we filter and generalize these pairs.

2.3 Filtering

We manually analyzed 200 random pairs and clas-
sified them into coreference and spurious relations.
The spurious relations were caused by errors due to
the parser, the text extraction, and violations of our
algorithm assumption (i.e., the representative verb
does not refer to a unique event). We employed a fil-
tering strategy to improve the precision of the dictio-
nary. We used a total of thirteen simple rules, which
are shown in Table 1. For instance, we sometimes
get the same verb with non-coreferent arguments,
especially in tech news that compare companies or
products. In these cases, NEs are often used, and so
we can get rid of a large number of errors by auto-
matically removing pairs in which both mentions are
NEs (e.g., Google and Samsung).

Before filtering, 53% of all relations were good
coreference relations versus 47% spurious ones. Of
the relations that remained after filtering, 74% were

8Report verbs include argue, claim, say, suggest, tell, etc.
9As a general rule, we extract possessive phrases as subjects

(e.g. Samsung’s plan) and of -phrases as objects (e.g. develop-
ment of the new logo).

10We can easily detect passive subjects (i-b) as they have their
own dependency label, and ergative subjects (ii-b) using a list
of ergative verbs extracted from Levin (1993).

(i) a. Developers hacked the device.
b. The device was hacked.

(ii) a. Police scattered the crowds.
b. The crowds scattered.

Both mentions are NEs
Both mentions appear in the same document
Object of a negated verb
Enumeration or list environment
Sentence is ill-formed
Number NE
Temporal NE
Quantifying noun
Coordinated
Verb is preceded by a determiner or an adjective
Head is not nominal
Sentence length ≥ 100
Mention length ≥ 70% of sentence length

Table 1: Filters to improve the dictionary precision. Un-
less otherwise noted, the filter was applied if either men-
tion in the relation satisfied the condition.

coreferent and only 26% were spurious. In total,
about half of the dictionary relations were removed
in the filtering process, resulting in a total of 128,492
coreferent pairs.

2.4 Generalization

The final step of generating our dictionary is to pro-
cess the opaque mention pairs so that they gener-
alize better. We strip mentions of any determiners,
relative clauses, and -ing and -ed clauses. However,
we retain adjectives and prepositional modifiers be-
cause they are sometimes necessary for corefer-
ence to hold (e.g., online piracy and distribution
of pirated material). We also generalize NEs to
their types so that our dictionary entries can func-
tion as templates (e.g., Cook’s departure becomes
<person>’s departure), but we keep NE tokens that
are in the head position as these are pairs containing
world knowledge (e.g., iPad and slate). Finally, we
replace all tokens with their lemmas. Table 2 shows
a snapshot of the dictionary.

2.5 Semantics of coreference

From manually classifying a sample of 200 dictio-
nary pairs (e.g., Table 2), we find that our dictio-
nary includes many synonymy (e.g., IPO and offer-
ing) and hypernymy relations (e.g., phone and de-
vice), which are the relations that are typically ex-
tracted from ontologies for coreference resolution.
However, not all synonyms and hypernyms are valid
for coreference (recall the voters-people vs. scien-
tists-people example in the introduction), so our dic-
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Mention 1 Mention 2

offering IPO
user consumer
phone device
Apple company
hardware key digital lock
iPad slate
content photo
bug issue
password login information
Google search giant
site company
filing complaint
company government
TouchPad tablet
medical record medical file
version handset
information credit card
government chairman
app software
Android platform
the leadership change <person>’s departure
change update

Table 2: Coreference relations in our dictionary.

tionary only includes the ones that are relevant for
coreference (e.g., update and change). Furthermore,
only 3% of our 128,492 opaque pairs are related in
WordNet, confirming that our method is introducing
a large number of new semantic relations.

We also discover other semantic relations that are
relevant for coreference, such as various metonymy
relations like mentioning the part for the whole.
Again though, we can use some part-whole rela-
tions coreferentially (e.g., car and engine) but not
others (e.g., car and window). Our dictionary in-
cludes part-whole relations that have been observed
as coreferent at least once (e.g., company and site).
We also extract world-knowledge descriptions for
NEs (e.g., Google and the Internet giant).

3 Integration into a Coreference System

We next integrated our dictionary into an existing
coreference resolution system to see if it improves
resolution.

3.1 Stanford coreference resolution system

Our baseline is the Stanford coreference resolution
system (Lee et al., 2011) which was the highest-
scoring system in the CoNLL-2011 Shared Task,

Sieve number Sieve name

1 Discourse processing
2 Exact string match
3 Relaxed string match
4 Precise constructs

5–7 Strict head match
8 Proper head noun match
9 Relaxed head match

10 Pronoun match

Table 3: Rules of the baseline system.

and was also part of the highest-scoring system in
the CoNLL-2012 Shared Task (Fernandes et al.,
2012). It is a rule-based system that includes a to-
tal of ten rules (or “sieves”) for entity coreference,
shown in Table 3. The sieves are applied from high-
est to lowest precision, each rule extending entities
(i.e., mention clusters) built by the previous tiers, but
never modifying links previously made. The major-
ity of the sieves rely on string overlap.11

The highly modular architecture made it easy for
us to integrate additional sieves using our dictionary
to increase recall.

3.2 Dictionary sieves

We propose four new sieves, each one using a differ-
ent granularity level from our dictionary, with each
consecutive sieve using higher precision relations
than the previous one. The Dict 1 sieve uses only
the heads of mentions in each relation (e.g., devices).
Dict 2 uses the heads and one premodifier, if it ex-
ists (e.g., iOS devices). Dict 3 uses the heads and up
to two premodifiers (e.g., new iOS devices). Dict 4
uses the full mentions, including any postmodifiers
(e.g., new iOS devices for businesses).

We take advantage of frequency counts to get rid
of low-precision coreference pairs and only keep
(i) pairs that have been seen more than 75 times
(Dict 1) or 15 times (Dict 2, Dict 3, Dict 4);
and (ii) pairs with a frequency count larger than 8
(Dict 1) or 2 (Dict 2, Dict 3, Dict 4) and a normal-
ized PMI score larger than 0.18. We use the nor-
malized PMI score (Bouma, 2009) as a measure of
association between the mentions mi and mj of a

11Exceptions: sieve 1 links first-person pronouns inside a
quotation with the speaker; sieve 4 links mention pairs that ap-
pear in an appositive, copular, acronym, etc., construction; sieve
10 implements generic pronominal coreference resolution.
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dictionary pair, computed as

(ln p(mi,mj)
p(mi)p(mj)

) /− ln p(mi,mj)

These thresholds were set on the development set.
Since the different coreference rules in the Stan-

ford system are arranged in decreasing order of pre-
cision, we start by applying the sieve that uses the
highest-precision relations in the dictionary (Dict 4),
followed by Dict 3, Dict 2, and Dict 1. We add
these new sieves right before the last sieve, as the
pronominal sieve can perform better if opaque men-
tions have been successfully linked. The current
sieves only use the dictionary for linking singular
mentions, as the experiments on the dev showed that
plural mentions brought too much noise.

For any mention pair under analysis, each sieve
checks whether it is supported by the dictionary as
well as whether basic constraints are satisfied, such
as number, animacy and NE-type agreement, and
NE–common noun order (not the opposite).

4 Experiments

4.1 Data

Although our dictionary creation technology can ap-
ply across domains, our current coreference dictio-
nary is focused on the technical domain, so we cre-
ated a coreference labeled corpus in this domain for
evaluation. We extracted new data from Techmeme
(different from that used to extract the dictionary) to
create a development and a test set. It is important
to note that we do not need comparable data at this
stage. A massive comparable corpus is only needed
for mining the coreference dictionary (Section 2);
once it is built, it can be used for solving corefer-
ence within and across documents.

The annotation was performed by two experts, us-
ing the Callisto annotation tool. The development
and test sets were annotated with coreference rela-
tions following the OntoNotes guidelines (Pradhan
et al., 2007). We annotated full NPs (with all mod-
ifiers), excluding appositive phrases and predicate
nominals. Only premodifiers that were proper nouns
or possessive phrases were annotated. We extended
the OntoNotes guidelines by also annotating single-
tons. Table 4 shows the dataset statistics.

Dataset Stories Docs Tokens Entities Mentions

Dev 4 27 7837 1360 2279

Test 24 24 8547 1341 2452

Table 4: Dataset statistics: development (dev) and test.

4.2 Evaluation measures
We evaluated using six coreference measures, as
they sometimes provide different results and there is
no agreement on a standard. We used the scorer of
the CoNLL-2011 Shared Task (Pradhan et al., 2011).

• MUC (Vilain et al., 1995). Link-based metric
that measures how many links the true and sys-
tem partitions have in common.
• B3 (Bagga and Baldwin, 1998). Mention-based

metric that measures the proportion of mention
overlap between gold and predicted entities.
• CEAF-φ3 (Luo, 2005). Mention-based metric

that, unlike B3, enforces a one-to-one align-
ment between gold and predicted entities.
• CEAF-φ4 (Luo, 2005). The entity-based ver-

sion of the above metric.
• BLANC (Recasens and Hovy, 2011). Link-

based metric that considers both coreference
and non-coreference links.
• CoNLL (Denis and Baldridge, 2009). Average

of MUC, B3 and CEAF-φ4. It was the official
metric of the CoNLL-2011 Shared Task.

4.3 Results
We always start from the baseline, which corre-
sponds to the Stanford system with the sieves listed
in Table 3. This is the set of sieves that won the
CoNLL-2011 Shared Task (Pradhan et al., 2011),
and they exclude WordNet.

Table 5 shows the incremental scores, on the de-
velopment set, for the four sieves that use the dictio-
nary, corresponding to the different granularity lev-
els, from the highest precision one (Dict 4) to the
lowest one (Dict 1). The largest improvement is
achieved by Dict 4 and Dict 3, as they improve re-
call (R) without hurting precision (P). R is equiva-
lent to P for CEAF-φ4, and vice versa. The other
two sieves increase R further, especially Dict 1,
but also decrease P, although the trade-off for the
F-score (F1) is still positive. It is the best score, with
the exception of B3.
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MUC B3 CEAF-φ3 CEAF-φ4 BLANC CoNLL
System R P F1 R P F1 R / P / F1 R P F1 R P B F1

Baseline 55.9 72.8 63.3 74.1 89.8 81.2 74.6 85.2 73.6 79.0 66.6 87.1 72.6 74.5

+Dict 4 57.0 72.8 63.9 75.1 89.4 81.6 75.3 85.2 74.3 79.4 68.2 87.3 74.2 75.0

+Dict 3 57.6 72.8 64.3 75.4 89.3 81.7 75.5 85.1 74.6 79.5 68.4 87.2 74.4 75.2

+Dict 2 57.6 72.5 64.2 75.4 89.1 81.7 75.4 85.0 74.6 79.5 68.4 87.0 74.3 75.1

+Dict 1 58.4 71.9 64.5 75.7 88.5 81.6 75.5 84.6 75.1 79.6 68.6 86.6 74.4 75.2

Table 5: Incremental results for the four sieves using our dictionary on the development set. Baseline is the Stanford
system without the WordNet sieves. Scores are on gold mentions.

MUC B3 CEAF-φ3 CEAF-φ4 BLANC CoNLL
System R P F1 R P F1 R / P / F1 R P F1 R P B F1

Baseline 62.4 78.2 69.4 73.7 89.5 80.8 75.1 86.2 73.8 79.5 71.4 88.6 77.3 76.6

w/ WN 63.5 75.3 68.9 74.2 87.5 80.3 74.1 83.7 74.1 78.6 71.8 87.3 77.3 75.9

w/ Dict 64.7* 77.6* 70.6* 75.7* 88.5* 81.6* 76.5* 85.3* 75.0* 79.9* 74.6* 88.6 79.9* 77.3*

w/ Dict +
Context

64.8* 77.8* 70.7* 75.7* 88.6* 81.7* 76.5* 85.5* 75.1* 80.0* 74.6* 88.7 79.9* 77.5*

Table 6: Performance on the test set. Scores are on gold mentions. Stars indicate a statistically significant difference
with respect to the baseline.

Table 6 reports the scores on the test set and com-
pares the scores obtained by adding the WordNet
sieves to the baseline (w/ WN) with those obtained
by adding the dictionary sieves (w/ Dict). Whereas
adding WordNet only brings a small improvement
in R that is much lower than the loss in P, the dic-
tionary sieves succeed in increasing R by a larger
amount and at a smaller cost to P, resulting in a sig-
nificant improvement in F1: 1.2 points according to
MUC, 0.8 points according to B3, 1.4 points accord-
ing to CEAF-φ3, 0.4 points according to CEAF-φ4,
2.6 points according to BLANC, and 0.7 points ac-
cording to CoNLL. Section 5.2 presents the last line
(w/ Dict + Context).

5 Discussion

5.1 Error analysis

Thanks to the dictionary, the coreference system im-
proves the baseline by establishing coreference links
between the bolded mentions in (3) and (4).

(3) With Groupon Inc.’s stock down by half from its IPO
price and the company heading into its first earnings
report since an accounting blowup [...] outlining op-
portunity ahead and the promise of new products for
the daily-deals company.

(4) Thompson revealed the diagnosis as evidence arose
that seemed to contradict his story about why he was
not responsible for a degree listed on his resume that
he does not have, the newspaper reports, citing anony-
mous sources familiar with the situation [...] a Yahoo
board committee appointed to investigate the matter.

The first case requires world knowledge and the sec-
ond case, semantic knowledge.

We manually analyzed 40 false positive errors
caused by the dictionary sieves. Only a small num-
ber of them were due to noise in the dictionary. The
majority of errors were due to the discourse context:
the two mentions could be coreferent, but not in the
given context. For example, Apple and company are
potentially coreferent—which is successfully cap-
tured by our dictionary—and while they are coref-
erent in (5), they are not in (6).12

(5) It will only get better as Apple will be updating it
with iOS6, an operating system that the company will
likely be showing off this summer.

(6) Since Apple reinvented the segment, Microsoft is the
latest entrant into the tablet market, banking on its
Windows 8 products to bridge the gap between PCs
and tablets. [...] The company showed off Windows 8
last September.

12Examples in this section show gold coreference relations in
bold and incorrectly predicted coreferent mentions in italics.
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In these cases it does not suffice to check whether
the opaque mention pair is included in the corefer-
ence dictionary, but we need a method for taking the
surrounding context into account. In the next section
we present our preliminary work in this direction.

5.2 Context fit
To help the coreference system choose the right an-
tecedent in examples like (6), we exploit the fact
that the company is closely followed by Windows 8,
which is a clue for selecting Microsoft instead of Ap-
ple as the antecedent. We devise a contextual con-
straint that rules out a mention pair if the contexts are
incompatible. To check for context compatibility,
we borrow the idea of topic signatures from Lin and
Hovy (2000) and that Agirre et al. (2001) used for
Word Sense Disambiguation. Instead of identifying
the keywords of a topic, we find the NEs that tend
to co-occur with another NE. For example, the sig-
nature for Apple should include terms like iPhone,
MacBook, iOS, Steve Jobs, etc. This is what we call
the NE signature for Apple.

To construct NE signatures, we first compute the
log-likelihood ratio (LLR) statistic between NEs in
our corpus (the same one used to build the dictio-
nary). Then, the signature for a NE, w, is the list of
k other NEs that have the highest LLR with w. The
LLR between two NEs, w1 and w2, is −2 ln L(H1)

L(H2) ,
where H1 is the hypothesis that
P (w1 ∈ sent|w2 ∈ sent) = P (w1 ∈ sent|w2 /∈ sent),
H2 is the hypothesis that

P (w1 ∈ sent|w2 ∈ sent) 6= P (w1 ∈ sent|w2 /∈ sent),
and L(·) is the likelihood. We assume a binomial

distribution for the likelihood.
Once we have NE signatures, we determine the

context fit as follows. When the system compares a
NE antecedent with a (non-NE) anaphor, we check
whether any NEs in the anaphor’s sentence are in
the antecedent’s signature. We also check whether
the antecedent is in the signature list of any NE’s in
the anaphor’s sentence. If neither of these is true,
we do not allow the system to link the antecedent
and the anaphor. In (6), Apple is not linked with the
company because it is not in Windows’ signature,
and Windows is not in Apple’s signature either (but
Microsoft is in Windows’ signature).

The last two lines in Table 6 compare the scores
without using this contextual feature (w/ Dict) with

those using context (w/ Dict + Context). Our feature
for context compatibility leads to a small but posi-
tive improvement, taking the final improvement of
the dictionary sieves to be about 1 percentage point
above the baseline according to all six evaluation
measures. We leave as future work to test this idea
on a larger test set and refine it further so as to ad-
dress more challenging cases where comparing NEs
is not enough, like in (7).

(7) Snapchat will notify users [...] The program is avail-
able for free in Apple’s App Store [...] While the com-
pany “attempts to delete image data as soon as possi-
ble after the message is transmitted,” it cannot guaran-
tee messages will always be deleted.

To resolve (7), it would be helpful to know that
Snapchat is a picture messaging platform, as the
context mentions image data and messages.

6 Related Work

Existing ontologies are not optimal for solving
opaque coreferent mentions because of both a preci-
sion and a recall problem (Lee et al., 2011; Uryupina
et al., 2011). On the other hand, using data-driven
methods such as distributional semantics for coref-
erence resolution suffers especially from a precision
problem (Ng, 2007). Our work combines ideas from
distributional semantics and paraphrase acquisition
methods in order to efficiently use contextual infor-
mation to extract coreference relations.

The main idea that we borrow from paraphrase
acquisition is the use of monolingual (non-parallel)
comparable corpora, which have been exploited
to extract both sentence-level (Barzilay and McK-
eown, 2001) and sub-sentential-level paraphrases
(Shinyama and Sekine, 2003; Wang and Callison-
Burch, 2011). To ensure that the NPs are coreferent,
we limit the meaning of comparable corpora to col-
lections of documents that report on the very same
story, as opposed to collections of documents that
are about the same (general) topic. However, the
distinguishing factor is that while most paraphrasing
studies, including Lin and Pantel (2001), use NEs—
or nouns in general—as pivots to learn paraphrases
of their surrounding context, we use verbs as pivots
to learn coreference relations at the NP level.

There are many similarities between paraphrase
and coreference, and our work is most similar to
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that by Wang and Callison-Burch (2011). However,
some paraphrases that might not be considered to
be valid (e.g., under $200 and around $200) can
be acceptable coreference relations. Unlike Wang
and Callison-Burch (2011), we do not work on doc-
ument pairs but on sets of at least five (comparable)
documents, and we do not require sentence align-
ment, but just verb alignment.

Another source of inspiration is the work by Bean
and Riloff (2004). They use contextual roles (i.e.,
the role that an NP plays in an event) for extract-
ing patterns that can be used in coreference reso-
lution, showing the relevance of verbs in deciding
on coreference between their arguments. However,
they use a very small corpus (two domains) and do
not aim to build a dictionary. The idea of creating
a repository of extracted concept-instance relations
appears in Fleischman et al. (2003), but restricted
to person-role pairs, e.g. Yasser Arafat and leader.
Although it was originally designed for answering
who-is questions, Daumé III and Marcu (2005) suc-
cessfully used it for coreference resolution.

The coreference relations that we extract might
overlap but go beyond those detected by Bansal and
Klein (2012)’s Web-based features. First, they focus
on NP headwords, while we extract full NPs, includ-
ing multi-word mentions. Second, the fact that they
use the Google n-gram corpus means that the two
headwords must appear at most four words apart,
thus ruling out coreferent mentions that can only ap-
pear far from each other. Finally, while their extrac-
tion patterns focus on synonymy and hypernymy re-
lations, we discover other types of semantic relations
that are relevant for coreference (Section 2.5).

7 Conclusions

We have pointed out an important problem with cur-
rent coreference resolution systems: their heavy re-
liance on string overlap. Pronouns aside, opaque
mentions account for 65% of the errors made by
state-of-the-art systems. To improve coreference
scores beyond 60-70%, we therefore need to make
better use of semantic and world knowledge to deal
with non-identical-string coreference. But, as we
have also shown, coreference is not the same as se-
mantic similarity or hypernymy. Only certain se-
mantic relations in certain contexts are good cues for

coreference. We therefore need semantic resources
specifically targeted at coreference.

We proposed a new solution for detecting opaque
mention pairs: restricting distributional similarity to
a comparable corpus of articles about the very same
story, thus ensuring that similar mentions will also
likely be coreferent. We used this corpus to build a
dictionary focused on coreference, and successfully
extracted the specific semantic and world knowledge
relevant for coreference. The resulting dictionary
can be added on top of any coreference system to
increase recall at a minimum cost to precision. Inte-
grated into the Stanford coreference resolution sys-
tem, which won the CoNLL-2011 shared task, the
F-score increases about 1 percentage point accord-
ing to all of the six evaluation measures. The dictio-
nary and NE signatures are available on the Web.13

We showed that apart from the need for extracting
coreference-specific semantic and world knowledge,
we need to take into account the context surrounding
the mentions. The results from our preliminary work
for identifying incompatible contexts is promising.

Our unsupervised method for extracting opaque
coreference relations can be easily extended to other
domains by using online news aggregators, and
trained on more data to build a more comprehensive
dictionary that can increase recall even further. We
integrated the dictionary into a rule-based corefer-
ence system, but it remains for future work to in-
tegrate it into a learning-based architecture, where
the system can combine the dictionary features with
other features. This can also make it easier to in-
clude contextual features that take into account how
well a dictionary pair fits in a specific context.
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Abstract

We present the first work on antecedent se-
lection for bridging resolution without restric-
tions on anaphor or relation types. Our model
integrates global constraints on top of a rich
local feature set in the framework of Markov
logic networks. The global model improves
over the local one and both strongly outper-
form a reimplementation of prior work.

1 Introduction

Identity coreference is a relatively well understood
and well-studied instance of entity coherence. How-
ever, entity coherence can rely on more complex,
lexico-semantic, frame or encyclopedic relations
than identity. Anaphora linking distinct entities or
events this way are calledbridging or associative
anaphoraand have been widely discussed in the lin-
guistic literature (Clark, 1975; Prince, 1981; Gundel
et al., 1993).1 In Example 1, the phrasesthe win-
dows, the carpetsandwalls can be felicitously used
because they are semantically related via a part-of
relation to their antecedentthe Polish center.2

(1) . . . as much as possible ofthe Polish centerwill
be made from aluminum, steel and glass recycled
from Warsaw’s abundant rubble. . . .The windows
will open. The carpets won’t be glued down and
walls will be coated with non-toxic finishes.

1Poesio and Vieira (1998) include cases where antecedent
and anaphor are coreferent but do not share the same head noun.
We restrictbridging to non-coreferential cases. We also exclude
comparative anaphora(Modjeska et al., 2003)

2Examples are from OntoNotes (Weischedel et al., 2011).
Bridging anaphora are typed in boldface; antecedents in italics.

Bridging is frequent amounting to between 5%
(Gardent and Manuélian, 2005) and 20% (Caselli
and Prodanof, 2006) of definite descriptions (both
studies limited to NPs starting withthe or non-
English equivalents). Bridging resolution is needed
to fill gaps in entity grids based on coreference only
(Barzilay and Lapata, 2008). Example 1 does not ex-
hibit any coreferential entity coherence. Coherence
can only be established when the bridging anaphora
are resolved. Bridging resolution may also be im-
portant for textual entailment (Mirkin et al., 2010).

Bridging resolution can be divided into two tasks,
recognizing that a bridging anaphor is present and
finding the correct antecedent among a list of candi-
dates. These two tasks have frequently been handled
in a pipeline with most research concentrating on an-
tecedent selection only. We also handle only the task
of antecedent selection.

Previous work on antecedent selection for bridg-
ing anaphora is restricted. It makes strong untested
assumptions about bridging anaphora types or rela-
tions, limiting it to definite NPs (Poesio and Vieira,
1998; Poesio et al., 2004; Lassalle and Denis, 2011)
or to part-of relations between anaphor and an-
tecedent (Poesio et al., 2004; Markert et al., 2003;
Lassalle and Denis, 2011). We break new ground
by considering all relations and anaphora/antecedent
types and show that the variety of bridging anaphora
is much higher than reported previously.

Following work on coreference resolution, we ap-
ply a local pairwise model (Soon et al., 2001) for an-
tecedent selection. We then develop novel semantic,
syntactic and salience features for this task, show-
ing strong improvements over one of the best known
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prior models (Poesio et al., 2004).
However, this local model classifies each

anaphor-antecedent candidate pair in isolation.
Thus, it neglects that bridging anaphora referring to
a single antecedent often occur in clusters (see Ex-
ample 1). It also neglects that once an entity is an
antecedent for a bridging anaphor it is more likely to
be used again as antecedent. In addition, such local
models construct the list of possible antecedent can-
didates normally relying on a window size constraint
to restrict the set of candidates: is the window too
small, we miss too many correct antecedents; is it
too large, we include so many incorrect antecedents
as to lead to severe data imbalance in learning.

To remedy these flaws we change to aglobal
Markov logic model that allows us to:

• model constraints that certain anaphora are
likely to share the same antecedent;

• model the global semantic connectivity of a
salient potential antecedent to all anaphora in a
text;

• consider the union of potential antecedents for
all anaphora instead of a static window-sized
constraint.

We show that this global model with the same lo-
cal features but enhanced with global constraints im-
proves significantly over the local model.

2 Related Work

Prior corpus-linguistic studies on bridging are be-
set by three main problems. First, reliability is not
measured or low (Fraurud, 1990; Poesio, 2003; Gar-
dent and Manuélian, 2005; Riester et al., 2010).3

Second, annotated corpora are small (Poesio et al.,
2004; Korzen and Buch-Kromann, 2011). Third,
they are often based on strong untested assumptions
about bridging anaphora types, antecedent types or
relations, such as limiting it to definite NP anaphora
(Poesio and Vieira, 1998; Poesio et al., 2004; Gar-
dent and Manuélian, 2005; Caselli and Prodanof,
2006; Riester et al., 2010; Lassalle and Denis,
2011), to NP antecedents (all prior work) or to part-

3Although the overall information status scheme in Riester
et al. (2010) achieved high agreement, their confusion matrix
shows that the anaphoric bridging category (BRI) is frequently
confused with other categories so that the two annotators agreed
on only less than a third of bridging anaphors.

of relations between anaphor and antecedent (Mark-
ert et al., 2003; Poesio et al., 2004). In our own
work (Markert et al., 2012) we established a corpus
that circumvents these problems, i.e. human bridg-
ing recognition was reliable, it contains a medium
number of bridging cases that allows generalisable
statistics and we did not limit bridging anaphora or
antecedents according to their syntactic type or re-
lations between them. However, we only discussed
human agreement on bridging recognition in Mark-
ert et al. (2012), disregarding antecedent annotation.
We also did not discuss the different types of bridg-
ing in the corpus. We will remedy this in Section 3.

Automatic work on bridging distinguishes be-
tween recognition (Vieira and Poesio, 2000; Rah-
man and Ng, 2012; Cahill and Riester, 2012; Mark-
ert et al., 2012) and antecedent selection. Work on
antecedent selection suffers from focusing on sub-
problems, e.g. only part-of bridging (Poesio et al.,
2004; Markert et al., 2003) or definite NP anaphora
(Lassalle and Denis, 2011). Most relevant for us is
Lassalle and Denis (2011) who restrict anaphora to
definite descriptions but have no other restrictions
on relations or antecedent NPs (in a French corpus)
with an accuracy of 23%. Also the evaluation set-
up is sometimes not clear: The high results in Poe-
sio et al. (2004) cannot be used for comparison as
they test unrealistically: they distinguish only be-
tween the correct antecedent andoneor three false
candidates (baseline of 50% for the former). They
also restrict the phenomenon to part-of relations.

There is a partial overlap between bridging and
implicit noun roles (Ruppenhofer et al., 2010).
However, work on implicit noun roles is mostly
focused on few predicates (e.g. Gerber and Chai
(2012)). We consider all bridging anaphors in run-
ning text. The closest work to ours interpreting im-
plicit role filling as anaphora resolution is Silberer
and Frank (2012).

3 Corpus for Bridging: An Overview

We use the dataset we created in Markert et al.
(2012) with almost 11,000 NPs annotated for infor-
mation status including 663 bridging NPs and their
antecedents in 50 texts taken from the WSJ portion
of the OntoNotes corpus (Weischedel et al., 2011).
Bridging anaphora can be any noun phrase. They
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are not limited to definite NPs as in previous work.
In contrast to Nissim et al. (2004), antecedents are
annotated and can be noun phrases, verb phrases or
even clauses. Our bridging annotation is also not
limited with regards to semantic relations between
anaphor and antecedent.

In Markert et al. (2012) we achieved high agree-
ment for the overall information status annotation
scheme between three annotators (κ between 75 and
80, dependent on annotator pairs) as well as for all
subcategories, including bridging (κ over 60 for all
annotator pairings, over 70 for two expert annota-
tors). Here, we add the following new results:

• Agreement for selecting bridging antecedents
was around 80% for all annotator pairings.

• Surprisingly, only 255 of the 663 (38%) bridg-
ing anaphors are definite NPs, which calls into
question the strategy of prior approaches to limit
themselves to these types of bridging.

• NPs are the most frequent antecedents by far
with only 42 of 663 (6%) bridging anaphora hav-
ing a non-NP antecedent (mostly verb phrases).

• Bridging is a relatively local phenomenon with
71% of NP antecedents occurring in the same or
up to 2 sentences prior to the anaphor. However,
farther away antecedents are common when the
antecedent is the global focus of a document.

• The semantic relations between anaphor and an-
tecedent are extremely diverse with only 92 of
663 (14%) anaphors having a part-of/attribute-
of antecedent (see Example 1) and only 45 (7%)
anaphors standing in a set relationship to the an-
tecedent (see Example 2). This contrasts with
Gardent and Manuélian’s (2005) finding that
52% of bridging cases had meronymic relations.
We find many different types of relations in our
corpus, including encyclopedic relations such as
restaurant — the waiteras well as, frequently,
relational person nouns as bridging anaphors
such asfriend, husband, president.

• There are only a few cases of bridging where
surface cues may indicate the antecedent. First,
some bridging anaphors are modified by a small
number of adjectives that have more than one
role filler, with the bridging relation often being
temporal or spatial sequence between two enti-

ties of the same semantic type as in Example 3
(see also Lassalle and Denis (2011) for a dis-
cussion of such cases). Second, some anaphors
are compounds where the nominal premodifier
matches the antecedent head as in Example 4.

(2) Still employeesdo occasionally try to smuggle
out a gem or two.One man wrapped several dia-
monds in the knot of his tie.Another poked a hole
in the heel of his shoe.None made it past the body
searches . . .

(3) His truck is parked across the field . . . The
farmer atthe next truck shouts . . .

(4) . . . it doesn’t makethe equipment needed to
produce those chips. And IBM worries that the
Japanese will take overthat equipment market.

4 Models for Bridging Resolution

4.1 Pairwise mention-entity model

The pairwise model is widely used in coreference
resolution (Soon et al., 2001). We adapt it for bridg-
ing resolution4: Given an anaphor mentionm and
the set of antecedent candidate entitiesEm which
appear beforem, we create a pairwise instance
(m, e) for everye ∈ Em. A binary decision whether
m is bridged toe is made for each instance(m, e)
separately. A post-processing step to choose one an-
tecedent is necessary (closest first or best first are
common strategies). This model causes three prob-
lems for bridging resolution: First, the ratio between
positive and negative instances is 1 to 17 even if only
antecedent candidates from the current and the im-
mediately preceding two sentences are considered.
The ratio will be even worse with a larger win-
dow size. Therefore, usually a fixed window size is
used restricting the set of candidates. This, however,
causes a second problem: antecedents which are be-
yond the window cannot be found. In our data, only
81% of NP antecedents appear within the previous 5
sentences, and only 71% of NP antecedents appear
within the previous 2 sentences. The third problem
is a shortcoming of the pairwise model itself: deci-
sions are made for each instance separately, ignoring

4Different from coreference, we treat an anaphor as a men-
tion and an antecedent as an entity. The anaphor is the first
mention of the corresponding entity in the document.
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relations between instances. We resolve these prob-
lems by employing a global model based on Markov
logic networks.

4.2 Markov Logic Networks

Bridging can be considered a document global phe-
nomenon, where globally salient entities are pre-
ferred as antecedents and two or more anaphors hav-
ing the same antecedent should be related or similar.
Motivated by this observation, we explore Markov
logic networks (Domingos and Lowd, 2009, MLNs)
to model bridging resolution on the global discourse
level.

MLNs are a powerful representation for joint
inference with uncertainty. An MLN consists
of a set of pairs (Fi, wi), whereFi is a formula
in first-order logic andwi is its associated real
numbered weight. It can be viewed as a template for
constructing Markov networks. Given different sets
of constants, an MLN will produce different ground
Markov networks which may vary in size but have
the same structure and parameters. For a ground
Markov network, the probability distribution over
possible worldsx is given by

P (X = x) =
1

Z
exp

(

∑

i

wini(x)

)

(1)

whereni(x) is the number of true groundings ofFi

in x. The normalization factorZ is the partition
function.

MLNs have been applied to many NLP tasks and
achieved good performance by leveraging rich re-
lations among objects (Poon and Domingos, 2008;
Meza-Ruiz and Riedel, 2009; Fahrni and Strube,
2012, inter alia). We usethebeast5 to learn weights
for the formulas and to perform inference.thebeast
employs cutting plane inference (Riedel, 2008) to
improve the accuracy and efficiency of MAP infer-
ence for Markov logic.

With MLNs, we model bridging resolution glob-
ally on the discourse level: given the setM of all
anaphors and sets of local antecedent candidatesEm

for each anaphorm ∈ M , we select antecedents for
all anaphors fromE =

⋃

m∈M Em at the same time.
Table 1 shows the hidden predicates and formulas
used. Each formula is associated with a weight. The

5http://code.google.com/p/thebeast

polarity of the weights is indicated by the leading
+ or −. The weight value (except for hard con-
straints) is learned from training data. For some for-
mulas the final weight consists of a learned weight
w multiplied by a scored (e.g. inverse distance be-
tween antecedent and anaphor). In these cases the
final weight for a formula in a ground Markov net-
work does not just depend on the respective formula,
but also on the specific constants. We indicate such
combined weights by the termw · d.

We tackle the previously mentioned problems of
the pairwise model: (1) We construct hard con-
straints to specify that each anaphor has at most
one antecedent entity (Table 1: f1) and that the an-
tecedent must precede the anaphor (f2). This elim-
inates the need for the post-processing step in the
pairwise model. (2) We select the antecedent en-
tity for each anaphor from the antecedent candidate
entities poolE which alleviates the missing true
antecedent problem in the pairwise model. Based
on (1) and (2), MLNs allow us to express relations
between anaphor-anaphor and anaphor-antecedent
pairs ((m,n) or (m,e)) on the global discourse level
improving accuracy by performing joint inference.

5 Features

5.1 Local features

5.1.1 Poesio et al.’s feature set

Table 2 shows the feature set proposed by Poesio et
al. (2004) for part-of bridging. Google distance is
the inverse value of Google hit counts for theofPat-
tern query (e.g.the windows of the center). Word-
Net distance is the inverse value of the shortest path
length between an anaphor and an antecedent candi-
date among all synset combinations. These features
are supposed to capture the meronymy relation be-
tween anaphor and antecedent. The other ones mea-
sure the salience of the antecedent candidate.

Group Feature Value
lexical Google distance numeric

WordNet distance numeric
salience utterance distance numeric

local first mention boolean
global first mention boolean

Table 2: Poesio et al.’s feature set
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Hidden predicates
p1 isBridging(m, e)
p2 hasSameAntecedent (m,n)

Formulas
Hard constraints
f1 ∀m ∈ M : |e ∈ E : isBridging(m, e)| ≤ 1
f2 ∀m ∈ M∀e ∈ E : hasPairDistance(e,m, d) ∧ d < 0→ ¬isBridging(m, e)
f3 ∀m,n ∈ M : m 6= n ∧ hasSameAntecedent (m,n)

→ hasSameAntecedent (n,m)
f4 ∀m,n, l ∈ M : m 6= n ∧m 6= l ∧ n 6= l ∧ hasSameAntecedent (m,n)

∧ hasSameAntecedent (n, l) → hasSameAntecedent (m, l)
f5 ∀m,n ∈ M∀e ∈ E : m 6= n ∧ hasSameAntecedent (m,n) ∧ isBridging(m, e)

→ isBridging(n, e)
f6 ∀m,n ∈ M∀e ∈ E : m 6= n ∧ isBridging(m, e) ∧ isBridging(n, e)

→ hasSameAntecedent (m,n)

Discourse level formulas
f7 + (w) ∀m ∈ M∀e ∈ E : predictedGlobalAnte(e) ∧ hasPairDistance(e,m, d)

∧ d > 0→ isBridging(m, e)
f8 + (w) ∀m,n ∈ M conjunction(m,n) → hasSameAntecedent (m,n)
f9 + (w) ∀m,n ∈ M sameHead(m,n) → hasSameAntecedent (m,n)
f10 + (w) ∀m,n ∈ M similarTo(m,n)→ hasSameAntecedent (m,n)
f11 + (w) ∀m ∈ M∀e ∈ E : hasSemanticClass (m, ”rolePerson”)

∧ hasSemanticClass(e, ”org|gpe”) ∧ hasPairDistance(e,m, d) ∧ d > 0
→ isBridging(m, e)

f12 + (w · d) ∀m ∈ M∀e ∈ E : hasSemanticClass (m, ”relativePerson”)
∧ hasSemanticClass(e, ”otherPerson”) ∧ hasPairDistanceInverse(e,m, d)
→ isBridging(m, e)

f13 + (w · d) ∀m ∈ M∀e ∈ E : hasSemanticClass (m, ”date”)
∧ hasSemanticClass(e, ”date”) ∧ hasPairDistanceInverse(e,m, d)
→ isBridging(m, e)

Local formulas
f14 + (w) ∀m ∈ M ∀e ∈ Em : isTopRelativeRankPrepPattern (m, e) → isBridging(m, e)
f15 + (w) ∀m ∈ M ∀e ∈ Em : isTopRelativeRankVerbPattern(m, e) → isBridging(m, e)
f16 + (w · d) ∀m ∈ M ∀e ∈ Em : isPartOf (m, e) ∧ hasPairDistanceInverse(e,m, d)

→ isBridging(m, e)
f17 + (w) ∀m ∈ M ∀e ∈ Em : isTopRelativeRankDocSpan (m, e) → isBridging(m, e)
f18 − (w) ∀m ∈ M ∀e ∈ Em : isSameHead(m, e) → isBridging(m, e)
f19 + (w) ∀m ∈ M ∀e ∈ Em : isPremodOverlap(m, e) → isBridging(m, e)
f20 − (w) ∀m ∈ M ∀e ∈ Em : isCoArgument(m, e) → isBridging(m, e)

Table 1: Hidden predicates and formulas used for bridging resolution (m, n, l represent mentions,M the set of bridging
anaphora mentions in the whole document,e the antecedent candidate entity,Em the set of local antecedent candidate
entities form, andE =

⋃

m∈M Em )
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5.1.2 Other features

Since Poesio et al. (2004) deal exclusively with
meronymy bridging, we have to extend the fea-
ture set to capture more diverse relations between
anaphor and antecedent. All numeric features in Ta-
ble 3 are normalized among all antecedent candi-
dates of one anaphor. For anaphormi and its an-
tecedent candidatesEmi

(eij ∈ Emi
), the numeric

score for pair{mi, eik} is Sik. Then the value
NormSik for this pair is normalized (set to values
between 0 and 1) as below:

NormSik =
Sik −minj Sij

maxj Sij −minj Sij

(2)

A second variant of numeric features tells whether
the score of an anaphor-antecedent candidate pair is
the highest among all pairs for this anaphor.

Group Feature Value
semantic feat1 preposition pattern numeric

feat2 verb pattern numeric

feat3 WordNet partOf boolean

feat4 semantic class nominal
salience feat5 document span numeric
surface feat6 isSameHead boolean

feat7 isPremodOverlap boolean
syntactic feat8 isCoArgument boolean

Table 3: Local features we developed

Preposition pattern (feat1). The ofPatternpro-
posed by Poesio et al. (2004) is useful for part-of
and attribute-of relations but cannot cover all bridg-
ing relations (such assanctions against a country).
We extend theofPatternto a generalisedpreposition
patternby using the Gigaword (Parker et al., 2011)
and the Tipster (Harman and Liberman, 1993) cor-
pora (both automatically POS tagged and NP chun-
ked for improving query match precision).

First, we extract the three most highly associ-
ated prepositions for each anaphor. Then for each
anaphor-antecedent candidate pair, we use their head
words to create the query”anaphor preposition an-
tecedent”. To improve recall, we take lowercase,
uppercase, singular and plural forms of the head
word into account, and replace proper names by
fine-grained named entity types (using a gazetteer).
All raw hit counts are converted into the Dunning

Root Loglikelihood association measure,6 then nor-
malized using Formula 2 within all antecedent can-
didates of one anaphor.

Verb pattern (feat2). A set-membership rela-
tion between anaphor and antecedent is often hard
to capture by thepreposition patternbecause the
anaphor often has no common noun head (see Ex-
ample 2 in Section 3). Hence, we measure the com-
patibility of the antecedent candidates with the verb
the anaphor depends on.

First, we hypothesise that anaphors whose lexi-
cal head is a pronoun or a number are potential set
bridging cases and then extract the verb the anaphor
depends on. In example 2, for the set anaphorAn-
other, pokedis the verb. Then for each antecedent
candidate, subject-verb or verb-object queries are
applied to the Web 1T 5-gram corpus (Brants and
Franz, 2006). In this case,employees pokedanddi-
amonds pokedare example queries. The hit counts
are transformed into PMI and all pairs for one
anaphor are normalized as described in Formula 2.

WordNet partOf relation (feat3). To capture
part-of bridging, we extract whether the anaphor is
part of the antecedent candidate in WordNet. To im-
prove recall, we use hyponym information of the
antecedent. If an antecedente is a hypernym ofx
and an anaphorm is a meronym ofx, thenm is a
meronym ofe.

Semantic class (feat4). The anaphor and the an-
tecedent candidate are assigned one of 16 coarse-
grained semantic classes, e.g. location, organiza-
tion, GPE, roleperson, relativePerson, otherPerson7,
product, language, NORP (nationalities, religious
or political groups) and several classes for numbers
(such as date, money or percent).

Salience feature (feat5). Salient entities are pre-
ferred as antecedents. We capture salience super-
ficially by computing the”antecedent document
span” of an antecedent candidate. We compute the

6http://tdunning.blogspot.de/2008/03/
surprise-and-coincidence.html

7We use WordNet to extract lists forrolePerson(persons like
presidentor teacherplaying a role in an organization) andrela-
tivePerson(persons likefather or sonindicating that they have
a relation with another person). Persons not in these two lists
are counted asotherPerson.
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span of text (measured in sentences) in which the
antecedent candidate entity is mentioned. This is di-
vided by the number of sentences in the whole doc-
ument. This score is normalized using Formula 2 for
all antecedent candidates of one anaphor.

Surface features (feat6-feat7). isSameHead
(feat6) checks whether antecedent candidates have
the same head as the anaphor: this is rarely the
case in bridging anaphora (except in some cases
of set bridging and spatial/temporal sequence, see
Example 3) and can therefore be used to exclude
antecedent candidates.isPremodOverlap(feat7)
determines the antecedent for compound noun
anaphors whose head is prenominally modified by
the antecedent head (see Example 4).

Syntactic feature (feat8) TheisCoArgumentfea-
ture is based on the intuition that the subject can-
not be the bridging antecedent of the object in
the same clause. This feature excludes (some)
close antecedent candidates. In Example 4, the an-
tecedent candidatethe JapaneseisCoArgument with
the anaphorthat equipment market.

5.2 Global features for MLNs

f1-f13 in Table 1 are discourse level constraints.
All antecedent candidates come from the antecedent
candidates poolE in the whole document.

Global salience (Table 1: f3-f10). The salience
feature in the pairwise model only measures the
salience for candidates within the local window.
However, globally salient antecedents are preferred
even if they are far away from the anaphor. We
model this from two perspectives:

f7 models the preference for globally salient an-
tecedents, which we derive for each document. For
m ∈ M ande ∈ E, let score(m, e) be the prepo-
sition pattern score for pair (m,e). Calculate pattern
semantic salience scoreesal for eache ∈ E as

esal =
∑

m∈M

score(m, e) (3)

If e appears in the title and also has the highest
pattern semantic salience scoreesal among alle in
E, thene is the predicted globally salient antecedent
for this document. Note that global salience here is
based on semantic connectivity to all anaphors in the

document and that not every document has a glob-
ally salient antecedent.

f3-f6 andf8-f10 model that similar or related
anaphors in one document are likely to have the
same antecedent. To make the ground Markov net-
work more sparse for more efficient inference, we
add the hidden predicate (p2) and hard constraints
(f3-f6) specifying relations among similar/related
anaphorsm, n and l (reflexivity and transitivity).
Formulasf8-f10 explore three different ways (syn-
tactic and semantic) to compute the similarity be-
tween two anaphors. Inf10, we use SVMlight (simi-
larity scores from WordNet plus sentence distance as
features) to predict whether two anaphors not shar-
ing the same head are similar or not.

Frequent bridging relations (Table 1: f11-f13).
Three common bridging relations are restricted by
semantic class of anaphor and antecedent (see also
Section 3). It is worth noting that in formulaf11
(modeling that a role person mention likepresi-
dent or chairmanprefers organization or GPE an-
tecedents), we do not penalize the antecedents far
away from the anaphor. In formulaf12 (modeling
that a relativePerson mention such asmotheror hus-
bandprefers close person antecedents) andf13, we
prefer close antecedents by including the distance
between antecedent and anaphor into the weights.

MLN formulation of local features (Table 1: f14-
f20). Corresponding to features of the pairwise
model (Table 3) – we exclude only semantic class
as this is modelled globally via featuresf11-f13.
These local features are only used for an anaphorm

and its local antecedent candidatee from Em.

6 Experiments and Results

6.1 Experimental setup

We perform experiments on our gold standard cor-
pus via 10-fold cross-validation on documents. We
use gold standard mentions, true coreference infor-
mation, and the OntoNotes named entity and syntac-
tic annotation layers for feature extraction.

6.2 Improved baseline

We reimplement the algorithm from Poesio et al.
(2004) as baseline. Since they did not explain
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whether they used the mention-mention or mention-
entity model, we assume they treated antecedents as
entities and use a 2 and 5 sentence window for can-
didates8. Since the GoogleAPI is not available any
more, we use the Web 1T 5-gram corpus (Brants and
Franz, 2006) to extract the Google distance feature.
We improve it by taking all information about en-
tities via coreference into account as well as by re-
placing proper names. All other features (Table 2
in Section 5.1.1) are extracted as Poesio et al. did.
A Naive Bayes classifier with standard settings in
WEKA (Witten and Frank, 2005) is used. In order
to evaluate their model in the more realistic setting
of our experiment, we apply thebest firststrategy to
select the antecedent for each anaphor.

6.3 Pairwise models

Pairwise model I: We use thepreposition pattern
feature (feat1) plus Poesio et al.’s salience features
(Table 2). We use a 2 sentence window as it per-
formed on a par with the 5 sentence window in the
baseline. We replace Naive Bayes with SVMlight

because it can deal better with imbalanced data9.

Pairwise model II: Based onPairwise model I.
Local featuresfeat2-feat8 from Table 2 are added.

Pairwise model III: Based onPairwise model II.
We apply a more advanced antecedent candidate se-
lection strategy, which allows to include 77% of NP
antecedents compared to 71% inPairwise model II.
For each anaphor, we add the topk salient enti-
ties measured through the length of the coreference
chains (k is set to 10%) as additional antecedent can-
didates. For potential set anaphors (as automatically
determined by pronoun or number heads), singu-
lar antecedent candidates are filtered out. We com-
piled a small set of adjectives (using FrameNet and
thesauri) that indicate spatial or temporal sequences
(see Example 3). For anaphors modified by such ad-
jectives we consider only antecedent candidates that
have the same semantic class as the anaphor.

8They use a 5 sentence window, because all antecedents in
their corpus are within the previous 5 sentences.

9The SVMlight parameter is set according to the ratio be-
tween positive and negative instances in the training set.

6.4 MLN models

MLN model I: MLN system using local formu-
las f1-f2 and f14-f20. The same strategy as in
Pairwise model IIIis used to select local antecedent
candidatesEm for each anaphorm.

MLN model II: Based onMLN model I, all for-
mulas in Table 1 are used.

6.5 Results

Table 4 shows the comparison of our models to base-
lines. Significance tests are conducted using McNe-
mar’s test on overall accuracy at the level of 1%.

acc
improved baseline 2 sent. + NB 18.85

5 sent. + NB 18.40
pairwise model pairwise model I 29.11

pairwise model II 33.94
pairwise model III 36.35

MLN model MLN model I 35.60
MLN model II 41.32

Table 4: Results for MLN models compared to pairwise
models and baselines.

MLN model II, which is inspired by the linguis-
tic observation that globally salient entities are pre-
ferred as antecedents, performs significantly better
than all other systems. The gains come from three
aspects. First, by selecting the antecedent for each
anaphor from the antecedent candidate poolE in the
whole document 91% of NP antecedents are acces-
sible compared to 77% inpairwise model III. Sec-
ond, we leverage semantics and salience by using
local formulas and discourse level formulas. Lo-
cal formulas are used to capture semantic relations
for bridging pairs as well as surface and syntactic
constraints. Global formulas resolve several bridg-
ing anaphors together, often to a globally salient an-
tecedent beyond the local window. Third, the model
allows us to express specific relations among bridg-
ing anaphors and their antecedents (f11-f13).

However, ourpairwise model Ialready outper-
formsimproved baselinesby about 10%, which sug-
gests that ourpreposition patternfeature can capture
more diverse semantic relations. The continuous im-
provements shown inpairwise model IIand pair-
wise model IIIverify the contribution of our other
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features and advanced antecedent candidate selec-
tion strategy.pairwise model IIIwould become too
complex if we tried to integrate discourse level for-
mulasf7, f11-f13 into antecedent candidate selec-
tion. MLN model IIsolves this task elegantly.

6.6 Discussion and error analysis

We analyse our best model (MLN model II) and
compare it to the best local one (pairwise model III).

Anaphors with long distance antecedents are
harder to resolve. Table 5 shows the compari-
son of correctly resolved anaphors with regard to
anaphor-antecedent distance. We can see that the
global model is equal or better to the local model
for all anaphor types but that the difference is espe-
cially large for anaphora with antecedents that are
3 or more sentences away due to the use of global
salience and accessibility of possible antecedents
beyond a fixed window-size.

# pairs MLN II pairwise III
sent. distance
0 175 48.57 45.14
1 260 34.62 35
2 90 47.78 43.33
≥3 158 35.44 16.46

Table 5: Comparison of the percentage of correctly re-
solved anaphors with regard to anaphor-antecedent dis-
tance. Significance tests are conducted using McNemar’s
test at the level of 1%.

We now distinguish between ”sibling anaphors”
(anaphors that share an antecedent with other bridg-
ing anaphors) and ”non-siblings” (anaphors that do
not share an antecedent with any other anaphor).
The performance of ourMLN model II is 54%
on sibling anaphors but only 24% on non-sibling
anaphors. This shows that our use of global salience
and links between related anaphors does indeed help
to capture the behaviour of sibling anaphors.

However, our global model is good at predicting
the right antecedent for sibling anaphors where the
antecedent is globally salient but not as good for sib-
ling anaphors where the (shared) antecedent is a lo-
cally salient subtopic. Thus, in the future we need
to model equivalent constraints for local salience
of antecedents, taking into account topic segmen-
tation/shifts to improve over the 54% for sibling

anaphors.
The semantic knowledge we employ is still in-

sufficient. Typical cases where we have problems
are: (i) cases with very context-specific bridging re-
lations. For example, in one text about the stealing
of Sago Palms in California we foundthe thieves
as a bridging anaphor with the antecedentpalms,
which is not a very usual semantic link. (ii) more
frequently, we have cases where several good an-
tecedents from a semantic perspective can be found.
For example, two laws are discussed and a later
anaphorthe vetocould be the veto of either bills.
Integration of the wider context apart from the two
NPs is necessary in these cases. This includes the se-
mantics of modification, whereas we currently con-
sider only head noun knowledge. An example is that
the anaphorthe local councilwould preferably be
interpreted asthe council of a villageinstead ofthe
council of a statedue to the occurrence oflocal.

Finally, 6% of the anaphors in our corpus have a
non-NP antecedent. These cases are not correctly
resolved in our current model as we only extract NP
phrases as potential candidate antecedents.

7 Conclusions

We provide the first reasonably sized and reliably
annotated English corpus for bridging resolution. It
covers a diverse set of relations between anaphor and
antecedent as well as all anaphor/antecedent types.
We developed novel semantic, syntactic and salience
features based on linguistic intuition. Inspired by
the observation that salient entities are preferred as
antecedents, we implemented a global model for an-
tecedent selection within the framework of Markov
logic networks. We show that our global model sig-
nificantly outperforms other local models and base-
lines. This work is – to our knowledge – the first
bridging resolution algorithm that tackles the unre-
stricted phenomenon in a real setting.
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Abstract

We examine the task of temporal relation clas-
sification. Unlike existing approaches to this
task, we (1) classify an event-event or event-
time pair as one of the 14 temporal relations
defined in the TimeBank corpus, rather than
as one of the six relations collapsed from the
original 14; (2) employ sophisticated linguis-
tic knowledge derived from a variety of se-
mantic and discourse relations, rather than fo-
cusing on morpho-syntactic knowledge; and
(3) leverage a novel combination of rule-based
and learning-based approaches, rather than re-
lying solely on one or the other. Experiments
with the TimeBank corpus demonstrate that
our knowledge-rich, hybrid approach yields
a 15–16% relative reduction in error over a
state-of-the-art learning-based baseline sys-
tem.

1 Introduction

Recent years have seen a surge of interest in tem-
poral information extraction (IE). Temporal relation
classification, one of the most important temporal
IE tasks, involves classifying a given event-event
pair or event-time pair as one of a set of predefined
temporal relations. The creation of the TimeBank
corpus (Pustejovsky et al., 2003) and the organiza-
tion of the TempEval-1 (Verhagen et al., 2007) and
TempEval-2 (Verhagen et al., 2010) evaluation ex-
ercises have facilitated the development and evalua-
tion of temporal relation classification systems.

Our goal in this paper is to advance the state of
the art in temporal relation classification. Our work
differs from existing work with respect to both the

complexityof the task we are addressing and theap-
proachwe adopt. Regarding task complexity, rather
than focus on six temporal relations as is typically
done in previous work (see Section 2 for more infor-
mation), we address an arguably more challenging
version of the task where we consider all the 14 re-
lations originally defined in the TimeBank corpus.

Our approach to temporal relation classification
can be distinguished from existing approaches in
two respects. The first involves a large-scale ex-
pansion of the linguistic features made available
to the classification system. Recall that exist-
ing approaches have relied primarily on morpho-
syntactic features as well as a few semantic fea-
tures extracted from WordNet synsets and VerbO-
cean’s (Chklovski and Pantel, 2004) semantic rela-
tions. On the other hand, we propose not only novel
lexical and grammatical features, but also sophis-
ticated features involving semantics and discourse.
Most notably, we propose (1) semantic features en-
coding a variety of semantic relations, including
PropBank-style predicate-argument relations as well
as those extracted from the Merriam-Webster dictio-
nary, and (2) discourse features encoding automat-
ically computed Penn Discourse TreeBank (PDTB)
style (Prasad et al., 2008) discourse relations.

Second, while the vast majority of existing ap-
proaches to temporal relation classification are
learning-based, we propose a system architecture in
which we combine a learning-based approach and a
rule-based approach. Our motivation behind adopt-
ing a hybrid approach stems from two hypotheses.
First, a rule-based method could better handle the
skewed class distribution underlying the dataset for
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our 14-class classification problem. Second, better
decision rules could be formed by leveraging hu-
man insights to combine the available linguistic fea-
tures than by using fully automatic machine learn-
ing methods. Note that while rule-based approaches
have been shown to underperform learning-based
approaches on this task (Mani et al., 2006), to our
knowledge they have not been used in combination
with learning-based approaches. Moreover, while
the rules employed in previous work are created
based on intuition (e.g., Mani et al. (2006), Puşcaşu
(2007)), our rules are created in adata-drivenman-
ner via a manual inspection of the annotated tempo-
ral relations in the TimeBank corpus.

Experiments on the TimeBank corpus demon-
strate the effectiveness of our knowledge-rich, hy-
brid approach to temporal relation classification: it
yields a 15–16% relative reduction in error over a
state-of-the-art learning-based baseline system.

To our knowledge, we are the first to (1) report re-
sults for the 14-class temporal relation classification
task on the TimeBank (v1.2) corpus; (2) success-
fully employ automatically computed PDTB-style
discourse relations to improve performance on this
task; and (3) show that a hybrid approach to this
task can yield better results than either a rule-based
or learning-based approach. Note that hybrid ap-
proaches in this spirit were popular in the natural
language processing community back in the mid-90s
(Klavans and Resnik, 1994). We believe that they
are among the most competitive approaches to lan-
guage processing tasks that require complex reason-
ing and should be given more attention in the com-
munity. We release the complete set of rules that we
mined from the TimeBank corpus and used in our
rule-based approach in hopes that our insights into
how features can be combined as decision rules can
benefit researchers interested in this task.

The rest of the paper is organized as follows. Sec-
tion 2 provides an overview of the TimeBank cor-
pus. Sections 3 and 4 describe the baseline system
and our approach, respectively. We present evalua-
tion results in Section 5 and conclude in Section 6.

2 Corpus

For evaluation, we use the TimeBank (v1.2) cor-
pus, which consists of 183 newswire articles. In

each article, theevents, times, and theirtemporal re-
lations are marked up. An event, which can be a
tensed verb, adjective, or nominal, contains various
attributes, including theclassof event,tense, aspect,
polarity, andmodality. A time expression has aclass
attribute, which specifies whether it is a date, time,
duration, or set, and its value is normalized based on
TIMEX3. A temporal relation can be anorder rela-
tion, which orders two events (as in sentence (1)), or
ananchorrelation, which anchors an event to a time
expression (as in sentence (2)).

(1) A steeprise in world oil prices fol-
lowed the Kuwaitinvasion.

(2) We are there tostayfor a longperiod.

Each temporal relation has atype. For example,
the relation defined onrise and invasion in (1) has
typeAfter , whereas the relation defined onstayand
period in (2) has typeDuring . Note that a temporal
relation is defined on anorderedpair. For exam-
ple, in (1), the pair (rise, invasion) has typeAfter ,
whereas the pair (invasion, rise) has typeBefore).

14 relation types are defined and used to annotate
the temporal relations in the TimeBank corpus. Ta-
ble 1 provides a brief description of these relation
types and the relevant statistics.

In our experiments, we assume that our tempo-
ral relation classification system is given an event-
event or event-time pair that is known to belong to
one of the 14 relation types defined in TimeBank and
aims to determine its relation type. Following pre-
vious evaluations of the temporal relation classifica-
tion task on the TimeBank corpus (e.g., Mani et al.
(2006), Chambers et al. (2007)) and in TempEval-
1/2, we assume as input gold events and time ex-
pressions.

Unlike Mani et al. (2006) and Chambers et al.
(2007), who focus on six relation types (Simul-
taneous, Before, IBefore, Begins, Ends, and In-
cludes), we report results on 14 relation types. Note
that the aforementioned six relation types are cho-
sen by (1) discardingDuring , During Inv , and
Identity , and (2) combining the two relation types
in each of the five pairs, namely (Before, After ),
(IBefore, IAfter ), (Includes, Is Included), (Be-
gins, Begun By), and (Ends, Ended By), into a sin-
gle type because they are inverses of each other. In
other words, if a relation instance (e1, e2) is anno-
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Id Relation Description Total % E-E E-T
1 Simultaneous e1 ande2 happen at the same time or are temporally distinguishable660 (13.3) 599 61
2 Identity e1 ande2 are coreferent 702 (14.1) 696 6
3 Before e1 happens beforee2 in time 689 (13.9) 639 50
4 After e1 happens aftere2 in time 744 (15) 681 63
5 IBefore e1 happens immediately beforee2 in time 39 (0.8) 38 1
6 IAfter e1 happens immediately aftere2 in time 28 (0.6) 25 3
7 Includes As in Ed arrived in Seoul last Sunday(e1=last Sunday; e2=arrived) 758 (15.3) 318 440
8 Is Included As in Ed arrived in Seoul last Sunday(e1=arrived; e2=last Sunday) 762 (15.3) 201 561
9 During e1 persists throughout duratione2 102 (2.1) 19 83

10 During Inv e2 persists throughout duratione1 124 (2.5) 44 80
11 Begins e1 marks the beginning ofe2 66 (1.3) 44 22
12 Begun By e2 marks the beginning ofe1 61 (1.2) 32 29
13 Ends e1 marks the end ofe2 66 (1.3) 21 45
14 Ended By e2 marks the end ofe1 170 (3.42) 93 77

Table 1: The 14 temporal relations and their frequency of occurrences in TimeBank (v1.2). Each relation is defined
on an ordered event-event or event-time pair (e1,e2). The “Total” and “%” columns show the number and percentage
of instances annotated with the corresponding relation in the corpus, respectively, and the “E-E” and “E-T” columns
show the breakdown by the number of event-event pairs and event-time pairs.

tated asAfter , it is replaced with the instance (e2,
e1) with classBefore, and subsequently a relation
classifier is presented with (e2, e1) but not (e1, e2).
On the other hand, our 14-class task is arguably
more challenging since our system has to further dis-
tinguish a relation type from its inverse given an in-
stance in which the two elements are in arbitrary or-
der.

3 Baseline Temporal Relation Classifier

Since the currently best-performing systems for
temporal relation classification are learning-based,
we will employ a learning-based system as our base-
line. Below we describe how we train this baseline.

Without loss of generality, assume that (e1,e2) is
an event-event/event-time pair such that (1)e1 pre-
cedese2 in the associated text and (2) (e1,e2) be-
longs to one of the 14 TimeBank temporal rela-
tion types. We create one training instance for each
event-event/event-time pair in a training document
that satisfies the two conditions above, labeling it
with the relation type that exists betweene1 ande2.

To build a strong baseline, we represent each
instance using 68 linguistic features modeled af-
ter the top-performing temporal relation classifica-
tion systems on TimeBank (e.g., Mani et al. (2006),
Chambers et al. (2007)) and in the TempEval shared
tasks (e.g., Min et al. (2007), Puşcaşu (2007), Ha et
al. (2010), Llorens et al. (2010), Mirroshandel and

Ghassem-Sani (2011)).1 These features can be di-
vided into six categories, as described below.

Lexical (5). The strings ofe1 and e2, the head
words ofe1 ande2, and a binary feature indicating
whethere1 ande2 have the same string.

Grammatical (33). The POS tags of the head
words of e1 and e2, the POS tags of the five to-
kens preceding and followinge1 and e2, the POS
bigram formed from the head word ofe1 and its pre-
ceding token, the POS bigram formed from the head
word ofe2 and its preceding token, the POS tag pair
formed from the head words ofe1 ande2, the prepo-
sitional lexeme of the prepositional phrase (PP) ife1

is headed by a PP (Chambers et al., 2007), the prepo-
sitional lexeme of the PP ife2 is headed by a PP, the
prepositional lexeme of the PP ife1 is governed by
a PP (Mirroshandel and Ghassem-Sani, 2011), the
prepositional lexeme of the PP ife2 is governed by
a PP, the POS of the head of the verb phrase (VP) if
e1 is governed by a VP, the POS of the head of the
VP if e2 is governed by a VP, whethere1 syntacti-
cally dominatese2 (Chambers et al., 2007), and the
shortest path frome1 to e2 in the associated syntac-
tic parse tree. We obtain parse trees and POS tags
using the Stanford CoreNLP tool.2

1Note, however, that these features were designed for the
arguably simpler 6-class temporal relation classificationtasks.

2http://nlp.stanford.edu/software/
corenlp.shtml
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Entity attributes (13). The tense, aspect, modal-
ity, polarity, and event type ofe1 ande2 if they are
events (if one of them is a time expression, then the
class attribute will be set to its class and the rest of
them will have the valueNULL ), pairwise features
formed by pairing up the tense values, the aspect
values, and the class values ofe1 ande2.

Semantic (7). The subordinating temporal role to-
ken of e1 if it appears within a temporal semantic
role argument (Llorens et al., 2010), the subordinat-
ing temporal role token ofe2 if it appears within a
temporal semantic role argument, the first WordNet
synset to whiche1 belongs, the first WordNet synset
to whiche2 belongs, and whethere1 ande2 are in the
happens-before, happens-after, andsimilar relation
according to VerbOcean.3

Distance (1). Are e1 ande2 in the same sentence?

DCT related (3). The temporal relation type be-
tweene1 and the document creation time (DCT) [its
value can be one of the 14 relation types, orNULL

if no relation exists], the temporal relation type be-
tweene2 and the DCT, and whethere1 ande2 have
different relation types with the DCT.

After creating the training instances, we train
a 14-class classifier on them using SVMmulticlass

(Tsochantaridis et al., 2004).4 We then use it to
make predictions on the test instances, which are
generated in the same way as the training instances.

4 Our Hybrid Approach

In this section, we describe our hybrid learning-
based and rule-based approach to temporal relation
classification. Section 4.1 describes our novel fea-
tures, which will be used to augment the baseline
feature set (see Section 3) to train a temporal rela-
tion classifier. Section 4.2 outlines our manual rule
creation process. Section 4.3 discusses how we com-
bine our hand-crafted rules and the learned classifier
to make predictions in our hybrid approach.

3happens-afteris not a relation in VerbOcean: we create this
relation simply by inverting thehappens-beforerelation.

4For all the experiments involving SVMmulticlass, we set C,
the regularization parameter, to 10,000, since preliminary ex-
periments indicate that preferring generalization to overfitting
(by setting C to a small value) tends to yield poorer classifica-
tion performance. The remaining learning parameters are set to
their default values.

4.1 Six Types of New Features

4.1.1 Pairwise Features

Recall that some of the features in the baseline fea-
ture set are computed based on eithere1 or e2 but
not both. Since our task is to predict therelation be-
tween them, we hypothesize thatpairwise features,
which are computed based on both elements, could
better capture the relationship between them.

Specifically, we introduce pairwise versions of the
head word feature and the two prepositional lexeme-
based features in the baseline. In addition, we create
two quadruple-wise features, one by pairing up the
tense and class attribute values ofe1 with those of
e2, and the other by pairing up their tense and as-
pect values. Next, we create twotrace features, one
based on prepositions and the other on verbs, since
prepositions and verb tenses have been shown to
play an important role in temporal relation classifi-
cation Thepreposition tracefeature is computed by
(1) collecting the list of prepositions along the path
from e1/e2 to the root of its syntactic parse trees, and
(2) concatenating the resulting lists computed from
e1 ande2. Theverb tracefeature is computed in a
similar manner, except that we collect the POS tags
of the verbs appearing in the corresponding paths.

4.1.2 Dependency Relations

We introduce features computed based on de-
pendency parse trees obtained via the Stanford
CoreNLP tool, motivated by our observation that
some dependency relation types are more closely
associated with certain temporal relation types than
with others. Let us illustrate with an example:

(3) Edchangedhis plans as the moodtook
him.

In (3), there is a adverbial clause modifier depen-
dency betweenchangedand took, becausetook ap-
pears in an adverbial clause (headed byas) modify-
ing changed. Intuitively, if the two events partici-
pate in this type of dependency relation and the ad-
verbial clause is headed byasand there is a tempo-
ral relation between them, then it is likely that this
temporal relation isSimultaneous. While the tem-
poral relation type is dependent on the connective
heading the adverbial clause, in general an adverbial
clause modifier dependency between two events im-
plies that their temporal relation is likely to beSi-
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multaneous, Before, or After .
Given the potential usefulness of dependency re-

lations for temporal relation classification, we cre-
ate dependency-based features as follows. For each
of the 25 dependency relation types produced by
the Stanford parser, we create four binary features:
whethere1/e2 is the governing entity in the relation,
and whethere1/e2 is the dependent in the relation.

4.1.3 Webster Relations

Some events are not connected by a dependency re-
lation but by alexical relation. We hypothesize that
some of these lexical relations could be useful for
temporal relation classification. Consider the fol-
lowing example.

(4) The phony war hasfinishedand the real
referendum campaign hasbegun.

In this sentence, the two events,finishedandbe-
gun, are connected by an antonym relation. Statisti-
cally speaking, if (1) two events are in two clauses
connected by a coordinating conjunction (e.g.,and),
(2) one is an antonym of the other, and (3) there is
a temporal relation between them, then the temporal
relation is likely to beSimultaneous.

Given the potential usefulness of lexical rela-
tions for temporal relation classification, we cre-
ate features based on four types of lexical re-
lations present in Webster’s online thesaurus5,
namely synonyms, related-words, near-antonyms,
and antonyms. Specifically, for each evente appear-
ing in TimeBank, we first use the head word ofe to
retrieve four lists, which are the lists corresponding
to the synonyms, related words, near-antonyms, and
antonyms ofe. Then, given a training/test instance
involving e1 ande2, we create eight binary features:
whethere1 appears ine2’s list of synonyms/related
words/near-antonyms/antonyms, and whethere2 ap-
pears ine1’s list of synonyms/related words/near-
antonyms/antonyms.

4.1.4 WordNet Relations

Previous uses of WordNet for temporal relation clas-
sification are limited to synsets (e.g., Llorens et al.
(2010)). We hypothesize that other WordNet lexical
relations could also be useful for the task. Specif-
ically, we employ four types of WordNet relations,

5http://www.merriam-webster.com/

namely hypernyms, hyponyms, troponyms, and sim-
ilar, to create eight binary features for temporal rela-
tion classification. These eight features are created
from the four WordNet relations in the same way as
the eight features were created from the four Web-
ster relations in the previous subsection.

4.1.5 Predicate-Argument Relations

So far we have exploited lexical and dependency
relations for temporal relation classification. We
hypothesize that semantic relations, in particular
predicate-argument relations, could be useful for the
task. Consider the following example.

(5) “What sector isstepping forwardto
pick up the slack?” he asked.

Using SENNA (Collobert et al., 2011), a PropBank-
style semantic role labeler, we know thatforward is
in the directional argument of the predicatestepping.
This enables us to infer that anIncludes relation ex-
ists betweensteppingand forward since intuitively
an action includes a direction.

As another example, consider another PropBank-
style predicate-argument relation,cause. Assuming
that e2 is in e1’s cause argument, we can infer that
e2 occursBefore e1 since intuitively the cause of an
action precedes the action.

Consequently, we create features for tempo-
ral relation classification based on four types
of PropBank-style predicate-argument relations,
namely directional, manner, temporal, and cause.
Specifically, using SENNA’s output, we create four
binary features that encode whether argumente2 is
related to predicatee1 through the four types of rela-
tions, and we create another four binary features that
encode whether argumente1 is related to predicate
e2 through the four types of relations.

4.1.6 Discourse Relations

Rhetorical relations such as causation, elaboration
and enablement could aid in tracking the temporal
progression of the discourse (Hitzeman et al., 1995).
Hence, unlike syntactic dependencies and predicate-
argument relations through which we can identify
intra-sentential temporal relations, discourse rela-
tions can potentially be exploited to discover both
inter-sententialand intra-sentential temporal rela-
tions. However, no recent work has attempted to
use discourse relations for temporal relation clas-
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(6) { Arg1 Hewlett-Packard Co.said it raised its stake in Octel Communications Corp. to 8.5% of the
common shares outstanding.Arg1} { Arg2 RESTATEMENT In a Securities and Exchange Commis-
sionfiling, Hewlett-Packard said it now holds 1,384,119 Octel common shares Arg2}.

(7) { Arg1 Reportssaid that Saudi Arabia told U.S. oil companies of a 15–20 percent cutback in its oil
supply in September.Arg1} { Conn SYNCHRONY Meanwhile Conn} { Arg2 Egypt’s Middle East
Agency saidThursdaythat Saddam was the target of an assassination attempt.Arg2}

Table 2: Examples illustrating the usefulness of discourserelations for temporal relation classification.

sification. In this subsection, we examine whether
we can improve a temporal relation identifier via
explicit andimplicit PDTB-style discourse relations
automatically extracted by Lin et al.’s (2013) end-to-
end discourse parser.

Let us first review PDTB-style discourse rela-
tions. Each relation is represented by a triple (Arg1,
sense, Arg2), whereArg1 andArg2 are the two ar-
guments of the relation andsenseis the sense/type
of the relation. A discourse relation can be explicit
or implicit. An explicit relation is triggered by a dis-
course connective. On the other hand, an implicit
relation is not triggered by a discourse connective,
and may exist only between two consecutive sen-
tences. Generally, implicit relations are much harder
to identify than their explicit counterparts.

Next, to motivate why discourse relations can be
useful for temporal relation classification, we use
two examples (see Table 2), one involving an im-
plicit relation (Example (6)) and the other an explicit
relation (Example (7)). For convenience, both sen-
tences are also annotated using Lin et al.’s (2013)
discourse parser, which marks up the two arguments
with the Arg1 and Arg2 tags and outputs the rela-
tion sense next to the beginning of Arg2.

In (6), we aim to determine the order relation be-
tween the reporting eventsaid and the occurrence
eventfiling. The parser determines that a RESTATE-
MENT implicit relation exists between the two sen-
tences. Intuitively, if no asynchronous relations can
be found among the events in two discourse units
connected by the RESTATEMENT relation, then the
temporal relation between two temporally linked
events within these units is likely to be eitherIden-
tity or Simultaneous. In this case, we can rule out
Identity : sincesaid and filing belong to different
event classes, they are not coreferent.

In (7), we aim to determine the anchor relation

between the reporting eventsaidand the dateThurs-
day. The parser determines that a SYNCHRONY

explicit relation triggered byMeanwhileexists be-
tween the two sentences. Intuitively, if a temporally
related reporting event and date occur within differ-
ent discourse units connected by the SYNCHRONY

relation, then it is likely that the eventIs Included
in the date. Note that without this discourse relation,
it could be difficult for a machine to confidently as-
sociate a reporting event with a date occurring in a
different discourse segment.

Given the potential usefulness of discourse rela-
tions for temporal relation classification, we create
four features based on discourse relations. In the
first feature, ife1 is in Arg1,e2 is in Arg2, and Arg1
and Arg2 possess an explicit relation with senses,
then its feature value iss; otherwise its value is
NULL . In the second feature, ife2 is in Arg1,e1 is in
Arg2, and Arg1 and Arg2 possess a explicit relation
with senses, then its feature value iss; otherwise
its value isNULL . The third and fourth features are
computed in the same way as the first two features,
except that they are computed over implicit rather
than explicit relations.

4.2 Manual Rule Creation

As noted before, we adopt a hybrid learning-based
and rule-based approach to temporal relation clas-
sification. Hence, in addition to training a tempo-
ral relation classifier, we also manually design a set
of rules in which each rule returns a temporal rela-
tion type for a given test instance. We hypothesize
that a rule-based approach can complement a purely
learning-based approach, since a human could com-
bine the available linguistic features into rules using
commonsense knowledge that may not be accessible
to a learning algorithm.

The design of the rules is partly based on intu-
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ition and partly data-driven: we first use our intu-
ition to come up with a rule and then manually re-
fine it based on the observations we made on the
TimeBank data. For this purpose, we partition the
TimeBank documents into five folds of roughly the
same size, reserving three folds for developing our
rules and using the remaining two folds for evaluat-
ing final system performance. We order these rules
in decreasing order of accuracy, where the accuracy
of a rule is defined as the number of times the rule
yields the correct temporal relation type divided by
the number of times it is applied, as measured on the
three development folds. A new instance is classi-
fied using the first applicable rule in the ruleset.

Some of these rules were shown in the previ-
ous subsection when we motivated each feature type
with examples. The complete set of rules can be ac-
cessed via our website.6

4.3 Combining Rules and Machine Learning

We investigate three ways to combine the hand-
crafted rules and the machine-learned classifier.

In the first method, we employ all of the rules as
additional features for training the classifier. The
value of each such feature is the temporal relation
type predicted by the corresponding rule.

The second method can be viewed as an extension
of the first one. Given a test instance, we first apply
to it the ruleset composed only of rules that are at
least 80% accurate. If none of the rules is applicable,
we classify it using the classifier employed in the
first method.7

The third method is essentially the same as the
second, except we do not employ the rules as fea-
tures when training the classifier.

5 Evaluation

5.1 Experimental Setup

Dataset. As mentioned before, we partition the
183 documents in the TimeBank (v1.2) corpus into
five folds of roughly the same size, reserving three
folds (say Folds 1–3) for manual rule development

6http://www.hlt.utdallas.edu/ ˜ jld082000/
temporal-relations/

7Although this classifier is applied to only those test in-
stances that the rules cannot handle, we did not retrain it on
only those training instances that the rules cannot handle.

and using the remaining two folds (say Folds 4–5)
for testing. We perform two-fold cross-validation
experiments using the two test folds. In the first fold
experiment, we train a temporal relation classifier on
Folds 1–4 and test on Fold 5; and in the second fold
experiment, we train the classifier on all but Fold 4
and test on Fold 4. The results reported in the rest of
the paper are averaged over the two test folds.
Evaluation metrics. We employaccuracy(Acc)
and macro F-score(Fma). Accuracy is the per-
centage of correctly classified test instances, and is
the standard evaluation metric for temporal relation
classification. Since each test instance belongs to
one of the 14 temporal relation types, accuracy is the
same as micro F-score. On the other hand, macro F-
score is rarely used to evaluate this task. We chose it
because it could provide insights into how well our
approach performs on the minority classes.

5.2 Results and Discussion

Table 3 shows the two-fold cross-validation results
for our 14-class temporal relation classification task.
The six columns of the table correspond to six dif-
ferent system architectures. The “Feature” column
corresponds to a purely learning-based architecture
where the results are obtained simply by training a
temporal relation classifier using the available fea-
tures. The next two columns correspond to two
purely rule-based architectures, differing by whether
all rules are used regardless of their accuracy or
whether only high-accuracy rules (i.e., those that are
at least 80% accurate) are used. The rightmost three
columns correspond to the three ways of combining
rules and machine learning described in Section 4.3.

On the other hand, the rows of the table differ in
terms of what features are available to a system. In
row 1, only the baseline features are available. In the
subsequent rows, the six types of features discussed
in Section 4 are added incrementally to the baseline
feature set. This means that the last row corresponds
to the case where all feature types are used.

A point merits clarification. It may not be imme-
diately clear how to interpret the results under, for
instance, the “All Rules” column. In other words,
it may not be clear what it means to add the six
types of features incrementally to a rule-based sys-
tem. Recall that one of our goals is to compare
a purely learning-based system with a purely rule-
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Features All Rules All Rules with Features + Rules + Rules + Features +
accuracy≥ 0.8 Rules as Features Features Rules as Features

Feature Type Acc Fma Acc Fma Acc Fma Acc Fma Acc Fma Acc Fma

1 Baseline 45.3 24.9 – – – – – – – – – –
2 + Pairwise 46.5 25.8 37.6 26.5 5.1 13.9 46.7 26.5 48.0 31.9 48.2 32.1
3 + Dependencies 47.0 25.9 39.0 27.8 6.9 15.7 47.2 26.7 49.2 32.3 49.2 32.6
4 + WordNet 46.9 26.0 43.5 30.4 6.9 15.7 47.5 26.8 49.2 32.3 49.5 32.8
5 + Webster 46.9 25.8 43.3 29.9 6.9 15.7 48.1 26.8 49.2 32.0 50.1 33.1
6 + PropBank 47.2 26.0 44.3 30.5 8.1 16.6 48.0 26.8 49.5 32.2 50.0 33.0
7 + Discourse 48.1 26.6 47.5 35.1 12.8 23.3 48.9 27.5 53.0 36.0 53.4 36.6

Table 3: Two-fold cross-validation accuracies and macro F-scores as features are added incrementally to the baseline.

based system, since we hypothesized that humans
may be better at combining the available features
to form rules than a learning algorithm would be.
To facilitate this comparison, all and only those fea-
tures that are available to a learning-based system in
a given row can be used in hand-crafting the rules
of the rule-based system in the same row. The other
columns involving the use of rules can be interpreted
in a similar manner.

The highest accuracy and macro F-score are
achieved when all types of features are used in
combination with the “Rules + Features + Rules
as Features” architecture. Specifically, this system
achieves an accuracy of 53.4% and a macro F-score
of 36.6% on the 2000-instance test set. This trans-
lates to a relative error reduction of 15–16% in com-
parison to the baseline result shown in row 1. A
closer examination of these results reveals that the
hand-crafted rules used by the system correctly clas-
sify 239 of the 305 test instances to which they are
applicable. In other words, the rules achieve a preci-
sion of 78.3% and a recall of 15.3% on the test data.

Our results suggest that the rules are effective at
improving performance when they are used to make
classification decisions prior to the application of
the classifier, as the performance of the “Rules +
Features + Rules as Features” architecture is sig-
nificantly better than that of the “Features + Rules
as Features” architecture.8 On the other hand, the
“Rules + Features + Rules as Features” architecture
does not benefit from the use of rules as features,
as its performance is statistically indistinguishable
from that of the “Rules + Features” architecture.
Nevertheless, both “Rules + Features + Rules as
Features” and “Rules + Features” are significantly

8Unless otherwise stated, all statistical significance tests are
pairedt-tests, withp < 0.05.

better than the remaining four architectures. This
suggests that the best-performing approach for our
14-class temporal relation classification task is the
hybrid approach where high-accuracy rules are first
applied and then the learned classifier is used to clas-
sify those cases that cannot be handled by the rules.

Among the remaining four architectures, “All
Rules with accuracy≥ 0.8”, the version of the rule-
based architecture where only the high-accuracy
rules are used, performs significantly worse than the
others, presumably because the coverage of the rule-
set is low. The results of the two feature-based archi-
tectures, “Features” and “Features + Rules as Fea-
tures”, are statistically indistinguishable from each
other at thep < 0.01 level. At thep < 0.05

level, however, their results are mixed: “Features +
Rules as Features” is better than “Features” accord-
ing to accuracy, whereas the reverse is true accord-
ing to macro F-score. Combining these results with
those we discussed above concerning the “Rules +
Features” and “Rules + Features + Rules as Fea-
tures” architectures, we can conclude that the fea-
tures encoding the hand-crafted rules are (mildly)
useful only when used in combination with a weak-
performing system. Finally, comparing the “Fea-
tures” architecture and the “All Rules” architecture,
we also see mixed results: “Features” is better than
“All Rules” according to accuracy, whereas the re-
verse is true according to macro F-score. These
results confirm our earlier hypothesis that the rule-
based system is indeed better at identifying instances
of minority relation types.

Next, to determine whether the addition of a par-
ticular type of features to the feature set is use-
ful, we apply the pairedt-test to each pair of ad-
jacent rows in Table 3. We found that adding
pairwise features, dependency relations, and most
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Event-Event Event-Time
Feature Type Acc Fma Acc Fma

1 Baseline 36.7 15.6 63.3 19.2
2 + Pairwise 40.4 25.4 64.7 24.2
3 + Dependencies 42.4 28.4 64.9 25.4
4 + WordNet 42.6 28.1 64.7 25.3
5 + Webster 43.0 29.7 64.6 25.3
6 + PropBank 43.2 28.6 64.3 25.1
7 + Discourse 46.8 36.3 65.4 26.4

Table 4: Event-event and event-time classification results
of our best system (Rules + Features+ Rules as features).

importantly, discourse relations significantly im-
proves both accuracy and macro F-score (p < 0.05).
Adding the Webster relations improves accuracy at a
slightly lower significance level (p < 0.07) but does
not significantly improve macro F-score. Some-
what counter-intuitively, the WordNet and predicate-
argument relations are not useful. We speculate that
their failure to improve performance could be at-
tributed to the fact that these relations are extracted
by imperfect analyzers. Additional experiments in-
volving the use of gold-standard quality features are
needed to precisely determine the reason.

Recall that the results shown in Table 3 were com-
puted over both the order (i.e., event-event) and an-
chor (i.e., event-time) temporal relations. To gain
additional insights into our best-performing system,
we show in Table 4 its performance on classify-
ing event-event and event-time relations separately.
In comparison to the baseline, both accuracy and
macro F-score increase significantly when our sys-
tem is used in combination with all feature types.
In particular, our system yields a relative error re-
duction of 16–25% for event-event classification and
6–9% for event-time classification over the base-
line. The pairwise features, as well as dependency
relations and discourse relations, contribute signif-
icantly to the classification of both event-event and
event-time relations.

Finally, we show in Table 5 the per-class results
of the baseline system and our best-performing sys-
tem. As we can see, our system performs signifi-
cantly better than the baseline on all relation types,
owing to a simultaneous rise in recall and precision.

6 Conclusions

We have investigated a knowledge-rich, hybrid ap-
proach to the 14-class temporal relation classifica-

Baseline Our System
Relation R P F R P F
Simultaneous 22.5 30.5 25.9 29.5 39.5 33.8
Identity 56.5 51.5 53.9 59.0 57.5 58.2
Before 39.5 38.5 39.0 50.5 50.5 50.5
After 50.5 35.0 41.4 59.5 44.5 50.9
IBefore 0.0 0.0 0.0 32.5 85.5 47.1
IAfter 0.0 0.0 0.0 5.5 50.0 9.9
Includes 54.5 50.5 52.4 61.0 55.5 58.1
Is Included 71.5 64.5 67.8 74.5 65.0 69.4
During 11.0 31.0 16.2 19.0 34.5 24.5
During Inv 14.0 20.0 16.5 19.5 40.5 26.3
Begins 4.5 10.0 6.2 37.0 43.5 40.0
Begun By 6.5 14.5 9.0 35.0 44.0 39.0
Ends 6.5 10.0 7.9 23.5 70.0 35.2
Ended By 9.0 10.0 9.5 29.0 26.5 27.7

Table 5: Per-class results of the baseline system and our
best system (Rules + Features+ Rules as features).

tion task. Results on the TimeBank corpus show
that our approach achieves a relative error reduction
of 15–16% over a learning-based baseline that em-
ploys a state-of-the-art feature set. Our results sug-
gest that (1) the pairwise features, dependency rela-
tions, and discourse relations are useful for temporal
relation classification; and (2) hand-crafted rules can
better handle the skewed class distribution underly-
ing our dataset via improving minority class predic-
tion. To our knowledge, we are the first to (1) re-
port results for the 14-class temporal relation clas-
sification task on TimeBank; (2) successfully em-
ploy PDTB-style discourse relations to improve this
task; and (3) show that a hybrid approach to this task
can yield better results than either a rule-based or
learning-based approach. To stimulate research on
this task, we make our complete set of hand-crafted
rules available to other researchers. We believe that
hybrid rule-based and learning-based approaches are
promising approaches to language processing tasks
that require complex reasoning and hope that they
will be given more attention in the community.
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Abstract

Inferring the information structure of scien-
tific documents is useful for many down-
stream applications. Existing feature-based
machine learning approaches to this task re-
quire substantial training data and suffer from
limited performance. Our idea is to guide
feature-based models with declarative domain
knowledge encoded as posterior distribution
constraints. We explore a rich set of discourse
and lexical constraints which we incorporate
through the Generalized Expectation (GE) cri-
terion. Our constrained model improves the
performance of existing fully and lightly su-
pervised models. Even a fully unsupervised
version of this model outperforms lightly su-
pervised feature-based models, showing that
our approach can be useful even when no la-
beled data is available.

1 Introduction

Techniques that enable automatic analysis of the in-
formation structure of scientific articles can help sci-
entists identify information of interest in the grow-
ing volume of scientific literature. For example,
classification of sentences according to argumenta-
tive zones (AZ) – an information structure scheme
that is applicable across scientific domains (Teufel
et al., 2009) – can support information retrieval, in-
formation extraction and summarization (Teufel and
Moens, 2002; Tbahriti et al., 2006; Ruch et al.,
2007; Liakata et al., 2012; Contractor et al., 2012).

Previous work on sentence-based classification of
scientific literature according to categories of infor-
mation structure has mostly used feature-based ma-

chine learning, such as Support Vector Machines
(SVM) and Conditional Random Fields (CRF) (e.g.
(Teufel and Moens, 2002; Lin et al., 2006; Hiro-
hata et al., 2008; Shatkay et al., 2008; Guo et al.,
2010; Liakata et al., 2012)). Unfortunately, the per-
formance of these methods is rather limited, as indi-
cated e.g. by the relatively low numbers reported by
Liakata et al. (2012) in biochemistry and chemistry
with per-class F-scores ranging from .18 to .76.

We propose a novel approach to this task in which
traditional feature-based models are augmented with
explicit declarative expert and domain knowledge,
and apply it to sentence-based AZ. We explore two
sources of declarative knowledge for our task - dis-
course and lexical. One way to utilize discourse
knowledge is to guide the model predictions by en-
coding a desired predicted class (i.e. information
category) distribution in a given position in the doc-
ument. Consider, for example, sentence (1) from the
first paragraph of the Discussion section in a paper:

(1) In time, this will prove to be most suitable for
detailed analysis of the role of these hormones in
mammary cancer development.

Although the future tense and cue phrases such as
“in time” can indicate that authors are discussing fu-
ture work (i.e. the “Future work” class in the AZ
scheme), in this case they refer to their own contri-
bution (i.e. the “Conclusion” class in AZ). As most
authors discuss their own contribution in the begin-
ning of the Discussion section and future directions
in the end, encoding the desired class distribution as
a function of the position in this section can guide
the model to the right decision.

Likewise, lexical knowledge can guide the model
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through predicted class distributions for sentences
that contain specific vocabulary. Consider, for ex-
ample, sentence (2):

(2) The values calculated for lungs include the
presumed DNA adduct of BA and might thus be
slightly overestimated.

The verb “calculated” usually indicates the
“Method” class, but, when accompanied by the
modal verb “might”, it is more likely to imply that
authors are interpreting their own results (i.e. the
“Conclusion” class in AZ). This can be explicitly
encoded in the model through a target distribution
for sentences containing certain modal verbs.

Recent work has shown that explicit declaration
of domain and expert knowledge can be highly use-
ful for structured NLP tasks such as parsing, POS
tagging and information extraction (Chang et al.,
2007; Mann and McCallum, 2008; Ganchev et al.,
2010). These works have encoded expert knowledge
through constraints, with different frameworks dif-
fering in the type of constraints and the inference
and learning algorithms used. We build on the Gen-
eralized Expectation (GE) framework (Mann and
McCallum, 2007) which encodes expert knowledge
through a preference (i.e. soft) constraints for pa-
rameter settings for which the predicted label distri-
bution matches a target distribution.

In order to integrate domain knowledge with a
features-based model, we develop a simple taxon-
omy of constraints (i.e. desired class distributions)
and employ a top-down classification algorithm on
top of a Maximum Entropy Model augmented with
GE constraints. This algorithm enables us to break
the multi-class prediction into a pipeline of consecu-
tive, simpler predictions which can be better assisted
by the encoded knowledge.

We experiment in the biological domain with the
eight-category AZ scheme (Table 1) adapted from
(Mizuta et al., 2006) and described in (Contractor
et al., 2012). The results show that our constrained
model substantially outperforms a baseline uncon-
strained Maximum Entropy Model. While this type
of constrained models have previously improved
the feature-based model performance mostly in the
weakly supervised and domain adaptation scenarios
(e.g. (Mann and McCallum, 2007; Mann and Mc-
Callum, 2008; Ganchev et al., 2010)), we demon-
strate substantial gains both when the Maximum En-

Table 1: The AZ categories included in the categorization
scheme of this paper.

Zone Definition
Background (BKG) the background of the study
Problem (PROB) the research problem
Method (METH) the methods used
Result (RES) the results achieved
Conclusion (CON) the authors’ conclusions
Connection (CN) work consistent with the current work
Difference (DIFF) work inconsistent with the current work
Future work (FUT) the potential future direction of the research

tropy Model is fully trained and when its training
data is sparse. This demonstrates the importance of
expert knowledge for our task and supports our mod-
eling decision that combines feature-based methods
with domain knowledge encoded via constraints.

2 Previous work

Information structure analysis The information
structure of scientific documents (e.g. journal ar-
ticles, abstracts, essays) can be analyzed in terms
of patterns of topics, functions or relations observed
in multi-sentence scientific text. Computational ap-
proaches have mainly focused on analysis based
on argumentative zones (Teufel and Moens, 2002;
Mizuta et al., 2006; Hachey and Grover, 2006;
Teufel et al., 2009), discourse structure (Burstein et
al., 2003; Webber et al., 2011), qualitative dimen-
sions (Shatkay et al., 2008), scientific claims (Blake,
2009), scientific concepts (Liakata et al., 2010) and
information status (Markert et al., 2012).

Most existing methods for analyzing scientific
text according to information structure use full
supervision in the form of thousands of manu-
ally annotated sentences (Teufel and Moens, 2002;
Burstein et al., 2003; Mizuta et al., 2006; Shatkay
et al., 2008; Guo et al., 2010; Liakata et al., 2012;
Markert et al., 2012). Because manual annotation is
prohibitively expensive, approaches based on light
supervision are now emerging for the task, including
those based on active learning and self-training (Guo
et al., 2011) and unsupervised methods (Varga et al.,
2012; Reichart and Korhonen, 2012). Unfortunately,
these approaches do not reach the performance level
of fully supervised models, let alone exceed it. Our
novel method addresses this problem.

Declarative knowledge and constraints Previ-
ous work has shown that incorporating declara-
tive constraints into feature-based machine learning
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models works well in many NLP tasks (Chang et
al., 2007; Mann and McCallum, 2008; Druck et al.,
2008; Bellare et al., 2009; Ganchev et al., 2010).
Such constraints can be used in a semi-supervised or
unsupervised fashion. For example, (Mann and Mc-
Callum, 2008) shows that using CRF in conjunction
with auxiliary constraints on unlabeled data signif-
icantly outperforms traditional CRF in information
extraction, and (Druck et al., 2008) shows that using
declarative constraints alone for unsupervised learn-
ing achieves good results in text classification. We
show that declarative constraints can be highly use-
ful for the identification of information structure of
scientific documents. In contrast with most previous
works, we show that such constraints can improve
the performance of a fully supervised model. The
constraints are particularly helpful for identifying
low-frequency information categories, but still yield
high performance on high-frequency categories.

3 Maximum-Entropy Estimation and
Generalized Expectation (GE)

In this section we describe the Generalized Expecta-
tion method for declarative knowledge encoding.

Maximum Entropy (ME) The idea of General-
ized Expectation (Dudı́k, 2007; Mann and McCal-
lum, 2008; Druck et al., 2008) stems from the prin-
ciple of maximum entropy (Jaynes, 1957; Pietra and
Pietra, 1993) which raises the following constrained
optimization problem:

max
p

H(·)

subject to Ep[f(·)] = Ep̃[f(·)]
p(·) ≥ 0∑

p(·) = 1, (1)

where p̃(·) is the empirical distribution, p(·) is a
probability distribution in the model and H(·) is the
corresponding information entropy, f(·) is a collec-
tion of feature functions, and Ep[f(·)] and Ep̃[f(·)]
are the expectations of f with respect to p(·) and
p̃(·). An example of p(·) could be a conditional
probability distribution p(y|x), and H(·) could be
a conditional entropy H(y|x). The optimal p(y|x)
will take on an exponential form:

pλ(y|x) =
1

Zλ
exp(λ · f(x, y)), (2)

where λ is the Lagrange multipliers in the corre-
sponding unconstrained objective function, and Zλ

is the partition function. The dual problem be-
comes maximizing the conditional log-likelihood of
labeled data L (Berger et al., 1996):

max
λ

∑
(xi,yi)∈L

log(pλ(yi|xi)), (3)

which is usually known as a Log-linear or Maximum
Entropy Model (MaxEnt).

ME with Generalized Expectation The objec-
tive function and the constraints on expectations in
(1) can be generalized to:

max
λ
−

∑
x

p̃(x)D(pλ(y|x)||p0(y|x))

− g(Ep̃(x)[Epλ(y|x)[f(x, y)|x]]), (4)

where D(pλ||p0) is the divergence from pλ to a base
distribution p0, and g(·) is a constraint/penalty func-
tion that takes empirical evidence Ep̃(x,y)[f(x, y)] as
a reference point (Pietra and Pietra, 1993; Chen et
al., 2000; Dudı́k, 2007). Note that a special case of
this is MaxEnt where p0 is set to be a uniform distri-
bution, D(·) to be the KL divergence, and g(·) to be
an equality constraint.

The constraint g(·) can be set in a relaxed manner:∑
k

1

2ρ2
k

(Ep̃(x)[Epλ(y|x)[fk(x, y)|x]]− Ep̃(x,y)[fk(x, y)])2,

which is the logarithm of a Gaussian distribution
centered at the reference values with a diagonal co-
variance matrix (Pietra and Pietra, 1993), and the
dual problem will become a regularized MaxEnt
with a Gaussian prior (µk = 0, σ2

k = 1
ρ2k

) over the
parameters:

max
λ

∑
(xi,yi)∈L

log(pλ(yi|xi))−
∑
k

λ2
k

2σ2
k

(5)

Such a model can be further extended to include
expert knowledge or auxiliary constraints on unla-
beled data U (Mann and McCallum, 2008; Druck et
al., 2008; Bellare et al., 2009):

max
λ

∑
(xi,yi)∈L

log(pλ(yi|xi))−
∑
k

λ2
k

2σ2
k

− γg∗(Epλ(y|x)[f
∗(x, y)]) (6)

where f∗(·) is a collection of auxiliary feature func-
tions on U , g∗(·) is a constraint function that takes
expert/declarative knowledge Ep∗(y|x)[f∗(x, y)] as a
reference point, and γ is the weight of the auxiliary
GE term.
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The auxiliary constraint g∗(·) can take on many
forms and the one we used in this work is an L2

penalty function (Dudı́k, 2007). We trained the
model with L-BFGS (Nocedal, 1980) in supervised,
semi-supervised and unsupervised fashions on la-
beled and/or unlabeled data, using the Mallet soft-
ware (McCallum, 2002).

4 Incorporating Expert Knowledge into
GE constraints

We defined the auxiliary feature functions – the ex-
pert knowledge on unlabeled data as1:

f∗k (x, y) = 1(xk,yk)(x, y),

such that Ep∗(y|x)[fk(x, y)] = p∗(yk|xk), (7)

where 1(xk,yk)(x, y) is an indicator function, and
p∗(yk|xk) is a conditional probability specified in
the form of

p∗(yk|xk) ∈ [ak, bk] (8)

by experts. In particular, we took

p∗(yk|xk) =


ak if pλ(yk|xk) < a
bk if pλ(yk|xk) > b
pλ(yk|xk) if a ≤ pλ(yk|xk) ≤ b

(9)

as the reference point when calculating g∗(·).
We defined two types of constraints: those based

on discourse properties such as the location of a sen-
tence in a particular section or paragraph, and those
based on lexical properties such as citations, refer-
ences to tables and figures, word lists, tenses, and
so on. Note that the word lists actually contain both
lexical and semantic information.

To make an efficient use of the declarative knowl-
edge we build a taxonomy of information structure
categories centered around the distinction between
categories that describe the authors’ OWN work and
those that describe OTHER work (see Section 5). In
practice, our model labels every sentence with an
AZ category augmented by one of the two cate-
gories, OWN or OTHER. In evaluation we consider
only the standard AZ categories which are part of
the annotation scheme of (Contractor et al., 2012).

1Accordingly, Epλ(y|x)[fk(x, y)] = pλ(yk|xk)

Table 2: Discourse and lexical constraints for identifying infor-
mation categories at different levels of the information structure
taxonomy.

(a) OWN / OTHER

OWN Discourse
(1) Target(last part of paragraph) = 1
(2) Target(last part of section) = 1
Lexical
(3) Target(tables/figures) ≥ 1
(4) ∃x ∈ {w|w∼we} Target(x) = 1
∧ ∀y ∈ {w|w∼previous} Target(y) = 0

(5) ∃x ∈ {w|w∼thus} Target(x) = 1
OTHER Lexical

(6) Target(cite) = 1
(7) Target(cite) > 1
(8) Backward(cite) = 1
∧ ∃x ∈ {w|w∼in addition} Target(x) = 1

(b) PROB / METH / RES / CON / FUT

PROB Discourse
(1) Target(last part in section) = 1
Lexical
(2) ∃x ∈ {w|w∼aim} Target(x) = 1
(3) ∃x ∈ {w|w∼question} Target(x) = 1
(4) ∃x ∈ {w|w∼investigate} Target(x) = 1

METH Lexical
(5) ∃x ∈ {w|w∼{use,method}} Target(x) = 1

RES Lexical
(6) Target(tables/figures) ≥ 1
(7) ∃x ∈ {w|w∼observe} Target(x) = 1

CON Lexical
(8) Target(cite) ≥ 1
(9) ∃x ∈ {w|w∼conclude} Target(x) = 1
(10) ∃x ∈ {w|w∼{suggest, thus, because, likely}}

Target(x) = 1
FUT Discourse

(11) Target(first part in section) = 1
(12) Target(last part in section) = 1
∧ ∃x ∈ {w|w∼{will,need,future}} Target(x) = 1

Lexical
(13) ∃x {w|w∼will,future} Target(x) = 1
(14) Target(present continuous tense) = 1

(c) BKG / CN / DIFF

BKG Discourse
(1) Target(first part in paragraph) = 1
(2) Target(first part in section) = 1
Lexical
(3) ∃x ∈ {w|w∼we} Target(x) = 1
∧ ∀y ∈ {w|w∼previous} Target(y) = 0

(4) Forward(cite) = 1
∧ ∀x ∈ {w|w∼{consistent,inconsistent,than}}
(Target(x) = 0 ∧ Forward(x) = 0)

CN Lexical
(5) ∃x ∈ {w|w∼consistent} Target(x) = 1
(6) ∃x ∈ {w|w∼consistent} Forward(x) = 1

DIFF Lexical
(7) ∃x ∈ {w|w∼inconsistent} Target(x) = 1
(8) ∃x ∈ {w|w∼inconsistent} Forward(x) = 1
(9) ∃x ∈ {w|w∼{inconsistent,than,however}}

Forward(x) = 1 ∧ ∃y ∈ {w|w∼we} Forward(y) = 1
∧ ∀z ∈ {w|w∼previous}} Forward(z) = 0
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Table 3: The lexical sets used as properties in the constraints.
Cue Synonyms
we our, present study
previous previously, recent, recently
thus therefore
aim objective, goal, purpose
question hypothesis, ?
investigate explore, study, test, examine, evaluate, assess, deter-

mine, characterize, analyze, report, present
use employ
method algorithm, assay
observe see, find, show
conclude conclusion, summarize, summary
suggest illustrate, demonstrate, imply, indicate, confirm, re-

flect, support, prove, reveal
because result from, attribute to
likely probable, probably, possible, possibly, may, could
need remain
future further
consistent match, agree, support, in line, in agreement, similar,

same, analogous
inconsistent conflicting, conflict, contrast, contrary, differ, differ-

ent, difference
than compare
however other hand, although, though, but

The constraints in Table 2(a) refer to the top level
of this taxonomy: distinction between the authors’
own work and the work of others, and the constraints
in Tables 2(b)-(c) refer to the bottom level of the tax-
onomy: distinction between AZ categories related to
the authors’ own work (Table 2(b)) and other’s work
(Table 2(c)).

The first and second columns in each table refer
to the y and x variables in Equation (8), respectively.
The functions Target(·), Forward(·) and Backward(·)
refer to the property value for the target, next and
preceding sentence, respectively. If their value is 1
then the property holds for the respective sentence,
if it is 0, the property does not hold. In some cases
the value of such functions can be greater than 1,
meaning that the property appears multiple times in
the sentence. Terms of the form {w|w∼{wi}} refer
to any word/bi-grams that have the same sense aswi,
where the actual word set we use with every example
word in Table 2 is described in Table 3.

For example, take constraints (1) and (4) in Table
2(a). The former is a standard discourse constraint
that refers to the probability that the target sentence
describes the authors’ own work given that it appears
in the last of the ten parts in the paragraph. The lat-
ter is a standard lexical constraint that refers to the
probability that a sentence presents other people’s
work given that it contains any words in {we, our,
present study} and that it doesn’t contain any words

Figure 1: The constraint taxonomy for top-down modeling.

INFO [Table 2(a)]

OWN [Table 2(b)]

PROB METH RES CON FUT

OTHER [Table 2(c)]

BKG CN DIFF

in {previous, previously, recent, recently}. Our con-
straint set further includes constraints that combine
both types of information. For example, constraint
(12) in Table 2(b) refers to the probability that a sen-
tence discusses future work given that it appears in
the last of the ten parts of the section (discourse) and
that it contains at least one word in {will, future, fur-
ther, need, remain} (lexical).

5 Top-Down Model

An interesting property of our task and domain is
that the available expert knowledge does not directly
support the distinctions between AZ categories, but
it does provide valuable indirect guidance. For ex-
ample, the number of citations in a sentence is only
useful for separating the authors’ work from other
people’s work, but not for further fine grained dis-
tinctions between zone categories. Moreover, those
constraints that are useful for making fine grained
distinctions between AZ categories are usually use-
ful only for a particular subset of the categories only.
For example, all the constraints in Table 2(b) are
conditioned on the assumption that the sentence de-
scribes the authors’ own work.

To make the best use of the domain knowledge,
we developed a simple constraint taxonomy, and ap-
ply a top-down classification approach which uti-
lizes it. The taxonomy is presented in Figure 1. For
classification we trained three MaxEnt models aug-
mented with GE constraints: one for distinguishing
between OWN and OTHER2, one for distinguishing
between the AZ categories under the OWN auxiliary
category and one for distinguishing between the AZ
categories under the OTHER auxiliary category. At
test time we first apply the first classifier and based
on its prediction we apply either the classifier that
distinguishes between OWN categories or the one
that distinguishes between OTHER categories.

2For the training of this model, each training data AZ cate-
gory is mapped to its respective auxiliary class.

932



6 Experiments

Data We used the full paper corpus used by Contrac-
tor et al. (2012) which contains 8171 sentences from
50 biomedical journal articles. The corpus is anno-
tated according to the AZ scheme described in Table
1. AZ describes the logical structure, scientific argu-
mentation and intellectual attribution of a scientific
paper. It was originally introduced by Teufel and
Moens (2002) and applied to computational linguis-
tics papers, and later adapted to other domains such
as biology (Mizuta et al., 2006) – which we used in
this work – and chemistry (Teufel et al., 2009).

Table 4 shows the AZ class distribution in full ar-
ticles as well as in individual sections. Since section
names vary across scientific articles, we grouped
similar sections before calculating the statistics (e.g.
Discussion and Conclusions sections were grouped
under Discussion). We can see that although there is
a major category in each section (e.g. CON in Dis-
cussion), up to 36.5% of the sentences in each sec-
tion still belong to other categories.

Features We extracted the following features
from each sentence and used them in the feature-
based classifiers: (1) Discourse features: location in
the article/section/paragraph. For this feature each
text batch was divided to ten equal size parts and the
corresponding feature value identifies the relevant
part; (2) Lexical features: number of citations and
references to tables and figures (0, 1, or more), word,
bi-gram, verb, and verb class (obtained by spectral
clustering (Sun and Korhonen, 2009)); (3) Syntac-
tic features: tense and voice (POS tags of main and
auxiliary verbs), grammatical relation, subject and
object. The lexical and the syntactic features were
extracted for the represented sentence as well as for
its surrounding sentences. We used the C&C POS
tagger and parser (Curran et al., 2007) for extract-
ing the lexical and the syntactic features. Note that
all the information encoded into our constraints is
also encoded in the features and is thus available to
the feature-based model. This enables us to properly
evaluate the impact of our modeling decision which
augments a feature-based model with constraints.

Baselines We compared our model against four
baselines, two with full supervision: Support Vec-
tor Machines (SVM) and Maximum Entropy Mod-
els (MaxEnt), and two with light supervision: Trans-

Table 4: Class distribution (shown in percentages) in articles
and their individual sections in the AZ-annotated corpus.

BKG PROB METH RES CON CN DIFF FUT

Article 16.9 2.8 34.8 17.9 22.3 4.3 0.8 0.2
Introduction 74.8 13.2 5.4 0.6 5.9 0.1 - -
Methods 0.5 0.2 97.5 1.4 0.2 0.2 0.1 -
Results 4.0 2.1 11.7 68.9 12.1 1.1 0.1 -
Discussion 16.9 1.1 0.7 1.5 63.5 13.3 2.4 0.7

Table 5: Performance of baselines on the Discussion section.
BKG PROB METH RES CON CN DIFF FUT

Full supervision
SVM .56 0 0 0 .84 .35 0 0
MaxEnt .55 .08 0 0 .84 .38 0 0
Light supervision with 150 labeled sentence
SVM .26 0 0 0 .80 .05 0 0
TSVM .25 .04 .04 .03 .33 14 .06 .02
MaxEnt .25 0 0 0 .80 .10 0 0
MaxEnt+ER .23 0 0 0 .80 .07 0 0

ductive SVM (TSVM) and semi-supervised Max-
Ent based on Entropy Regularization (ER) (Vapnik,
1998; Jiao et al., 2006). SVM and MaxEnt have
proved successful in information structure analysis
(e.g. (Merity et al., 2009; Guo et al., 2011)) but,
to the best of our knowledge, their semi-supervised
versions have not been used for AZ of full articles.

Parameter tuning The boundaries of the ref-
erence probabilities (ak and bk in Equation (8))
were defined and optimized on the development data
which consists of one third of the corpus. We con-
sidered six types of boundaries: Fairly High for
1, High for [0.9,1), Medium High for [0.5,0.9),
Medium Low for [0.1,0.5), Low for [0,0.1), and
Fairly Low for 0.

Evaluation We evaluated the precision, recall and
F-score for each category, using a standard ten-fold
cross-validation scheme. The models were tested on
each of the ten folds and trained on the rest of them,
and the results were averaged across the ten folds.

7 Results

We report results at two levels of granularity. We
first provide detailed results for the Discussion sec-
tion which should be, as is clearly evident from Ta-
ble 4, the most difficult section for AZ prediction as
only 63.5% of its sentences take its most dominant
class (CON). As we show below, this is also where
our constrained model is most effective. We then
show the advantages of our model for other sections.

Results for the Discussion section To get a bet-
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Table 6: Discussion section performance of MaxEnt, MaxEnt+GE and a MaxEnt+GE model that does not include our top-down
classification scheme. Results are presented for different amounts of labeled training data. The MaxEnt+GE (Top-down) model
outperforms the MaxEnt in 44 out of 48 cases, and MaxEnt+GE (Flat) in 39 out of 48 cases.

MaxEnt MaxEnt + GE (Top-down) MaxEnt + GE (Flat)
50 100 150 500 1000 Full 50 100 150 500 1000 Full 50 100 150 500 1000 Full

BKG .10 .26 .25 .44 .48 .55 .49 .49 .48 .52 .55 .57 .35 .37 .37 .46 .51 .53
PROB 0 0 0 0 0 0 .38 .16 .29 .13 .30 .41 .38 .23 .19 .39 .38 .33
METH 0 0 0 0 0 0 .17 .22 .37 .35 .50 .39 .16 .17 .21 .24 .32 .29
RES 0 0 0 0 0 0 .18 .24 .58 0 0 .46 .13 .05 .21 .31 .25 .34
CON .79 .80 .80 .83 .83 .84 .77 .78 .82 .83 .84 .84 .63 .66 .68 .74 .78 .78
CN .02 .04 .10 .24 .34 .38 .29 .31 .33 .35 .40 .39 .21 .21 .24 .26 .30 .32
DIFF 0 0 0 0 0 0 .26 .25 .25 .19 .24 .21 .14 .16 .15 .14 .18 .17
FUT 0 0 0 0 0 0 .35 .38 .31 .25 .35 .31 .36 .36 .39 .33 .25 .37

Figure 2: Performance of the MaxEnt and MaxEnt+GE models on the Introduction (left), Methods (middle) and Results (right)
sections. The MaxEnt+GE model is superior.
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 Table 7: Discussion section performance of the MaxEnt, Max-
Ent+GE and unsupervised GE models when the former two are
trained with 150 labeled sentences. Unsupervised GE outper-
forms the standard MaxEnt model for all categories except for
CON – the major category of the section. The result pattern for
the other sections are very similar.

MaxEnt MaxEnt + GE Unsup GE
P R F P R F P R F

BKG .38 .19 .25 .49 .48 .48 .49 .44 .46
PROB 0 0 0 .38 .23 .29 .28 .38 .32
METH 0 0 0 .29 .50 .37 .08 .56 .14
RES 0 0 0 .68 .51 .58 .08 .51 .14
CON .69 .96 .80 .81 .84 .82 .74 .69 .71
CN .35 .06 .10 .39 .29 .33 .40 .13 .20
DIFF 0 0 0 .21 .30 .25 .12 .13 .12
FUT 0 0 0 .24 .44 .31 .26 .61 .36

ter understanding of the nature of the challenge we
face, Table 5 shows the F-scores of fully- and semi-
supervised SVM and MaxEnt on the Discussion sec-
tion. The dominant zone category CON, which ac-
counts for 63.5% of the section sentences, has the
highest F-scores for all methods and scenarios. Most
of the methods also identify the second and the third
most frequent zones BKG and CN, but with relatively
lower F-scores. Other low-frequency categories can
hardly be identified by any of the methods regardless
of the amount of labeled data available for training.
Note that the compared models perform quite sim-
ilarly. We therefore use the MaxEnt model, which

Table 8: Analysis of the impact of the different constraint types
for the lightly supervised and the fully supervised cases. Results
are presented for the Discussion section. Using only the lexical
constraints is generally preferable in the fully supervised case.
Combining the different constraint types is preferable for the
lightly supervised case.

Discourse Lexical Discourse+Lexical
150 Full 150 Full 150 Full

BKG .29 .55 .46 .58 .48 .57
PROB 0 0 .37 .40 .29 .41
METH 0 .11 .29 .35 .37 .39
RES 0 .06 .32 .47 .58 .46
CON .81 .84 .80 .84 .82 .84
CN .12 .34 .35 .42 .33 .39
DIFF 0 0 .21 .21 .25 .21
FUT 0 0 0 .29 .31 .31

is most naturally augmented with GE constraints, as
the baseline unconstrained model.

When adding the GE constraints we observe a
substantial performance gain, in both the fully and
the lightly supervised cases, especially for the low-
frequency categories. Table 6 presents the F-scores
of MaxEnt with and without GE constraints (“Max-
Ent+GE (Top-down)” and “MaxEnt”) in the light
and full supervision scenarios. Incorporating GE
into MaxEnt results in a substantial F-score im-
provement for all AZ categories except for the ma-
jor category CON for which the performance is kept
very similar. In total, MaxEnt+GE (Top-down) is
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better in 44 out of the 48 cases presented in the table.
Importantly, the constrained model provides sub-
stantial improvements for both the relatively high-
frequency classes (BKG and CN which together label
30.2% of the sentences) and for the low-frequency
classes (which together label 6.4% of the sentences).

The table also clearly demonstrates the impact of
our tree-based top-down classification scheme, by
comparing the Top-down version of MaxEnt+GE
to the standard “Flat” version. In 39 out of 48
cases, the Top-down model performs better. In some
cases, especially for high-frequency categories and
when the amount of training data increases, un-
constrained MaxEnt even outperforms the flat Max-
Ent+GE model. The results presented in the rest of
the paper for the MaxEnt+GE model therefore refer
to its Top-down version.

All sections We next turn to the performance of
our model on the three other sections. Our exper-
iments show that augmenting the MaxEnt model
with domain knowledge constraints improves per-
formance for all the categories (either low or high
frequency), except the major section category, and
keep the performance for the latter on the same level.
Figure 2 demonstrates this pattern for the lightly su-
pervised case with 150 training sentences but the
same pattern applies to all other amounts of training
data, including the fully supervised case. Naturally,
we cannot demonstrate all these cases due to space
limitations. The result patterns are very similar to
those presented above for the Discussion section.

Unsupervised GE We next explore the quality of
the domain knowledge constraints when used in iso-
lation from a feature-based model. The objective
function of this model is identical to Equation (6)
except that the first (likelihood) term is omitted. Our
experiments reveal that this unsupervised GE model
outperforms standard MaxEnt for all the categories
except the major category of the section, when up
to 150 training sentences are used. Table 7 demon-
strates this for the Discussion section. This pattern
holds for the other scientific article sections. Even
when more than 150 labeled sentences are used, the
unsupervised model better detects the low frequency
categories (i.e. those that label less than 10% of
the sentences) for all sections. These results provide
strong evidence for the usefulness of our constraints
even when they are used with no labeled data.

Model component analysis We finally analyze
the impact of the different types of constraints on
the performance of our model. Table 8 presents the
Discussion section performance of the constrained
model with only one or the full set of constraints.
Interestingly, when the feature-based model is fully
trained the application of the lexical constraints
alone results in a very similar performance to the
application of the full set of lexical and discourse
constraints. It is only in the lightly supervised case
where the full set of constraints is required and re-
sults in the best performing model.

8 Conclusions and Future Work

We have explored the application of posterior dis-
course and lexical constraints for the analysis of the
information structure of scientific documents. Our
results are strong. Our constrained model outper-
forms standard feature-based models by a large mar-
gin in both the fully and the lightly supervised cases.
Even an unsupervised model based on these con-
straints provides substantial gains over feature-based
models for most AZ categories.

We provide a detailed analysis of the results
which reveals a number of interesting properties of
our model which may be useful for future research.
First, the constrained model significantly outper-
forms its unconstrained counterpart for low-medium
frequency categories while keeping the performance
on the major section category very similar to that of
the baseline model. Improved modeling of the major
category is one direction for future research. Sec-
ond, our full constraint set is most beneficial in the
lightly supervised case while the lexical constraints
alone yield equally good performance in the fully
supervised case. This calls for better understand-
ing of the role of discourse constraints for our task
as well as for the design of additional constraints
that can enhance the model performance either in
combination with the existing constraints or when
separately applied to the task. Finally, we demon-
strated that our top-down tree classification scheme
provides a substantial portion of our model’s impact.
A clear direction for future research is the design of
more fine-grained constraint taxonomies which can
enable efficient usage of other constraint types and
can result in further improvements in performance.
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Abstract

Previous research on domain adaptation (DA)
for statistical machine translation (SMT) has
mainly focused on the translation model (TM)
and the language model (LM). To the best of
our knowledge, there is no previous work on
reordering model (RM) adaptation for phrase-
based SMT. In this paper, we demonstrate
that mixture model adaptation of a lexical-
ized RM can significantly improve SMT per-
formance, even when the system already con-
tains a domain-adapted TM and LM. We find
that, surprisingly, different training corpora
can vary widely in their reordering character-
istics for particular phrase pairs. Furthermore,
particular training corpora may be highly suit-
able for training the TM or the LM, but unsuit-
able for training the RM, or vice versa, so mix-
ture weights for these models should be esti-
mated separately. An additional contribution
of the paper is to propose two improvements
to mixture model adaptation: smoothing the
in-domain sample, and weighting instances
by document frequency. Applied to mixture
RMs in our experiments, these techniques (es-
pecially smoothing) yield significant perfor-
mance improvements.

1 Introduction

A phrase-based statistical machine translation
(SMT) system typically has three main components:
a translation model (TM) that contains information
about how to translate word sequences (phrases)
from the source language to the target language,
a language model (LM) that contains information

about probable word sequences in the target lan-
guage, and a reordering model (RM) that indicates
how the order of words in the source sentence is
likely to influence the order of words in the target
sentence. The TM and the RM are trained on parallel
data, and the LM is trained on target-language data.
Usage of language and therefore the best translation
practice differs widely across genres, topics, and di-
alects, and even depends on a particular author’s or
publication’s style; the word “domain” is often used
to indicate a particular combination of all these fac-
tors. Unless there is a perfect match between the
training data domain and the (test) domain in which
the SMT system will be used, one can often get bet-
ter performance by adapting the system to the test
domain.

In offline domain adaptation, the system is pro-
vided with a sample of translated sentences from
the test domain prior to deployment. In a popular
variant of offline adaptation, linear mixture model
adaptation, each training corpus is used to gener-
ate a separate model component that forms part of
a linear combination, and the sample is used to as-
sign a weight to each component (Foster and Kuhn,
2007). If the sample resembles some of the corpora
more than others, those corpora will receive higher
weights in the combination.

Previous research on domain adaptation for SMT
has focused on the TM and the LM. Such research
is easily motivated: translations across domains are
unreliable. For example, the Chinese translation
of the English word “mouse” would most likely be
“laoshu老鼠” if the topic is the animal; if the topic
is computer hardware, its translation would most
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likely be “shubiao鼠标”. However, when the trans-
lation is for people in Taiwan, even when the topic
is computer hardware, its translation would more
likely be “huashu 滑鼠”. It is intuitively obvious
why TM and LM adaptation would be helpful here.

By contrast, it is not at all obvious that RM model
adaptation will improve SMT performace. One
would expect reordering behaviour to be characteris-
tic of a particular language pair, but not of particular
domains. At most, one might think that reordering
is lexicalized—perhaps, (for instance) in translating
from Chinese to English, or from Arabic to English,
there are certain words whose English translations
tend to undergo long-distance movement from their
original positions, while others stay close to their
original positions. However, one would not expect
a particular Chinese adverb or a particular Arabic
noun to undergo long-distance movement when be-
ing translated into English in one domain, but not in
others. Nevertheless, that is what we observe: see
section 5 below.

This paper shows that RM adaptation improves
the performance of our phrase-based SMT system.
In our implementation, the RM is adapted by means
of a linear mixture model, but it is likely that other
forms of RM adaptation would also work. We ob-
tain even more effective RM adaptation by smooth-
ing the in-domain sample and by weighting orienta-
tion counts by the document frequency of the phrase
pair. Both improvements could be applied to the TM
or the LM as well, though we have not done so.

Finally, the paper analyzes reordering to see why
RM adaptation works. There seem to be two fac-
tors at work. First, the reordering behaviour of
words and phrases often differs dramatically from
one bilingual corpus to another. Second, there are
corpora (for instance, comparable corpora and bilin-
gual lexicons) which may contain very valuable in-
formation for the TM, but which are poor sources
of RM information; RM adaptation downweights in-
formation from these corpora significantly, and thus
improves the overall quality of the RM.

2 Reordering Model

In early SMT systems, such as (Koehn, 2004),
changes in word order when a sentence is trans-
lated were modeled by means of a penalty that is in-

curred when the decoder chooses, as the next source
phrase to be translated, a phrase that does not imme-
diately follow the previously translated source sen-
tence. Thus, the system penalizes deviations from
monotone order, with the magnitude of the penalty
being proportional to distance in the source sentence
between the end of the previously translated source
phrase and the start of the newly chosen source
phrase.

Many SMT systems, including our own, still use
this distance-based penalty as a feature. However,
starting with (Tillmann and Zhang, 2005; Koehn
et al., 2005), a more sophisticated type of reorder-
ing model has often been adopted as well, and has
yielded consistent performance gains. This type of
RM typically identifies three possible orientations
for a newly chosen source phrase: monotone (M),
swap (S), and discontinuous (D). The M orientation
occurs when the newly chosen phrase is immedi-
ately to the right of the previously translated phrase
in the source sentence, the S orientation occurs when
the new phrase is immediately to the left of the pre-
vious phrase, and the D orientation covers all other
cases.1 This type of RM is lexicalized: the estimated
probabilities of M, S and D depend on the source-
language and target-language words in both the pre-
vious phrase pair and the newly chosen one.

Galley and Manning (2008) proposed a “hierar-
chical” lexicalized RM in which the orientation (M,
S, or D) is determined not by individual phrase pairs,
but by blocks. A block is the largest contiguous se-
quence of phrase pairs that satisfies the phrase pair
consistency requirement of having no external links.
Thus, classification of the orientation of a newly
chosen phrase as M, S, or D is carried out as if the
decoder always chose the longest possible source
phrase in the past, and will choose the longest pos-
sible source phrase in the future.

The RM used in this paper is hierarchical and lex-
icalized. For a given phrase pair (f , e), we estimate
the probabilities that it will be in an M, S, or D ori-
entation o with respect to the previous phrase pair
and the following phrase pair (two separate distri-
butions). Orientation counts c(o, f, e) are obtained
from a word-aligned corpus using the method de-

1Some researchers have distinguished between left and right
versions of the D orientation, but this 4-orientation scheme has
not yielded significant gains over the 3-orientation one.
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scribed in (Cherry et al., 2012), and corresponding
probabilities p(o|f, e) are estimated using recursive
MAP smoothing:

p(o|f, e) =
c(o, f, e) + αf p(o|f) + αe p(o|e)

c(f, e) + αf + αe

p(o|f) =
c(o, f) + αg p(o)

c(f) + αg

p(o) =
c(o) + αu/3

c(·) + αu
, (1)

where p(o|e) is defined analogously to p(o|f), and
the four smoothing parameters αe, αf , αg, and αu
are set to values that minimize the perplexity of the
resulting model on held-out data.

During decoding, orientations with respect to the
previous context are obtained from a shift-reduce
parser, and orientations with respect to following
context are approximated using the coverage vector
(Cherry et al., 2012).

3 RM Adaptation

3.1 Linear mixture model
Following previous work (Foster and Kuhn, 2007;
Foster et al., 2010), we adopt the linear mixture
model technique for RM adaptation. This technique
trains separate models for each training corpus, then
learns weights for each of the models and combines
the weighted component models into a single model.

If we have N sub-corpora, the global reordering
model probabilities p(o|f, e) are computed as in (2):

p(o|f, e) =

N∑
i=1

αi pi(o|f, e) (2)

where pi(o|f, e) is the reordering model trained on
sub-corpus i, and αi is its weight.

Following (Foster et al., 2010), we use the EM
algorithm to learn the weights that maximize the
probability of phrase-pair orientations in the devel-
opment set (in-domain data):

α̂ = argmax
α

∑
o,f,e

p̃(o, f, e) log

N∑
i=1

αi pi(o|f, e)

(3)
where p̃(o, f, e) is the empirical distribution of
counts in the dev set (proportional to c(o, f, e)). Two

separate sets of mixing weights are learned: one for
the distribution with respect to the previous phrase
pair, and one for the next phrase pair.

3.2 Development set smoothing
In Equation 3, p̃(o, f, e) is extracted from the in-
domain development set. Since dev sets for SMT
systems are typically small (1,000-3,000 sentences),
we apply smoothing to this RM. We first obtain
a smoothed conditional distribution p(o|f, e) using
the MAP technique described above, then multiply
by the empirical marginal p̃(e, f) to obtain a final
smoothed joint distribution p(o, f, e).

There is nothing about this idea that limits it to
the RM: smoothing could be applied to the statistics
in the dev that are used to estimate a mixture TM
or LM, in order to mitigate over-fitting. However,
we note that, compared to the TM, the over-fitting
problem is likely to be more acute for the RM, since
it splits counts for each phrase pair into three cate-
gories.

3.3 Document-frequency weighting
Mixture models, like the RM in this paper, depend
on the existence of multiple training corpora, with
each sub-corpus nominally representing a domain.
A recent paper suggests that some phrase pairs be-
long to general language, while others are domain-
specific (Foster et al., 2010). If a phrase pair exists
in all training corpora, it probably belongs to general
language; on the other hand, if it appears in only
one or two training corpora, it is more likely to be
domain-specific.

We were interested in seeing whether information
about domain-specificity could improve the estima-
tion of mixture RM weights. The intuition is that
phrase pairs that belong to general language should
contribute more to determining sub-corpus weights,
since they are the ones whose reordering behaviour
is most likely to shift with domain. To capture this
intuition, we multiplied the empirical distribution in
(3) by the following factor, inspired by the standard
document-frequency formula:

D(f, e) = log(DF (f, e) +K), (4)

where DF (f, e) is the number of sub-corpora
that (f, e) appears in, and K is an empirically-
determined smoothing term.
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corpus # segs # en tok % genres
fbis 250K 10.5M 3.7 nw
financial 90K 2.5M 0.9 financial
gale bc 79K 1.3M 0.5 bc
gale bn 75K 1.8M 0.6 bn ng
gale nw 25K 696K 0.2 nw
gale wl 24K 596K 0.2 wl
hkh 1.3M 39.5M 14.0 Hansard
hkl 400K 9.3M 3.3 legal
hkn 702K 16.6M 5.9 nw
isi 558K 18.0M 6.4 nw
lex&ne 1.3M 2.0M 0.7 lexicon
others nw 146K 5.2M 1.8 nw
sinorama 282K 10.0M 3.5 nw
un 5.0M 164M 58.2 un
TOTAL 10.1M 283M 100.0 (all)

devtest
tune 1,506 161K nw wl
NIST06 1,664 189K nw bn ng
NIST08 1,357 164K nw wl

Table 1: NIST Chinese-English data. In the gen-
res column: nw=newswire, bc=broadcast conversa-
tion, bn=broadcast news, wl=weblog, ng=newsgroup,
un=United Nations proceedings.

4 Experiments

4.1 Data setting

We carried out experiments in two different settings,
both involving data from NIST Open MT 2012.2

The first setting uses data from the Chinese to En-
glish constrained track, comprising 283M English
tokens. We manually identified 14 sub-corpora on
the basis of genres and origins. Table 1 summarizes
the statistics and genres of all the training corpora
and the development and test sets; for the training
corpora, we show their size in number of words as
a percentage of all training data. Most training cor-
pora consist of parallel sentence pairs. The isi and
lex&ne corpora are exceptions: the former is ex-
tracted from comparable data, while the latter is a
lexicon that includes many named entities. The de-
velopment set (tune) was taken from the NIST 2005
evaluation set, augmented with some web-genre ma-
terial reserved from other NIST corpora.

2http://www.nist.gov/itl/iad/mig/openmt12.cfm

corpus # segs # en toks % genres
gale bc 57K 1.6M 3.3 bc
gale bn 45K 1.2M 2.5 bn
gale ng 21K 491K 1.0 ng
gale nw 17K 659K 1.4 nw
gale wl 24K 590K 1.2 wl
isi 1,124K 34.7M 72.6 nw
other nw 224K 8.7M 18.2 nw
TOTAL 1,512K 47.8M 100.0 (all)

devtest
NIST06 1,664 202K nw wl
NIST08 1,360 205K nw wl
NIST09 1,313 187K nw wl

Table 2: NIST Arabic-English data. In the gen-
res column: nw=newswire, bc=broadcast conversation,
bn=broadcase news, ng=newsgroup, wl=weblog.

The second setting uses NIST 2012 Arabic to En-
glish data, but excluding the UN data. There are
about 47.8 million English running words in these
training data. We manually grouped the training data
into 7 groups according to genre and origin. Ta-
ble 2 summarizes the statistics and genres of all the
training corpora and the development and test sets.
Note that for this language pair, the comparable isi
data represent a large proportion of the training data:
72% of the English words. We use the evaluation
sets from NIST 2006, 2008, and 2009 as our devel-
opment set and two test sets, respectively.

4.2 System

Experiments were carried out with an in-house
phrase-based system similar to Moses (Koehn et al.,
2007). The corpus was word-aligned using IBM2,
HMM, and IBM4 models, and the phrase table was
the union of phrase pairs extracted from these sepa-
rate alignments, with a length limit of 7. The trans-
lation model was smoothed in both directions with
KN smoothing (Chen et al., 2011). The DF smooth-
ing term K in equation 4 was set to 0.1 using held-
out optimization. We use the hierarchical lexical-
ized RM described above, with a distortion limit of
7. Other features include lexical weighting in both
directions, word count, a distance-based RM, a 4-
gram LM trained on the target side of the parallel
data, and a 6-gram English Gigaword LM. The sys-
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system Chinese Arabic
baseline 31.7 46.8
baseline+loglin 29.6 45.9
RMA 31.8 47.7**
RMA+DF 32.2* 47.9**
RMA+dev smoothing 32.3* 48.3**
RMA+dev smoothing+DF 32.8** 48.2**

Table 3: Results for variants of RM adaptation.

system Chinese Arabic
LM+TM adaptation 33.2 47.7
+RMA+dev-smoothing+DF 33.5 48.4**

Table 4: RM adaptation improves over a baseline con-
taining adapted LMs and TMs.

tem was tuned with batch lattice MIRA (Cherry and
Foster, 2012).

4.3 Results

For our main baseline, we simply concatenate all
training data. We also tried augmenting this with
separate log-linear features corresponding to sub-
corpus-specific RMs. Our metric is case-insensitvie
IBM BLEU-4 (Papineni et al., 2002); we report
BLEU scores averaged across both test sets. Follow-
ing (Koehn, 2004), we use the bootstrap-resampling
test to do significance testing. In tables 3 to 5, *
and ** denote significant gains over the baseline at
p < 0.05 and p < 0.01 levels, respectively.

Table 3 shows that reordering model adaptation
helps in both data settings. Adding either document-
frequency weighting (equation 4) or dev-set smooth-
ing makes the improvement significant in both set-
tings. Using both techniques together yields highly
significant improvements.

Our second experiment measures the improve-
ment from RM adaptation over a baseline that
includes adapted LMs and TMs. We use the
same technique—linear mixtures with EM-tuned
weights—to adapt these models. Table 4 shows that
adapting the RM gives gains over this strong base-
line for both language pairs; improvements are sig-
nificant in the case of Arabic to English.

The third experiment breaks down the gains in the
last line of table 4 by individual adapted model. As
shown in table 5, RM adaptation yielded the largest

system Chinese Arabic
baseline 31.7 46.8
LM adaptation 32.1* 47.0
TM adaptation 33.0** 47.5**
RM adaptation 32.8** 48.2**

Table 5: Comparison of LM, TM, and RM adaptation.

improvement on Arabic, while TM adaptation did
best on Chinese. Surprisingly, both methods sig-
nificantly outperformed LM adaptation, which only
achieved significant gains over the baseline for Chi-
nese.

5 Analysis

Why does RM adaptation work? Intuitively, one
would think that reordering behaviour for a given
phrase pair should not be much affected by domain,
making RM adaptation pointless. That is probably
why (as far as we know) no-one has tried it before.
In this section, we describe three factors that account
for at least part of the observed gains.

5.1 Weighting by corpus quality

One answer to the above question is that some cor-
pora are better for training RMs than others. Fur-
thermore, corpora that are good for training the LM
or TM are not necessarily good for training the RM,
and vice versa. Tables 6 and 7 illustrate this. These
list the weights assigned to various sub-corpora for
LM, TM, and RM mixture models.

The weights assigned to the isi sub-corpus in par-
ticular exhibit a striking pattern. These are high in
the LM mixtures, moderate in the TM mixtures, and
very low in the RM mixtures. When one considers
that isi contains 72.6% of the English words in the
Arabic training data (see table 2), its weight of 0.01
in the RM mixture is remarkable.

On reflection, it makes sense that EM would as-
sign weights in the order it does. The isi corpus
consists of comparable data: sentence pairs whose
source- and target-language sides are similar, but of-
ten not mutual translations. These are a valuable
source of in-domain n-grams for the LM; a some-
what noisy source of in-domain phrase pairs for the
TM; and an unreliable source of re-ordering patterns
for the RM. Figure 1 shows this. Although the two
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LM TM RM
isi (0.23) un (0.29) un (0.21)
gale nw (0.11) fbis (0.15) gale nw (0.13)
un (0.11) hkh (0.10) lex&ne (0.12)
sino. (0.09) gale nw (0.09) hkh (0.08)
fbis (0.08) gale bn (0.07) fbis (0.08)
fin. (0.07) oth nw (0.06) gale bn (0.08)
oth nw (0.07) sino. (0.06) gale wl (0.06)
gale bn (0.07) isi (0.05) gale bc (0.06)
gale wl (0.06) hkn (0.04) hkn (0.04)
hkh (0.06) fin. (0.04) fin. (0.04)
hkn (0.03) gale bc (0.03) oth nw (0.03)
gale bc (0.02) gale wl (0.02) hkl (0.03)
lex&ne (0.00) lex&ne (0.00) isi (0.01)
hkl (0.00) hkl (0.00) sino. (0.01)

Table 6: Chinese-English sub-corpora for LM, TM, and
RM mixture models, ordered by mixture weight.

LM TM RM
isi (0.41) isi (0.35) gale bc (0.21)
oth nw (0.19) oth nw (0.29) gale ng (0.20)
gale ng (0.15) gale bc (0.10) gale nw (0.20)
gale wl (0.09) gale ng (0.08) oth nw (0.13)
gale nw (0.07) gale bn (0.07) gale ng (0.12)
gale bc (0.05) gale nw (0.07) gale wb (0.11)
gale bn (0.02) gale wl (0.05) isi (0.01)

Table 7: Arabic-English sub-corpora for LM, TM, and
RM mixture models, ordered by mixture weight.

sides of the comparable data are similar, they give
the misleading impression that the phrases labeled
1, 2, 3 in the Chinese source should be reordered as
2, 3, 1 in English. We show a reference translation
of the Chinese source (not found in the comparable
data) that reorders the phrases as 1, 3, 2.

Thus, RM adaptation allows the RM to learn that
certain corpora whose reordering information is of
lower quality corpora should have lower weights.
The optimal weights for corpora inside an RM may
be different from the optimal weights inside a TM or
LM.

5.2 Weighting by domain match

So is this all that RM adaptation does: downweight
poor-quality data? We believe there is more to
RM adaptation than that. Specifically, even if one

 

REF: The American list of goods that would incur 

tariffs in retaliation would certainly not be 

accepted by the Chinese government. 

 

SRC: 美国(1) 的 报复 清单是 中国(2) 政府 绝对 不 

接受  的(3)。 

 

TGT: And the Chinese(2) side would certainly not 

accept(3)  the unreasonable demands put 

forward by the Americans(1) concerning the 

protection of intellectual property rights . 

 

Figure 1: Example of sentence pair from comparable
data; underlined words with the same number are trans-
lations of each other

Corpus M S D Count
fbis 0.50 0.07 0.43 685
financial 0.32 0.28 0.41 65
gale bc 0.60 0.10 0.31 50
gale bn 0.47 0.15 0.37 109
gale nw 0.51 0.05 0.44 326
gale wl 0.42 0.26 0.32 52
hkh 0.29 0.23 0.48 130
hkl 0.28 0.16 0.56 263
hkn 0.30 0.27 0.43 241
isi 0.24 0.16 0.60 240
lex&ne 0.94 0.03 0.02 1
others nw 0.29 0.16 0.55 23
sinorama 0.44 0.07 0.49 110
un 0.37 0.10 0.53 15
dev 0.46 0.24 0.31 11

Table 8: Orientation frequencies for the phrase pair “立
即 immediately”, with respect to the previous phrase.

considers only high-quality data for training RMs
(ignoring comparable data, etc.) one sees differ-
ences in reordering behaviour between different do-
mains. This isn’t just because of differences in word
frequencies between domains, because we observe
domain-dependent differences in reordering for the
same phrase pair. Two examples are given below:
one Chinese-English, one Arabic-English.

Table 8 shows reordering data for the phrase
pair “立即 immediately” in various corpora. No-
tice the strong difference in behaviour between the
three Hong Kong corpora—hkh, hkl and hkn—and
some of the other corpora, for instance fbis. In the
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Corpus M S D Count
gale bc 0.50 0.27 0.22 233
gale bn 0.56 0.21 0.23 226
gale ng 0.51 0.13 0.37 295
gale nw 0.47 0.20 0.33 167
gale wl 0.56 0.18 0.26 127
isi 0.50 0.06 0.44 5502
other nw 0.50 0.16 0.34 1450
dev 0.75 0.12 0.13 52

Table 9: Orientation frequencies for the phrase pair
“work AlEml” with respect to the previous phrase.

Hong Kong corpora, immediately is much less likely
(probability of around 0.3) to be associated with a
monotone (M) orientation than it is in fbis (proba-
bility of 0.5). This phrase pair is relatively frequent
in both corpora, so this disparity seems too great to
be due to chance.

Table 9 shows reordering behaviour for the phrase
pair “work AlEml”3 across different sub-corpora.
As in the Chinese example, there appear to be sig-
nificant differences in reordering patterns for cer-
tain corpora. For instance, gale bc swaps this well-
attested phrase pair twice as often (probability of
0.27) as gale ng (probability of 0.13).

For Chinese, it is possible that dialect plays a role
in reordering behaviour. In theory, Mandarin Chi-
nese is a single language which is quite different,
especially in spoken form, from other languages of
China such as Cantonese, Hokkien, Shanghainese,
and so on. In practice, many speakers of Mandarin
may be unconsciously influenced by other languages
that they speak, or by other languages that they don’t
speak but that have an influence over people they in-
teract with frequently. Word order can be affected
by this: the Mandarin of Mainland China, Hong
Kong and Taiwan sometimes has slightly different
word order. Hong Kong Mandarin can be somewhat
influenced by Cantonese, and Taiwan Mandarin by
Hokkien. For instance, if a verb is modified by an
adverb in Mandarin, the standard word order is “ad-
verb verb”. However, since in Cantonese, “verb ad-
verb” is a more common word order, speakers and
writers of Mandarin in Hong Kong may adopt the

3We represent the Arabic word AlEml in its Buckwalter
transliteration.

�������������������	�
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�
Figure 2: An example of different word ordering in Man-
darin from different area.

“verb adverb” order in that language as well. Figure
2 shows how a different word order in the Mandarin
source affects reordering when translating into En-
glish. Perhaps in situations where different training
corpora represent different dialects, RM adaptation
involves an element of dialect adaptation. We are ea-
ger to test this hypothesis for Arabic—different di-
alects of Arabic are much more different from each
other than dialects of Mandarin, and reordering is
often one of the differences—but we do not have ac-
cess to Arabic training, dev, and test data in which
the dialects are clearly separated.

It is possible that RM adaptation also has an el-
ement of genre adaptation. We have not yet been
able to confirm or refute this hypothesis. However,
whatever is causing the corpus-dependent reorder-
ing patterns for particular phrase pairs shown in the
two tables above, it is clear that they may explain
the performance improvements we observe for RM
adaptation in our experiments.

5.3 Penalizing highly-specific phrase pairs
In section 3.3 we described our strategy for giving
general (high document-frequency) phrase pairs that
occur in the dev set more influence in determining
mixing weights. An artifact of our implementation
applies a similar strategy to the probability estimates
for all phrase pairs in the model. This is that 0 prob-
abilities are assigned to all orientations whenever a
phrase pair is absent from a particular sub-corpus.

Thus, for example, a pair (f, e) that occurs only
in sub-corpus iwill receive a probability p(o|f, e) =
αi pi(o|f, e) in the mixture model (equation 2).
Since αi ≤ 1, this amounts to a penalty on pairs
that occur in few sub-corpora, especially ones with
low mixture weights.

The resulting mixture model is deficient (non-
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normalized), but easy to fix by backing off to a
global distribution such as p(o) in equation 1. How-
ever, we found that this “fix” caused large drops in
performance, for instance from the Arabic BLEU
score of 48.3 reported in table 3 to 46.0. We there-
fore retained the original strategy, which can be seen
as a form of instance weighting. Moreover, it is one
that is particularly effective in the RM, since, com-
pared to a similar strategy in the TM (which we also
employ), it applies to whole phrase pairs and results
in much larger penalties.

6 Related work

Domain adaptation is an active topic in the NLP re-
search community. Its application to SMT systems
has recently received considerable attention. Previ-
ous work on SMT adaptation has mainly focused
on translation model (TM) and language model
(LM) adaptation. Approaches that have been tried
for SMT model adaptation include mixture models,
transductive learning, data selection, data weighting,
and phrase sense disambiguation.

Research on mixture models has considered both
linear and log-linear mixtures. Both were studied
in (Foster and Kuhn, 2007), which concluded that
the best approach was to combine sub-models of
the same type (for instance, several different TMs
or several different LMs) linearly, while combining
models of different types (for instance, a mixture
TM with a mixture LM) log-linearly. (Koehn and
Schroeder, 2007), instead, opted for combining the
sub-models directly in the SMT log-linear frame-
work.

In transductive learning, an MT system trained on
general domain data is used to translate in-domain
monolingual data. The resulting bilingual sentence
pairs are then used as additional training data (Ueff-
ing et al., 2007; Chen et al., 2008; Schwenk, 2008;
Bertoldi and Federico, 2009).

Data selection approaches (Zhao et al., 2004; Lü
et al., 2007; Moore and Lewis, 2010; Axelrod et
al., 2011) search for bilingual sentence pairs that are
similar to the in-domain “dev” data, then add them
to the training data. The selection criteria are typi-
cally related to the TM, though the newly found data
will be used for training not only the TM but also the
LM and RM.

Data weighting approaches (Matsoukas et al.,
2009; Foster et al., 2010; Huang and Xiang, 2010;
Phillips and Brown, 2011; Sennrich, 2012) use a
rich feature set to decide on weights for the train-
ing data, at the sentence or phrase pair level. For
instance, a sentence from a corpus whose domain is
far from that of the dev set would typically receive
a low weight, but sentences in this corpus that ap-
pear to be of a general nature might receive higher
weights.

The 2012 JHU workshop on Domain Adapta-
tion for MT 4 proposed phrase sense disambiguation
(PSD) for translation model adaptation. In this ap-
proach, the context of a phrase helps the system to
find the appropriate translation.

All of the above work focuses on either TM or
LM domain adaptation.

7 Conclusions

In this paper, we adapt the lexicalized reordering
model (RM) of an SMT system to the domain in
which the system will operate using a mixture model
approach. Domain adaptation of translation mod-
els (TMs) and language models (LMs) has become
common for SMT systems, but to our knowledge
this is the first attempt in the literature to adapt the
RM. Our experiments demonstrate that RM adap-
tation can significantly improve translation quality,
even when the system already has TM and LM adap-
tation. We also experimented with two modifica-
tions to linear mixture model adaptation: dev set
smoothing and weighting orientation counts with
document frequency of phrase pairs. Both ideas
are potentially applicable to TM and LM adaptation.
Dev set smoothing, in particular, seems to improve
the performance of RM adaptation significantly. Fi-
nally, we investigate why RM adaptation helps SMT
performance. Three factors seem to be important:
downweighting information from corpora that are
less suitable for modeling reordering (such as com-
parable corpora), dialect/genre effects, and implicit
instance weighting.

4http://www.clsp.jhu.edu/workshops/archive/ws-
12/groups/dasmt
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Abstract

This paper examines tuning for statistical ma-
chine translation (SMT) with respect to mul-
tiple evaluation metrics. We propose several
novel methods for tuning towards multiple ob-
jectives, including some based on ensemble
decoding methods. Pareto-optimality is a nat-
ural way to think about multi-metric optimiza-
tion (MMO) and our methods can effectively
combine several Pareto-optimal solutions, ob-
viating the need to choose one. Our best
performing ensemble tuning method is a new
algorithm for multi-metric optimization that
searches for Pareto-optimal ensemble models.
We study the effectiveness of our methods
through experiments on multiple as well as
single reference(s) datasets. Our experiments
show simultaneous gains across several met-
rics (BLEU, RIBES), without any significant
reduction in other metrics. This contrasts the
traditional tuning where gains are usually lim-
ited to a single metric. Our human evaluation
results confirm that in order to produce better
MT output, optimizing multiple metrics is bet-
ter than optimizing only one.

1 Introduction
Tuning algorithms are used to find the weights for a
statistical machine translation (MT) model by min-
imizing error with respect to a single MT evalua-
tion metric. The tuning process improves the per-
formance of an SMT system as measured by this
metric; with BLEU (Papineni et al., 2002) being
the most popular choice. Minimum error-rate train-
ing (MERT) (Och, 2003) was the first approach in
MT to directly optimize an evaluation metric. Sev-
eral alternatives now exist: MIRA (Watanabe et al.,
2007; Chiang et al., 2008), PRO (Hopkins and May,
2011), linear regression (Bazrafshan et al., 2012)
and ORO (Watanabe, 2012) among others.

However these approaches optimize towards the
best score as reported by a single evaluation met-
ric. MT system developers typically use BLEU and

ignore all the other metrics. This is done despite
the fact that other metrics model wide-ranging as-
pects of translation: from measuring the translation
edit rate (TER) in matching a translation output to a
human reference (Snover et al., 2006), to capturing
lexical choices in translation as in METEOR (Lavie
and Denkowski, 2009) to modelling semantic simi-
larity through textual entailment (Padó et al., 2009)
to RIBES, an evaluation metric that pays attention
to long-distance reordering (Isozaki et al., 2010).
While some of these metrics such as TER, ME-
TEOR are gaining prominence, BLEU enjoys the
status of being the de facto standard tuning metric
as it is often claimed and sometimes observed that
optimizing with BLEU produces better translations
than other metrics (Callison-Burch et al., 2011).

The gains obtained by the MT system tuned on
a particular metric do not improve performance as
measured under other metrics (Cer et al., 2010), sug-
gesting that over-fitting to a specific metric might
happen without improvements in translation quality.
In this paper we propose a new tuning framework
for jointly optimizing multiple evaluation metrics.

Pareto-optimality is a natural way to think about
multi-metric optimization and multi-metric opti-
mization (MMO) was recently explored using the
notion of Pareto optimality in the Pareto-based
Multi-objective Optimization (PMO) approach (Duh
et al., 2012). PMO provides several equivalent solu-
tions (parameter weights) having different trade-offs
between the different MT metrics. In (Duh et al.,
2012) the choice of which option to use rests with
the MT system developer and in that sense their ap-
proach is an a posteriori method to specify the pref-
erence (Marler and Arora, 2004).

In contrast to this, our tuning framework pro-
vides a principled way of using the Pareto optimal
options using ensemble decoding (Razmara et al.,
2012). We also introduce a novel method of ensem-
ble tuning for jointly tuning multiple MT evaluation
metrics and further combine this with the PMO ap-

947



proach (Duh et al., 2012). We also introduce three
other approaches for multi-metric tuning and com-
pare their performance to the ensemble tuning. Our
experiments yield the highest metric scores across
many different metrics (that are being optimized),
something that has not been possible until now.

Our ensemble tuning method over multiple met-
rics produced superior translations than single met-
ric tuning as measured by a post-editing task.
HTER (Snover et al., 2006) scores in our human
evaluation confirm that multi-metric optimization
can lead to better MT output.

2 Related Work
In grammar induction and parsing (Spitkovsky et al.,
2011; Hall et al., 2011; Auli and Lopez, 2011) have
proposed multi-objective methods based on round-
robin iteration of single objective optimizations.

Research in SMT parameter tuning has seen a
surge of interest recently, including online/batch
learning (Watanabe, 2012; Cherry and Foster, 2012),
large-scale training (Simianer et al., 2012; He
and Deng, 2012), and new discriminative objec-
tives (Gimpel and Smith, 2012; Zheng et al., 2012;
Bazrafshan et al., 2012). However, few works
have investigated the multi-metric tuning problem in
depth. Linear combination of BLEU and TER is re-
ported in (Zaidan, 2009; Dyer et al., 2009; Servan
and Schwenk, 2011); an alternative is to optimize on
BLEU with MERT while enforcing that TER does
not degrade per iteration (He and Way, 2009). Stud-
ies on metric tunability (Liu et al., 2011; Callison-
Burch et al., 2011; Chen et al., 2012) have found
that the metric used for evaluation may not be the
best metric used for tuning. For instance, (Mauser et
al., 2008; Cer et al., 2010) report that tuning on lin-
ear combinations of BLEU-TER is more robust than
a single metric like WER.

The approach in (Devlin and Matsoukas, 2012)
modifies the optimization function to include traits
such as output length so that the hypotheses pro-
duced by the decoder have maximal score according
to one metric (BLEU) but are subject to an output
length constraint, e.g. that the output is 5% shorter.
This is done by rescoring an N-best list (forest) for
the metric combined with each trait condition and
then the different trait hypothesis are combined us-
ing a system combination step. The traits are in-

dependent of the reference (while tuning). In con-
trast, our method is able to combine multiple metrics
(each of which compares to the reference) during the
tuning step and we do not depend on N-best list (or
forest) rescoring or system combination.

Duh et. al. (2012) proposed a Pareto-based ap-
proach to SMT multi-metric tuning, where the lin-
ear combination weights do not need to be known in
advance. This is advantageous because the optimal
weighting may not be known in advance. However,
the notion of Pareto optimality implies that multiple
”best” solutions may exist, so the MT system devel-
oper may be forced to make a choice after tuning.

These approaches require the MT system devel-
oper to make a choice either before tuning (e.g. in
terms of linear combination weights) or afterwards
(e.g. the Pareto approach). Our method here is dif-
ferent in that we do not require any choice. We
use ensemble decoding (Razmara et al., 2012) (see
sec 3) to combine the different solutions resulting
from the multi-metric optimization, providing an el-
egant solution for deployment. We extend this idea
further and introduce ensemble tuning, where the
metrics have separate set of weights. The tuning
process alternates between ensemble decoding and
the update step where the weights for each metric
are optimized separately followed by joint update of
metric (meta) weights.

3 Ensemble Decoding
We now briefly review ensemble decoding (Razmara
et al., 2012) which is used as a component in the al-
gorithms we present. The prevalent model of statis-
tical MT is a log-linear framework using a vector of
feature functions φ:

p(e|f) ∝ exp
(
w · φ

)
(1)

The idea of ensemble decoding is to combine sev-
eral models dynamically at decode time. Given mul-
tiple models, the scores are combined for each par-
tial hypothesis across the different models during
decoding using a user-defined mixture operation ⊗.

p(e|f) ∝ exp
(
w1 · φ1 ⊗ w2 · φ2 ⊗ . . .

)
(2)

(Razmara et al., 2012) propose several mixture
operations, such as log-wsum (simple linear mix-
ture), wsum (log-linear mixture) and max (choose lo-
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cally best model) among others. The different mix-
ture operations allows the user to encode the be-
liefs about the relative strengths of the models. It
has been applied successfully for domain adaptation
setting and shown to perform better approaches that
pre-compute linear mixtures of different models.

4 Multi-Metric Optimization
In statistical MT, the multi-metric optimization
problem can be expressed as:

w∗ = arg max
w

g
(

[M1(H), . . . ,Mk(H)]
)

(3)

where H = N (f ;w)

where N (f ;w) is the decoding function generating
a set of candidate hypotheses H based on the model
parameters w, for the source sentences f . For each
source sentence fi ∈ f there is a set of candidate
hypotheses {hi} ∈ H . The goal of the optimiza-
tion is to find the weights that maximize the func-
tion g(.) parameterized by different evaluation met-
rics M1, . . . ,Mk.

For the Pareto-optimal based approach such as
PMO (Duh et al., 2012), we can replace g(·) above
with gPMO(·) which returns the points in the Pareto
frontier. Alternately a weighted averaging function
gwavg(·) would result in a linear combination of the
metrics being considered, where the tuning method
would maximize the joint metric. This is similar to
the (TER-BLEU)/2 optimization (Cer et al., 2010;
Servan and Schwenk, 2011).

We introduce four methods based on the above
formulation and each method uses a different type
of g(·) function for combining different metrics and
we compare experimentally with existing methods.

4.1 PMO Ensemble

PMO (Duh et al., 2012) seeks to maximize the num-
ber of points in the Pareto frontier of the metrics con-
sidered. The inner routine of the PMO-PRO tuning
is described in Algorithm 1. This routine is con-
tained within an outer loop that iterates for a fixed
number iterations of decoding the tuning set and op-
timizing the weights.

The tuning process with PMO-PRO is inde-
pendently repeated with different set of weights
for metrics1 yielding a set of equivalent solutions

1For example Duh et al. (2012) use five different weight

Algorithm 1 PMO-PRO (Inner routine for tuning)

1: Input: Hypotheses H = N (f ;w); Weights w
2: Initialize T = {}
3: for each f in tuning set f do
4: {h} = H(f)
5: {M({h})} = ComputeMetricScore({h}, ê)
6: {F} = FindParetoFrontier({M({h})})
7: for each h in {h} do
8: if h ∈ F then add (1, h) to T
9: else add (`, h) to T (see footnote 1)

10: wp ← PRO(T ) (optimize using PRO)
11: Output: Pareto-optimal weights wp

{ps1 , . . . , psn} which are points on the Pareto fron-
tier. The user then chooses one solution by making a
trade-off between the performance gains across dif-
ferent metrics. However, as noted earlier this a pos-
teriori choice ignores other solutions that are indis-
tinguishable from the chosen one.

We alleviate this by complementing PMO with
ensemble decoding, which we call PMO ensemble,
in which each point in the Pareto solution is a dis-
tinct component in the ensemble decoder. This idea
can also be used in other MMO approaches such as
linear combination of metrics (gwavg(.)) mentioned
above. In this view, PMO ensemble is a special case
of ensemble combination, where the decoding is per-
formed by an ensemble of optimal solutions.

The ensemble combination model introduces new
hyperparameters β that are the weights of the en-
semble components (meta weights). These ensem-
ble weights could set to be uniform in a naı̈ve
implementation. Or the user can encode her be-
liefs or expectations about the individual solutions
{ps1 , . . . , psn} to set the ensemble weights (based
on the relative importance of the components). Fi-
nally, one could also include a meta-level tuning step
to set the weights β.

The PMO ensemble approach is graphically il-
lustrated in Figure 1; we will also refer to this fig-
ure while discussing other methods.2 The orig-

settings for metrics (M1, M2), viz. (0.0, 1.0), (0.3, 0.7),
(0.5, 0.5), (0.7, 0.3) and (1.0, 0.0). They combine the met-
ric weights qi with the sentence-level metric scores Mi as
` =

(∑
k qkMk

)
/k where ` is the target value for negative

examples (the else line in Alg 1) in the optimization step.
2The illustration is based on two metrics, metric-1 and

metric-2, but could be applied to any number of metrics. With-
out loss of generality we assume accuracy metrics, i.e. higher
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Figure 1: Illustration of different MMO approaches involving
two metrics. Solid (red) arrows indicate optimizing two met-
rics independently and the dashed (green) arrow optimize them
jointly. The Pareto frontier is indicated by the curve.

inal PMO-PRO seeks to maximize the points on
the Pareto frontier (blue curve in the figure) lead-
ing to Pareto-optimal solutions. On the other hand,
the PMO ensemble combines the different Pareto-
optimal solutions and potentially moving in the di-
rection of dashed (green) arrows to some point that
has higher score in either or both dimensions.

4.2 Lateen MMO

Lateen EM has been proposed as a way of jointly
optimizing multiple objectives in the context of de-
pendency parsing (Spitkovsky et al., 2011). It uses
a secondary hard EM objective to move away, when
the primary soft EM objective gets stuck in a local
optima. The course correction could be performed
under different conditions leading to variations that
are based on when and how often to shift from one
objective function to another during optimization.

The lateen technique can be applied to the multi-
metric optimization in SMT by treating the differ-
ent metrics as different objective functions. While
the several lateen variants are also applicable for our
task, our objective here is to improve performance
across the different metrics (being optimized). Thus,
we restrict ourselves to the style where the search
alternates between the metrics (in round-robin fash-
ion) at each iteration. Since the notion of conver-
gence is unclear in lateen setting, we stop after a
fixed number of iterations optimizing the tuning set.
In terms of Figure 1, lateen MMO corresponds to al-
ternately maximizing the metrics along two dimen-
sions as depicted by the solid arrows.

By the very nature of lateen-alternation, the

metric score is better.

weights obtained at each iteration are likely to be
best for the metric that was optimized in that itera-
tion. Thus, one could use weights from the last k
iterations (for lateen-tuning with as many metrics)
and then decode the test set with an ensemble of
these weights as in PMO ensemble. However in
practice we find the weights to converge and we sim-
ply use the weights from the final iteration to decode
the test set in our lateen experiments.

4.3 Union of Metrics

At each iteration lateen MMO excludes all but one
metric for optimization. An alternative would be to
consider all the metrics at each iteration so that the
optimizer could try to optimize them jointly. This
has been the general motivation for considering the
linear combination of metrics (Cer et al., 2010; Ser-
van and Schwenk, 2011) resulting in a joint metric,
which is then optimized.

However due to the scaling differences between
the scores of different metrics, the linear combi-
nation might completely suppress the metric hav-
ing scores in the lower-range. As an example, the
RIBES scores that are typically in the high 0.7-0.8
range, dominate the BLEU scores that is typically
around 0.3. While the weighted linear combination
tries to address this imbalance, they introduce ad-
ditional parameters that are manually fixed and not
separately tuned.

We avoid this linear combination pitfall by taking
the union of the metrics under which we consider
the union of training examples from all metrics and
optimize them jointly. Mathematically,

w∗ = arg max
w

g(M1(H)) ∪ . . . ∪ g(Mk(H)) (4)

Most of the optimization approaches involve two
phases: i) select positive and negative examples and
ii) optimize parameters to favour positive examples
while penalizing negative ones. In the union ap-
proach, we independently generate positive and neg-
ative sets of examples for all the metrics and take
their union. The optimizer now seeks to move to-
wards positive examples from all metrics, while pe-
nalizing others.

This is similar to the PMO-PRO approach except
that here the optimizer tries to simultaneously max-
imize the number of high scoring points across all
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metrics. Thus, instead of the entire Pareto frontier
curve in Figure 1, the union approach optimizes the
two dimensions simultaneously in each iteration.

5 Ensemble Tuning
These methods, even though novel, under utilize the
power of ensembles as they combine the solution
only at the end of the tuning process. We would
prefer to tightly integrate the idea of ensembles into
the tuning. We thus extend the ensemble decoding
to ensemble tuning. The feature weights are repli-
cated separately for each evaluation metric, which
are treated as components in the ensemble decoding
and tuned independently in the optimization step.
Initially the ensemble decoder decodes a devset us-
ing a weighted ensemble to produce a single N-best
list. For the optimization, we employ a two-step ap-
proach of optimizing the feature weights (of each
ensemble component) followed by a step for tun-
ing the meta (component) weights. The optimized
weights are then used for decoding the devset in the
next iteration and the process is repeated for a fixed
number of iterations.

Modifying the MMO representation in Equa-
tion 3, we formulate ensemble tuning as:

Hens = Nens
(
f ; {wM};⊗; λ

)
(5)

w∗ =
{

arg max
wMi

Hens | 1≤i≤k
}

(6)

λ = arg max
λ

g ({Mi(Hens)|1≤i≤k} ;w∗) (7)

Here the ensemble decoder function Nens(.)
is parameterized by an ensemble of weights
wM1 , . . . , wMk

(denoted as {wM} in Eq 5) for each
metric and a mixture operation (⊗). λ represents the
weights of the ensemble components.

Pseudo-code for ensemble tuning is shown in Al-
gorithm 2. In the beginning of each iteration (line 2),
the tuning process ensemble decodes (line 4) the
tuning set using the weights obtained from the pre-
vious iteration. Equation 5 gives the detailed expres-
sion for the ensemble decoding, whereHens denotes
the N-best list generated by the ensemble decoder.

The method now uses a dual tuning strategy in-
volving two phases to optimize the weights. In the
first step it optimizes each of the k metrics indepen-
dently (lines 6-7) along its respective dimension in

Algorithm 2 Ensemble Tuning Algorithm

1: Input: Tuning set f ,
Metrics M1, . . . ,Mk (ensemble components)
Initial weights {wM} ← wM1 , . . . wMk

and
Component (meta) weights λ

2: for j = 1, . . . do
3: {w(j)

M } ← {wM}
4: Ensemble decode the tuning set

Hens = Nens(f ; {w(j)
M };⊗; λ)

5: {wM} = {}
6: for each metric Mi ∈ {M} do
7: w∗Mi

← PRO(Hens, wMi) (use PRO)
8: Add w∗Mi

to {wM}
9: λ← PMO-PRO(Hens, {wM}) (Alg 1)

10: Output: Optimal weights {wM} and λ

the multi-metric space (as shown by the solid arrows
along the two axes in Figure 1). This yields a new
set of weights w∗ for the features in each metric.

The second tuning step (line 9) then optimizes
the meta weights (λ) so as to maximize the multi-
metric objective along the joint k-dimensional space
as shown in Equation 7. This is illustrated by the
dashed arrows in the Figure 1. While g(.) could be
any function that combines multiple metrics, we use
the PMO-PRO algorithm (Alg. 1) for this step.

The main difference between ensemble tuning and
PMO ensemble is that the former is an ensemble
model over metrics and the latter is an ensemble
model over Pareto solutions. Additionally, PMO en-
semble uses the notion of ensembles only for the fi-
nal decoding after tuning has completed.

5.1 Implementation Notes

All the proposed methods fit naturally within the
usual SMT tuning framework. However, some
changes are required in the decoder to support en-
semble decoding and in the tuning scripts for op-
timizing with multiple metrics. For ensemble de-
coding, the decoder should be able to use multiple
weight vectors and dynamically combine them ac-
cording to some desired mixture operation. Note
that, unlike Razmara et al. (2012), our approach uses
just one model but has different weight vectors for
each metric and the required decoder modifications
are simpler than full ensemble decoding.

While any of the mixture operations proposed
by Razmara et al. (2012) could be used, in this pa-
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per we use log-wsum – the linear combination of the
ensemble components and log-wmax – the combina-
tion that prefers the locally best component. These
are simpler to implement and also performed com-
petitively in their domain adaptation experiments.
Unless explicitly noted otherwise, the results pre-
sented in Section 6 are based on linear mixture oper-
ation log-wsum, which empirically performed better
than the log-wmax for ensemble tuning.

6 Experiments
We evaluate the different methods on Arabic-
English translation in single as well as multiple ref-
erences scenario. Corpus statistics are shown in
Table 1. For all the experiments in this paper,
we use Kriya, our in-house Hierarchical phrase-
based (Chiang, 2007) (Hiero) system, and inte-
grated the required changes for ensemble decoding.
Kriya performs comparably to the state of the art in
phrase-based and hierarchical phrase-based transla-
tion over a wide variety of language pairs and data
sets (Sankaran et al., 2012).

We use PRO (Hopkins and May, 2011) for op-
timizing the feature weights and PMO-PRO (Duh
et al., 2012) for optimizing meta weights, wher-
ever applicable. In both cases, we use SVM-
Rank (Joachims, 2006) as the optimizer.

We used the default parameter settings for dif-
ferent MT tuning metrics. For METEOR, we tried
both METEOR-tune and METEOR-hter settings
and found the latter to perform better in BLEU and
TER scores, even though the former was marginally
better in METEOR3 and RIBES scores. We ob-
served the margin of loss in BLEU and TER to out-
weigh the gains in METEOR and RIBES and we
chose METEOR-hter setting for both optimization
and evaluation of all our experiments.

6.1 Evaluation on Tuning Set

Unlike conventional tuning methods, PMO (Duh et
al., 2012) was originally evaluated on the tuning set
to avoid potential mismatch with the test set. In
order to ensure robustness of evaluation, they re-
decode the devset using the optimal weights from
the last tuning iteration and report the scores on 1-

3This behaviour was also noted by Denkowski and Lavie
(2011) in their analysis of Urdu-English system for tunable met-
rics task in WMT11.

best candidates.

Corpus Training size Tuning/ test set

ISI corpus 1.1 M
1664/ 1313 (MTA)

1982/ 987 (ISI)
Table 1: Corpus Statistics (# of sentences) for Arabic-English.
MTA (4-refs) and ISI (1-ref).

We follow the same strategy and compare our
PMO-ensemble approach with PMO-PRO (denoted
P) and a linear combination4 (denoted L) base-
line. Similar to Duh et al. (2012), we use
five different BLEU:RIBES weight settings, viz.
(0.0, 1.0), (0.3, 0.7), (0.5, 0.5), (0.7, 0.3) and
(1.0, 0.0), marked L1 through L5 or P1 through P5.
The Pareto frontier is then computed from 80 points
(5 runs and 15 iterations per run) on the devset.

Figure 2(a) shows the Pareto frontier of L and P
baselines using BLEU and RIBES as two metrics.
The frontier of the P dominates that of L for most
part showing that the PMO approach benefits from
picking Pareto points during the optimization.

We use the PMO-ensemble approach to combine
the optimized weights from the 5 tuning runs and
re-decode the devset employing ensemble decoding.
This yields the points LEns and PEns in the plot,
which obtain better scores than most of the indi-
vidual runs of L and P. This ensemble approach of
combining the final weights also generalizes to the
unseen test set as we show later.

Figure 2(b) plots the change in BLEU during tun-
ing in the multiple references and the single refer-
ence scenarios. We show for each baseline method L
and P, plots for two different weight settings that ob-
tain high BLEU and RIBES scores. In both datasets,
our ensemble tuning approach dominates the curves
of the (L and P) baselines. In summary, these results
confirm that the ensemble approach achieves results
that are competitive with previous MMO methods
on the devset Pareto curve. We now provide a more
comprehensive evaluation on the test set.

6.2 Evaluation on Test Set

This section contains multi-metric optimization re-
sults on the unseen test sets, one test set has multi-
ple references and the other has a single-reference.

4Linear combination is a generalized version of the com-
bined (TER-BLEU)/2 metric and its variants.
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Figure 2: Devset (redecode): Comparison of Lin-comb (L) and PMO-PRO (P) with Ensemble decoding (Lens and PEns) and
Ensemble tuning (Ens-Tune)

We plot BLEU scores against other metrics (RIBES,
METEOR and TER) and this allows us to compare
the performance of each metric relative to the de-
facto standard BLEU metric.

Baseline points are identified by single letters B
for BLEU, T for TER, etc. and the baseline (single-
metric optimized) score for each metric is indicated
by a dashed line on the corresponding axis. MMO
points use a series of single letters referring to the
metrics used, e.g. BT for BLEU-TER. The union of
metrics method is identified with the suffix ’J’ and
lateen method with suffix ’L’ (thus BT-L refers to the
lateen tuning with BLEU-TER). MMO points with-
out any suffix use the ensemble tuning approach.

Figures 3 and 4(a) plot the scores for the MTA test
set with 4-references. We see noticeable and some
statistically significant improvements in BLEU and
RIBES (see Table 2 for BLEU improvements).
All our MMO approaches, except for the union
method, show gains on both BLEU and RIBES axes.
Figures 3(b) and 4(a) show that none of the proposed
methods managed to improve the baseline scores for
METEOR and TER. However, several of our en-
semble tuning combinations work well for both ME-
TEOR (BR, BMRTB3, etc.) and TER (BMRT and
BRT) in that they improved or were close to the
baseline scores in either dimension. We again see in
these figures that the MMO approaches can improve
the BLEU-only tuning by 0.3 BLEU points, without
much drop in other metrics. This is in tune with the
finding that BLEU could be tuned easily (Callison-
Burch et al., 2011) and also explains why it remains

Approach and Tuning Metric(s) BLEU
MTA ISI

Single Objective Baselines
BLEU 36.06 37.20
METEOR 35.05 36.91
RIBES 33.35 36.60
TER 33.92 35.85

Ensemble Tuning: 2 Metrics
B-M 36.02 37.26
B-R 36.15 37.37
B-T 35.72 36.31

Ensemble Tuning: 3 Metrics
B-M-R 36.36 37.37
B-M-T 36.22 36.89
B-R-T 35.97 36.72

Ensemble Tuning: > 3 Metrics
B-M-R-T 35.94 36.84
B-M-R-T-B3 36.16 37.12
B-M-R-T-B3-B2-B1 36.08 37.24

Table 2: BLEU Scores on MTA (4 refs) and ISI (1 ref) test sets
using the standard mteval script. Boldface scores indicate scores
that are comparable to or better than the baseline BLEU-only
tuning. Italicized scores indicate statistically significant differ-
ences at p-value 0.05 computed with bootstrap significance test.

a popular choice for optimizing SMT systems.
Among the different MMO methods the ensem-

ble tuning performs better than lateen or union ap-
proaches. In terms of the number of metrics being
optimized jointly, we see substantial gains when us-
ing a small number (typically 2 or 3) of metrics. Re-
sults seem to suffer beyond this number; probably
because there might not be a space that contain so-
lution(s) optimal for all the metrics that are jointly
optimized.

We hypothesize that each metric correlates well
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(in a looser sense) with few others, but not all. For
example, union optimizations BR-J and BMT-J per-
form close to or better than RIBES and TER base-
lines, but get very poor score in METEOR. On the
other hand BM-J is close to the METEOR baseline,
while doing poorly on the RIBES and TER. This be-
haviour is also evident from the single-metric base-
lines, where R and T-only settings are clearly distin-
guished from the M-only system. It is not clear if
such distinct classes of metrics could be bridged by
some optimal solution and the metric dichotomy re-
quires further study as this is key to practical multi-
metric tuning in SMT.

The lateen and union approaches appear to be
very sensitive to the number of metrics and they
generally perform well for two metrics case and
show degradation for more metrics. Unlike other

approaches, the union approach failed to improve
over the baseline BLEU and this could be attributed
to the conflict of interest among the metrics, while
choosing example points for the optimization step.
The positive example preferred by a particular met-
ric could be a negative example for the other metric.
This would only confuse the optimizer resulting in
poor solutions. Our future line of work would be to
study the effect of avoiding such of conflicting ex-
amples in the union approach.

For the single-reference (ISI) dataset, we only
plot the BLEU-TER case in Figure 4(b) due to lack
of space. The results are similar to the multiple
references set indicating that MMO approaches are
equally effective for single references5. Table 2

5One could argue that MMO methods require multiple ref-
erences since each metric might be picking out a different ref-
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Metric
Single-metric Tuning Ensemble Tuning
B-only M-only B-M-R

BLEU 37.89 37.18 39.01
HBLEU 51.93 53.59 53.14
METEOR 61.31 61.56 61.68
HMETEOR 72.35 72.39 72.74
TER 0.520 0.532 0.516
HTER 0.361 0.370 0.346

Table 3: Post-editing Human Evaluation: Regular (untargeted)
and human-targeted scores. Human targeted scores are com-
puted against the post-edited reference and regular scores are
computed with the original references. Best scores are in bold-
face and statistically significant ones (at p = 0.05) are italicized.

shows the BLEU scores for our ensemble tuning
method (for various combinations) and we again see
improvements over the baseline BLEU-only tuning.

6.3 Human Evaluation

So far we have shown that multi-metric optimiza-
tion can improve over single-metric tuning on a sin-
gle metric like BLEU and we have shown that our
methods find a tuned model that performs well with
respect to multiple metrics. Is the output that scores
higher on multiple metrics actually a better trans-
lation? To verify this, we conducted a post-editing
human evaluation experiment. We compared our en-
semble tuning approach involving BLEU, METEOR
and RIBES (B-M-R) with systems optimized for
BLEU (B-only) and METEOR (M-only).

We selected 100 random sentences (that are at
least 15 words long) from the Arabic-English MTA
(4 references) test set and translated them using the
three systems (two single metric systems and BMR
ensemble tuning). We shuffled the resulting trans-
lations and split them into 3 sets such that each set
has equal number of the translations from three sys-
tems. The translations were edited by three human
annotators in a post-editing setup, where the goal
was to edit the translations to make them as close
to the references as possible, using the Post-Editing
Tool: PET (Aziz et al., 2012). The annotators were
not Arabic-literate and relied only on the reference
translations during post-editing. The identifiers that
link each translation to the system that generated it
are removed to avoid annotator bias.

In the end we collated post-edited translations for
each system and then computed the system-level

erence sentence. Our experiment shows that even with a single
reference MMO methods can work.

human-targeted (HBLEU, HMETEOR, HTER)
scores, by using respective post-edited translations
as the reference. First comparing the HTER (Snover
et al., 2006) scores shown in Table 3, we see
that the single-metric system optimized for ME-
TEOR performs slightly worse than the one op-
timized for BLEU, despite using METEOR-hter
version (Denkowski and Lavie, 2011). Ensemble
tuning-based system optimized for three metrics (B-
M-R) improves HTER by 4% and 6.3% over BLEU
and METEOR optimized systems respectively.

The single-metric system tuned with M-only set-
ting scores high on HBLEU, closely followed by the
ensemble system. We believe this to be caused by
chance rather than any systematic gains by the M-
only tuning; the ensemble system scores high on
HMETEOR compared to the M-only system. While
HTER captures the edit distance to the targeted ref-
erence, HMETEOR and HBLEU metrics capture
missing content words or synonyms by exploiting
n-grams and paraphrase matching.

We also computed the regular variants (BLEU,
METEOR and TER), which are scored against orig-
inal references. The ensemble system outperformed
the single-metric systems in all the three metrics.
The improvements were also statistically significant
at p-value of 0.05 for BLEU and TER.

7 Conclusion
We propose and present a comprehensive study of
several multi-metric optimization (MMO) methods
in SMT. First, by exploiting the idea of ensemble de-
coding (Razmara et al., 2012), we propose an effec-
tive way to combine multiple Pareto-optimal model
weights from previous MMO methods (e.g. Duh et
al. (2012)), obviating the need for manually trading
off among metrics. We also proposed two new vari-
ants: lateen-style MMO and union of metrics.

We also extended ensemble decoding to a new
tuning algorithm called ensemble tuning. This
method demonstrates statistically significant gains
for BLEU and RIBES with modest reduction in ME-
TEOR and TER. Further, in our human evaluation,
ensemble tuning obtains the best HTER among com-
peting baselines, confirming that optimizing on mul-
tiple metrics produces human-preferred translations
compared to the conventional optimization approach
involving a single metric.
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Abstract

We propose a new algorithm to approximately
extract top-scoring hypotheses from a hyper-
graph when the score includes an N–gram
language model. In the popular cube prun-
ing algorithm, every hypothesis is annotated
with boundary words and permitted to recom-
bine only if all boundary words are equal.
However, many hypotheses share some, but
not all, boundary words. We use these com-
mon boundary words to group hypotheses and
do so recursively, resulting in a tree of hy-
potheses. This tree forms the basis for our
new search algorithm that iteratively refines
groups of boundary words on demand. Ma-
chine translation experiments show our algo-
rithm makes translation 1.50 to 3.51 times as
fast as with cube pruning in common cases.

1 Introduction

This work presents a new algorithm to search a
packed data structure for high-scoring hypothe-
ses when the score includes an N–gram language
model. Many natural language processing systems
have this sort of problem e.g. hypergraph search
in hierarchical and syntactic machine translation
(Mi et al., 2008; Klein and Manning, 2001), lat-
tice rescoring in speech recognition, and confusion
network decoding in optical character recognition
(Tong and Evans, 1996). Large language models
have been shown to improve quality, especially in
machine translation (Brants et al., 2007; Koehn and
Haddow, 2012). However, language models make
search computationally expensive because they ex-
amine surface words without regard to the structure

at North Korea
in North Korea
with North Korea
with the DPRK

at
North Koreain

with
{

the DPRK

Figure 1: Hypotheses are grouped by common prefixes
and suffixes.

of the packed search space. Prior work, including
cube pruning (Chiang, 2007), has largely treated the
language model as a black box. Our new search
algorithm groups hypotheses by common prefixes
and suffixes, exploiting the tendency of the language
model to score these hypotheses similarly. An exam-
ple is shown in Figure 1. The result is a substantial
improvement over the time-accuracy trade-off pre-
sented by cube pruning.

The search spaces mentioned in the previous para-
graph are special cases of a directed acyclic hyper-
graph. As used here, the difference from a nor-
mal graph is that an edge can go from one vertex
to any number of vertices; this number is the arity
of the edge. Lattices and confusion networks are
hypergraphs in which every edge happens to have
arity one. We experiment with parsing-based ma-
chine translation, where edges represent grammar
rules that may have any number of non-terminals,
including zero.

Hypotheses are paths in the hypergraph scored by
a linear combination of features. Many features are
additive: they can be expressed as weights on edges
that sum to form hypothesis features. However, log
probability from anN–gram language model is non-
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additive because it examines surface strings across
edge and vertex boundaries. Non-additivity makes
search difficult because locally optimal hypotheses
may not be globally optimal.

In order to properly compute the language model
score, each hypothesis is annotated with its bound-
ary words, collectively referred to as its state (Li
and Khudanpur, 2008). Hypotheses with equal state
may be recombined, so a straightforward dynamic
programming approach (Bar-Hillel et al., 1964) sim-
ply treats state as an additional dimension in the dy-
namic programming table. However, this approach
quickly becomes intractable for large language mod-
els where the number of states is too large.

Beam search (Chiang, 2005; Lowerre, 1976) ap-
proximates the straightforward algorithm by remem-
bering a beam of up to k hypotheses1 in each vertex.
It visits each vertex in bottom-up order, each time
calling a beam filling algorithm to select k hypothe-
ses. The parameter k is a time-accuracy trade-off:
larger k increases both CPU time and accuracy.

We contribute a new beam filling algorithm that
improves the time-accuracy trade-off over the popu-
lar cube pruning algorithm (Chiang, 2007) discussed
in §2.3. The algorithm is based on the observation
that competing hypotheses come from the same im-
put, so their language model states are often similar.
Grouping hypotheses by these similar words enables
our algorithm to reason over multiple hypotheses at
once. The algorithm is fully described in §3.

2 Related Work

2.1 Alternatives to Bottom-Up Search

Beam search visits each vertex in the hypergraph
in bottom-up (topological) order. The hypergraph
can also be searched in left-to-right order (Watanabe
et al., 2006; Huang and Mi, 2010). Alternatively,
hypotheses can be generated on demand with cube
growing (Huang and Chiang, 2007), though we note
that it showed little improvement in Moses (Xu and
Koehn, 2012). All of these options are compatible
with our algorithm. However, we only experiment
with bottom-up beam search.

1We use K to denote the number of fully-formed hypotheses
requested by the user and k to denote beam size.

2.2 Exhaustive Beam Filling

Originally, beam search was used with an exhaustive
beam filling algorithm (Chiang, 2005). It generates
every possible hypothesis (subject to the beams in
previous vertices), selects the top k by score, and
discards the remaining hypotheses. This is expen-
sive: just one edge of arity a encodes O(1 + ak)
hypotheses and each edge is evaluated exhaustively.
In the worst case, our algorithm is exhaustive and
generates the same number of hypotheses as beam
search; in practice, we are concerned with the aver-
age case.

2.3 Baseline: Cube Pruning

Cube pruning (Chiang, 2007) is a fast approximate
beam filling algorithm and our baseline. It chooses
k hypotheses by popping them off the top of a prior-
ity queue. Initially, the queue is populated with hy-
potheses made from the best (highest-scoring) parts.
These parts are an edge and a hypothesis from each
vertex referenced by the edge. When a hypothesis
is popped, several next-best alternatives are pushed.
These alternatives substitute the next-best edge or a
next-best hypothesis from one of the vertices.

Our work follows a similar pattern of popping one
queue entry then pushing multiple entries. However,
our queue entries are a group of hypotheses while
cube pruning’s entries are a single hypothesis.

Hypotheses are usually fully scored before being
placed in the priority queue. An alternative priori-
tizes hypotheses by their additive score. The addi-
tive score is the edge’s score plus the score of each
component hypothesis, ignoring the non-additive as-
pect of the language model. When the additive score
is used, the language model is only called k times,
once for each hypothesis popped from the queue.

Cube pruning can produce duplicate queue en-
tries. Gesmundo and Henderson (2010) modified the
algorithm prevent duplicates instead of using a hash
table. We include their work in the experiments.

Hopkins and Langmead (2009) characterized
cube pruning as A* search (Hart et al., 1968) with an
inadmissible heuristic. Their analysis showed deep
and unbalanced search trees. Our work can be inter-
preted as a partial rebalancing of these search trees.
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2.4 Exact Algorithms

A number of exact search algorithms have been de-
veloped. We are not aware of an exact algorithm that
tractably scales to the size of hypergraphs and lan-
guage models used in many modern machine trans-
lation systems (Callison-Burch et al., 2012).

The hypergraph and language model can be com-
piled into an integer linear program. The best hy-
pothesis can then be recovered by taking the dual
and solving by Lagrangian relaxation (Rush and
Collins, 2011). However, that work only dealt with
language models up to order three.

Iglesias et al. (2011) represent the search space
as a recursive transition network and the language
model as a weighted finite state transducer. Using
standard finite state algorithms, they intersect the
two automatons then exactly search for the highest-
scoring paths. However, the intersected automaton
is too large. The authors suggested removing low
probability entries from the language model, but this
form of pruning negatively impacts translation qual-
ity (Moore and Quirk, 2009; Chelba et al., 2010).
Their work bears some similarity to our algorithm
in that partially overlapping state will be collapsed
and efficiently handled together. However, the key
advatage to our approach is that groups have a score
that can be used for pruning before the group is ex-
panded, enabling pruning without first constructing
the intersected automaton.

2.5 Coarse-to-Fine

Coarse-to-fine (Petrov et al., 2008) performs mul-
tiple pruning passes, each time with more detail.
Search is a subroutine of coarse-to-fine and our work
is inside search, so the two are compatible. There are
several forms of coarse-to-fine search; the closest to
our work increases the language model order each
iteration. However, by operating inside search, our
algorithm is able to handle hypotheses at different
levels of refinement and use scores to choose where
to further refine hypotheses. Coarse-to-fine decod-
ing cannot do this because it determines the level of
refinement before calling search.

3 Our New Beam Filling Algorithm

In our algorithm, the primary idea is to group hy-
potheses with similar language model state. The

following sections formalize what these groups are
(partial state), that the groups have a recursive struc-
ture (state tree), how groups are split (bread crumbs),
using groups with hypergraph edges (partial edge),
prioritizing search (scoring) and best-first search
(priority queue).

3.1 Partial State

An N–gram language model (with order N ) com-
putes the probability of a word given the N − 1 pre-
ceding words. The left state of a hypothesis is the
first N − 1 words, which have insufficient context
to be scored. Right state is the last N − 1 words;
these might become context for another hypothesis.
Collectively, they are known as state. State mini-
mization (Li and Khudanpur, 2008) may reduce the
size of state due to backoff in the language model.

For example, the hypothesis “the few nations that
have diplomatic relations with North Korea” might
have left state “the few” and right state “Korea”
after state minimization determined that “North”
could be elided. Collectively, the state is denoted
(the few a � ` Korea). The diamond � is a stand-in
for elided words. Terminators a and ` indicate when
left and right state are exhausted, respectively2.

Our algorithm is based on partial state. Par-
tial state is simply state with more inner words
elided. For example, (the � Korea) is a partial state
for (the few a � ` Korea). Terminators a and ` can
be elided just like words. Empty state is denoted
using the customary symbol for empty string, ε. For
example, (ε � ε) is the empty partial state. The termi-
nators serve to distinguish a completed state (which
may be short due to state minimization) from an in-
complete partial state.

3.2 State Tree

States (the few a � ` Korea) and (the a � ` Korea)
have words in common, so the partial state
(the � Korea) can be used to reason over both of
them. Generalizing this notion to the set of hypothe-
ses in a beam, we build a state tree. The root of
the tree is the empty partial state (ε � ε) that reasons

2A corner case arises for hypotheses with less than N − 1
words. For these hypotheses, we still attempt state minimiza-
tion and, if successful, the state is treated normally. If state
minimization fails, a flag is set in the state. For purposes of the
state tree, the flag acts like a different terminator symbol.
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(ε � ε)

(a � ε) (a � Korea) (a a � Korea)
(a a � ` Korea)

(a a � in Korea) (a a � ` in Korea)

(some � ε) (some � DPRK) (some a � DPRK) (some a � ` DPRK)

(the � ε) (the � Korea)
(the a � Korea) (the a � ` Korea)

(the few � Korea) (the few � ` Korea) (the few a � ` Korea)

Figure 2: A state tree containing five states: (the few a � ` Korea), (the a � ` Korea), (some a � ` DPRK),
(a a � ` in Korea), and (a a � ` Korea). Nodes of the tree are partial states. The branching order is the first word,
the last word, the second word, and so on. If the left or right state is exhausted, then branching continues with the
remaining state. For purposes of branching, termination symbols a and ` act like normal words.

(ε � ε)

(a a � Korea)

(a a � ` Korea)

(a a � ` in Korea)

(some a � ` DPRK)

(the � Korea)

(the a � ` Korea)

(the few a � ` Korea)

Figure 3: The optimized version of Figure 2. Nodes
immediately reveal the longest shared prefix and suffix
among hypotheses below them.

over all hypotheses. From the root, the tree branches
by the first word of state, the last word, the second
word, the second-to-last word, and so on. If left or
right state is exhausted, then branching continues us-
ing the remaining state. The branching order priori-
tizes the outermost words because these can be used
to update the language model probability. The deci-
sion to start with left state is arbitrary. An example
tree is shown in Figure 2.

As an optimization, each node determines the
longest shared prefix and suffix of the hypotheses
below it. The node reports these words immedi-
ately, rendering some other nodes redundant. This
makes our algorithm faster because it will then only
encounter nodes when there is a branching decision
to be made. The original tree is shown in Figure 2
and the optimized version is shown in Figure 3. As
a side effect of branching by left state first, the al-
gorithm did not notice that states (the � Korea) and

(ε � ε)[1+]

(a a � Korea)

(a a � ` Korea)

(a a � ` in Korea)

(some a � ` DPRK)

(the � Korea)

(the a � ` Korea)

(the few a � ` Korea)

(the � Korea)[0+]

(the a � ` Korea)

(the few a � ` Korea)

Figure 4: Visiting the root node partitions the tree into
best child (the � Korea)[0+] and bread crumb (ε � ε)[1+].
The data structure remains intact for use elsewhere.

(a a � Korea) both end with Korea. We designed the
tree building algorithm for speed and plan to exper-
iment with alternatives as future work.

The state tree is built lazily. A node initially holds
a flat array of all the hypotheses below it. When its
children are first needed, the hypotheses are grouped
by the branching word and an array of child nodes
is built. In turn, these newly created children each
initially hold an array of hypotheses. CPU time is
saved because nodes containing low-scoring nodes
may never construct their children.

Each node has a score. For leaves, this score is
copied from the underlying hypothesis (or best hy-
pothesis if some other feature prevented recombina-
tion). The score of an internal node is the maximum
score of its children. As an example, the root node’s
score is the same as the highest-scoring hypothesis
in the tree. Children are sorted by score.
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3.3 Bread Crumbs

The state tree is explored in a best-first manner.
Specifically, when the algorithm visits a node, it
considers that node’s best child. The best child re-
veals more words, so the score may go up or down
when the language model is consulted. Therefore,
simply following best children may lead to a poor
hypothesis. Some backtracking mechanism is re-
quired, for which we use bread crumbs. Visiting a
node results in two items: the best child and a bread
crumb. The bread crumb encodes the node that was
visited and how many children have already been
considered. Figure 4 shows an example.

More formally, each node has an array of chil-
dren sorted by score, so it suffices for the bread
crumb to keep an index in this array. An in-
dex of zero denotes that no child has been vis-
ited. Continuing the example from Figure 3,
(ε � ε)[0+] denotes the root partial state with chil-
dren starting at index 0 (i.e. all of them). Visit-
ing (ε � ε)[0+] yields best child (the � Korea)[0+]
and bread crumb (ε � ε)[1+]. Later, the search al-
gorithm may return to (ε � ε)[1+], yielding best
child (some a � ` DPRK)[0+] and bread crumb
(ε � ε)[2+]. If there is no remaining sibling, visit-
ing yields only the best child.

The index serves to restrict the array of children
to those with that index or above. Formally, let d
map from a node or bread crumb to the set of leaves
descended from it. The descendants of a node n are
those of its children

d(n) =

|n|−1⊔
i=0

d(n[i])

where t takes the union of disjoint sets and n[i] is
the ith child. In a bread crumb with index c, only de-
scendents by the remaining children are considered

d(n[c+]) =

|n|−1⊔
i=c

d(n[i])

It follows that the set of descendants is partitioned
into two disjoint sets

d(n[c+]) = d(n[c])
⊔
d(n[c+ 1+])

3.4 Partial Edge
The beam filling algorithm is tasked with selecting
hypotheses given a number of hypergraph edges.
Hypergraph edges are strings comprised of words
and references to vertices (in parsing, terminals and
non-terminals). A hypergraph edge is converted to a
partial edge by replacing each vertex reference with
the root node from that vertex. For example, the hy-
pergraph edge “is v .” referencing vertex v becomes
partial edge “is (ε � ε)[0+] .”

Partial edges allow our algorithm to reason over
a large set of hypotheses at once. Visiting a
partial edge divides that set into two as follows.
A heuristic chooses one of the non-leaf nodes to
visit. Currently, this heuristic picks the node with
the fewest words revealed. As a tie breaker, it
chooses the leftmost node. The chosen node is
visited (partitioned), yielding the best child and
bread crumb as described in the previous section.
These are substituted into separate copies of the par-
tial edge. Continuing our example with the vertex
shown in Figure 3, “is (ε � ε)[0+] .” partitions into
“is (the � Korea)[0+] .” and “is (ε � ε)[1+] .”

3.5 Scoring
Every partial edge has a score that determines its
search priority. Initially, this score is the sum of the
edge’s score and the scores of each bread crumb (de-
fined below). As words are revealed, the score is
updated to account for new language model context.

Each edge score includes a log language model
probability and possibly additive features. When-
ever there is insufficient context to compute the lan-
guage model probability of a word, an estimate r is
used. For example, edge “is v .” incorporates esti-
mate

log r(is)r(.)

into its score. The same applies to hypotheses:
(the few a � ` Korea) includes estimate

log r(the)r(few | the)

because the words in left state are those with insuf-
ficient context.

In common practice (Chiang, 2007; Hoang et al.,
2009; Dyer et al., 2010), the estimate is taken from
the language model: r = p. However, querying
the language model with incomplete context leads
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Kneser-Ney smoothing (Kneser and Ney, 1995) to
assume that backoff has occurred. An alternative is
to use average-case rest costs explicitly stored in the
language model (Heafield et al., 2012). Both options
are used in the experiments3.

The score of a bread crumb is the maximum score
of its descendants as defined in §3.3. For example,
the bread crumb (ε � ε)[1+] has a lower score than
(ε � ε)[0+] because the best child (the � Korea)[0+]
and its descendants no longer contribute to the max-
imum.

The score of partial edge “is (ε � ε)[0+] .” is
the sum of scores from its two parts: edge
“is v .” and bread crumb (ε � ε)[0+]. The
edge’s score includes estimated log probability
log r(is)r(.) as explained earlier. The bread crumb’s
score comes from its highest-scoring descendent
(the few a � ` Korea) and therefore includes esti-
mate log r(the)r(few | the).

Estimates are updated as words are revealed.
Continuing the example, “is (ε � ε)[0+] .” has best
child “is (the � Korea)[0+] .” In this best child, the
estimate r(.) is updated to r(. | Korea). Similarly,
r(the) is replaced with r(the | is). Updates exam-
ine only words that have been revealed: r(few | the)
remains unrevised.

Updates are computed efficiently by using point-
ers (Heafield et al., 2011) with KenLM. To summa-
rize, the language model computes

r(wn|wn−1
1 )

r(wn|wn−1
i )

in a single call. In the popular reverse trie data struc-
ture, the language model visits wn

i while retrieving
wn

1 , so the cost is the same as a single query. More-
over, when the language model earlier provided es-
timate r(wn|wn−1

i ), it also returned a data-structure
pointer t(wn

i ). Pointers are retained in hypotheses,
edges, and partial edges for each word with an esti-
mated probability. When context is revealed, our al-
gorithm queries the language model with new con-
text wi−1

1 and pointer t(wn
i ). The language model

uses this pointer to immediately retrieve denomina-
tor r(wn|wn−1

i ) and as a starting point to retrieve nu-
merator r(wn|wn−1

1 ). It can therefore avoid looking
3We also tested upper bounds (Huang et al., 2012; Carter et

al., 2012) but the result is still approximate due to beam pruning
and initial experiments showed degraded performance.

up r(wn), r(wn|wn−1), . . . , r(wn|wn−1
i+1 ) as would

normally be required with a reverse trie.

3.6 Priority Queue

Our beam filling algorithm is controlled by a priority
queue containing partial edges. The queue is popu-
lated by converting all outgoing hypergraph edges
into partial edges and pushing them onto the queue.
After this initialization, the algorithm loops. Each
iteration begins by popping the top-scoring partial
edge off the queue. If all nodes are leaves, then the
partial edge is converted to a hypothesis and placed
in the beam. Otherwise, the partial edge is parti-
tioned as described in §3.3. The two resulting partial
edges are pushed onto the queue. Looping continues
with the next iteration until the queue is empty or the
beam is full. After the loop terminates, the beam is
given to the root node of the state tree; other nodes
will be built lazily as described in §3.2.

Overall, the algorithm visits hypergraph vertices
in bottom-up order. Our beam filling algorithm runs
in each vertex, making use of state trees in vertices
below. The top of the tree contains full hypotheses.
If a K-best list is desired, packing and extraction
works the same way as with cube pruning.

4 Experiments

Performance is measured by translating the 3003-
sentence German-English test set from the 2011
Workshop on Machine Translation (Callison-Burch
et al., 2011). Two translation models were built, one
hierarchical (Chiang, 2007) and one with target syn-
tax. The target-syntax system is based on English
parses from the Collins (1999) parser. Both were
trained on Europarl (Koehn, 2005). The language
model interpolates models built on Europarl, news
commentary, and news data provided by the evalua-
tion. Interpolation weights were tuned on the 2010
test set. Language models were built with SRILM
(Stolcke, 2002), modified Kneser-Ney smoothing
(Kneser and Ney, 1995; Chen and Goodman, 1998),
default pruning, and order 5. Feature weights were
tuned with MERT (Och, 2003), beam size 1000,
100-best output, and cube pruning. Systems were
built with the Moses (Hoang et al., 2009) pipeline.

Measurements were collected by running the de-
coder on all 3003 sentences. For consistency, all
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Figure 5: Hierarchial system in Moses with our algo-
rithm, cube pruning with additive scores, and cube prun-
ing with full scores (§2.3). The two baselines overlap.

relevant files were forced into the operating system
disk cache before each run. CPU time is the to-
tal user and system time taken by the decoder mi-
nus loading time. Loading time was measured by
running the decoder with empty input. In partic-
ular, CPU time includes the cost of parsing. Our
test system has 32 cores and 64 GB of RAM; no
run came close to running out of memory. While
multi-threaded experiments showed improvements
as well, we only report single-threaded results to re-
duce noise and to compare with cdec (Dyer et al.,
2010). Decoders were compiled with the optimiza-
tion settings suggested in their documentation.

Search accuracy is measured by average model
score; higher is better. Only relative comparisons
are meaningful because model scores have arbitrary
scale and include constant factors. Beam sizes start
at 5 and rise until a time limit determined by running
the slowest algorithm with beam size 1000.

4.1 Comparison Inside Moses

Figure 5 shows Moses performance with this work
and with cube pruning. These results used the hi-
erarchical system with common-practice estimates
(§3.5). The two cube pruning variants are explained
in §2.3. Briefly, the queue can be prioritized using
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Gesmundo 1
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Figure 6: Hierarchical system in cdec with our algorithm,
similarly-performing variants of cube pruning defined in
Gesmundo and Henderson (2010), and the default.

additive or full scores. Performance with additive
scores is roughly the same as using full scores with
half the beam size.

Our algorithm is faster for every beam size tested.
It is also more accurate than additive cube pruning
with the same beam size. However, when compared
with full scores cube pruning, it is less accurate for
beam sizes below 300. This makes sense because
our algorithm starts with additive estimates and iter-
atively refines them by calling the language model.
Moreover, when beams are small, there are fewer
chances to group hypotheses. With beams larger
than 300, our algorithm can group more hypotheses,
overtaking both forms of cube pruning.

Accuracy improvements can be interpreted as
speed improvements by asking how much time each
algorithm takes to achieve a set level of accuracy.
By this metric, our algorithm is 2.04 to 3.37 times as
fast as both baselines.

4.2 Comparison Inside cdec

We also implemented our algorithm in cdec (Dyer
et al., 2010). Figure 6 compares with two enhanced
versions of cube pruning (Gesmundo and Hender-
son, 2010) and the cdec baseline. The model scores
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Figure 7: Effect of rest costs on our algorithm and on cube pruning in Moses. Noisy BLEU scores reflect model errors.

are comparable with Moses4.
Measuring at equal accuracy, our algorithm

makes cdec 1.56 to 2.24 times as fast as the best
baseline. At first, this seems to suggest that cdec is
faster. In fact, the opposite is true: comparing Fig-
ures 5 and 6 reveals that cdec has a higher parsing
cost than Moses5, thereby biasing the speed ratio to-
wards 1. In subsequent experiments, we use Moses
because it more accurately reflects search costs.

4.3 Average-Case Rest Costs

Previous experiments used the common-practice
probability estimate described in §3.5. Figure 7
shows the impact of average-case rest costs on our
algorithm and on cube pruning in Moses. We also
looked at uncased BLEU (Papineni et al., 2002)
scores, finding that our algorithm attains near-peak
BLEU in less time. The relationship between model
score and BLEU is noisy due to model errors.

4The glue rule builds hypotheses left-to-right. In Moses,
glued hypotheses start with <s> and thus have empty left state.
In cdec, sentence boundary tokens are normally added last, so
intermediate hypotheses have spurious left state. Running cdec
with the Moses glue rule led to improved time-accuracy perfor-
mance. The improved version is used in all results reported. We
accounted for constant-factor differences in feature definition
i.e. whether <s> is part of the word count.

5In-memory phrase tables were used with both decoders.
The on-disk phrase table makes Moses slower than cdec.

Average-case rest costs impact our algorithm
more than they impact cube pruning. For small beam
sizes, our algorithm becomes more accurate, mostly
eliminating the disadvantage reported in §4.1. Com-
pared to the common-practice estimate with beam
size 1000, rest costs made our algorithm 1.62 times
as fast and cube pruning 1.22 times as fast.

Table 1 compares our best result with the best
baseline: our algorithm and cube pruning, both with
rest costs inside Moses. In this scenario, our algo-
rithm is 2.59 to 3.51 times as fast as cube pruning.

4.4 Target-Syntax
We took the best baseline and best result from previ-
ous experiments (Moses with rest costs) and ran the
target-syntax system. Results are shown in Figure
8. Parsing and search are far more expensive. For
beam size 5, our algorithm attains equivalent accu-
racy 1.16 times as fast. Above 5, our algorithm is
1.50 to 2.00 times as fast as cube pruning. More-
over, our algorithm took less time with beam size
6900 than cube pruning took with beam size 1000.

A small bump in model score occurs around 15
seconds. This is due to translating “durchzoge-
nen” as “criss-crossed” instead of passing it through,
which incurs a severe penalty (-100). The only rule
capable of doing so translates “X durchzogenen” as
“criss-crossed PP”; a direct translation rule was not
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Figure 8: Performance of Moses with the target-syntax system.

extracted due to reordering. An appropriate prepo-
sitional phrase (PP) was pruned with smaller beam
sizes because it is disfluent.

4.5 Memory

Peak virtual memory usage was measured before
each process terminated. Compared with cube prun-
ing at a beam size of 1000, our algorithm uses 160
MB more RAM in Moses and 298 MB less RAM in
cdec. The differences are smaller with lower beam
sizes and minor relative to 12-13 GB total size, most
of which is the phrase table and language model.

Rest+This work Rest+Cube pruning
k CPU Model BLEU CPU Model BLEU
5 0.068 -1.698 21.59 0.243 -1.667 21.75

10 0.076 -1.593 21.89 0.255 -1.592 21.97
50 0.125 -1.463 22.07 0.353 -1.480 22.04
75 0.157 -1.446 22.06 0.408 -1.462 22.05

100 0.176 -1.436 22.03 0.496 -1.451 22.05
500 0.589 -1.408 22.00 1.356 -1.415 22.00
750 0.861 -1.405 21.96 1.937 -1.409 21.98

1000 1.099 -1.403 21.97 2.502 -1.407 21.98

Table 1: Numerical results from the hierarchical system
for select beam sizes k comparing our best result with the
best baseline, both in Moses with rest costs enabled. To
conserve space, model scores are shown with 100 added.

5 Conclusion

We have described a new search algorithm that
achieves equivalent accuracy 1.16 to 3.51 times as
fast as cube pruning, including two implementations
and four variants. The algorithm is based on group-
ing similar language model feature states together
and dynamically expanding these groups. In do-
ing so, it exploits the language model’s ability to
estimate with incomplete information. Our imple-
mentation is available under the LGPL as a stand-
alone from http://kheafield.com/code/
and distributed with Moses and cdec.
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Abstract

The dominant yet ageing IBM and HMM
word alignment models underpin most
popular Statistical Machine Translation
implementations in use today. Though
beset by the limitations of implausible
independence assumptions, intractable
optimisation problems, and an excess of
tunable parameters, these models provide
a scalable and reliable starting point for
inducing translation systems. In this paper we
build upon this venerable base by recasting
these models in the non-parametric Bayesian
framework. By replacing the categorical
distributions at their core with hierarchical
Pitman-Yor processes, and through the use
of collapsed Gibbs sampling, we provide a
more flexible formulation and sidestep the
original heuristic optimisation techniques.
The resulting models are highly extendible,
naturally permitting the introduction of
phrasal dependencies. We present extensive
experimental results showing improvements
in both AER and BLEU when benchmarked
against Giza++, including significant
improvements over IBM model 4.

1 Introduction

The IBM and HMM word alignment models (Brown
et al., 1993; Vogel et al., 1996) have underpinned the
majority of statistical machine translation systems
for almost twenty years. The key attraction of these
models is their principled probabilistic formulation,
and the existence of (mostly) tractable algorithms
for their training.

The dominant Giza++ implementation of the
IBM models (Och and Ney, 2003) employs a
variety of exact and approximate EM algorithms
to optimise categorical alignment distributions.
While effective, this parametric approach results in
a significant number of parameters to be tuned and
intractable summations over the space of alignments
for models 3 and 4. Giza++ hides the hyper-
parameters with defaults and approximates the
intractable expectations using restricted alignment
neighbourhoods. However this approach was shown
to often return alignments with probabilities well
below the true maxima (Ravi and Knight, 2010).

To overcome perceived limitations with the word
based and non-syntactic nature of the IBM models
many alternative approaches to word alignment have
been proposed (e.g. (DeNero et al., 2008; Cohn and
Blunsom, 2009; Levenberg et al., 2012)). While
interesting results have been reported, these alterna-
tives have failed to dislodge the IBM approach.

In this paper we proposed to retain the original
generative stories of the IBM models, while
replacing the inflexible categorical distributions
with hierarchical Pitman-Yor (PY) processes – a
mathematical tool which has been successfully
applied to a range of language tasks (Teh, 2006b;
Goldwater et al., 2006; Blunsom and Cohn,
2011). In the context of language modelling, the
hierarchical PY process was shown to roughly
correspond to interpolated Kneser-Ney (Kneser and
Ney, 1995; Teh, 2006a). The key contribution of
the hierarchical PY formulation is that it provides
a principle probabilistic framework that easily
extends to latent variable models, such as those used
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for alignment, for which a Kneser-Ney formulation
is unclear. While Bayesian priors have previously
been applied to IBM model 1 (Riley and Gildea,
2012), in this work we go considerably further by
implementing non-parametric priors for the full
Giza++ training pipeline.

Inference for the proposed models and their
hyper-parameters is done with Gibbs sampling.
This eliminates the intractable summations
over alignments and the need for tuning hyper-
parameters. Further, we exploit the highly
extendible nature of the hierarchical PY process to
implement improvements to the original models
such as the introduction of phrasal dependencies.

We present extensive experimental results
showing improvements in both BLEU scores and
AER when compared to Giza++. The demonstrated
improvements over IBM model 4 suggest that the
heuristics used in the implementation of the EM
algorithm for this model were suboptimal.

We begin with a formal presentation of the hier-
archical PY process used in our Bayesian approach
to replace the original categorical distributions. Sec-
tion 3 introduces our Bayesian formulation of the
word alignment models, while its inference scheme
is presented in the following section. Finally, the
experimental results evaluating our models against
the originals are given in section 5, demonstrating
the superiority of the non-parametric approach.

2 The hierarchical PY process

Before giving the formal definition for the hierar-
chical Pitman-Yor (PY) process, we first give some
intuition into how this distribution works and why
it is commonly used to model problems in natural
language.

The hierarchical PY process is an atomic distri-
bution that can share its atoms between different
levels in a hierarchy. When used for language mod-
elling it captures the probability of observing a word
after any given sequence of n words. It does so by
interpolating the observed frequency of the whole
sequence followed by the word of interest, with the
observed frequency of a shorter sequence followed
by the word of interest. This interpolation is done in
such a way that tokens in a more specific distribution
are interpolated with types in a less specific one.

If there is sufficient evidence for the whole word
sequence, i.e. it is not sparse in the corpus, higher
weight will be given to the frequency of the word
of interest after the more specific sequence than
the shorter one. If the sequence was not observed
frequently and there is not enough information to
model whether the word of interest follows after it
frequently or not, the process will back-off to the
shorter sequence and assign higher weight to its fre-
quency instead. This is done in a recursive fashion,
decreasing the sequence length by one every time
until the probability is interpolated with the uniform
distribution, much like interpolated Kneser-Ney, the
state of the art for language modelling.

Unlike Kneser-Ney, the hierarchical PY approach
naturally extends to model complicated conditional
distributions involving latent variables. Moreover,
almost all instances of priors with categorical distri-
butions can be replaced by the PY process, where in
its most basic representation (with no conditional) it
provides a flexible model of power law frequencies.

The PY process generalises a number of simpler
distributions. The Dirichlet distribution is a distri-
bution over discrete probability mass functions of a
certain given length which is often used to model
prior beliefs on parameter sparsity in machine learn-
ing problems. The Dirichlet process generalises the
Dirichlet distribution to a distribution over infinite
sequences of non-negative reals that sum to one and
is often used for nonparametric Bayesian inference.
The PY process is used in the context of natural lan-
guage processing as it further generalises the Dirich-
let process by adding an additional degree of free-
dom that enables it to produce power-law discrete
probability mass functions that resemble those seen
experimentally in corpora (Goldwater et al., 2006).

Formally, draws from the PY process
G1 ∼ PY (d, θ,G0) with a discount parameter
0 ≤ d < 1, a strength parameter θ > −d, and a base
distribution G0, are constructed using a Chinese
restaurant process analogy as follows:

Xn+1|X1, ..., Xn ∼
K∑
k=1

mk − d
θ + n

δyk
+
θ + dK

θ + n
G0

Where mk denotes the number of Xis (customers)
assigned to yk (a table) and K is the total number of
yks drawn from G0.
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Hierarchical PY processes (Teh, 2006b), PY
processes where the base distribution is itself a
PY process, were developed as an extension which
is often used in the context of natural language
processing due to their relationship to back-off
smoothing. Denoting a context of atoms u as
(wi−l, ..., wi−1), the hierarchical PY process is
defined using the above definition of the PY process
by:

wi ∼Gu

Gu ∼PY (d|u|, θ|u|, Gπ(u))

...

G(wi−1) ∼PY (d1, θ1, G∅)

G∅ ∼PY (d0, θ0, G0)

where π(u) = (wi−l+1, ..., wi−1) is the suffix of u,
|u| denotes the length of context u, and G0 is a base
distribution.

3 A Bayesian approach to word alignment

In this work we replace the categorical distributions
at the heart of statistical alignment models with PY
processes. We start by describing the revised models
for IBM model 1 and the HMM alignment model,
before continuing to the more advanced IBM mod-
els 3 and 4. Throughout this section, we assume
that the base distributions in our models (denoted
G0, H0, etc.) are uniform over all atoms, and omit
the strength and concentration parameters of the PY
process for clarity. We use subscripts to denote
the hierarchy, and lower-case superscripts to denote
a fixed condition (for example, Gm0 is the (uni-
form) base distribution that is determined uniquely
for each possible foreign sentence length m).

3.1 Model 1 and the HMM alignment model
The most basic word alignment model, IBM model
1, can be described using the following generative
process (Brown et al., 1993): Given an English sen-
tence E = e1, ..., el, first choose a length m for
the foreign sentence F . Next, choose a vector of
random word positions from the English sentence
A = a1, ..., am to be the alignment, and then for
each foreign word fi choose a translation from the
English word eai aligned to it by A. The existence
of a NULL word at the beginning of the English sen-
tence is assumed, a word to which spurious words in

the foreign sentence can align. From this generative
process the following probability model is derived:

P (F,A|E) = p(m|l)×
m∏
i=1

p(ai)p(fi|eai)

Where p(ai) = 1
l+1 is uniform over all alignments

and p(fi|eai) ∼ Categorical.
In our approach we model these distributions

using hierarchical PY processes instead of the
categorical distributions. Thus we place the
following assumptions on IBM model 1:

ai|m ∼ Gm0
fi|eai ∼ Heai

Heai
∼ PY (H∅)

H∅ ∼ PY (H0)

In this probability modelling we assume that the
alignment positions are determined using the uni-
form distribution, and that word translations are gen-
erated depending on the source word – the probabil-
ity of translating to a specific foreign word depends
on the observed frequency of pairs of the foreign
word and the given source word. We back-off to
the frequencies of the foreign words when the source
word wasn’t observed frequently.

The HMM alignment model uses the Hidden
Markov Model to find word alignments. It treats the
translations of the words of the English sentence as
observables and the alignment positions as the latent
variables to be discovered. Its generative process
can be described in an abstract way as follows: we
determine the length of the foreign sentence and
then iterate over the words of the source sentence
emitting translations for each word to fill-in the
words in the foreign sentence from left to right.

The following probability model is derived for the
HMM alignment model (Vogel et al., 1996):

P (F,A|E) =

p(m|l)×
m∏
i=1

p(ai|ai−1,m)× p(fi|eai)

For the HMM alignment model we replace
the categorical translation distribution p(fi|eai)
with the same one we used for model 1, and
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replace the categorical distribution for the transition
p(ai|ai−1,m) with a hierarchical PY process with
a longer sequence of alignment positions in the
conditional:

ai|ai−1,m ∼ Gmai−1

Gmai−1
∼ PY (Gm∅ )

Gm∅ ∼ PY (Gm0 )

We use a unique distribution for each foreign sen-
tence length, and condition the position on the pre-
vious alignment position, backing-off to the HMM’s
stationary distribution over alignment positions.

3.2 Models 3 and 4

IBM models 3 and 4 introduce the concept of a
word’s fertility, the number of foreign words that are
generated from a specific English word. These mod-
els can be described using the following generative
process. Given an English sentence E, first deter-
mine the length of the foreign sentence: for each
word in the English sentence ei choose a fertility,
denoted φi. Every time a word is generated, an addi-
tional spurious word from the NULL word in the
English sentence can be generated with a fixed prob-
ability. After the foreign sentence length is deter-
mined translate each English word into its foreign
equivalent (including the NULL word) in the same
way as for model 1. Finally, non-spurious words
are rearranged into the final word positions and the
spurious words inserted into the empty positions. In
model 3 this is done with a zero order HMM, and in
model 4 with two first order HMMs. One controls
the distortion of the head of each English word (the
first foreign word generated from it) relative to the
centre (denoted here �) of the set of foreign words
generated from the previous English word, and the
other controls the distortion within the set itself by
conditioning the word position on the previous word
position.

For the probability model, we follow the notation
of Och and Ney (2003) and define the alignment as
a function from the source sentence positions i to
Bi ⊂ {1, ...,m} where the Bi’s form a partition of
the set {1, ...,m}. The fertility of the English word
i is φi = |Bi|, and we use Bi,k to refer to the kth
element of Bi in ascending order.

Using the above notation, the following probabil-
ity model is derived (Och and Ney, 2003):

P (F,A|E) =p(B0|B1, ..., Bl)×
l∏

i=1

p(Bi|Bi−1, ei)

×
l∏

i=0

∏
j∈Bi

p(fj |ei)

For model 3 the dependence on previous
alignment sets is ignored and the probability
p(Bi|Bi−1, ei) is modelled as

p(Bi|Bi−1, ei) = p(φi|ei)φi!
∏
j∈Bi

p(j|i,m),

whereas in model 4 it is modelled using two HMMs:

p(Bi|Bi−1, ei) =p(φi|ei)× p=1(Bi,1 −�(Bi−1)|·)

×
φi∏
k=2

p>1(Bi,k −Bi,k−1|·)

For both these models the spurious word genera-
tion is controlled by a binomial distribution:

p(B0|B1, ..., Bl) =

(
m− φ0

φ0

)
(1− p0)

m−2φ0pφ0
1

1

φ0!

for some parameters p0 and p1.
Replacing the categorical priors with hierarchical

PY process ones, we set the translation and fertility
probabilities p(φi|ei)

∏
j∈Bi

p(fj |ei) using a com-
mon prior that generates translation sequences:

(f1, ..., fφi)|ei ∼ Hei

Hei ∼ PY (HFT
ei

)

HFT
ei

((f1, ..., fφi)) = HF
ei

(φi)
∏
j

HT
(fj−1,ei)

(f j)

HF
ei
∼ PY (HF

∅ )

HF
∅ ∼ PY (HF

0 )

HT
(fj−1,ei)

∼ PY (HT
ei

)

HT
ei
∼ PY (HT

∅ )

HT
∅ ∼ PY (HT

0 )

Here we used superscripts for the indexing of words
which do not have to occur sequentially in the sen-
tence. We generate sequences instead of individ-
ual words and fertilities, and fall-back onto these
only in sparse cases. For example, when aligning
the English sentence “I don’t speak French” to its
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French translation “Je ne parle pas français”, the
word “not” will generate the phrase (“ne”, “pas”),
which will later on be distorted into its place around
the verb.

The distortion probability for model 3, p(j|i,m),
is modelled simply as depending on the position of
the source word i and its class:

j|(C(ei), i),m ∼ Gm(C(ei),i)

Gm(C(ei),i)
∼ PY (Gmi )

Gmi ∼ PY (Gm∅ )

Gm∅ ∼ PY (Gm0 )

where we back-off to the source word position and
then to the frequencies of the alignment positions.

As opposed to this simple mechanism, in the dis-
tortion probability for IBM model 4 there exist two
distinct probability distributions. The first probabil-
ity distribution p=1 controls the head distortion:

Bi,1 −�(Bi−1) | (C(ei), C(fBi,1)),m

∼ Gm(C(ei),C(fBi,1
))

Gm(C(ei),C(fBi,1
)) ∼ PY (GmC(fBi,1

))

GmC(fBi,1
) ∼ PY (Gm∅ )

Gm∅ ∼ PY (Gm0 )

In this probability modelling we model the jump
size itself, as depending on the word class for the
source word and the word class for the proposed
foreign word, backing-off to the proposed foreign
word class and then to the relative jump frequencies.

The second probability distribution p>1 controls
the distortion within the set of words:

Bi,j −Bi,j−1|C(fBi,j ),m ∼ Hm
C(fBi,j

)

Hm
C(fBi,j

) ∼ PY (Hm
∅ )

Hm
∅ ∼ PY (Hm

0 )

Here we again model the jump size as depending
on the word class for the proposed foreign word,
backing-off to the relative jump frequencies.

Lastly, we add to this probability model a treat-
ment for fertility and translation of NULL words.
The fertility generation follows the idea of the orig-
inal model, where the number of spurious words is

determined by a binomial distribution created from
a set of Bernoulli experiments, each one performed
after the translation of a non-spurious word. We use
an indicator function I to signal whether a spuri-
ous word was generated after a non-spurious word
(I = 1) or not (I = 0).

I = 0, 1|l ∼ HNF
l

HNF
l ∼ PY (HNF

∅ )

HNF
∅ ∼ PY (HNF

0 )

Then, the translation of spurious words is done in a
straightforward manner:

fi ∼ HNT
∅

HNT
∅ ∼ PY (HNT

0 )

4 Inference

The Gibbs sampling inference scheme together with
the Chinese Restaurant Franchise process (Teh and
Jordan, 2009) are used to induce alignments for a
parallel corpus. A set of restaurants S is constructed
and initialised either randomly or through a pipeline
of alignment results from simpler models, and then
at each iteration each alignment position is removed
from the restaurants and re-sampled, conditioned on
the rest of the alignment positions.

Denoting e, f ,a the sets of all source sen-
tences, their translations, and their corresponding
alignments in our corpus, and denoting E,F,A a
specific source sentence, its translation, and their
corresponding alignment, where ei is the i’th word
of the source sentence and fj , aj are the j’th word
in the foreign sentence and its alignment into the
source sentence, we sample a new value for aj using
the univariate conditional distribution:

P (aj = i|E,F,A−j , e−E , f−F ,a−A,S−aj )

∝ P (F, (A−j , aj = i)|E, e−E , f−F ,a−A,S−aj )

Where a minus sign in the subscript denotes the
structure without the mentioned element, and S−aj

denotes the configuration of the restaurants after
removing the alignment aj .

This univariate conditional distribution is propor-
tional to the probability assigned by the different
models to an alignment sequence, where the restau-
rants replace the counts of the alignment positions
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Figure 3: AER of pipelined Giza++
and pipelined PY-IBM aligning
Chinese and English

in the prior. Maximum marginal decoding (Johnson
and Goldwater, 2009) can then be used to get the
MAP estimate of the probability distributions over
the alignment positions for each sentence from the
samples extracted from the Gibbs sampler.

In addition to sampling the alignments, we
also place a uniform Beta prior on the discount
parameters and a vague Gamma prior on the
strength parameters, and sample them using slice
sampling (Neal, 2003). The end result is that the
alignment models have no free parameters to tune.

5 Experimental results

In order to assess our PY process alignment
models (referred to as PY-IBM henceforth) several
experiments were carried out to benchmark them
against the original models (as implemented in
Giza++). We evaluated the BLEU scores (Papineni
et al., 2002) of translations from Chinese into
English and from English into Chinese, as well
as the alignment error rates (AER) of the induced
symmetrised alignments compared to a human
aligned dataset. Moses (Koehn et al., 2007) was
used for the training of the SMT system and
the symmetrisation (using the grow-diag-final
procedure), with MERT (Och, 2003) used for tuning
of the weights, and SRILM (Stolcke, 2002) to build
the language model (5-grams based). The corpus
used for training and evaluation was the Chinese

FBIS corpus. MT02 was used for tuning, and MT03
was used for evaluation. In each case we used
one reference sentence in Chinese and 4 reference
sentences in English.

Most translation systems rely on the Giza++ pack-
age in which the implementation of the original
models is done by combining them in a pipeline.
Model 1 and the HMM alignment model are run
sequentially each for 5 iterations; then models 3 and
4 are run sequentially for 3 iterations each. This
follows the observation of Och and Ney (2003) that
bootstrapping from previous results assists the fer-
tility algorithms find the best alignment neighbour-
hood in order to estimate the expectations.

We assessed the proposed models against the
original models in a pipeline experiment where
both systems were trained on a corpus starting
at model 1, and used the results of the previous
run to initialise the next one – noting the BLEU
scores and AER at each step. The Gibbs samplers
for the pipelined PY-IBM models were run for 50
iterations for each model and started accumulating
samples after a burn-in period of 10 iterations,
each experiment was repeated three times and
the results averaged. As can be seen in figures
1 to 3, the pipelined PY-IBM models achieved
higher BLEU scores across all steps, with the
highest improvement of 1.6 percentage points in the
pipelined HMM alignment models when translating
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Figure 7: Alignment disagreement of the Chinese to
English pipelined PY-IBM models for the 3 repetitions

from Chinese into English, and an improvement
of 1.2 percentage points in the overall results after
finishing the pipeline.

We also saw an improvement in AER for all
models, where the pipelined PY-IBM model 4
achieved an error rate of 32.9, as opposed to the
result obtained by the Giza++ pipelined model 4
of 34.4. We note an interesting observation that
both Giza++ and PY-IBM model 3 underperformed
compared to the previously run HMM alignment

model, as seen in the English to Chinese pipeline
results and the AER pipeline results.

The alignment disagreement (the number of
changed alignment positions between subsequent
iterations) of the Chinese to English pipelined
PY-IBM models (1 to 4) can be seen in fig. 7. This
graph shows that each model in the pipeline reaches
an alignment disagreement equilibrium after about
20 iterations, and that earlier models have greater
initial deviation from their equilibrium than later
models – which have an overall lower disagreement.

In order to assess the dependence of the fertil-
ity based models on the initialisation step another
set of experiments was carried out. The models
were trained with a randomly initialised set of align-
ments and assessed after a set number of iterations
for the Giza++ models (5 and 10 for the Giza++
HMM alignment model, and 3 and 10 for the Giza++
IBM model 4), or after 100 iterations with a burn-
in period of 10 iterations for the PY-IBM ones (we
report the average of three runs for both models).

The results, reported in figures 4 to 6, show again
that the PY-IBM model outperformed the Giza++
implementations, and to a large extent in the case
of IBM model 4. This provides further evidence
that the supposition underlying the neighbourhood

975



0 10 20 30 40 50 60 70 80 90
iteration (after burn-in)

2.5

3.0

3.5

4.0

4.5

5.0
#

 o
f a

lig
nm

en
t p

os
iti

on
 d

is
ag

re
em

en
ts

1e5Alignment Disagreement Model 4 zh->en
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approximation for training models 3 and 4 – that
there exists a small set of alignments on which most
of the probability mass concentrates – is poor. An
interesting observation to note is that the BLEU
score of the non-pipelined PY-IBM model 4 is the
same as the PY-IBM HMM model translating in
both directions, as opposed to an improvement in
the pipelined case. This suggests that the sampler
might not have fully converged after 100 iterations
for model 4 (the number of alignment disagreements
for this experiment can be seen in figure 8). Further
confirmation for this comes from the higher standard
deviation of 0.54 observed for the PY-IBM model 4,
as opposed to a standard deviation for the PY-IBM
HMM model of 0.21 (which is still more significant
than that of the pipelined PY-IBM model 4, whose
standard deviation was 0.13).

Both the PY-IBM and the Giza++ trained mod-
els run in a linear time in the number of sentences,
where due to the nature of MCMC sampling tech-
niques, more iterations are required for its conver-
gence. In our experiments, the running time of
the unoptimised Gibbs sampler was 50 times slower
than the optimised EM.

6 Discussion

The models described in this paper allow one to
use non-parametric approaches to flexibly model
word alignment distributions, overcoming a number
of limitations of the EM algorithm for the fertility
based alignment models. The models achieved a
significant improvement in BLEU scores and AER

on the tested corpus, and are easy to extend without
the need for additional modelling tools.

The alignment models proposed mostly follow the
original generative stories while introducing addi-
tional phrasal conditioning into models 3 and 4.
However there are many other areas in which we
could make use of hierarchical tools to introduce
new dependencies easily without running into spar-
sity problems.

One example is the extension of the transition
history used in the HMM alignment model: IBM
model 1 uses a uniform distribution over transitions,
model 2 conditions on relative sentence positions,
and the HMM model uses a first order dependency.
One extension would be to use longer histories of n
previous positions, handling sparsity with back-off.

Previously proposed approaches to extend the
HMM alignment model include Och and Ney
(2003)’s use of word classes and smoothing, and
the combination of part-of-speech information of
the words surrounding the source word (Brunning
et al., 2009). Using our hierarchical model one
could easily introduce such dependencies on the
context words of the word to be translated and their
part-of-speech information. This could assist in
both translation and reordering disambiguation, and
would incorporate back-off by using smaller and
smaller contexts when such information is sparse.

Further improvements to models 3 and 4 could
be carried out by introducing longer dependencies
in the fertility and distortion distributions. Instead
of conditioning on the previous word, one could
use further information such as PoS tags, previously
translated words, or previous fertilities. Additional
research would involve the use of more effective
variational inference algorithms for hierarchical PY
process based models.

The PY-IBM models described in this paper were
implemented within the Giza++ code base, and
are available as an open source package for further
development and research.1
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Abstract

We present a novel approach to automatic
metaphor identification, that discovers both
metaphorical associations and metaphorical
expressions in unrestricted text. Our sys-
tem first performs hierarchical graph factor-
ization clustering (HGFC) of nouns and then
searches the resulting graph for metaphorical
connections between concepts. It then makes
use of the salient features of the metaphori-
cally connected clusters to identify the actual
metaphorical expressions. In contrast to pre-
vious work, our method is fully unsupervised.
Despite this fact, it operates with an encour-
aging precision (0.69) and recall (0.61). Our
approach is also the first one in NLP to exploit
the cognitive findings on the differences in or-
ganisation of abstract and concrete concepts in
the human brain.

1 Introduction

Metaphor has traditionally been viewed as a form of
linguistic creativity, that gives our expression more
vividness, distinction and artistism. While this is
true on the surface, the mechanisms of metaphor
have a much deeper origin in our reasoning. To-
day metaphor is widely understood as a cognitive
phenomenon operating at the level of mental pro-
cesses, whereby one concept or domain is system-
atically viewed in terms of the properties of another
(Lakoff and Johnson, 1980). Consider the examples
(1) “He shot down all of my arguments” and (2) “He
attacked every weak point in my argument”. They
demonstrate a metaphorical mapping of the concept
of argument to that of war. The argument, which is
the target concept, is viewed in terms of a battle (or

a war), the source concept. The existence of such a
link allows us to systematically describe arguments
using the war terminology, thus leading to a num-
ber of metaphorical expressions. Lakoff and John-
son call such generalisations a source–target domain
mapping, or conceptual metaphor.

The ubiquity of metaphor in language has been
established in a number of corpus studies (Cameron,
2003; Martin, 2006; Steen et al., 2010; Shutova
and Teufel, 2010) and the role it plays in human
reasoning has been confirmed in psychological ex-
periments (Thibodeau and Boroditsky, 2011). This
makes metaphor an important research area for com-
putational and cognitive linguistics, and its auto-
matic processing indispensable for any semantics-
oriented NLP application. The problem of metaphor
modeling is gaining interest within NLP, with a
growing number of approaches exploiting statisti-
cal techniques (Mason, 2004; Gedigian et al., 2006;
Shutova, 2010; Shutova et al., 2010; Turney et al.,
2011; Shutova et al., 2012). Compared to more
traditional approaches based on hand-coded knowl-
edge (Fass, 1991; Martin, 1990; Narayanan, 1997;
Narayanan, 1999; Feldman and Narayanan, 2004;
Barnden and Lee, 2002; Agerri et al., 2007), these
more recent methods tend to have a wider cover-
age, as well as be more efficient, accurate and ro-
bust. However, even the statistical metaphor pro-
cessing approaches so far often focused on a lim-
ited domain or a subset of phenomena (Gedigian
et al., 2006; Krishnakumaran and Zhu, 2007), and
only addressed one of the metaphor processing sub-
tasks: identification of metaphorical mappings (Ma-
son, 2004) or identification of metaphorical expres-
sions (Shutova et al., 2010; Turney et al., 2011). In
this paper, we present the first computational method
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that identifies the generalisations that govern the
production of metaphorical expressions, i.e. con-
ceptual metaphors, and then uses these generalisa-
tions to identify metaphorical expressions in unre-
stricted text. As opposed to previous works on sta-
tistical metaphor processing that were supervised or
semi-supervised, and thus required training data, our
method is fully unsupervised. It relies on building a
hierarchical graph of concepts connected by their as-
sociation strength (using hierarchical clustering) and
then searching for metaphorical links in this graph.

Shutova et al. (2010) introduced the hypothesis
of “clustering by association” and claimed that in
the course of distributional noun clustering, abstract
concepts tend to cluster together if they are associ-
ated with the same source domain, while concrete
concepts cluster by meaning similarity. We share
this intuition, but take this idea a significant step
further. Our approach is theoretically grounded in
the cognitive science findings suggesting that ab-
stract and concrete concepts are organised differ-
ently in the human brain (Crutch and Warrington,
2005; Binder et al., 2005; Wiemer-Hastings and
Xu, 2005; Huang et al., 2010; Crutch and Warring-
ton, 2010; Adorni and Proverbio, 2012). Accord-
ing to Crutch and Warrington (2005), these differ-
ences emerge from their general patterns of relation
with other concepts. However, most NLP systems
to date treat abstract and concrete concepts as iden-
tical. In contrast, we incorporate this distinction
into our model by creating a network (or a graph)
of concepts, and automatically learning the differ-
ent patterns of association of abstract and concrete
concepts with other concepts. We expect that, while
concrete concepts would tend to naturally organise
into a tree-like structure (with more specific terms
descending from the more general terms), abstract
concepts would exhibit a more complex pattern of
associations. Consider the example in Figure 1. The
figure schematically shows a small portion of the
graph describing the concepts of mechanism (con-
crete), political system and relationship (abstract)
at two levels of generality. One can see from this
graph that if concrete concepts, such as bike or en-
gine tend to be connected to only one concept at the
higher level in the hierarchy (mechanism), abstract
concepts may have multiple higher-level associates:
the literal ones and the metaphorical ones. For ex-

ample, the abstract concept of democracy is liter-
ally associated with a more general concept of po-
litical system, as well as metaphorically associated
with the concept of mechanism. Such multiple as-
sociations are due to the fact that political systems
are metaphorically viewed as mechanisms, they can
function, break, they can be oiled etc. We often dis-
cuss them using mechanism terminology, and thus a
corpus-based distributional learning approach would
learn that they share features with political systems
(from their literal uses), as well as with mechanisms
(from their metaphorical uses, as shown next to the
respective graph edges in the figure). Our system
discovers such association patterns within the graph
and uses them to identify metaphorical connections
between the concepts.

To the best of our knowledge, our method is the
first one to use a hierarchical clustering model for
the metaphor processing task. The original graph of
concepts is built using hierarchical graph factoriza-
tion clustering (HGFC) (Yu et al., 2006) of nouns,
yielding a network of clusters with different levels
of generality. The weights on the edges of the graph
indicate association between the clusters (concepts).
HGFC has not been previously employed for noun
clustering in NLP, but showed successful results in
the verb clustering task (Sun and Korhonen, 2011).

In summary, our system (1) builds a graph of con-
cepts using HGFC, (2) traverses it to find metaphor-
ical associations between clusters using weights on
the edges of the graph, (3) generates lists of salient
features for the metaphorically connected clusters
and (4) searches the British National Corpus (BNC)
(Burnard, 2007) for metaphorical expressions de-
scribing the target domain concepts using the verbs
from the set of salient features. We evaluated the
performance of the system with the aid of human
judges in precision- and recall-oriented settings. In
addition, we compared its performance to that of two
baselines, an unsupervised baseline using agglom-
erative clustering (AGG) and a supervised baseline
built upon WordNet (Fellbaum, 1998) (WN).

2 Method

2.1 Dataset and Feature Extraction

Our noun dataset used for clustering contains 2000
most frequent nouns in the BNC (Burnard, 2007).
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Figure 1: Organisation of the hierarchical graph of concepts

Following previous semantic noun classification ex-
periments (Pantel and Lin, 2002; Bergsma et al.,
2008), we use the grammatical relations (GRs)
as features for clustering. We extracted the fea-
tures from the Gigaword corpus (Graff et al.,
2003), which was first parsed using the RASP
parser (Briscoe et al., 2006). The verb lemmas
in VERB–SUBJECT, VERB–DIRECT OBJECT and
VERB–INDIRECT OBJECT relations with the nouns
in the dataset were then extracted from the GR out-
put of the parser. The feature values were the relative
frequencies of the features.

2.2 Hierarchical Graph Factorization
Clustering

The most widely used method for hierarchical word
clustering is AGG (Schulte im Walde and Brew,
2001; Stevenson and Joanis, 2003; Ferrer, 2004;
Devereux and Costello, 2005). The method treats
each word as a singleton cluster and then succes-
sively merges two closest clusters until all the clus-
ters have been merged into one. The cluster simi-
larity is measured using linkage criteria (e.g. Ward
(1963) measures the decrease in variance for the
clusters being merged). As opposed to this, HGFC

derives probabilistic bipartite graphs from the sim-
ilarity matrix (Yu et al., 2006). Since we require a
graph of concepts, our task is rather different from
standard hierarchical word clustering that produces
a tree of concepts. In a tree, each word can only
have a unique parent cluster at each level. Our con-
cept graph does not have this constraint: at any level
a word can be associated with an arbitrary number
of parent clusters. Therefore, not only HGFC out-
performed agglomerative clustering methods in hi-

erarchical clustering tasks (Yu et al., 2006; Sun and
Korhonen, 2011), but its hierarchical graph output
is also a more suitable representation of the concept
graph. In addition, HGFC can detect the number of
levels and the number of clusters on each level of
the hierarchical graph automatically. This is essen-
tial for our task as these settings are difficult to pre-
define for a general-purpose concept graph.

Given a set of nouns, V = {vn}Nn=1, the similar-
ity matrix W for HGFC is constructed using Jensen-
Shannon Divergence. W can be encoded by an undi-
rected graph G (Figure 2(a)), where the nouns are
mapped to vertices and Wij is the edge weight be-
tween vertices i and j. The graph G and the clus-
ter structure can be represented by a bipartite graph
K(V,U). V are the vertices on G. U = {up}mp=1

represent the hidden m clusters. For example, look-
ing at Figure 2(b), V on G can be grouped into three
clusters u1, u2 and u3. The matrix B denotes the
n×m adjacency matrix, with bip being the connec-
tion weight between the vertex vi and the cluster up.
Thus, B represents the connections between clus-
ters at an upper and lower level of clustering. A
flat clustering algorithm can be induced by assign-
ing a lower level node to the parent node that has the
largest connection weight. The number of clusters
at any level can be determined by only counting the
number of non-empty nodes (namely the nodes that
have at least one lower level node associated).

The bipartite graph K also induces a similarity
(W ′) between vi and vj : w′ij =

∑m
p=1

bipbjp

λp
=

(BΛ−1BT )ij where Λ = diag(λ1, ..., λm). There-
fore, B can be found by minimizing the divergence
distance (ζ) between the similarity matrices W and
W ′:
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Figure 2: (a) An undirected graph G representing the similarity matrix; (b) The bipartite graph showing three clusters
on G; (c) The induced clusters U ; (d) The new graph G1 over clusters U ; (e) The new bipartite graph over G1

min
H,Λ

ζ(W,HΛHT ), s.t.

n∑
i=1

hip = 1 (1)

H = BΛ−1; ζ(X,Y ) =
∑
ij

(xij log
xij

yij
− xij + yij)

Yu et al. (2006) showed that this cost function is
non-increasing under the update rule:

h̃ip ∝ hip

∑
j

wij

(HΛHT )ij
λphjp s.t.

∑
i

h̃ip = 1 (2)

λ̃p ∝ λp

∑
j

wij

(HΛHT )ij
hiphjp s.t.

∑
p

λ̃p =
∑
ij

wij (3)

The cost function can thus be optimized by updating
h and λ alternately.

The similarity between clusters p(up, uq) can be
induced from B, as follows:

p(up, uq) = p(up)p(up|uq) = (BTD−1B)pq (4)

D = diag(d1, ..., dn) where di =

m∑
p=0

bip

We can then construct a new graph G1 (Figure
2(d)) with the clusters U as vertices, and the clus-
ter similarity p as the connection weight. The clus-
tering algorithm can now be applied again (Figure
2(e)). This process can go on iteratively, leading to
a hierarchical graph.

The number of levels (L) and the number of
clusters (ml) are detected automatically, using the
method of Sun and Korhonen (2011). Clustering
starts with an initial setting of number of clusters
(m0) for the first level. In our experiment, we set the

value of m0 to 800. For the subsequent levels, ml

is set to the number of non-empty clusters (bipartite
graph nodes) on the parent level. The matrices B
and Λ are initialized randomly. We found that the
actual initialization values have little impact on the
final result. The rows in B are normalized after the
initialization so the values in each row add up to one.
For a word vi, the probability of assigning it to clus-
ter x(l)

p ∈ Xl at level l is given by:

p(x(l)
p |vi) =

∑
Xl−1

...
∑

x(1)∈X1

p(x(l)
p |x(l−1))...p(x(1)|vi)

= (D
(−1)
1 B1D

−1
2 B2...D

−1
l Bl)ip (5)

Due to the random walk property of the graph, ml

is non-increasing for higher levels (Sun and Korho-
nen, 2011). The algorithm can thus terminate when
all nouns are assigned to one cluster. We run 1000
iterations of updates of h and λ (equation 2 and 3)
for each two adjacent levels.

The resulting graph is composed of a set of bipar-
tite graphs defined by Bl, Bl−1, ..., B1. A bipartite
graph has a similar structure as in Figure 1. For a
given noun, we can rank the clusters at any level ac-
cording to the soft assignment probability (eq. 5).
The clusters that have no member noun were hidden
from the ranking since they do not explicitly repre-
sent any concept. However, these clusters are still
part of the organisation of conceptual space within
the model and they contribute to the probability for
the clusters on upper levels (eq. 5). We call the view
of the hierarchical graph where these empty clusters
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are hidden an explicit graph. The whole algorithm
can be summarized as follows:

Require: N nouns V , initial number of clusters m1

Compute the similarity matrix W0 from V
Build the graph G0 from W0, l← 1
while ml > 1 do

FactorizeGl−1 to obtain bipartite graph Kl with the
adjacency matrix Bl (eq. 1, 2 and 3)
Build a graph Gl with similarity matrix Wl =
BT

l D
−1
l Bl according to equation 4

l← l + 1 ; ml ← No. non-empty clusters (eq. 5)
end while
return Bl, Bl−1...B1

2.3 Identification of Metaphorical Associations

Once we obtained the explicit graph of concepts, we
can now identify metaphorical associations based on
the weights connecting the clusters at different levels
(eq. 5). Taking a single noun (e.g. fire) as input, the
system computes the probability of its cluster mem-
bership for each cluster at each level, using these
weights. We expect the cluster membership prob-
abilities to indicate the level of association of the
input noun with the clusters. The system can then
rank the clusters at each level based on these prob-
abilities. We chose level 3 as the optimal level of
generality for our experiments, based on our qualita-
tive analysis of the graph. The system selects 6 top-
ranked clusters from this level (we expect an average
source concept to have no more than 5 typical tar-
get associates) and excludes the literal cluster con-
taining the input concept (e.g. “fire flame blaze”).
The remaining clusters represent the target concepts
associated with the input source concept. Example
output for the input concepts of fire and disease is
shown in Figure 3. One can see from the Figure
that each of the noun-to-cluster mappings represents
a new conceptual metaphor, e.g. EMOTION is FIRE,
VIOLENCE is FIRE, CRIME is a DISEASE etc. These
mappings are exemplified in language by a number
of metaphorical expressions (e.g. “His anger will
burn him”, “violence flared again”, “it’s time they
found a cure for corruption”).

2.4 Identification of Salient Features and
Metaphorical Expressions

After extracting the source–target domain mappings,
we now move on to the identification of the cor-

SOURCE: fire
TARGET 1: sense hatred emotion passion enthusiasm
sentiment hope interest feeling resentment optimism
hostility excitement anger
TARGET 2: coup violence fight resistance clash rebel-
lion battle drive fighting riot revolt war confrontation
volcano row revolution struggle
TARGET 3: alien immigrant
TARGET 4: prisoner hostage inmate

SOURCE: disease
TARGET 1: fraud outbreak offense connection leak
count crime violation abuse conspiracy corruption ter-
rorism suicide
TARGET 2: opponent critic rival
TARGET 3: execution destruction signing
TARGET 4: refusal absence fact failure lack delay

Figure 3: Discovered metaphorical associations

rage-ncsubj engulf -ncsubj erupt-ncsubj burn-ncsubj
light-dobj consume-ncsubj flare-ncsubj sweep-ncsubj
spark-dobj battle-dobj gut-idobj smolder-ncsubj ig-
nite-dobj destroy-idobj spread-ncsubj damage-idobj
light-ncsubj ravage-ncsubj crackle-ncsubj open-dobj
fuel-dobj spray-idobj roar-ncsubj perish-idobj destroy-
ncsubj wound-idobj start-dobj ignite-ncsubj injure-
idobj fight-dobj rock-ncsubj retaliate-idobj devastate-
idobj blaze-ncsubj ravage-idobj rip-ncsubj burn-idobj
spark-ncsubj warm-idobj suppress-dobj rekindle-dobj

Figure 4: Salient features for fire and the violence cluster

responding metaphorical expressions. The system
does this by harvesting the salient features that lead
to the input noun being strongly associated with the
extracted clusters. The salient features are selected
by ranking the features according to the joint prob-
ability of the feature (f ) occurring both with the in-
put noun (w) and the cluster (c). Under a simplified
independence assumption, p(w, c|f) = p(w|f) ×
p(c|f). p(w|f) and p(c|f) are calculated as the ra-
tio of the frequency of the feature f to the total
frequency of the input noun and the cluster respec-
tively. The features ranked higher are expected to
represent the source domain vocabulary that can be
used to metaphorically describe the target concepts.
We selected the top 50 features from the ranked list.
Example features (verbs and their grammatical rela-
tions) extracted for the source domain noun fire and
the violence cluster are shown in Figure 4.

We then refined the lists of features by means of
selectional preference (SP) filtering. We use SPs to

982



FEELING IS FIRE
hope lit (Subj), anger blazed (Subj), optimism raged
(Subj), enthusiasm engulfed them (Subj), hatred flared
(Subj), passion flared (Subj), interest lit (Subj), fuel re-
sentment (Dobj), anger crackled (Subj), feelings roared
(Subj), hostility blazed (Subj), light with hope (Iobj)

CRIME IS A DISEASE
cure crime (Dobj), abuse transmitted (Subj), eradicate
terrorism (Dobj), suffer from corruption (Iobj), diag-
nose abuse (Dobj), combat fraud (Dobj), cope with
crime (Iobj), cure abuse (Dobj), eradicate corruption

Figure 5: Identified metaphorical expressions for the
mappings FEELING IS FIRE and CRIME IS A DISEASE

quantify how well the extracted features describe the
source domain (e.g. fire). We extracted nominal ar-
gument distributions of the verbs in our feature lists
for VERB–SUBJECT, VERB–DIRECT OBJECT and
VERB–INDIRECT OBJECT relations. We used the al-
gorithm of Sun and Korhonen (2009) to create SP
classes and the measure of Resnik (1993) to quantify
how well a particular argument class fits the verb.
Resnik measures selectional preference strength
SR(v) of a predicate as a Kullback-Leibler distance
between two distributions: the prior probability of
the noun class P (c) and the posterior probability
of the noun class given the verb P (c|v). SR(v) =

D(P (c|v)||P (c)) =
∑

c P (c|v) log P (c|v)
P (c) . In order

to quantify how well a particular argument class fits
the verb, Resnik defines selectional association as
AR(v, c) = 1

SR(v)P (c|v) log P (c|v)
P (c) . We rank the

nominal arguments of the verbs in our feature lists
using their selectional association with the verb, and
then only retain the features whose top 5 arguments
contain the source concept. For example, the verb
start, that is a common feature for both fire and the
violence cluster (e.g. “start a war”, “start a fire”),
would be filtered out in this way, whereas the verbs
flare or blaze would be retained as descriptive source
domain vocabulary.

We then search the RASP-parsed BNC for gram-
matical relations, in which the nouns from the target
domain cluster appear with the verbs from the source
domain vocabulary (e.g. “war blazed” (subj), “to
fuel violence” (dobj) for the mapping VIOLENCE is
FIRE). The system thus annotates metaphorical ex-
pressions in text, as well as the corresponding con-
ceptual metaphors, as shown in Figure 5.

3 Evaluation and Discussion

3.1 Baselines

AGG: the agglomerative clustering baseline is
constructed using SciPy implementation (Oliphant,
2007) of Ward’s linkage method (Ward, 1963). The
output tree is cut according to the number of lev-
els and the number of clusters of the explicit graph
detected by HGFC. The resulting tree is converted
into a graph by adding connections from each clus-
ter to all the clusters one level above. The connec-
tion weight (the cluster distance) is measured us-
ing Jensen-Shannon Divergence between the cluster
centroids. This graph is used in place of the HGFC

graph in the metaphor identification experiments.
WN: in the WN baseline, the WordNet hierarchy is
used as the underlying graph of concepts, to which
the metaphor extraction method is applied. Given
a source concept, the system extracts all its sense-
1 hypernyms two levels above and subsequently all
of their sister terms. The hypernyms themselves are
considered to represent the literal sense of the source
noun and are, therefore, removed. The sister terms
are kept as potential target domains.

3.2 Evaluation of Metaphorical Associations

To create our dataset, we extracted 10 common
source concepts that map to multiple targets from
the Master Metaphor List (Lakoff et al., 1991) and
linguistic analyses of metaphor (Lakoff and John-
son, 1980; Shutova and Teufel, 2010). These
included FIRE, CHILD, SPEED, WAR, DISEASE,
BREAKDOWN, CONSTRUCTION, VEHICLE, SYS-
TEM, BUSINESS. Each of the three systems identi-
fied 50 source–target domain mappings for the given
source domains, resulting in a set of 150 conceptual
metaphors (each representing a number of submap-
pings since all the target concepts are clusters or
synsets). These were then evaluated against human
judgements in two different experimental settings.
Setting 1: The judges were presented with a set
of conceptual metaphors identified by the three sys-
tems, randomized. They were asked to annotate the
mappings they considered valid. In all our experi-
ments, the judges were encouraged to rely on their
own intuition of metaphor, but they also reviewed
the metaphor annotation guidelines of Shutova and
Teufel (2010). Two independent judges, both na-
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tive speakers of English, participated in this exper-
iment. Their agreement on the task was κ = 0.60
(n = 2, N = 150, k = 2) (Siegel and Castel-
lan, 1988). The main differences in the annotators’
judgements stem from the fact that some metaphor-
ical associations are less obvious and common than
others, and thus need more context (or imaginative
effort) to establish. Such examples, where the judges
disagreed included metaphorical mappings such as
INTENSITY is SPEED, GOAL is a CHILD, COLLEC-
TION is a SYSTEM, ILLNESS is a BREAKDOWN.

The system performance was then evaluated
against these judgements in terms of precision (P ),
i.e. the proportion of the valid metaphorical map-
pings among those identified. We calculated sys-
tem precision (in all experiments) as an average over
both annotations. HGFC operates with a precision of
P = 0.69, whereas the baselines attain P = 0.36
(AGG) and P = 0.29 (WN). The precision of an-
notator judgements against each other (the human
ceiling) is P = 0.80, suggesting that this is a chal-
lenging task.
Setting 2: To measure recall, R, of the systems we
asked two annotators (both native speakers with a
background in metaphor, different from Setting 1)
to write down up to 5 target concepts they strongly
associated with each of the 10 source concepts.
Their annotations were then aggregated into a sin-
gle metaphor association gold standard, consisting
of 63 mappings in total. The recall of the systems
was measured against this gold standard, resulting in
HGFC R = 0.61, AGG R = 0.11 and WN R = 0.03.

As expected, HGFC outperforms both AGG and
WN baselines in both settings. AGG has been pre-
viously shown to be less accurate than HGFC in the
verb clustering task (Sun and Korhonen, 2011). Our
analysis of the noun clusters indicated that HGFC

tends to produce more pure and complete clusters
than AGG. Another important reason AGG fails is
that it by definition organises all concepts into tree
and optimises its solution locally, taking into ac-
count a small number of clusters at a time. How-
ever, being able to discover connections between
more distant domains and optimising globally over
all concepts is crucial for metaphor identification.
This makes AGG less suitable for the task, as demon-
strated by our results. However, AGG identified a
number of interesting mappings missed by HGFC,

e.g. CAREER IS A CHILD, LANGUAGE IS A SYS-
TEM, CORRUPTION IS A VEHICLE, EMPIRE IS A

CONSTRUCTION, as well as a number of mappings
in common with HGFC, e.g. DEBATE IS A WAR, DE-
STRUCTION IS A DISEASE. The WN system also
identified a few interesting metaphorical mappings
(e.g. COGNITION IS FIRE, EDUCATION IS CON-
STRUCTION), but its output is largely dominated by
the concepts similar to the source noun and contains
some unrelated concepts. The comparison of HGFC

to WN shows that HGFC identifies meaningful prop-
erties and relations of abstract concepts that can not
be captured in a tree-like classification (even an ac-
curate, manually created one). The latter is more ap-
propriate for concrete concepts, and a more flexible
representation is needed to model abstract concepts.
The fact that both baselines identified some valid
metaphorical associations, relying on less suitable
conceptual graphs, suggests that our way of travers-
ing the graph is a viable approach in principle.

HGFC identifies valid metaphorical associations
for a range of source concepts. On of them (CRIME

IS A VIRUS) happened to have been already vali-
dated in psychological experiments (Thibodeau and
Boroditsky, 2011). The most frequent type of error
of HGFC is the presence of target clusters similar or
closely related to the source noun (e.g. the parent
cluster for child). The clusters from the same do-
main can, however, be filtered out if their nouns fre-
quently occur in the same documents with the source
noun (in a large corpus), i.e. by topical similarity.
The latter is less likely for the metaphorically con-
nected nouns. We intend to implement this improve-
ment in the future version of the system.

3.3 Evaluation of Metaphorical Expressions

For each of the identified conceptual metaphors, the
three systems extracted a number of metaphorical
expressions from the corpus (average of 430 for
HGFC, 148 for AGG, and 855 for WN). The ex-
pressions were also evaluated against human judge-
ments. The judges were presented with a set of ran-
domly sampled sentences containing metaphorical
expressions as annotated by the system and by the
baselines (200 each), randomized. They were asked
to mark the tagged expressions that were metaphor-
ical in their judgement as correct. Their agreement
on the task was κ = 0.56 (n = 2, N = 600, k = 2),
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HLJ 26 [..] ”effective action” was needed to eradicate
terrorism, drug-trafficking and corruption.
EG0 275 In the 1930s the words ”means test” was a
curse, fuelling the resistance against it both among the
unemployed and some of its administrators.
CRX 1054 [..] if the rehabilitative approach were
demonstrably successful in curing crime.
HL3 1206 [..] he would strive to accelerate progress
towards the economic integration of the Caribbean.
HXJ 121 [..] it is likely that some industries will flour-
ish in certain countries as the market widens.

Figure 6: Metaphors tagged by the system (in bold)

whereby the main source of disagreement was the
presence of lexicalized metaphors, e.g. verbs such
as impose, decline etc. The system performance
against these annotations is P = 0.65 (HGFC), P =
0.47 (AGG) and P = 0.12 (WN). The human ceiling
for this task was measured at P = 0.79. Figure 6
shows example sentences annotated by HGFC. The
performance of our unsupervised approach is close
to the previous supervised systems of Mason (2004)
(accuracy of 0.73) and Shutova et al. (2010) (preci-
sion of 0.79), however, the results are not directly
comparable due to different experimental settings.

The system errors in this task stem from multiple
word senses of the salient features or the source and
target sharing some physical properties (e.g. one can
“die from crime” and “die from a disease”). Some
identified expressions invoke a chain of mappings
(e.g. ABUSE IS A DISEASE, DISEASE IS AN ENEMY

for “combat abuse”), however, such chains are not
yet incorporated into the system. The performance
of AGG is higher than in the mappings identification
task, since it outputs only few expressions for the
incorrect mappings. In contrast, WN tagged a large
number of literal expressions due to the incorrect
prior identification of the underlying associations.

Since there is no large metaphor-annotated corpus
available, it was impossible for us to reliably evalu-
ate the recall of metaphorical expressions. However,
we estimated it as a recall of salient features. We
manually compiled sets of typical features for the
10 source domains, and measured their recall among
the top 50 HGFC features at R = 0.70. However, in
practice the coverage in this task would directly de-
pend on that of the metaphorical associations.

4 Related Work

One of the first attempts to identify and interpret
metaphorical expressions in text is the met* sys-
tem of Fass (1991), that utilizes hand-coded knowl-
edge and detects non-literalness via selectional pref-
erence violation. In case of a violation, the re-
spective phrase is first tested for being metonymic
using hand-coded patterns (e.g. CONTAINER-FOR-
CONTENT). If this fails, the system searches the
knowledge base for a relevant analogy in order to
discriminate metaphorical relations from anomalous
ones. The system of Krishnakumaran and Zhu
(2007) uses WordNet (the hyponymy relation) and
word bigram counts to predict verbal, nominal and
adjectival metaphors at the sentence level. The au-
thors discriminate between conventional metaphors
(included in WordNet) and novel metaphors. Birke
and Sarkar (2006) present a sentence clustering ap-
proach that employs a set of seed sentences an-
notated for literalness and computes similarity be-
tween the new input sentence and all of the seed sen-
tences. The system then tags the sentence as literal
or metaphorical according to the annotation in the
most similar seeds, attaining an f-score of 53.8%.

The first system to discover source–target domain
mappings automatically is CorMet (Mason, 2004).
It does this by searching for systematic variations
in domain-specific verb selectional preferences. For
example, pour is a characteristic verb in both LAB

and FINANCE domains. In the LAB domain it has
a strong preference for liquids and in the FINANCE

domain for money. From this the system infers the
domain mapping FINANCE – LAB and the concept
mapping money – liquid. Gedigian et al. (2006)
trained a maximum entropy classifier to discrimi-
nate between literal and metaphorical use. They
annotated the sentences from PropBank (Kingsbury
and Palmer, 2002) containing the verbs of MOTION

and CURE for metaphoricity. They used PropBank
annotation (arguments and their semantic types) as
features for classification and report an accuracy
of 95.12% (however, against a majority baseline of
92.90%). The metaphor identification system of
Shutova et al. (2010) starts from a small seed set
of metaphorical expressions, learns the analogies in-
volved in their production and extends the set of
analogies by means of verb and noun clustering. As
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a result, the system can recognize new metaphorical
expressions in unrestricted text (e.g. from the seed
“stir excitement” it infers that “swallow anger” is
also a metaphor), achieving a precision of 79%.

Turney et al. (2011) classify verbs and adjectives
as literal or metaphorical based on their level of con-
creteness or abstractness in relation to a noun they
appear with. They learn concreteness rankings for
words automatically (starting from a set of exam-
ples) and then search for expressions where a con-
crete adjective or verb is used with an abstract noun
(e.g. “dark humour” is tagged as a metaphor and
“dark hair” is not). They report an accuracy of 73%.

5 Conclusions and Future Directions

Previous research on metaphor addressed a num-
ber of different aspects of the phenomenon, and has
shown that these aspects can be successfully mod-
eled using statistical techniques. However, the meth-
ods often focused on a limited domain and needed
manually-labeled training data. This made them dif-
ficult to apply in a real-world setting with the goal of
improving semantic interpretation in NLP at large.
Our method takes a step towards this direction. It is
fully unsupervised, and thus more robust, and can
perform accurate metaphor identification in unre-
stricted text. It identifies metaphor with a precision
of 69% and a recall of 61%, which is a very encour-
aging result for an unsupervised method. We be-
lieve that this work has important implications for
computational and cognitive modeling of metaphor,
but is also applicable to a range of other seman-
tic tasks within NLP. Integrating different represen-
tations of abstract and concrete concepts into NLP
systems may improve their performance, as well as
make the models more cognitively plausible.

One of our key future research objectives is to in-
vestigate the use and adaptation of the created con-
ceptual graph to perform metaphor interpretation. In
addition, we plan to extend this work to cover nom-
inal and adjectival metaphors, by harvesting salient
nominal and adjectival features.
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Abstract

We present three approaches to lexical chain-
ing based on the LDA topic model and eval-
uate them intrinsically on a manually anno-
tated set of German documents. After motivat-
ing the choice of statistical methods for lexi-
cal chaining with their adaptability to different
languages and subject domains, we describe
our new two-level chain annotation scheme,
which rooted in the concept of cohesive har-
mony. Also, we propose a new measure
for direct evaluation of lexical chains. Our
three LDA-based approaches outperform two
knowledge-based state-of-the art methods to
lexical chaining by a large margin, which can
be attributed to lacking coverage of the knowl-
edge resource. Subsequent analysis shows that
the three methods yield a different chaining
behavior, which could be utilized in tasks that
use lexical chaining as a component within
NLP applications.

1 Introduction

A text that is understandable by its nature exhibits
an underlying structure which makes the text co-
herent; that is, the structure is responsible for mak-
ing the text “hang” together (Halliday and Hasan,
1976). The theoretic foundation of this structure is
defined as coherence and cohesion. While the for-
mer is concerned with the meaning of a text, the lat-
ter can be seen as a collection of devices for cre-
ating it. Cohesion and coherence build the basis
for most of the current natural language processing
problems that deal with text understanding. Lex-
ical cohesion ties together words or phrases that

are semantically related. Once all the cohesive ties
are identified the involved items can be grouped to-
gether to form so-called lexical chains, which form a
theoretically well-founded building block in various
natural language processing applications, such as
word sense disambiguation (Okumura and Honda,
1994), summarization (Barzilay and Elhadad, 1997),
malapropism detection and correction (Hirst and St-
Onge, 1998), document hyperlinking (Green, 1996),
text segmentation (Stokes et al., 2004), topic track-
ing (Carthy, 2004), and others. The performance of
the individual task heavily depends on the quality of
the identified lexical chains.

1.1 Motivation for Corpus-driven Approach

Previous approaches mainly focus on the use of
knowledge resources like lexical semantic databases
(Hirst and St-Onge, 1998) or thesauri (Morris and
Hirst, 1991) as background information in order to
resolve possible semantic relations. A major draw-
back of this strategy is the dependency on the cov-
erage of the resource, which has a direct impact on
the lexical chains. Their quality can be expected to
be poor for resource-scarce languages or specialized
application domains.

Statistical methods to modeling language seman-
tics have proven to deliver good results in many nat-
ural language processing applications. In particu-
lar, probabilistic topic models have been success-
fully used for tasks such as summarization (Gong
and Liu, 2001; Hennig, 2009), text segmentation
(Misra et al., 2009), lexical substitution (Dinu and
Lapata, 2010) or word sense disambiguation (Cai et
al., 2007; Boyd-Graber et al., 2007).
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In this work, we address the question, whether
statistical methods for the extraction of lexi-
cal chains can yield better results than existing
knowledge-based methods, especially for underre-
sourced languages or domains, following principles
of Structure Discovery (Biemann, 2012). To address
this, we have developed a methodology for evaluat-
ing the quality of lexical chains intrinsically, have
carried out an annotation study, and report results on
a corpus of manually annotated German news docu-
ments.

After defining a measure for the comparison of
(manually or automatically created) lexical chains
in Section 2, Section 3 describes our annotation
methodology and discusses issues regarding the in-
herent subjectivity of lexical chain annotation. In
Section 4, three statistical approaches for lexical
chaining are developed on the basis of the LDA topic
model. Experiments that demonstrate the advantage
of these approaches over a knowledge-baseline are
conducted and evaluated in Section 5, and Section 6
concludes and provides an outlook future directions.

1.2 Previous Work on Lexical Chains

Morris and Hirst (1991) initially proposed an al-
gorithm for lexical chaining based on Roget’s the-
saurus (Roget, 1852), and manually assessed the
quality of their algorithm. Hirst and St-Onge (1998)
first presented a computational approach to lexical
chaining based on WordNet showing that the lexi-
cal database is a reasonable replacement to Roget’s.
The basic idea behind these algorithms is that se-
mantically close words should be connected to form
chains. Subsequent approaches mainly concentrated
on disambiguation of words to WordNet concepts
(WSD), since ambiguous words can lead to the over-
generation of connections. Barzilay and Elhadad
(1997) improved the implicit word sense disam-
biguation (WSD) by keeping a list of different inter-
pretations of the text and finally choosing the most
plausible senses for chaining. Silber and McCoy
(2002) introduced an efficient variant of the algo-
rithm with linear complexity in the number of can-
didate terms. Galley and McKeown (2003) further
improved accuracy by first performing WSD, and
then using the remaining links between the disam-
biguated concepts only. They also introduced a so-
called disambiguation graph, a representation that

has also been utilized by the method of Medelyan
(2007), where she applied a graph clustering algo-
rithm to the disambiguation graph to cut weak links,
performing implicit WSD. A combination of statis-
tical and knowledge-based methods is presented by
Marathe and Hirst (2010), who combine distribu-
tional co-occurrence information with semantic in-
formation from a lexicographic resource for extract-
ing lexical chains and evaluate them by text segmen-
tation. We are not aware of previous lexical chain-
ing algorithms that do not rely on a lexicographic
resource at all.

A major issue in developing a new lexical chain-
ing algorithm is the comparison to previous systems.
Most of previous approaches are validated by the
evaluation in a certain task like summarization, word
sense disambiguation, keyphrase extraction or infor-
mation retrieval (Stairmand, 1996). Hence, these ex-
trinsic evaluations are heavily influenced by the par-
ticular task at hand. We propose to re-consider lexi-
cal chaining as a task on its own, and propose objec-
tive criteria for directly comparing lexical chains to
this end.

2 Comparing Lexical Chains

The comparison of lexical chains is a non-trivial
task. We adopt the idea of interpreting lexical chains
as clusters and a particular set of lexical chains as
a clustering, and develop a suitable cluster com-
parison measure. As stated by Meilă (2005) and
Amigó et al. (2009), a best clustering comparison
measure for the general case does not exist. It should
be stressed that the appropriate clustering measure
highly depends on the task at hand.

After exploring a number of measures1, we de-
cided on a combination of the adjusted Rand in-
dex (ARI , Hubert and Arabie (1985)) and the basic
merge distance (BMD, Menestrina et al. (2010))
for our new measure. Menestrina et al. (2010) in-
troduced a linear time algorithm for computing the
generalized merge distance (GMD), which counts

1Explored measures which are unsatisfactory for the given
task are: Closest Cluster F1 (Benjelloun et al., 2009), K (Ajmera
et al., 2002), Pairwise F1 (Manning et al., 2008), Variation of
Information (Meilă, 2005), B3(Bagga and Baldwin, 1998), V-
Measure (Rosenberg and Hirschberg, 2007), Normalized Mu-
tual Information (Strehl, 2002). The last two measures are
equal. A proof of this can be found in the appendix.
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split and merge cluster editing operations. Using a
constant factor of 1 for both splits and merges gives
the basic merge distance (BMD): Considering >
as the most general clustering of a dataset D, where
all elements are grouped into the same cluster, and
further considering ⊥ as the most specific cluster-
ing of D, where each element builds its own clus-
ter, the lattice between > and ⊥ spans all possible
clusterings and the BMD can be interpreted as the
shortest path from a clustering C to a clustering C ′

in the lattice with some restrictions (see Menestrina
et al. (2010) for details). We normalize the BMD
score by the maximum BMD2 to the normalized
basic merge distance (NBMD). ARI is is based
on pair comparisons, and is computed as3:

index = TP

expected index =
(TP + FP )× (TP + FN)
TP + TN + FP + FN

max index = TP +
1
2
(FP + FN)

ARI(C,C ′) =
index− expected index

max index− expected index

The reasons for choosing these two particular
measures are the following: ARI is a well known
measure which is adjusted (corrected) for decisions
made by chance. But since it is based on pairwise
element comparison it completely disregards single-
ton clusters (chains) and some types of errors are not
adequately penalized. The NBMD on the other hand
penalizes various errors almost equally.

We combine the two single measures into a
new lccm (lexical chain comparison measure), de-
fined as the arithmetic mean between ARI and
1−NBMD. An lccm of 1 indicates perfect con-
gruence and an lccm = 0 indicates that not a single
pair of items in C is found in a cluster together in
C ′.

lccm(C,C ′) =
1
2

[
1−NBMD(C,C ′) +ARI(C,C ′)

]
.

2BMD(>,⊥) for |D| ≤ 2, BMD(>,⊥) + 1 otherwise
3TP : pairs in D and D’, FP : pairs in D’ but not in D, FN :

pairs in D but not in D’, TN : pairs not in D and not in D’, where
D is the underlying dataset of C, D’ is the underlying dataset of
C’, and pairs means all unique combinations of elements that
are in the same cluster.

3 Annotating Lexical Chains

A challenge with the annotation of lexical chains is
the subjective interpretation of the text by individ-
ual annotators (Morris and Hirst, 2004), which also
substantiates the fact that currently no gold stan-
dard exist, and all previous automatic approaches
are evaluated by performing a certain NLP task.
Hollingsworth and Teufel (2005) as well as Cramer
et al. (2008) conclude from their lexical chain anno-
tation projects that high inter-annotator agreement is
very hard to achieve. We argue that directly evalu-
ating on lexical chains should enable us to optimize
towards higher-quality chain annotations, which is
a task of its own right and which has the potential
to improve all subsequent applications. For this, we
devise an annotation scheme that gets us reasonable
inter-annotator agreement, inspired by the concept
of cohesive harmony (Hasan, 1984), and report on
an annotation project for German newswire texts.

Documents from the SALSA 2.0 (Burchardt et al.,
2006) corpus were chosen to form the basis for the
annotation of lexical chain information. SALSA is
based on the semi-automatically annotated TIGER
Treebank 2.1 (Brants et al., 2002). The TIGER
treebank provides manual annotations, such as lem-
mas, part-of-speech tags, and syntactic structure, the
SALSA part of the corpus is also partially annotated
with FrameNet-style (Baker et al., 1998) frame an-
notation. The documents are general domain news
articles from a German newspaper comprising about
1,550 documents and around 50,000 sentences in to-
tal, with a median document length of 275 tokens.

3.1 Annotation Scheme
In order to minimize the subjectiveness of choices
by different annotators, annotation guidelines were
developed comprising a total of ten pages. We
decided to consider only nouns, noun compounds
and non-compositional adjective noun phrases like
“dirty money” as candidate terms for lexical chain-
ing, which is consistent with the procedures of
Hollingsworth and Teufel (2005) and Cramer et al.
(2008). For annotation, we used the MMAX24

(Müller and Strube, 2006) tool.
We introduce the term dense chain, which refers

to a type of lexical chain in which every element is
4http://mmax2.sourceforge.net
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related to every other element in that chain. Terms
are considered to be related if they share the same
topic, i.e. common sense and knowledge of the lan-
guage is needed to decide which terms belong to-
gether in the same topic and whether a chosen topic
is neither too broad nor too narrow. A single dense
chain can thus be assigned a definite topical descrip-
tion of its items. Whereas Hollingsworth and Teufel
(2005) dealt with the inherent fuzziness of member-
ship of terms to lexical chains by allowing terms
to occur in different lexical chains, we follow the
concept of cohesive harmony introduced by Hasan
(1984) here, where complete chains can be linked
to others. For this purpose, we introduce so-called
level two links, which are cohesive ties between lex-
ical items in distinct dense chains. Having such
a link between two chains, both chains can be as-
signed a topical description which is broader than
the description of the individual chains. This results
in a two-level representation of chains. We report
on dense lexical chains and merged lexical chains
(dense chains are merged into a common chain if a
level two link exists between them) separately.

In total, 100 documents were annotated by two
expert annotators. Documents were chosen around
the length median and consist of 248 – 304 tokens.
The two rightmost columns of Table 3 show the
characteristics of the annotated data set. It can be
concluded that there is a moderate to high agree-
ment regarding the annotator selections of candidate
terms, which is ensured by preselection of candidate
terms by part-of-speech patterns. A value of 81% in
the average agreement on lexical items (cf. Figure 1)
shows that even though the choice of lexical items
is limited to nouns and adjective noun phrases only,
the decision on candidate termhood is somewhat dif-
ferent between the annotators, but compares favor-
ably with previous findings of 63% average pairwise
agreement (Morris and Hirst, 2004).

Figure 2 shows the annotator agreement on the
individual documents using the lccm (cf. Sec. 2),
sorted in the same way as in Figure 1. In order to use
the level two link information the figure also shows
a second agreement score, which was computed on
merged chains.

The agreement scores of the assignment of lexical
items to lexical chains depend partially on the agree-
ment scores of the identified lexical items them-
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Figure 1: Agreement of lexical items annotated by anno-
tator A and annotator B as a percentage of lexical items
annotated by annotator A or annotator B. The average
agreement is 81%.
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Figure 2: Individual annotator agreement scores on 100
documents sorted by their agreement on candidate terms.
The red circles show the agreement of both annotators on
the dense lexical chains disregarding the cohesive links,
and the green dots show the agreement of both annotators
on the merged lexical chains (via the cohesive links) both
using the proposed lexical chain comparison measure.

selves, which is a desired property. Across all doc-
uments, a perfect agreement was never achieved,
which confirms the difficulty of annotating such a
subjective task: The average lccm per document on
the manual annotations is 0.56 (dense chains), re-
spectively 0.54 (merged chains). However, the con-
siderable overlap between the annotators still en-
ables us to evaluate automatic chaining methods,
and the lccm agreement score serves as an upper
bound. Note that by performing no reconciliation
of the annotations we explicitly allow the possibil-
ity of different interpretations which is in our opin-
ion appropriate here due to the subjectiveness of the
task itself. By doing so, we evaluate our algorithms
against individual annotator interpretations.

4 Statistical Methods for Lexical Chaining

This work employs a well-studied statistical method
for creating something that Barzilay (1997) called
an automatic thesaurus which will then be adapted
for lexical chaining. For our automatic approaches,
candidate lexical items in a text are preselected by
the same heuristic that is also applied in Section 3
for the annotation process.

Topic models (TMs) are a suite of unsuper-
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vised algorithms designed for unveiling some hid-
den structure in large data collections. The key idea
is that documents can be represented as compos-
ites of so-called topics where a topic itself repre-
sents as a composite of words. Hofmann (1999)
defined a topic to be a probability distribution over
words and a document to be a probability distribu-
tion over a fixed set of topics. We use the latent
Dirichlet allocation (LDA, Blei et al. (2003)) topic
model for estimating the semantic closeness of can-
didate terms, and explore different ways of utilizing
LDA’s topic information in automatic lexical chain-
ers. Specifically, we use the GibbsLDA++5 frame-
work for topic model estimation and inference, and
examine the following LDA parameters: number of
topics T , Dirichlet hyperparameters for document-
topic distribution α and topic-term distribution β.

We now describe three LDA-based approaches to
lexical chaining.

4.1 LDA Mode Method (LDA-MM)

The LDA-MM approach places all word tokens that
share the same topic ID into the same chain. The
point is now how to decide to which topic a word
belongs to. Since single samples of topics per word
exhibit a large variance (Riedl and Biemann, 2012),
we follow these authors by sampling several times
and using the mode (most frequently assigned) topic
ID per word as the topic assignment. This strategy
reduced the variance in the lccm to a tenth6.

More formally, let samples(d,w) be the vector
of assignments that have been collected for a cer-
tain word w in a certain document d with each
samples

(d,w)
i referring to the i-th sampled topic ID

for (d,w). In other words, samples(d,w) can be seen
as the Markov chain for a particular word in a par-
ticular document. Further let z(d,w) be the topic ID
that was most assigned to the word w with respect
to the samples in samples(d,w). Precisely, z(d,w) is
defined to be the sampled mode in samples(d,w) —
in case of multiple modes a random mode is chosen,

5http://gibbslda.sourceforge.net
6Preliminary experiments yielded a variance of 2.6 × 10−6

in lccm using the mode method and 3.07×10−5 using a single
sample for lexical chain assignment.

which never happened in our experiments.

z(d,w) = mode (samples(d,w))
≈ arg max

j
(P (z = j|w, d))

The LDA-MM assigns for every word w which
is a candidate lexical item of a certain document d
which is assigned the same topic z(d,w) to the same
chain; hence implicitly disambiguating the terms.

The possibility to create level two links is given
by taking the second most occurring topic for a given
word if it exceeds a certain threshold.

4.2 LDA Graph Method (LDA-GM)
The LDA-GM algorithm creates a similarity graph
based on the comparison of topic distributions for
given words and then applies a clustering algorithm
in order to find semantically related words.

Let ψ(d,w) be the per-word topic distribution
P (z|w, d). Analogously to the LDA-MM, ψ(d,w)

can be obtained by counting the occurrences of
a certain topic ID z in the sample collection
samples(d,w) for a particular word w and document
d.

The semantic relatedness between any two words
wi and wj can then be measured by their similarity
score of the topic distributions ψ(d,wi) and ψ(d,wj),
which is stored in a term similarity matrix. This
matrix can also be interpreted as an adjacency ma-
trix of a graph, with candidate items being nodes
and edges being weighted with the similarity value
simij for any two nodes i, j : i 6= j ∧ i, j ∈
{1, 2, . . . , Nd}. We test two similarity measures:
Euclidian (dis-)similarity and cosine similarity.

Let G = (V,E) be the graph represen-
tation of a document with term vertices
V = {v1, . . . , vNd} and weighted edges E =
{(v1, v2, sim12), . . . (vNd, vNd−1, simNdNd−1)},
where simij is either the cosine or Euclidean
similarity of term vectors. For simplicity, we reduce
this representation to an unweighted graph by
only retaining edges (of unit weight) that have a
similarity above a parameter threshold εsim. To
identify chains as clusters in this graph, we follow
Medelyan (2007) and apply the Chinese Whispers
graph clustering algorithm (CW, Biemann (2006)),
which finds the number of clusters automatically.
The CW algorithm implementation comes with
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three parameters to regulate the node weight based
on its degree, which influences cluster size and
granularity. We test options ”top”, ”dist log” and
”dist lin”.

The final chaining procedure is straightforward:
The LDA-GM algorithm assigns every candidate
lexical item wi of a certain document d which is
assigned the same class label ci to the same chain.
Level two links are drawn using the second domi-
nant class of a vertex’s neighborhood, which is pro-
vided by the CW implementation.

4.3 LDA Top-N Method (LDA-TM)
The LDA-TM method is different to the others in
that it uses the information of the per-topic word dis-
tribution φ(z) = P (w|z) and the per-document topic
distribution θ(d) = P (z|d). Given a parameter n re-
ferring to the top n topics to choose from θ(d) and a
parameter m referring to the top m words to choose
from φ(z) the main procedure can be described as
follows: for all z ∈ top n topics in θ(d): chain the
top m words in φ(z) .

Note that although the number of chains and chain
members for each chain is bound and could lead to
the same number and sizes of chains, in practice the
number of generated chains as well as the number of
chain members still varies considerably across doc-
uments: often some of the top m words for a (glob-
ally computed) topic do not even occur in a partic-
ular document. This implies that the parameters n
and m must not be set globally but dependent on
the particular document. To overcome this to some
extent, additional thresholding parameters εθ and εφ
are used for further bounding the respective n or m
parameter. The procedure works like this: for all z
∈ top n topics in θ(d) ∧ θ

(d)
z < εθ: chain the top m

words w in φ(z) ∧ φ
(z)
w < εφ.

Level two links are created by computing the co-
sine similarity between every pair of the top n topic
distributions, and thresholding with a link parame-
ter.

4.4 Repetition Heuristic
All methods described above can be applied to new
unseen documents that are not in the training set. To
alleviate a possible vocabulary mismatch between
training set and test set, which happens when terms
in the test set have not been contained in our training

documents, we add a heuristic that chains repetitions
of (previously unknown) words as a post-processing
step to all methods.

5 Empirical Analysis

In order to provide a realistic estimate of the qual-
ity of our methods to unseen material, we randomly
split our annotated documents in two parts of 50
documents each. One part is used as a development
set for optimizing the parameters of the methods (i.e.
model selection), the other part forms our test set for
evaluation.

The training corpus, on the other hand, consists
of all 1,211 SALSA/Tiger documents that are not
part of the development and test corpus and nei-
ther very long nor very short. These documents
are taken from the German newspaper “Frankfurter
Rundschau” around 1992. Additionally the training
corpus is enriched with 12,264 news texts from the
same newspaper around 1997 with similar charac-
teristics7, making up a total of 13,457 training doc-
uments for the estimation of topic models.

Input to the LDA model training are verbs, nouns
and adjectives, as well as candidate terms as de-
scribed in Section 3.1, all in their lemmatized form.
We further filter words that occur in more than 1/3
of the training documents, as well as known stop-
words, and words that occur in less than two doc-
uments which results in a vocabulary size of about
100K words.

5.1 Experimental Setup
For comparison, we implemented three baselines,
which we describe below. One baseline is trivial,
two baselines are state-of-the art knowledge-based
systems adapted to German.

Random: Candidate lexical items are randomly
tied together to form sets of lexical chains.
Level two links are created analogously. We
regulate the process to yield the same average
number of chains and links as in the develop-
ment and test data.

S&M GermaNet: Algorithm by Silber and McCoy
(2002) with GermaNet as its knowledge re-
source.

7as provided by Projekt Deutscher Wortschatz,
http://wortschatz.uni-leipzig.de/
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G&M GermaNet: Algorithm by Galley and McK-
eown (2003), also using GermaNet.

GermaNet (Hamp and Feldweg, 1997) is a large
WordNet-like resource for German, containing al-
most 100,000 lexical units and over 87,000 concep-
tual relations between synsets. While its size is only
about half of WordNet, it is one of the largest non-
English lexical semantic resources.

5.2 Model Selection
We optimize two sets of parameters: parameters for
the LDA topic model (number of topics K, Dirich-
let hyperparameters α and β) are optimized for the
LDA-MM method only, and the same LDA model
is used in the other two LDA-based methods. Pa-
rameters particular to the respective method are op-
timized individually. For LDA, we tested sensible
combinations in the ranges K = 50..1000, α =
0.05/K..50/K and β = 0.001..0.1. The highest
performance of the LDA-MM method was found for
K = 500, α = 50/K, β = 0.001, and the result-
ing topic model is used across all methods. The final
parameter values for the other methods, found by ex-
haustive search, are summarized in Table 1.

Method Parameter
LDA-GM similarityfunction = cosine similarity

labelweightscheme = dist log
εsim = 0.95

LDA-TM n = 10, m = 20, εθ = 0.2, εφ = 0.2

Table 1: Final parameter values.

5.3 Evaluation
For evaluation purposes, terms that consist of multi-
ple words are mapped to its rightmost term which
is assumed to be the head, e.g. “dirty money” is
mapped to “money”. Additionally, singleton chains,
i.e. chains that contain only a single lexical item
are omitted unless the respective lexical item is not
linked by a level two link.

Dense Chains Comparative results of the ap-
proaches in terms of lccm for both annotators are
summarized in Table 2 (upper half). We observe
that all our new methods beat the random baseline
and the two knowledge-based baselines by a large
margin. The knowledge-based baselines, both using

Anno A Anno B Average
LDA-MM 0.320 0.306 0.313
LDA-TM 0.307 0.299 0.303
LDA-GM 0.328 0.314 0.321

G&M 0.255 0.215 0.235
S&M 0.248 0.209 0.229

Random 0.126 0.145 0.135
LDA-MM 0.316 0.300 0.308
LDA-TM 0.303 0.280 0.291
LDA-GM 0.279 0.267 0.273

G&M 0.184 0.166 0.176
S&M 0.179 0.159 0.169

Random 0.196 0.205 0.201

Table 2: Results of the evaluation based on dense chains
(upper half) and merged chains (lower half). The annota-
tor agreement on the test set’s chains = 0.585; on merged
chains = 0.553

GermaNet, produce very similar lccm scores, which
highlights the important role of the knowledge re-
source. Data analysis revealed that while chains pro-
duced by knowledge-based baselines are sensible,
the main problem is a lack of coverage in terms of
vocabulary and relations in GermaNet. Comparing
the statistical methods, the LDA-GM method excels
over the others.

Level Two Links Table 2 (lower half) summarizes
the evaluation results of the merged chains via level
two links. Because of merging, a text now contains
fewer chains with more lexical items each. Note that
knowledge-based baselines do not construct level
two links, which is why they are heavily penalized
in this setup.

Again, the statistical methods beat the baselines
by a substantial amount. In this evaluation, the ran-
dom baseline performs above the knowledge-based
methods, which is rooted in the fact that lccm penal-
izes small, correct chains, whereas the random base-
line with linking often produces very large chains
containing most of the terms – something that we
also observe for many manually annotated docu-
ments. The large overlap in the biggest chain then
leads to the comparatively high random baseline
score. In this evaluation, the LDA-MM is the clear
winner, with LDA-GM being clearly inferior this
time.
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LDA-MM LDA-GM LDA-TM S&M G&M Anno A Anno B
avg. num. of lexical items per doc. 38.20 29.32 30.82 14.40 15.29 38.66 38.96
avg. num. of chains per doc. 13.80 9.12 7.32 5.83 5.71 11.25 7.38
avg. num. of links per doc. 8.60 2.06 1.44 – – 5.47 2.41
avg. size lexical chains 2.82 3.41 4.61 2.48 2.68 3.69 5.57
avg. num. of merged lexical chains 5.76 7.06 5.98 – – 6.10 4.99
avg. size merged lexical chains 8.29 4.45 5.57 – – 7.60 8.91

Table 3: Quantitiative characteristics of automatic and manual lexical chains. In average, a document contains 51.58
candidate terms as extracted by our noun phrase patterns

Davud Bouchehri,
[Davud Bouchehri,]

seit
[since]

der
[the]

letzten
[last]

Spielzeit
[playing period]

als
[as]

Dramaturg
[dramaturg]

in
[in]

Basel
[Basle]

tätig,
[acting,]

wechselt
[switches]

zur
[to the]

Saison 1996 / 97
[1996 / 97 season]

als
[as]

künstlerischer
[art]

Geschäftsführer
[director]

des
[of the]

Schauspiels
[play]

an
[to]

das
[the]

Staatstheater
[state theater]

Darmstadt.
[Darmstadt.]

Der
[The]

aus
[from]

dem
[the]

Iran
[Iran]

stammende
[coming]

34jährige
[34-year-old]

soll
[shall]

daneben
[besides]

auch
[also]

für
[for]

spartenübergreifende
[multi discipline]

Projekte
[projects]

zuständig
[responsible]

sein,
[be,]

teilte
[aquainted]

das
[the]

Basler
[Basle’s]

Theater
[theather]

am
[on]

Donnerstag
[Thursday]

mit.
[with.]

LDA-MM:
c1: {Spielzeit, Schauspiels, Staatstheater}
c2: {Dramaturg, Theater}
c3: {Saison}
l1: (Theater→ Spielzeit)
l2: (Spielzeit→ Saison)

LDA-GM:
c1: {Dramaturg, Theater}
c2: {Schauspiels, Staatstheater}

LDA-TM:
c1: {Schauspiels, Staatstheater, Theater}
c2: {Dramaturg}
c3: {Spielzeit, Saison}
l1: (Theater→ Dramaturg)

S&M-GermaNet:
–

G&M-GermaNet:
c1: {Staatstheater, Theater}

Figure 3: Diverse output of the various lexical chaining systems after applying them on a short German example text
from the used TIGER/SALSA corpus. For a better understanding the text is calqued. Candidate items are highlighted
and the ci are the resulting dense lexical chains and the li are the level two links produced by the various methods.

Data Analysis Table 3 shows quantitative num-
bers of the extracted lexical chains in the test set.

The LDA-MM approach chains and links a lot
more items than the other statistical methods: it cre-
ates a lot more links between items that would oth-
erwise be removed because they form unlinked sin-
gleton chains. As opposed to this, the graph method
(LDA-GM), as well as the top-n method (LDA-TM)
perform an implicit filtering on the candidate lexi-
cal items by creating less level two links, yet larger
dense chains. The knowledge based algorithms by
Silber and McCoy (2002) and Galley and McKeown
(2003) extract fewer and smaller chains than the sta-
tistical approaches, which reflects GermaNet’s spar-
sity issues. While higher lexical coverage in the
underlying resource would increase the coverage of
our knowledge-based systems, this is only one part
of the story. The other part is rooted in the fact
that lexical cohesion relations, which are used in
lexical chains, encompass many more semantic re-
lations than listed in today’s lexical semantic net-

works. This especially holds for cases where sev-
eral expressions refer to the same event or theme for
which no well-defined relation exists, such as e.g.
”captain” and ”harbor”.

Comparing the three LDA-based approaches, no
overall best method could be determined. the LDA-
MM seems especially suited for a high coverage
and coarse (level two) chains, the LDA-GM appears
most suited for dense chains, and LDA-TM pro-
duces the longest chains on average.

Figure 3 shows the resulting dense lexical chains
and level two links after applying our chainers to a
short example text from our corpus. In the exam-
ple the LDA-TM produces the most adequate lexi-
cal chains, at least in our intuition. The LDA-GM
and the LDA-MM produce slightly wrong chains,
yet the LDA-MM additionally creates some mean-
ingfull level two links which the LDA-GM does not.
Both knowledge-based approaches perform poorly
compared to the knowledge-free approaches, where
the S&M algorithm creates no chains at all and the
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G&M algorithm produces only a single chain con-
taining only two words. This is mostly due to Ger-
maNet’s lacking lexical and relational coverage and
the scope of the algorithms for finding relations be-
tween the words.

6 Conclusion

In this paper, we presented experiments for auto-
matic lexical chain annotation and evaluated them
directly on a manually annotated dataset for Ger-
man. A new two-level annotation scheme for lexi-
cal chains was proposed and motivated by the con-
cept of cohesive harmony. We further proposed a
new measure for comparing lexical chain annota-
tions that is especially suited for the characteristics
of lexical chain annotations. Three variants of sta-
tistical lexical chaining methods based on the LDA
topic model were proposed and evaluated against
two knowledge-based baseline systems. Our sta-
tistical methods exhibit a substantially higher per-
formance than the knowledge-based systems on our
dataset. This can partially be attributed to miss-
ing relations, partially to the lack of lexical cov-
erage of GermaNet, which was used in these sys-
tems. Since GermaNet is a large lexical-semantic
net, however, this strengthens our main point: Espe-
cially for under-resourced languages or subject do-
mains, statistical and data-driven methods should be
preferred over their knowledge-based counterparts,
since they do not require the development of lexical-
semantic nets and adopt easily to subject domains by
training their unsupervised models on an in-domain
collection.

In future work, we would like to explore better
ways of selecting candidate items. While our POS-
pattern-based selection mechanism works for practi-
cal purposes, it currently only extracts noun phrases
and over-generates on compositional adjective mod-
ifiers. We would like to define a better filter to re-
duce over-generation. Further, especially for com-
pounding languages such as German, we would like
to decompose one-word compounds as to be able to
link their heads in lexical chains.

While we found it important to directly evalu-
ate our lexical chaining algorithms on manually an-
notated data, a natural next step in this line of re-
search is to use our lexical chaining methods as

pre-processing steps for applications such as sum-
marization, text segmentation or word sense disam-
biguation. This would enable to find out advantages
and disadvantages of our three variants with respect
to an application.

The manually annotated data, the open source an-
notation tool, the annotation guidelines and the im-
plementations of all described methods and base-
lines are available for download8.
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Proof: Equality of NMI and V
Using the standard notation from information retrievalH(X)= Entropy,
I(X,Y )= Information, H(X|Y )= Conditional Entropy, NMI(X,Y)=
Normalized Mutual Information, V(X,Y)= V-Measure:

V (C,K) = 2×
h× c
h+ c

(1)

h = 1−
H(C|K)

H(C)
, c = 1−

H(K|C)

H(K)
(2)

and

NMI(C,K) =
I(C,K)

H(C)+H(K)
2

= 2×
I(C,K)

H(C) +H(K)
(3)

reformulate h and c using the fact that I(C,K) = H(C) −
H(C|K) = H(K)−H(K|C):

h = 1−
H(C|K)

H(C)

=
H(C)

H(C)
−
H(C|K)

H(C)

=
I(C,K)

H(C)

(4)

c = 1−
H(K|C)

H(K)

=
H(K)

H(K)
−
H(K|C)

H(K)

=
I(C,K)

H(K)

(5)

simplifying h× c using (4) and (5):

h× c =
I(C,K)

H(C)
×
I(C,K)

H(K)

=
I(C,K)2

H(C)H(K)

(6)

simplifying h+ c using (4) and (5):

h+ c =
I(C,K)

H(C)
+
I(C,K)

H(K)

=
I(C,K)H(K) + I(C,K)H(C)

H(C)H(K)

=
I(C,K)[(H(K) +H(C)]

H(C)H(K)

(7)

simplifying h×c
h+c

using (6) and (7):
h× c
h+ c

=
I(C,K)2

H(C)H(K)
×

H(C)H(K)

I(C,K)[H(K) +H(C)]

=
I(C,K)

H(K) +H(C)

(8)

8http://www.ukp.tu-darmstadt.de/
data/lexical-chains-for-german/

997



substituting (8) into (1) shows that NMI and V are equal:

V (C,K) = 2×
h× c
h+ c

= 2×
I(C,K)

H(K) +H(C)
= NMI(C,K) (9)
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Abstract

In this work, we study the problem of mea-
suring relational similarity between two word
pairs (e.g., silverware:fork and clothing:shirt).
Due to the large number of possible relations,
we argue that it is important to combine mul-
tiple models based on heterogeneous informa-
tion sources. Our overall system consists of
two novel general-purpose relational similar-
ity models and three specific word relation
models. When evaluated in the setting of a
recently proposed SemEval-2012 task, our ap-
proach outperforms the previous best system
substantially, achieving a 54.1% relative in-
crease in Spearman’s rank correlation.

1 Introduction

The problem of measuring relational similarity is
to determine the degree of correspondence between
two word pairs. For instance, the analogous word
pairs silverware:fork and clothing:shirt both exem-
plify well a Class-Inclusion:Singular Collective re-
lation and thus have high relational similarity. Un-
like the problem of attributional similarity, which
measures whether two words share similar attributes
and is addressed in extensive research work (Bu-
danitsky and Hirst, 2006; Reisinger and Mooney,
2010; Radinsky et al., 2011; Agirre et al., 2009; Yih
and Qazvinian, 2012), measuring relational similar-
ity is a relatively new research direction pioneered
by Turney (2006), but with many potential appli-
cations. For instance, problems of identifying spe-
cific relations between words, such as synonyms,

∗Work conducted while interning at Microsoft Research.

antonyms or associations, can be reduced to mea-
suring relational similarity compared to prototypical
word pairs with the desired relation (Turney, 2008).
In scenarios like information extraction or question
answering, where identifying the existence of cer-
tain relations is often the core problem, measuring
relational similarity provides a more flexible solu-
tion rather than creating relational classifiers for pre-
defined or task-specific categories of relations (Tur-
ney, 2006; Jurgens et al., 2012).

In order to promote this research direction, Ju-
rgens et al. (2012) proposed a new shared task of
measuring relational similarity in SemEval-2012 re-
cently. In this task, each submitted system is re-
quired to judge the degree of a target word pair
having a particular relation, measured by its re-
lational similarity compared to a few prototypical
example word pairs. The system performance is
evaluated by its correlation with the human judg-
ments using two evaluation metrics, Spearman’s
rank correlation and MaxDiff accuracy (more de-
tails of the task and evaluation metrics will be given
in Sec. 3). Although participating systems incorpo-
rated substantial amounts of information from lex-
ical resources (e.g., WordNet) and contextual pat-
terns from large corpora, only one system (Rink and
Harabagiu, 2012) is able to outperform a simple
baseline that uses PMI (pointwise mutual informa-
tion) scoring, which demonstrates the difficulty of
this task.

In this paper, we explore the problem of mea-
suring relational similarity in the same task setting.
We argue that due to the large number of possible
relations, building an ensemble of relational simi-

1000



larity models based on heterogeneous information
sources is the key to advance the state-of-the-art on
this problem. By combining two general-purpose re-
lational similarity models with three specific word-
relation models covering relations like IsA and syn-
onymy/antonymy, we improve the previous state-
of-the-art substantially – having a relative gain of
54.1% in Spearman’s rank correlation and 14.7% in
the MaxDiff accuracy!

Our main contributions are threefold. First, we
propose a novel directional similarity method based
on the vector representation of words learned from
a recurrent neural network language model. The re-
lation of two words is captured by their vector off-
set in the latent semantic space. Similarity of rela-
tions can then be naturally measured by a distance
function in the vector space. This method alone
already performs better than all existing systems.
Second, unlike the previous finding, where SVMs
learn a much poorer model than naive Bayes (Rink
and Harabagiu, 2012), we show that using a highly-
regularized log-linear model on simple contextual
pattern features collected from a document collec-
tion of 20GB, a discriminative approach can learn a
strong model as well. Third, we demonstrate that by
augmenting existing word-relation models, which
cover only a small number of relations, the overall
system can be further improved.

The rest of this paper is organized as follows. We
first survey the related work in Sec. 2 and formally
define the problem in Sec. 3. We describe the indi-
vidual models in detail in Sec. 4. The combination
approach is depicted in Sec. 5, along with experi-
mental comparisons to individual models and exist-
ing systems. Finally, Sec. 6 concludes the paper.

2 Related Work

Building a classifier to determine whether a relation-
ship holds between a pair of words is a natural ap-
proach to the task of measuring relational similarity.
While early work was mostly based on hand-crafted
rules (Finin, 1980; Vanderwende, 1994), Rosario
and Hearst (2001) introduced a machine learning ap-
proach to classify word pairs. They targeted clas-
sifying noun modifier pairs from the medical do-
main into 13 classes of semantic relations. Fea-
tures for each noun modifier pair were constructed

using large medical lexical resources and a multi-
class classifier was trained using a feed-forward neu-
ral network with one hidden layer. This work was
later extended by Nastase and Szpakowicz (2003)
to classify general domain noun-modifier pairs into
30 semantic relations. In addition to extracting fea-
tures using WordNet and Roget’s Thesaurus, they
also experimented with several different learners in-
cluding decision trees, memory-based learning and
inductive logic programming methods like RIPPER
and FOIL. Using the same dataset as in (Nastase
and Szpakowicz, 2003), Turney and Littman (2005)
created a 128-dimentional feature vector for each
word pair based on statistics of their co-occurrence
patterns in Web documents and applied the k-NN
method (k = 1 in their work).

Measuring relational similarity, which determines
whether two word pairs share the same relation, can
be viewed as an extension of classifying relations
between two words. Treating a relational similar-
ity measure as a distance metric, a testing pair of
words can be judged by whether they have a rela-
tion that is similar to some prototypical word pairs
having a particular relation. A multi-relation clas-
sifier can thus be built easily in this framework as
demonstrated in (Turney, 2008), where the prob-
lems of identifying synonyms, antonyms and asso-
ciated words are all reduced to finding good anal-
ogous word pairs. Measuring relational similarity
has been advocated and pioneered by Turney (2006),
who proposed a latent vector space model for an-
swering SAT analogy questions (e.g., mason:stone
vs. carpenter:wood). In contrast, we take a slightly
different view when building a relational similarity
measure. Existing classifiers for specific word re-
lations (e.g., synonyms or Is-A) are combined with
general relational similarity measures. Empirically,
mixing heterogeneous models tends to make the fi-
nal relational similarity measure more robust.

Although datasets for semantic relation classifica-
tion or SAT analogous questions can be used to eval-
uate a relational similarity model, their labels are ei-
ther binary or categorical, which makes the datasets
suboptimal for determining the quality of a model
when evaluated on instances of the same relation
class. As a result, Jurgens et al. (2012) proposed a
new task of “Measuring Degrees of Relational Simi-
larity” at SemEval-2012, which includes 79 relation
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categories exemplified by three or four prototypical
word pairs and a schematic description. For exam-
ple, for the Class-Inclusion:Taxonomic relation, the
schematic description is “Y is a kind/type/instance
of X”. Using Amazon Mechanical Turk1, they col-
lected word pairs for each relation, as well as their
degrees of being a good representative of a partic-
ular relation when compared with defining exam-
ples. Participants of this shared task proposed var-
ious kinds of approaches that leverage both lexical
resources and general corpora. For instance, the
Duluth systems (Pedersen, 2012) created word vec-
tors based on WordNet and estimated the degree of
a relation using cosine similarity. The BUAP sys-
tem (Tovar et al., 2012) represented each word pair
as a whole by a vector of 4 different types of fea-
tures: context, WordNet, POS tags and the aver-
age number of words separating the two words in
text. The degree of relation was then determined
by the cosine distance of the target pair from the
prototypical examples of each relation. Although
their models incorporated a significant amount of
information of words or word pairs, unfortunately,
the performance were not much better than a ran-
dom baseline, which indicates the difficulty of this
task. In comparison, a supervised learning approach
seems more promising. The UTD system (Rink and
Harabagiu, 2012), which mined lexical patterns be-
tween co-occurring words in the corpus and then
used them as features to train a Naive Bayes classi-
fier, achieved the best results. However, potentially
due to the large feature space, this strategy did not
work as well when switching the learning algorithm
to SVMs.

3 Problem Definition & Task Description

Following the setting of SemEval-2012 Task 2 (Ju-
rgens et al., 2012), the problem of measur-
ing the degree of relational similarity is to rate
word pairs by the degree to which they are
prototypical members of a given relation class.
For instance, comparing to the prototypical word
pairs, {cutlery:spoon, clothing:shirt, vermin:rat} of
the Class-Inclusion:Singular Collective relation, we
would like to know among the input word pairs
{dish:bowl, book:novel, furniture:desk}, which one

1http://www.mturk.com

best demonstrates the relation.
Because our approaches are evaluated using the

data provided in this SemEval-2012 task, we de-
scribe briefly below how the data was collected, as
well as the metrics used to evaluate system perfor-
mance. The dataset consists of 79 relation classes
that are chosen according to (Bejar et al., 1991)
and broadly fall into 10 main categories, includ-
ing Class-Inclusion, Part-Whole, Similar and more.
With the help of Amazon Mechanical Turk, Jurgens
et al. (2012) used a two-phase approach to collect
word pairs and their degrees. In the first phase,
a lexical schema, such as “a Y is one item in a
collection/group of X” for the aforementioned rela-
tion Class-Inclusion:Singular Collective, and a few
prototypical pairs for each class were given to the
workers, who were asked to provide approximately
a list of 40 word pairs representing the same rela-
tion class. Naturally, some of these pairs were bet-
ter examples than the others. Therefore, in the sec-
ond phase, the goal was to measure the degree of
their similarity to the corresponding relation. This
was done using the MaxDiff technique (Louviere
and Woodworth, 1991). For each relation, about one
hundred questions were first created. Each question
consists of four different word pairs randomly sam-
pled from the list. The worker was then asked to
choose the most and least representative word pairs
for the specific relation in each question.

The set of 79 word relations were randomly split
into training and testing sets. The former contains
10 relations and the latter has 69. Word pairs in all
79 relations were given to the task participants in ad-
vance, but only the human judgments of the training
set were available for system development. In this
work, we treat the training set as the validation set
– all the model exploration and refinement is done
using this set of data, as well as the hyper-parameter
tuning when learning the final model combination.

The quality of a relational similarity measure is
estimated by its correlation to human judgments.
This is evaluated using two metrics in the task: the
MaxDiff accuracy and Spearman’s rank correlation
coefficient (ρ). A system is first asked to pick the
most and least representative word pairs of each
question in the MaxDiff setting. The average accu-
racy of the predictions compared to the human an-
swers is then reported. In contrast, Spearman’s ρ
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measures the correlation between the total orderings
of all word pairs of a relation, where the total order-
ing is derived from the MaxDiff answers (see (Jur-
gens et al., 2012) for the exact procedure).

4 Models for Relational Similarity

We investigate three types of models for relational
similarity. Operating in a word vector space, the di-
rectional similarity model compares the vector dif-
ferences of target and prototypical word pairs to es-
timate their relational similarity. The lexical pat-
tern method collects contextual information of pairs
of words when they co-occur in large corpora, and
learns a highly regularized log-linear model. Finally,
the word relation models incorporate existing, spe-
cific word relation measures for general relational
similarity.

4.1 Directional Similarity Model

Our first model for relational similarity extends pre-
vious work on semantic word vector representa-
tions to a directional similarity model for pairs of
words. There are many different methods for cre-
ating real-valued semantic word vectors, such as
the distributed representation derived from a word
co-occurrence matrix and a low-rank approxima-
tion (Landauer et al., 1998), word clustering (Brown
et al., 1992) and neural-network language model-
ing (Bengio et al., 2003; Mikolov et al., 2010). Each
element in the vectors conceptually represents some
latent topicality information of the word. The goal
of these methods is that words with similar mean-
ings will tend to be close to each other in the vector
space.

Although the vector representation of single
words has been successfully applied to problems
like semantic word similarity and text classifica-
tion (Turian et al., 2010), the issue of how to repre-
sent and compare pairs of words in a vector space
remains unclear (Turney, 2012). In a companion
paper (Mikolov et al., 2013), we present a vector
offset method which performs consistently well in
identifying both syntactic and semantic regularities.
This method measures the degree of the analogy
“a is to b as c is to d” using the cosine score of
(~vb−~va +~vc, ~vd), where a, b, c, d are the four given
words and ~va, ~vb, ~vc, ~vd are the corresponding vec-

q 

shirt

clothing

furniture

desk

v1

v2'v2'

v2'

Figure 1: Directional vectors υ1 and υ2 capture the rela-
tions of clothing:shirt and furniture:desk respectively in
this semantic vector space. The relational similarity of
these two word pairs is estimated by the cosine of θ.

tors. In this paper, we propose a variant called the
directional similarity model, which performs bet-
ter for semantic relations. Let ωi = (wi1 , wi2) and
ωj = (wj1 , wj2) be the two word pairs being com-
pared. Suppose (~vi1 , ~vi2) and (~vj1 , ~vj2) are the cor-
responding vectors of these words. The directional
vectors of ωi and ωj are defined as ~υi ≡ ~vi2 − ~vi1

and ~υj ≡ ~vj2 − ~vj1 , respectively. Relational simi-
larity of these two word pairs can be measured by
some distance function of υi and υj , such as the co-
sine function:

~υi · ~υj

‖~υi‖‖~υj‖

The rationale behind this variant is as follows. Be-
cause the difference of two word vectors reveals the
change from one word to the other in terms of mul-
tiple topicality dimensions in the vector space, two
word pairs having similar offsets (i.e., being rela-
tively parallel) can be interpreted as they have simi-
lar relations. Fig. 1 further illustrates this method.

Compared to the original method, this variant
places less emphasis on the similarity between
words wj1 and wj2 . That similarity is necessary
for syntactic relations where the words are often re-
lated by morphology, but not for semantic relations.
On semantic relations studied in this paper, the di-
rectional similarity model performs about 18% rela-
tively better in Spearman’s ρ than the original one.

The quality of the directional similarity method
depends heavily on the underlying word vector
space model. We compared two choices with dif-
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Word Embedding Spearman’s ρ MaxDiff Acc. (%)
LSA-80 0.055 34.6

LSA-320 0.066 34.4
LSA-640 0.102 35.7

RNNLM-80 0.168 37.5
RNNLM-320 0.214 39.1
RNNLM-640 0.221 39.2

RNNLM-1600 0.234 41.2

Table 1: Results of measuring relational similarity using
the directional similarity method, evaluated on the train-
ing set. The 1600-dimensional RNNLM vector space
achieves the highest Spearman’s ρ and MaxDiff accuracy.

ferent dimensionality settings: the word embedding
learned from the recurrent neural network language
model (RNNLM)2 and the LSA vectors, both were
trained using the same Broadcast News corpus of
320M words as described in (Mikolov et al., 2011).
All the word vectors were first normalized to unit
vectors before applying the directional similarity
method. Given a target word pair, we computed
its relational similarity compared with the prototyp-
ical word pairs of the same relation. The average
of these measurements was taken as the final model
score. Table 1 summarizes the results when evalu-
ated on the training set. As shown in the table, the
RNNLM vectors consistently outperform their LSA
counterparts with the same dimensionality. In addi-
tion, more dimensions seem to preserve more infor-
mation and lead to better performance. Therefore,
we take the 1600-dimensional RNNLM vectors to
construct our final directional similarity model.

4.2 Lexical Pattern Model

Our second model for measuring relational similar-
ity is built based on lexical patterns. It is well-known
that contexts in which two words co-occur often pro-
vide useful cues for identifying the word relation.
For example, having observed frequent text frag-
ments like “X such as Y”, it is likely that there is a
Class-Inclusion:Taxonomic relation between X and
Y; namely, Y is a type of X. Indeed, by mining lexical
patterns from a large corpus, the UTD system (Rink
and Harabagiu, 2012) managed to outperform other
participants in the SemEval-2012 task of measuring
relational similarity.

2http://www.fit.vutbr.cz/˜imikolov/rnnlm

In order to find more co-occurrences of each pair
of words, we used a large document set that con-
sists of the Gigaword corpus (Parker et al., 2009),
Wikipedia and LA Times articles3, summing up to
more than 20 Gigabytes of texts. For each word
pair (w1, w2) that co-occur in a sentence, we col-
lected the words in between as its context (or so-
called “raw pattern”). For instance, “such as” would
be the context extracted from “X such as Y” for
the word pair (X, Y). To reduce noise, contexts with
more than 9 words were dropped and 914,295 pat-
terns were collected in total.

Treating each raw pattern as a feature where the
value is the logarithm of the occurrence count, we
then built a probabilistic classifier to determine the
association of the context and relation. For each re-
lation, we treated all its word pairs as positive ex-
amples and all the word pairs in other relations as
negative examples4. 79 classifiers were trained in
total, where each one was trained using 3,218 ex-
amples. The degree of relational similarity of each
word pair can then be judged by the output of the
corresponding classifier5. Although this seems like a
standard supervised learning setting, the large num-
ber of features poses a challenge here. Using almost
1M features and 3,218 examples, the model could
easily overfit if not regularized properly, which may
explain why learning SVMs on pattern features per-
formed poorly (Rink and Harabagiu, 2012). In-
stead of employing explicit feature selection meth-
ods, we used an efficient L1 regularized log-linear
model learner (Andrew and Gao, 2007) and chose
the hyper-parameters based on model performance
on the training data. The final models we chose
were trained with L1 = 3, where 28,065 features
in average were selected automatically by the algo-

3We used a Nov-2010 dump of English Wikipedia, which
contains approximately 917M words after pre-processing. The
LA Times corpus consists of articles from 1985 to 2002 and has
about 1.1B words.

4Given that not all word pairs belonging to the same relation
category are equally good, removing those with low judgment
scores may help improve the quality of the labeled data. We
leave this study to future work.

5Training a separate classifier for each MaxDiff question us-
ing all words pairs except the four target pairs appears to be a
better setting, as it would avoid including the target pairs in the
training process. We did not use this setting because it is more
complicated and performed roughly the same empirically.
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rithm. The performance on the training data is 0.322
in Spearman’s ρ and 41.8% in MaxDiff accuracy.

4.3 Word Relation Models

The directional similarity and lexical pattern mod-
els can be viewed as general purpose methods for
relational similarity as they do not differentiate the
specific relation categories. In contrast, for specific
word relations, there exist several high-quality meth-
ods. Although they are designed for detecting spe-
cific relations between words, incorporating them
could still improve the overall results. Next, we ex-
plore the use of some of these word relation mod-
els, including information encoded in the knowledge
base and a lexical semantic model for synonymy and
antonymy.

4.3.1 Knowledge Bases

Predetermined types of relations can often be
found in existing lexical and knowledge databases,
such as WordNet’s Is-A taxonomy and the exten-
sive relations stored in the NELL (Carlson et al.,
2010) knowledge base. Although in theory, these
resources can be directly used to solve the problem
of relational similarity, such direct approaches often
suffer from two practical issues. First, the word cov-
erage of these databases is usually very limited and
it is common that the relation of a given word pair
is absent. Second, the degree of relation is often not
included, which makes the task of measuring the de-
gree of relational similarity difficult.

One counter example, however, is Probase (Wu
et al., 2012), which is a knowledge base that es-
tablishes connections between more than 2.5 mil-
lion concepts discovered automatically from the
Web. For the Is-A and Attribute relations it en-
codes, Probase also returns the probability that two
input words share the relation, based on the co-
occurrence frequency. We used some relations in
the training set to evaluate the quality of Probase.
For instance, its Is-A model performs exception-
ally well on the relation Class-Inclusion:Taxonomic,
reaching a high Spearman’s ρ = 0.642 and MaxD-
iff accuracy 55.8%. Similarly, its Attribute model
performs better than our lexical pattern model
on Attribute:Agent Attribute-State with Spearman’s
ρ = 0.290 and MaxDiff accuracy 32.7%.

4.3.2 Lexical Semantics Measures
Most lexical semantics measures focus on the se-

mantic similarity or relatedness of two words. Since
our task focuses on distinguishing the difference be-
tween word pairs in the same relation category. The
crude relatedness model does not seem to help in our
preliminary experimental study. Instead, we lever-
age the recently proposed polarity-inducing latent
semantic analysis (PILSA) model (Yih et al., 2012),
which specifically estimates the degree of synonymy
and antonymy. This method first forms a signed co-
occurrence matrix using synonyms and antonyms in
a thesaurus and then generalizes it using a low-rank
approximation derived by SVD. Given two words,
the cosine score of their PILSA vectors tend to be
negative if they are antonymous and positive if syn-
onymous. When tested on the Similar:Synonymity
relation, it has a Spearman’s ρ = 0.242 and MaxD-
iff accuracy 42.1%, both are better than those of our
directional similarity and lexical pattern models.

5 Model Combination

In order to fully leverage the diverse models pro-
posed in Sec. 4, we experiment with a model combi-
nation approach and conduct a model ablation study.
Performance of the combined and individual models
is evaluated using the test set and compared with ex-
isting systems.

We seek an optimal linear combination of all the
individual models by treating their output as fea-
tures and use a logistic regression learner to learn
the weights6. The training setting is essentially the
same as the one used to learn the lexical pattern
model (Sec. 4.2). For each relation, we treat all the
word pairs in this relation group as positive exam-
ples and all other word pairs as negative ones. Con-
sequently, 79 sets of weights for model combination
are learned in total. The average Spearman’s ρ of the
10 training relations is used for selecting the values
of the L1 and L2 regularizers7. Evaluated on the re-
maining 69 relations (i.e., the test set), the average
results of each main relation group and the overall

6Nonlinear methods, such as MART (Friedman, 2001), do
not perform better in our experiments (not reported here).

7We tested 15 combinations, where L1 ∈ {0, 0.01, 0.1} and
L2 ∈ {0, 0.001, 0.01, 1, 10}. The parameter setting that gave
the highest Spearman rank correlation coefficient score on the
training set was selected.
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Relation Group Rand. BUAP DuluthV 0 UTDNB DS Pat. IsA Attr. PILSA Com.
Class-Inclusion 0.057 0.064 0.045 0.233 0.350 0.422 0.619 -0.137 0.029 0.519

Part-Whole 0.012 0.066 -0.061 0.252 0.317 0.244 -0.014 0.026 -0.010 0.329
Similar 0.026 -0.036 0.183 0.214 0.254 0.245 -0.020 0.133 0.058 0.303

Contrast -0.049 0.000 0.142 0.206 0.063 0.298 -0.012 -0.032 -0.079 0.268
Attribute 0.037 -0.095 0.044 0.158 0.431 0.198 -0.008 0.016 -0.052 0.406

Non-Attribute -0.070 0.009 0.079 0.098 0.195 0.117 0.036 0.078 -0.093 0.296
Case Relations 0.090 -0.037 -0.011 0.241 0.503 0.288 0.076 -0.075 0.059 0.473
Cause-Purpose -0.011 0.114 0.021 0.183 0.362 0.234 0.044 -0.059 0.038 0.296

Space-Time 0.013 0.035 0.055 0.375 0.439 0.248 0.064 -0.002 -0.018 0.443
Reference 0.142 -0.001 0.028 0.346 0.301 0.119 0.033 -0.123 0.021 0.208

Average 0.018 0.014 0.050 0.229 0.324† 0.235 0.058‡ -0.010‡ -0.009‡ 0.353‡

Relation Group Rand. BUAP DuluthV 0 UTDNB DS Pat. IsA Attr. PILSA Com.
Class-Inclusion 30.1 29.0 26.7 39.1 46.7 43.4 59.6 24.7 32.3 51.2

Part-Whole 31.9 35.1 29.4 40.9 43.9 38.1 31.3 29.5 31.0 42.9
Similar 31.5 29.1 37.1 39.8 38.5 38.4 30.8 36.3 34.2 43.3

Contrast 30.4 32.4 38.3 40.9 33.6 42.2 32.3 31.8 30.1 42.8
Attribute 30.2 29.2 31.9 36.5 47.9 38.3 30.7 31.0 28.8 48.3

Non-Attribute 28.9 30.4 36.0 36.8 38.7 36.7 32.3 32.8 27.7 42.6
Case Relations 32.8 29.5 28.2 40.6 54.3 42.2 32.8 25.7 31.0 50.6
Cause-Purpose 30.8 35.4 29.5 36.3 45.3 38.0 30.3 28.1 32.0 41.7

Space-Time 30.6 32.5 31.9 43.2 50.0 39.2 33.2 29.3 30.6 47.7
Reference 35.1 30.0 31.9 41.2 45.7 36.9 30.4 27.2 30.2 42.5

Average 31.2 31.7 32.4 39.4 44.5‡ 39.2 33.3‡ 29.8‡ 30.7‡ 45.2‡

Table 2: Average Spearman’s ρ (Top) and MaxDiff accuracy (%) (Bottom) of each major relation group and all 69
testing relations. The best result in each row is highlighted in boldface font. Statistical significance tests are conducted
by comparing each of our systems with the previous best performing system, UTDNB . † and ‡ indicate the difference
in the average results is statistically significant with 95% or 99% confidence level, respectively.

results are presented in Table 2. For comparison, we
also show the performance of a random baseline and
the best performing system of each participant in the
SemEval-2012 task.

We draw two conclusions from this table. First,
both of our general relational similarity models, the
directional similarity (DS) and lexical pattern (Pat)
models are fairly strong. The former outperforms
the previous best system UTDNB in both Spear-
man’s ρ and MaxDiff accuracy, where the differ-
ences are statistically significant8; the latter has
comparable performance, where the differences are
not statistically significant. In contrast, while the
IsA relation from Probase is exceptionally good
in identifying Class-Inclusion relations, with high
Spearman’s ρ = 0.619 and MaxDiff accuracy

8We conducted a paired-t test on the results of each of the
69 relation. The difference is considered statistically significant
if the p-value is less than 0.05.

59.6%, it does not have high correlations with hu-
man judgments in other relations. Like in the case of
Probase Attribute and PILSA, specific word-relation
models individually are not good measures for gen-
eral relational similarity. Second, as expected, com-
bining multiple diverse models (Com) is a robust
strategy, which provides the best overall perfor-
mance. It achieves superior results in both evalua-
tion metrics compared to UTDNB and only a lower
Spearman’s ρ value in one of the ten relation groups
(namely, Reference). The differences are statisti-
cally significant with p-value less than 10−3.

In order to understand the interaction among dif-
ferent component models, we conducted an ablation
study by iteratively removing one model from the fi-
nal combination. The weights are re-trained using
the same procedure that finds the best regularization
parameters with the help of training data. Table 3
summarizes the results and compares them with the
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Spearman’s ρ MaxDiff Accuracy (%)
Relation Group Com. -Attr -IsA -PILSA -DS -Pat Com. -Attr -IsA -PILSA -DS -Pat
Class-Inclusion 0.519 0.557 0.467 0.593 0.490 0.570 51.2 53.7 49.2 54.6 49.3 56.2

Part-Whole 0.329 0.326 0.335 0.331 0.277 0.285 42.9 42.1 42.6 41.8 38.5 42.9
Similar 0.303 0.269 0.302 0.281 0.256 0.144 43.3 41.2 42.7 40.5 40.2 38.9

Contrast 0.268 0.234 0.267 0.289 0.260 0.156 42.8 42.0 42.4 41.5 42.7 38.1
Attribute 0.406 0.409 0.405 0.433 0.164 0.447 48.3 47.8 48.2 49.1 36.9 49.0

Non-Attribute 0.296 0.287 0.296 0.276 0.123 0.283 42.6 42.9 42.6 41.8 36.0 43.0
Case Relations 0.473 0.497 0.470 0.484 0.309 0.498 50.6 52.5 50.2 50.9 42.9 53.2
Cause-Purpose 0.296 0.282 0.299 0.301 0.205 0.296 41.7 41.6 41.6 41.2 36.6 44.1

Space-Time 0.443 0.425 0.443 0.420 0.269 0.431 47.7 47.2 47.7 46.9 40.5 49.5
Reference 0.208 0.238 0.205 0.168 0.102 0.210 42.5 42.3 42.6 41.8 36.1 41.4

Average 0.353 0.348 0.350 0.354 0.238‡ 0.329 45.2 45.0 44.9‡ 44.7 39.6‡ 45.4

Table 3: Average Spearman’s ρ and MaxDiff accuracy results of different model combinations. Com indicates combin-
ing all models, where other columns show the results when the specified model is removed. The best result in each row
is highlighted in boldface font. Statistical significance tests are conducted by comparing each ablation configuration
with Com. ‡ indicates the difference in the average results is statistically significant with 99% confidence level.

original combination model.
Overall, it is clear that the directional similarity

method based on RNNLM vectors is the most crit-
ical component model. Removing it from the fi-
nal combination decreases both the Spearman’s ρ
and MaxDiff accuracy by a large margin; both dif-
ferences (Com vs. -DS) are statistically significant.
The Probase IsA model also has an important im-
pact on the performance on the Class-Inclusion re-
lation group. Eliminating the IsA model makes
the overall MaxDiff accuracy statistically signifi-
cantly lower (Com vs. -IsA). Again, the benefits
of incorporating Probase Attribute and PILSA mod-
els are not clear. Removing them from the final
combination lowers the MaxDiff accuracy, but nei-
ther the difference in Spearman’s ρ nor MaxDiff
accuracy is statistically significant. Compared to
the RNNLM directional similarity model, the lex-
ical pattern model seems less critical. Removing
it lowers the Similar and Contrast relation groups,
but improves some other relation groups like Class-
Inclusion and Case Relations. The final MaxDiff ac-
curacy becomes slightly higher but the Spearman’s
ρ drops a little (Com vs. -Pat); neither is statistically
significant.

Notice that the main purpose of the ablation study
is to verify the importance of an individual compo-
nent model when a significant performance drop is
observed after removing it. However, occasionally
the overall performance may go up slightly. Typi-

cally this is due to the fact that some models do not
provide useful signals to a particular relation, but in-
stead introduce more noise. Such effects can often
be alleviated when there are enough quality training
data, which is unfortunately not the case here.

6 Conclusions

In this paper, we presented a system that combines
heterogeneous models based on different informa-
tion sources for measuring relational similarity. Our
two individual general-purpose relational similarity
models, directional similarity and lexical pattern
methods, perform strongly when compared to ex-
isting systems. After incorporating specific word-
relation models, the final system sets a new state-of-
the-art on the SemEval-2012 task 2 test set, achiev-
ing Spearman’s ρ = 0.353 and MaxDiff accuracy
45.4% – resulting in 54.1% and 14.7% relative im-
provement in these two metrics, respectively.

Despite its simplicity, our directional similarity
approach provides a robust model for relational sim-
ilarity and is a critical component in the final sys-
tem. When the lexical pattern model is included, our
overall model combination method can be viewed
as a two-stage learning system. As demonstrated in
our work, with an appropriate regularization strat-
egy, high-quality models can be learned in both
stages. Finally, as we observe from the positive ef-
fect of adding the Probase IsA model, specific word-
relation models can further help improve the system
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although they tend to cover only a small number of
relations. Incorporating more such models could be
a steady path to enhance the final system.

In the future, we plan to pursue several research
directions. First, as shown in our experimental re-
sults, the model combination approach does not al-
ways outperform individual models. Investigating
how to select models to combine for each specific re-
lation or relation group individually will be our next
step for improving this work. Second, because the
labeling process of relational similarity comparisons
is inherently noisy, it is unrealistic to request a sys-
tem to correlate human judgments perfectly. Con-
ducting some user study to estimate the performance
ceiling in each relation category may help us focus
on the weaknesses of the final system to enhance
it. Third, it is intriguing to see that the directional
similarity model based on the RNNLM vectors per-
forms strongly, even though the RNNLM training
process is not related to the task of relational sim-
ilarity. Investigating the effects of different vector
space models and proposing some theoretical jus-
tifications are certainly interesting research topics.
Finally, we would like to evaluate the utility our ap-
proach in other applications, such as the SAT anal-
ogy problems proposed by Turney (2006) and ques-
tion answering.
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Abstract

Hidden properties of social media users, such
as their ethnicity, gender, and location, are of-
ten reflected in their observed attributes, such
as their first and last names. Furthermore,
users who communicate with each other of-
ten have similar hidden properties. We pro-
pose an algorithm that exploits these insights
to cluster the observed attributes of hundreds
of millions of Twitter users. Attributes such
as user names are grouped together if users
with those names communicate with other
similar users. We separately cluster millions
of unique first names, last names, and user-
provided locations. The efficacy of these clus-
ters is then evaluated on a diverse set of clas-
sification tasks that predict hidden users prop-
erties such as ethnicity, geographic location,
gender, language, and race, using only pro-
file names and locations when appropriate.
Our readily-replicable approach and publicly-
released clusters are shown to be remarkably
effective and versatile, substantially outper-
forming state-of-the-art approaches and hu-
man accuracy on each of the tasks studied.

1 Introduction

There is growing interest in automatically classify-
ing users in social media by various hidden prop-
erties, such as their gender, location, and language
(e.g. Rao et al. (2010), Cheng et al. (2010), Bergsma
et al. (2012)). Predicting these and other proper-
ties for users can enable better advertising and per-
sonalization, as well as a finer-grained analysis of
user opinions (O’Connor et al., 2010), health (Paul

and Dredze, 2011), and sociolinguistic phenomena
(Eisenstein et al., 2011). Classifiers for user prop-
erties often rely on information from a user’s social
network (Jernigan and Mistree, 2009; Sadilek et al.,
2012) or the textual content they generate (Pennac-
chiotti and Popescu, 2011; Burger et al., 2011).

Here, we propose and evaluate classifiers that bet-
ter exploit the attributes that users explicitly provide
in their user profiles, such as names (e.g., first names
like Mary, last names like Smith) and locations (e.g.,
Brasil). Such attributes have previously been used as
“profile features” in supervised user classifiers (Pen-
nacchiotti and Popescu, 2011; Burger et al., 2011;
Bergsma et al., 2012). There are several motivations
for exploiting these data. Often the only informa-
tion available for a user is a name or location (e.g.
for a new user account). Profiles also provide an
orthogonal or complementary source of information
to a user’s social network and textual content; gains
based on profiles alone should therefore add to gains
based on other data. The decisions of profile-based
classifiers could also be used to bootstrap training
data for other classifiers that use complementary fea-
tures.

Prior work has encoded profile attributes via lex-
ical or character-based features (e.g. Pennacchiotti
and Popescu (2011), Burger et al. (2011), Bergsma
et al. (2012)). Unfortunately, due to the long-tailed
distribution of user attributes, a profile-based classi-
fier will encounter many examples at test time that
were not observed during training. For example,
suppose a user wassim hassan gives their location as
tanger. If the attribute tokens wassim, hassan, and
tanger do not occur in training (nor indicative sub-
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strings), then a classifier can only guess at the user’s
ethnicity and location. In social media, the preva-
lence of fake names and large variations in spelling,
slang, and language make matters worse.

Our innovation is to enhance attribute-based clas-
sifiers with new data, derived from the communica-
tions of Twitter users with those attributes. Users
with the name tokens wassim and hassan often talk
to users with Arab names like abdul and hussein.
Users listing their location as tanger often talk to
users from morocco. Since users who communicate
often share properties such as ethnicity and location
(§8), the user wassim hassan might be an Arab who
uses the French spelling of the city Tangier.

Our challenge is to encode these data in a form
readily usable by a classifier. Our approach is to
represent each unique profile attribute (e.g. tanger
or hassan) as a vector that encodes the communi-
cation pattern of users with that attribute (e.g. how
often they talk to users from morocco, etc.); we then
cluster the vectors to discover latent groupings of
similar attributes. Based on transitive (third party)
connections, tanger and tangier can appear in the
same cluster, even if no two users from these loca-
tions talk directly. To use the clusters in an attribute-
based classifier, we add new features that indicate
the cluster memberships of the attributes. Clustering
thus lets us convert a high-dimensional space of all
attribute pairs to a low-dimensional space of cluster
memberships. This makes it easier to share our data,
yields fewer parameters for learning, and creates at-
tribute groups that are interpretable to humans.

We cluster names and locations in a very large
corpus of 168 million Twitter users (§2) and use a
distributed clustering algorithm to separately clus-
ter millions of first names, last names, and user-
provided locations (§3). We evaluate the use of our
cluster data as a novel feature in supervised classi-
fiers, and compare our result to standard classifiers
using character and token-level features (§4). The
cluster data enables significantly improved perfor-
mance in predicting the gender, location, and lan-
guage of social media users, exceeding both ex-
isting state-of-the-art machine and human perfor-
mance (§6). Our cluster data can likewise im-
prove performance in other domains, on both es-
tablished and new NLP tasks as further evaluated
in this paper (§6). We also propose a way to

First names: maria, david, ana, daniel, michael, john,
alex, jessica, carlos, jose, chris, sarah, laura, juan
Last names: silva, santos, smith, garcia, oliveira, ro-
driguez, jones, williams, johnson, brown, gonzalez
Locations: brasil, indonesia, philippines, london,
jakarta, são paulo, rio de janeiro, venezuela, brazil

Table 1: Most frequent profile attributes for our collection
of 168 million Twitter users, in descending order

enhance a geolocation system by using commu-
nication patterns, and show strong improvements
over a hand-engineered baseline (§7). We share
our clusters with the community to use with other
tasks. The clusters, and other experimental data, are
available for download from www.clsp.jhu.edu/

~sbergsma/TwitterClusters/.

2 Attribute Associations on Twitter

Data and Processing Our raw Twitter data com-
prises the union of 2.2 billion tweets from 05/2009
to 10/2010 (O’Connor et al., 2010), 1.8 billion
tweets collected from 07/2011 to 08/2012, and 80
million tweets collected from followers of 10 thou-
sand location and language-specific Twitter feeds.

We implemented each stage of processing using
MapReduce (Dean and Ghemawat, 2008). The total
computation (from extracting profiles to clustering
attributes) was 1300 days of wall-clock CPU time.

Attribute Extraction Tweets provide the name
and self-reported location of the tweeter. We find
126M unique users with these attributes in our data.
When tweets mention other users via an @user con-
struction, Twitter also includes the profile name of
the mentioned user; we obtain a further 42M users
from these cases. We then normalize the extracted
attributes by converting to lower-case, deleting sym-
bols, numbers, and punctuation, and removing com-
mon honorifics and suffixes like mr/mrs and jr/sr.
Common prefixes like van and de la are joined to
the last-name token.1 This processing yields 8.3M

1www.clsp.jhu.edu/~sbergsma/TwitterClusters/

also provides our scripts for normalizing attributes. The scripts
can be used to ensure consistency/compatibility between
arbitrary datasets and our shared cluster data. Note we use no
special processing for the companies, organizations, and spam-
mers among our users, nor for names arising from different
conventions (e.g. 1-word names, reversed first/last names).
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henrik: fredrik 5.87, henrik 5.82, anders 5.73, johan
5.69, andreas 5.59, martin 5.54, magnus 5.41
courtney: taylor 8.03, ashley 7.92, courtney 7.92,
emily 7.91, lauren 7.82, katie 7.72, brittany 7.69
ilya: sergey 5.85, alexey 5.62, alexander 5.59, dmitry
5.51, Àëåêñàíäð 5.46, anton 5.44, andrey 5.40

Table 2: Top associates and PMIs for three first names.

unique locations, 7.4M unique last names, and 5.5M
unique first names. These three sets provide the tar-
get attributes that we cluster in §3. Table 1 shows
the most frequent names in each of these three sets.

User-User Links We extract each user mention as
an undirected communication link between the user
tweeting and the mentioned user (including self-
mentions but not retweets). We consider each user-
user link as a single event; we count it once no mat-
ter how often two specific users interact. We extract
436M user-user links in total.

Attribute-Attribute Pairs We use our profile data
to map each user-user link to an attribute-attribute
pair; we separately count each pair of first names,
last names, and locations. For example, the first-
name pair (henrik, fredrik) occurs 181 times. Rather
than using the raw count, we calculate the associa-
tion between attributes a1 and a2 via their pointwise
mutual information (PMI), following prior work in
distributional clustering (Lin and Wu, 2009):

PMI(a1, a2) = log
P(a1, a2)

P(a1)P(a2)

PMI essentially normalizes the co-occurrence by
what we would expect if the attributes were indepen-
dently distributed. We smooth the PMI by adding a
count of 0.5 to all co-occurrence events.

The most highly-associated name attributes re-
flect similarities in ethnicity and gender (Table 2).
The most highly-ranked associates for locations are
often nicknames and alternate/misspellings of those
locations. For example, the locations charm city,
bmore, balto, westbaltimore, b a l t i m o r e, bal-
timoreee, and balitmore each have the U.S. city of
baltimore as their highest-PMI associate. We show
how this can be used to help geolocate users (§7).

3 Attribute Clustering

Representation We first represent each target at-
tribute as a feature vector, where each feature corre-
sponds to another attribute of the same type as the
target and each value gives the PMI between this at-
tribute and the target (as in Table 2).2 To help cluster
the long-tail of infrequent attributes, we also include
orthographic features. For first and last names, we
have binary features for the last 2 characters in the
string. For locations, we have binary features for
(a) any ideographic characters in the string and (b)
each token (with diacritics removed) in the string.
We normalize the feature vectors to unit length.

Distributed K-Means Clustering Our approach
to clustering follows Lin and Wu (2009) who used k-
means to cluster tens of millions of phrases. We also
use cosine similarity to compute the closest centroid
(i.e., we use the spherical k-means clustering algo-
rithm (Dhillon and Modha, 2001)). We keep track
of the average cosine similarity between each vector
and its nearest centroid; this average is guaranteed
to increase at each iteration.

Like Lin and Wu (2009), we parallelize the al-
gorithm using MapReduce. Each mapper finds the
nearest centroids for a portion of the vectors, while
also computing the partial sums of the vectors as-
signed to each centroid. The mappers emit the cen-
troid IDs as keys and the partial sums as values.
The Reducer aggregates the partial sums from each
partition and re-normalizes each sum vector to unit
length to obtain the new centroids. We also use an
inverted index at each iteration that, for each input
feature, lists which centroids each feature belongs
to. Using this index greatly speeds up the centroid
similarity computations.

Clustering Details We cluster with nine separate
configurations: over first names, last names, and lo-
cations, and each with 50, 200, and 1000 cluster
centroids (denoted C50, C200, and C1000). Since k-

2We decided to restrict the features for a target to be at-
tributes of the same type (e.g., we did not use last name as-
sociations for a first name target) because each attribute type
conveys distinct information. For example, first names convey
gender and age more than last names. By separately cluster-
ing representations using first names, last names, and locations,
each clustering can capture its own distinct latent-class associa-
tions.
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Cluster 463 (Serbian): pavlović, jovanovic, jo-
vanović, stanković, srbija, marković, petrović,
radovic, nenad, milenkovic, nikolic, sekulic, todor-
ovic, stojanovic, petrovic, aleksic, ilic, markovic
Cluster 544 (Black South African): ngcobo, nkosi,
dlamini, ndlovu, mkhize, mtshali, sithole, mathebula,
mthembu, khumalo, ngwenya, shabangu, nxumalo,
buthelezi, radebe, mabena, zwane, mbatha, sibiya
Cluster 449 (Turkish): şahin, çelik, öztürk, koç, çakır,
karataş, aktaş, güngör, özkan, balcı, gümüş, akkaya,
genç, sarı, yüksel, güneş, yiğit, yalçın, orhan, sağlam,
güler, demirci, küçük, yavuz, bayrak, özcan, altun
Cluster 656 (Indonesian): utari, oktaviana, apriani,
mustika, septiana, febrianti, kurniawati, indriani, nur-
janah, septian, cahya, anggara, yuliani, purnamasari,
sukma, wijayanti, pramesti, ningrum, yanti, wulansari

Table 3: Example C1000 last-name clusters

Cluster 56 [sim=0.497]: gregg, bryn, bret, stewart,
lyndsay, howie, elyse, jacqui, becki, rhett, meaghan,
kirstie, russ, jaclyn, zak, katey, seamus, brennan,
fraser, kristie, stu, jaimie, kerri, heath, carley, griffin
Cluster 104 [sim=0.442]: stephon, devonte, deion,
demarcus, janae, tyree, jarvis, donte, dewayne, javon,
destinee, tray, janay, tyrell, jamar, iesha, chyna,
jaylen, darion, lamont, marquise, domonique, alexus
Cluster 132 [sim=0.292]: moustafa, omnya, menna-
tallah, ÐC�@


, shorouk, ragab, ø





ñË, radwa, moemen,

mohab, hazem, yehia, �
é K
Q k, Z @Qå� @, mennah, ø



Qå� Ó,

abdelrahman, ù



	
®¢�Ó, H.

	Qk, QÓA
�
K, nermeen, hebatallah

...

Table 4: C200 soft clustering for first name yasmeen

means is not guaranteed to reach a global optimum,
we use ten different random initializations for each
configuration, and select the one with the highest av-
erage similarity after 20 iterations. We run this one
for an additional 30 iterations and take the output as
our final set of centroids for that configuration.

The resulting clusters provide data that could help
classify hidden properties of social media users. For
example, Table 3 shows that last names often clus-
ter by ethnicity, even at the sub-national level (e.g.
Zulu tribe surnames nkosi, dlamini, mathebula, etc.).
Note the Serbian names include two entries that are
not last names: srbija, the Serbian word for Serbia,
and nenad, a common Serbian first name.

Soft Clustering Rather than assigning each at-
tribute to its single highest-similarity cluster, we can
assign each vector to its N most similar clusters.
These soft-cluster assignments often reflect different
social groups where a name or location is used. For
example, the name yasmeen is similar to both com-
mon American names (Cluster 56), African Ameri-
can names (Cluster 104), and Arabic names (Clus-
ter 132) (Table 4). As another example, the C1000

assignments for the location trujillo comprise sep-
arate clusters containing towns and cities in Peru,
Venezuela, Colombia, etc., reflecting the various
places in the Latin world with this name. In general,
the soft cluster assignment is a low-dimensional rep-
resentation of each of our attributes. Although it can
be interpretable to humans, it need not be in order to
be useful to a classifier.

4 Classification with Cluster Features

Our motivating problem is to classify users for hid-
den properties such as their gender, location, race,
ethnicity, and language. We adopt a discriminative
solution. We encode the relevant data for each in-
stance in a feature vector and train a (linear) support
vector machine classifier (Cortes and Vapnik, 1995).
SVMs represent the state-of-the-art on many NLP
classification tasks, but other classifiers could also
be used. For multi-class classification, we use a one-
versus-all strategy, a competitive approach on most
multi-class problems (Rifkin and Klautau, 2004).

The input to our system is one or more observed
user attributes (e.g. name and location fields from
a user profile). We now describe how features are
created from these attributes in both state-of-the-art
systems and via our new cluster data.

Token Features (Tok) are binary features that in-
dicate the presence of a specific attribute (e.g., first-
name=bob). Burger et al. (2011) and Bergsma et al.
(2012) used Tok features to encode user profile fea-
tures. For multi-token fields (e.g. location), our Tok
features also indicate the specific position of each
token (e.g., loc1=são, loc2=paulo, locN =brasil).

Character N-gram Features (Ngm) give the
count of all character n-grams of length 1-to-4 in the
input. Ngm features have been used in user classifi-
cation (Burger et al., 2011) and represent the state-
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of-the-art in detecting name ethnicity (Bhargava and
Kondrak, 2010). We add special begin/end charac-
ters to the attributes to mark the prefix and suffix po-
sitions. We also use a smoothed log-count; we found
this to be most effective in preliminary work.

Cluster Features (Clus) indicate the soft-cluster
memberships of the attributes. We have features for
the top-2, 5, and 20 most similar clusters in the C50,
C200, and C1000 clusterings, respectively. Like Lin
and Wu (2009), we “side-step the matter of choos-
ing the optimal value k in k-means” by using fea-
tures from clusterings at different granularities. Our
feature dimensions correspond to cluster IDs; fea-
ture values give the similarity to the cluster centroid.
Other strategies (e.g. hard clustering, binary fea-
tures) were less effective in preliminary work.

5 Classification Experiments

5.1 Methodology

Our main objective is to assess the value of us-
ing cluster features (Clus). We add these features
to classifiers using Tok+Ngm features, which repre-
sents the current state-of-the-art. We compare these
feature settings on both Twitter tasks (§5.2) and
tasks not related to social-media (§5.3). For each
task, we randomly divide the gold standard data into
50% train, 25% development and 25% test, unless
otherwise noted. As noted above, the gold-standard
datasets for all of our experiments are available for
download. We train our SVM classifiers using the
LIBLINEAR package (Fan et al., 2008). We optimize
the classifier’s regularization parameter on develop-
ment data, and report our final results on the held-
out test examples. We report accuracy: the propor-
tion of test examples classified correctly. For com-
parison, we report the accuracy of a majority-class
baseline on each task (Base).

Classifying hidden properties of social media
users is challenging (Table 5). Pennacchiotti and
Popescu (2011) even conclude that “profile fields do
not contain enough good-quality information to be
directly used for user classification.” To provide in-
sight into the difficulty of the tasks, we had two hu-
mans annotate 120 examples from each of the test
sets, and we average their results to give a “Human”
performance number. The two humans are experts in

Country: 53 possible countries
United States courtland dante cali baby
United States tinas twin on the court
Brazil thamires gomez macapá ap
Denmark marte clason NONE
Lang. ID: 9 confusable languages
Bulgarian valentina getova NONE
Russian borisenko yana edinburgh
Bulgarian NONE blagoevgrad
Ukrainian andriy kupyna ternopil
Farsi kambiz barahouei NONE
Urdu musadiq sanwal jammu
Ethnicity: 13 European ethnicities
German dennis hustadt
Dutch bernhard hofstede
French david coste
Swedish mattias bjarsmyr
Portuguese helder costa
Race: black or white
black kerry swain
black darrell foskey
white ty j larocca
black james n jones
white sean p farrell

Table 5: Examples of class (left) and input (names, loca-
tions) for some of our evaluation tasks.

this domain and have very wide knowledge of global
names and locations.

5.2 Twitter Applications
Country A number of recent papers have consid-
ered the task of predicting the geolocation of users,
using both user content (Cheng et al., 2010; Eisen-
stein et al., 2010; Hecht et al., 2011; Wing and
Baldridge, 2011; Roller et al., 2012) and social net-
work (Backstrom et al., 2010; Sadilek et al., 2012).

Here, we first predict user location at the level of
the user’s location country. To our knowledge, we
are the first to exploit user locations and names for
this prediction. For this task, we obtain gold data
from the portion of Twitter users who have GPS en-
abled (geocoded tweets). We were able to obtain a
very large number of gold instances for this task, so
selected only 10K for testing, 10K for development,
and retained the remaining 782K for training.

Language ID Identifying the language of users
is an important prerequisite for building language-
specific social media resources (Tromp and Pech-
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enizkiy, 2011; Carter et al., 2013). Bergsma et al.
(2012) recently released a corpus of tweets marked
for one of nine languages grouped into three confus-
able character sets: Arabic, Farsi, and Urdu tweets
written in Arabic characters; Hindi, Nepali, and
Marathi written in Devanagari, and Russian, Bulgar-
ian, and Ukrainian written in Cyrillic. The tweets
were marked for language by native speakers via
Amazon Mechanical Turk. We again discard the
tweet content and extract each user’s first name, last
name, and user location as our input data, while tak-
ing the annotated language as the class label.

Gender We predict whether a Twitter user is male
or female using data from Burger et al. (2011). This
data was created by linking Twitter users to struc-
tured profile pages on other websites where users
must select their gender. Unlike prior systems using
this data (Burger et al., 2011; Van Durme, 2012), we
make the predictions using only user names.

5.3 Other Applications

Origin Knowing the origin of a name can improve
its automatic pronunciation (Llitjos and Black,
2001) and transliteration (Bhargava and Kondrak,
2010). We evaluate our cluster data on name-origin
prediction using a corpus of names marked as ei-
ther Indian or non-Indian by Bhargava and Kondrak
(2010). Since names in this corpus are not marked
for entity type, we include separate cluster features
from both our first and last name clusters.

Ethnicity We also evaluate on name-origin data
from Konstantopoulos (2007). This data derives
from lists of football players on European national
teams; it marks each name (with diacritics removed)
as arising from one of 13 European languages. Fol-
lowing prior work, we test in two settings: (1) using
last names only, and (2) using first and last names.

Race We also evaluate our ability to identify eth-
nic groups at a sub-national level. To obtain data
for this task, we mined the publicly-available arrest
records on mugshots.com for the U.S. state of New
Jersey (a small but diverse and densely-populated
area). Over 99% of users were listed as either black
or white, and we structure the task as a binary clas-
sification problem between these two classes. We
predict the race of each person based purely on their

name; this contrasts with prior work in social media
which looked at identifying African Americans on
the basis of their Twitter content (Eisenstein et al.,
2011; Pennacchiotti and Popescu, 2011).

6 Classification Results

Table 6 gives the results on each task. The system in-
corporating our novel Clus features consistently im-
proves over the Ngm+Tok system; all differences be-
tween All and Ngm+Tok are significant (McNemar’s,
p<0.01). The relative reduction in error from adding
Clus features ranges between 7% and 51%. The All
system including Clus features also exceeds human
performance on all studied tasks.

On Country, the U.S. is the majority class, oc-
curring in 42.5% of cases.3 It is impressive that
All so significantly exceeds Tok+Ngm (86.7% vs.
84.8%); with 782K training examples, we did not
expect such room for improvement. Both names and
locations play an important role: All achieves 66%
using names alone and 70% with only location. On
the subset of data where all three attributes are non-
empty, the full system achieves 93% accuracy.

Both feature classes are likewise important for
Lang. ID; All achieves 67% with only first+last
names, 72% with just locations, but 83% with both.

Our smallest improvement is on Gender. This
task is easier (with higher human/system accuracy)
and has plenty of training data (more data per class
than any other task); there is thus less room to im-
prove. Looking at the feature weights, the strongest-
weighted female cluster apparently captures a sub-
community of Justin Bieber fans (showing loyalty
with “first names” jbieber, belieb, biebz, beliebing,
jbiebs, etc.). Just because a first name like madison
has a high similarity to this cluster does not imply
girls named Madison are Justin Bieber fans; it sim-
ply means that Madisons have similar names to the
friends of Justin Bieber fans (who tend to be girls).
Also, note that while the majority of the 34K users in
our training data are assigned this cluster somewhere
in their soft clustering, only 6 would be assigned this

3We tried other baselines: e.g., we predict countries if they
are substrings of the location (otherwise predicting U.S.); and
we predict countries if they often occur as a string following
the given location in our profile data (e.g., we predict Spain for
Madrid since Madrid, Spain is common). Variations on these
approaches consistently performed between 48% and 56%.
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Task Input Num. Num.
Base Human Tok Ngm Clus

Tok+
All ∆Train Class Ngm

Country first+last+loc 781920 53 42.5 71.7 83.0 84.5 80.2 84.8 86.7 12.5
Lang. ID first+last+loc 2492 9 27.0 74.2 74.6 80.6 71.1 80.4 82.7 11.7
Gender first+last 33805 2 52.4 88.3 85.3 88.6 79.5 89.5 90.2 6.7
Origin entity name 500 2 52.4 80.4 - 75.6 81.2 75.6 88.0 50.8
Ethnicity last 6026 13 20.8 47.9 - 54.6 48.5 54.6 62.4 17.2
Ethnicity first+last 7457 13 21.2 53.3 67.6 77.5 73.6 78.4 81.3 13.4
Race first+last 7977 2 54.7 71.4 80.4 81.6 84.6 82.4 84.6 12.5

Table 6: Task details and accuracy (%) for attribute-based classification tasks. ∆ = relative error reduction (%) of All
(Tok+Ngm+Clus) over Ngm+Tok. All always exceeds both Tok+Ngm and the human performance.

cluster in a hard clustering. This clearly illustrates
the value of the soft clustering representation.

Note the All system performed between 83% and
90% on each Twitter task. This level of performance
strongly refutes the prevailing notion that Twitter
profile information is useless in general (Pennac-
chiotti and Popescu, 2011) and especially for geolo-
cation (Cheng et al., 2010; Hecht et al., 2011).

We now move to applications beyond social me-
dia. Bhargava and Kondrak (2010) have the current
state-of-the-art on Origin and Ethnicity based on an
SVM using character-n-gram features; we reimple-
mented this as Ngm. We obtain a huge improvement
over their work using Clus, especially on Origin
where we reduce error by >50%.4 This improve-
ment can partly be attributed to the small amount of
training data; with fewer parameters to learn, Clus
learns more from limited data than Ngm. We like-
wise see large improvements over the state-of-the-
art on Ethnicity, on both last name and full name
settings.

Finally, Clus features also significantly improve
accuracy on the new Race task. Our cluster data can
therefore help to classify names into sub-national
groups, and could potentially be used to infer other
interesting communities such as castes in India and
religious divisions in many countries.

In general, the relative value of our cluster models
varies with the amount of training data; we see huge
gains on the smaller Origin data but smaller gains
on the large Gender set. Figure 1 shows how per-
formance of Clus and Ngm varies with training data
on Race. Again, Clus is especially helpful with less

4Note Tok is not used here because the input is a single token
and training and test splits have distinct instances.
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Figure 1: Learning curve on Race: Clus perform as well
with 30 training examples as Ngm features do with 1000.

data; thousands of training examples are needed for
Ngm to rival the performance of Clus using only a
handful. Since labeled data is generally expensive
to obtain or in short supply, our method for exploit-
ing unlabeled Twitter data can both save money and
improve top-end performance.

7 Geolocation by Association

There is a tradition in computational linguistics of
grouping words both by the similarity of their con-
text vectors (Hindle, 1990; Pereira et al., 1993; Lin,
1998) and directly by their statistical association in
text (Church and Hanks, 1990; Brown et al., 1992).
While the previous sections explored clusters built
by vector similarity, we now explore a direct appli-
cation of our attribute association data (§2).

We wish to use this data to improve an existing
Twitter geolocation system based on user profile lo-
cations. The system operates as follows: 1) normal-
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ize user-provided locations using a set of regular ex-
pressions (e.g. remove extra spacing, punctuation);
2) look up the normalized location in an alias list;
3) if found, map the alias to a unique string (target
location), corresponding to a structured location ob-
ject that includes geo-coordinates.

The alias list we are currently using is based on
extensive work in hand-writing aliases for the most
popular Twitter locations. For example, the current
aliases for Nashville, Tennessee include nashville,
nashville tn, music city, etc. Our objective is to im-
prove on this human-designed list by automatically
generating aliases using our association data.

Aliases by Association For each target, we pro-
pose new aliases from the target’s top-PMI asso-
ciates (§2). To become an alias, the PMI between
the alias and target must be above a threshold,
the alias must occur more than a fixed number of
times in our profile data, the alias must be within
the top-N1 associates of the target, and the target
must be within the top-N2 associates of the alias.
We merge our automatic aliases with the manually-
written aliases. The new aliases for Nashville, Ten-
nessee include east nashville, nashville tenn, music
city usa, nashvegas, cashville tn, etc.

Experiments To evaluate the geolocation system,
we use tweets from users with GPS enabled (§5.2).
For each tweet, we resolve the location using the
system and compare to the gold coordinates. The
system can skip a location if it does not match the
alias list; more than half of the locations are skipped,
which is consistent with prior work (Hecht et al.,
2011). We evaluate the alias lists using two mea-
sures: (1) its coverage: the percentage of locations it
resolves, and (2) its precision: of the ones resolved,
the percentage that are correct. We define a correct
resolution to be one where the resolved coordinates
are within 50 miles of the gold coordinates.

We use 56K gold tweets to tune the parameters of
our automatic alias-generator, trading off coverage
and precision. We tune such that the system using
these aliases obtains the highest possible coverage,
while being at least as precise as the baseline system.
We then evaluate both the baseline set of aliases and
our new set on 56K held-out examples.

Results On held-out test data, the geolocation sys-
tem using baseline aliases has a coverage of 38.7%
and a precision of 59.5%. Meanwhile, the system
using the new aliases has a coverage of 44.6% and
a precision of 59.4%. With virtually the same pre-
cision, the new aliases are thus able to resolve 15%
more users. This provides an immediate benefit to
our existing Twitter research efforts.

Note that our alias lists can be viewed as clus-
ters of locations. In ongoing work, we are exploring
techniques based on discriminative learning to infer
alias lists using not only Clus information but also
Ngm and Tok features as in the previous sections.

8 Related Work

In both real-world and online social networks, “peo-
ple socialize with people who are like them in terms
of gender, sexual orientation, age, race, education,
and religion” (Jernigan and Mistree, 2009). So-
cial media research has exploited this for two main
purposes: (1) to predict friendships based on user
properties, and (2) to predict user properties based
on friendships. Friendship prediction systems (e.g.
Facebook’s friend suggestion tool) use features such
as whether both people are computer science ma-
jors (Taskar et al., 2003) or whether both are at the
same location (Crandall et al., 2010; Sadilek et al.,
2012). The inverse problem has been explored in the
prediction of a user’s location given the location of
their peers (Backstrom et al., 2010; Cho et al., 2011;
Sadilek et al., 2012). Jernigan and Mistree (2009)
predict a user’s sexuality based on the sexuality of
their Facebook friends, while Garera and Yarowsky
(2009) predict a user’s gender partly based on the
gender of their conversational partner. Jha and El-
hadad (2010) predict the cancer stage of users of
an online cancer discussion board; they derive com-
plementary information for prediction from both the
text a user generates and the cancer stage of the peo-
ple that a user interacts with.

The idea of clustering data in order to provide fea-
tures for supervised systems has been successfully
explored in a range of NLP tasks, including named-
entity-recognition (Miller et al., 2004; Lin and Wu,
2009; Ratinov and Roth, 2009), syntactic chunking
(Turian et al., 2010), and dependency parsing (Koo
et al., 2008; Täckström et al., 2012). In each case,
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the clusters are derived from the distribution of the
words or phrases in text, not from their communica-
tion pattern. It would be interesting to see whether
prior distributional clusters can be combined with
our communication-based clusters to achieve even
better performance. Indeed, there is evidence that
features derived from text can improve the predic-
tion of name ethnicity (Pervouchine et al., 2010).

There has been an explosion of work in recent
years in predicting user properties in social net-
works. Aside from the work mentioned above that
analyzes a user’s social network, a large amount
of work has focused on inferring user properties
based on the content they generate (e.g. Burger
and Henderson (2006), Schler et al. (2006), Rao
et al. (2010), Mukherjee and Liu (2010), Pennac-
chiotti and Popescu (2011), Burger et al. (2011), Van
Durme (2012)).

9 Conclusion and Future Work

We presented a highly effective and readily repli-
cable algorithm for generating language resources
from Twitter communication patterns. We clustered
user attributes based on both the communication of
users with those attributes as well as substring sim-
ilarity. Systems using our clusters significantly out-
perform state-of-the-art algorithms on each of the
tasks investigated, and exceed human performance
on each task as well. The power and versatility of
our clusters is exemplified by the fact we reduce er-
ror by a larger margin on each of the non-Twitter
tasks than on any Twitter task itself.

Twitter provides a remarkably large sample and
effectively a partial census of much of the world’s
population, with associated metadata, descriptive
content and sentiment information. Our ability to
accurately assign numerous often unspecified prop-
erties such as race, gender, language and ethnicity to
such a large user sample substantially increases the
sociological insights and correlations one can derive
from such data.
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Abstract

Information extraction from microblog posts
is an important task, as today microblogs cap-
ture an unprecedented amount of information
and provide a view into the pulse of the world.
As the core component of information extrac-
tion, we consider the task of Twitter entity
linking in this paper.

In the current entity linking literature, mention
detection and entity disambiguation are fre-
quently cast as equally important but distinct
problems. However, in our task, we find that
mention detection is often the performance
bottleneck. The reason is that messages on
micro-blogs are short, noisy and informal texts
with little context, and often contain phrases
with ambiguous meanings.

To rigorously address the Twitter entity link-
ing problem, we propose a structural SVM
algorithm for entity linking that jointly op-
timizes mention detection and entity disam-
biguation as a single end-to-end task. By com-
bining structural learning and a variety of first-
order, second-order, and context-sensitive fea-
tures, our system is able to outperform exist-
ing state-of-the art entity linking systems by
15% F1.

1 Introduction

Microblogging services, such as Twitter and Face-
book, are today capturing the largest volume ever
recorded of fine-grained discussions spanning a
huge breadth of topics, from the mundane to the his-
toric. The micro-blogging service Twitter reports
that it alone captures over 340M short messages,

or tweets, per day.1 From such micro-blogging ser-
vices’ data streams, researchers have reported min-
ing insights about a variety of domains, from elec-
tion results (Tumasjan et al., 2010) and democracy
movements (Starbird and Palen, 2012) to health is-
sues and disease spreading (Paul and Dredze, 2011;
Sadilek et al., 2012), as well as tracking prod-
uct feedback and sentiment (Asur and Huberman,
2010).

A critical step in mining information from a
micro-blogging service, such as Twitter, is the iden-
tification of entities in tweets. In order to mine
the relationship between drugs, symptoms and side-
effects, or track the popularity of politicians or sen-
timent about social issues, we must first be able to
identify the topics and specific entities being dis-
cussed. The challenge is that messages on micro-
blogs are short, noisy, and informal texts with little
context, and often contain phrases with ambiguous
meanings. For example, “one day” may be either a
set phrase or a reference to a movie. Given such
difficulties, current mining and analysis of micro-
blogs lists limits its application to certain domains
with easy-to-recognize, unambiguous entities in or-
der to avoid noise in the extraction results.

We begin this paper with a thorough investigation
of mention detection and entity disambiguation for
social media, focused on the Twitter micro-blogging
service. Mention detection is the task of extraction
surface form candidates that can link to an entity in
the domain of interest. Entity disambiguation is the
task of linking an extracted mention to a specific def-
inition or instance of an entity in a knowledge base.

1http://blog.twitter.com/2012/03/twitter-turns-six.html
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While mention detection and entity disambigua-
tion are frequently cast as equally important but dis-
tinct and separate problems, we find that mention
detection is where today’s systems and our base-
line techniques incur the most failures. Detecting
the correct entity mention is a significant challenge
given mis-capitalizations, incorrect grammar, and
ambiguous phrases. In (Ritter et al., 2011), the au-
thors report their system achieves 0.64 to 0.67 F1 on
named entity segmentation results with 34K tokens
of labeled examples. On the other hand, once the
correct entity mention is detected, a trivial disam-
biguation that maps to the most popular entity2 will
achieve 85% accuracy in our set.

Our primary contribution in this paper is a re-
casting and merging of the tasks of mention detec-
tion and entity disambiguation into a single end-
to-end entity linking task. We achieve significant
improvements by applying structural learning tech-
niques to jointly optimize the detection and disam-
biguation of entities. Treating detection and disam-
biguation as a single task also enables us to apply a
large set of new features, conventionally used only
for disambiguation, to the initial detection of men-
tions. These features, derived from external knowl-
edge bases, include entity popularity and inter-entity
relations from external knowledge bases, and are not
well utilized in current mention detection systems.
For example, consider the following partial tweet:

(1) The town is so, so good. And don’t
worry Ben, we already forgave you
for Gigli. Really.

Determining whether or not “The town” is a mention
of a location or other specific entity based solely on
lexical and syntactic features is challenging. Know-
ing “The Town” is the name of a recent movie helps,
and we can we be more confident if we know that
Ben Affleck is an actor in the movie, and Gigli is
another of his movies.

To train and evaluate our system, we created three
separate annotated data sets of approximately 500
tweets each. These data sets are hand annotated
with entity links to Wikipedia. We evaluate our sys-
tem by comparing its performance at detecting en-

2What we mean here is “the most linked entity”. See Sec-
tion 3 for details.

tities to the performance of two state-of-the-art en-
tity linking systems, Cucerzan (Cucerzan, 2007) and
TagMe (Ferragina and Scaiella, 2010), and find that
our system outperforms them significantly by 15%
in absolute F1.

The rest of this paper describes related work, our
structured learning approach to entity linking, and
our experimental results.

2 Related Work

Building an entity linking system requires solving
two interrelated sub-problems: mention detection
and entity disambiguation. The significant portion
of recent work in the literature (Ratinov et al., 2011;
Davis et al., 2012; Sil et al., 2012; Demartini et al.,
2012; Wang et al., 2012; Han and Sun, 2011; Han
et al., 2011) focuses solely upon the entity linking
problem. The entity linking systems of these studies
assume that entity mentions are provided by a sepa-
rate mention detection system. In contrast, our study
jointly identifies and disambiguates entity mentions
within tweets (short text fragments).

A subset of existing literature targets end-to-end
linking (Cucerzan, 2007; Milne and Witten, 2008;
Kulkarni et al., 2009; Ferragina and Scaiella, 2010;
Han and Sun, 2011; Meij et al., 2012), but there
are quite a few differences between our work and
each of these systems. Some systems (Milne and
Witten, 2008; Kulkarni et al., 2009; Han and Sun,
2011) heavily depend on Wikipedia text and might
not work well in short and noisy tweets. Many sys-
tems (Mihalcea and Csomai, 2007; Cucerzan, 2007;
Milne and Witten, 2008; Ferragina and Scaiella,
2010) treat mention detection and entity disam-
biguation as two different problems. (Meij et al.,
2012) is the most related to our paper. While their
system also considers mention detection and entity
disambiguation together, they do not consider entity-
to-entity relationships and do not incorporate con-
textual words from tweets.

An area of work closely related to the mention
detection problem is the Named Entity Recogni-
tion (NER) problem, the identification of textual
phrases which belong to core categories (Person,
Location, Organization). It is well-known that NER
systems trained on well-written documents perform
very poorly on short, noisy text, such as tweets (Rit-

1021



ter et al., 2011). There have been a few recent stud-
ies proposing Twitter-specific NER systems (Li et
al., 2012; Ritter et al., 2011).

3 Preliminaries

For performing entity linking on Twitter, we choose
Wikipedia as our external knowledge base of enti-
ties.

Entity We define an entity as a nonambiguous, ter-
minal page (e.g., The Town (the film)) in Wikipedia
(i.e., a Wikipedia page that is not a category, dis-
ambiguation, list, or redirect page). We define an
anchor phrase (surface form) as the textual phrase
(e.g., the town) which can potentially link to some
entities. We define an entity mention as an anchor
phrase and the context (“the town” in the exam-
ple tweet in Section 1), where its semantic meaning
umambiguously represents a specific entity. Note
that an entity may be represented by multiple sur-
face forms.

Wikipedia Lexicon Construction Following the
assumptions used in most prior entity linking re-
search, we assume that surface forms of entities can
be found as anchor phrases in Wikipedia. In or-
der to construct a Wikipedia lexicon, we first collect
all anchors phases in Wikipedia. For each anchor
phrase (surface form) s, we construct a lexicon en-
try by gathering the set of entities {e1, e2, . . . eK}
that can be linked from s. We also collect the num-
ber of times anchor a links to the entity ei, d(s, ei).
We define P (ei|s) = d(s, ei)/d(s), where d(s) rep-
resents the number of times s appears in Wikipedia.
We refer e′ as the most linked entity for anchor s if
e′ = arg maxe P (ei|s).

Candidate Generation Given a tweet t, we ex-
tract all k-grams of size ≤ k. For each k-gram,
we find all entities where this k-gram is an anchor
phrase. If a k-gram is an anchor phrase for at least
one entity, then the k-gram is a candidate entity
mention. In general, we identify many candidate
phrase per tweet; let U(t) = {c1, c2, . . .} denote
the set of candidates in tweet t. We refer to s(c)
as the surface form (e.g., the anchor phrase) of c.
Compared to the anchor phrase, the candidate also
carries the context and position information. Let
E(ci) = {e1, e2, . . . ,NIL} denote the set of entities

which candidate i may be linked to, plus the addi-
tional special token NIL. Note that the size of E(ci)
is always at least 2.

Task Definition First, our system generates candi-
date entity mentions, textual phrases which can pos-
sibly be entity mentions. Our system then performs
filtering and optimization to process the list of can-
didates. For each candidate, our system links the
candidate to a special NIL token or links the candi-
date to its corresponding entity in Wikipedia. More
formally, given a tweet t and its candidate set U(t),
the goal of the system is to predict yi ∈ E(ci),∀ci ∈
U(t).

Comparison to the TAC KBP Competition It is
important to state that our definition of the entity
linking problem differs significantly from the entity
linking problem as defined by the TAC KBP com-
petition (Ji et al., 2010; Ji et al., 2011). In the TAC,
there is no true mention detection problem; every
candidate in the TAC is an entity mention that rep-
resents an entity. Another difference is that the TAC
allows for an entity mention to map to an entity not
in the external knowledge base (Wikipedia); our sys-
tem does not provide special handling of this case.

Comparison to Named Entity Recognition
There are also important differences between our
task and the canonical NER task. For example,
NER systems identify common names, such as
“Robert,” as entities. In our task, we only consider a
prediction as a success if the system can determine
which person in Wikipedia “Robert” is referring to.
In other words, our definition of entities depends
on the given knowledge base, rather than human
judgment. Hence, it is difficult to make a fair system
comparison of our system to NER systems.

4 Entity Linking as Structural Learning

In our framework, we use structural learning as a
tool to capture the relationship between entities. We
define yi as the output for ci, where yi ∈ E(ci). Let
T = |U(t)| and y = {y1, y2, . . . , yT }. The fea-
ture function for the whole assignment can be writ-
ten as Φ(t, U(t),y). The score for the assignment
y can be obtained as the linear product between the
weight vector w and the feature vector. For an input
example, the prediction can be found by solving the
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inference problem:

y′ = arg max
y

wT Φ(t, U(t),y) (1)

We use a Structural SVM (SSVM) (Taskar et
al., 2004; Tsochantaridis et al., 2005; Chang et al.,
2010) as our learning algorithm. To train the weight
vector w, we minimize the objective function of the
SSVM

min
w

‖w‖2

2
+ C

l∑
i=1

ξ2i (2)

where l is the number of labeled examples and

wT Φ(ti, c(ti),yi)

≥∆(yi,y) + wT Φ(ti, c(ti),y)− ξi, ∀i,y

We denote yi as the gold assignment for xi and de-
fine ∆(yi,y) as the Hamming distance between two
assignments yi and y.

4.1 Features

Feature definitions are very important as they define
the shapes of the structures. Our feature vector is
defined as

Φ(t, U(t),y) =
∑

i

φ(t, ci, yi)+
∑
i<j

φ(t, ci, yi, cj , yj)

where ci and cj is the i-th and j-th candidates in
U(t), respectively.

First, we assign Φ(t, ci,NIL) to be a special bias
feature. The corresponding weight value behaves as
a threshold to cut-off mentions. Recall in our defini-
tion that yi = NIL represents that the candidate ci is
not a mention.

The first order features for Φ(t, ci, e) are de-
scribed as follows. In general, we can classify our
features into two types: mention-specific features
and entity-specific features. For a given candidate
ci, mention-specific features only consider the sur-
face form of ci and the tweet t. Entity-specific fea-
tures also consider the knowledge base content of
the entity e. Prior work in the entity linking liter-
ature has primarily focused on entity-specific fea-
tures, as most prior work solves entity disambigua-
tion with given mentions.

Base and Capitalization Rate Our base features
are from two resources. Let s(c) denote the sur-
face form of candidate c. The link probability
Pl(s(c)) and P (e|s(c)) features are extracted from
Wikipedia. We explained P (e|s(c)) in Section 3.
Link probability Pl(s(c)) is the probability that a
phrase is used as an anchor in Wikipedia. We also
add a third feature that captures normalized link
count. Besides these three features, we also have
a feature to indicate if a is a stop word, and a fea-
ture indicating the number of tokens in a. The view
count and P (e|s) features are entity-specific, while
the other three features are mention-specific.

For each phrase s(c), we also collect statistics
about the probability that a phrase is capitalized in
Wikipedia. We refer to this feature as the capitaliza-
tion rate feature, Pc(s(c)).

Popularity Feature We have access to 300GBs
of Wikipedia page view counts, representing one
months worth of page view information, we use
this as popularity data.3 As mentioned in Sec-
tion 3, we find that the most often linked Wikipedia
articles might not be the most popular ones on
Twitter. Using page view statistics helps our sys-
tem correct this bias. We define another prob-
ability based on page view statistics Pv(ei|c) =
v(ei)/(

∑
e∈E(c)/{NIL} v(e)), where v(e) represents

the view count for the page e.

Context Capitalization Our context capitaliza-
tion features indicate if the current candidate, the
word before, and the word after the candidate are
capitalized.

Entity Type and Tf-idf We use the procedure pro-
posed in (Ratinov et al., 2011) to extract keyword
phrases from categories for each Wikipedia page,
and then build a rule-based system using keyword
phrases to classify if each entity page belongs to one
of the following entity types: Person, Location, Or-
ganization, TV Show, Book/Magazine and Movie.4

For a given candidate c and an entity e, the associ-
ated binary feature becomes active if the entity be-
longs to a specific entity type. There are six entity
type features in our system.

3http://dammit.lt/wikistats
4The entity type prediction accuracy of our rule-based sys-

tem on the development set is around 95%.
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Features Descriptions
Base Pl(si), P (e|s), normalized link counts, stop

word, # tokens
Cap. Rate Pc(si)
Popularity Pv(e|s), normalized page view count,

Pv(e|s)P (e|s)
Context Cap. Three features indicating if the current candi-

date and the words before and after are capi-
talized

Entity Type Six binary features for each entity type
Tf-idf Two features for the similarity between the

word vectors of the entity and the tweet
Second-Order Jac(ei, ej), P (ei|si)P (ej |sj), Pc(si)Pc(sj),

Pl(si)Pl(sj)

Table 1: Summary of the features used in our structural
learning systems.

We also include tf-idf features in our system. For
each Wikipedia page, we collect the top 100 tf-idf
words. We add one feature that is the dot product
between the tf-idf word vector of e and the words of
tweet t. We include a second feature that represents
the average tf-idf score of all words that appear in
both e and t.

Second-order features We include four very sim-
ple second-order features φ(t, ci, ei, cj , ej) to cap-
ture more complex relations between entities and
candidates. The first feature is the Jaccard distance
between two Wikipedia pages ei and ej . Let Γ(ei)
denote the set of Wikipedia pages that contain a hy-
perlink to ei. We define the Jaccard distance be-
tween ei and ej as:

Jac(ei, ej) =
|Γ(ei) ∩ Γ(ej)|
|Γ(ei) ∪ Γ(ej)|

This feature has a similar effect as the normal-
ized Google distance (Cilibrasi and Vitanyi, 2007),
which has been used for many entity linking sys-
tems. Let us use the following shorthand: si = s(ci)
and sj = s(cj). We have also included three features
P (ei|si)P (ej |sj), Pc(si)Pc(sj) and Pl(si)Pl(sj) to
increase the expressivity of our model.

4.2 Mining Additional Contextual Words
Unlike mention detection systems used in other NLP
tasks, there are no lexical features in our system.
Lexical features are important as they can capture
semantic meaning precisely. However, given that
we do not have many labeled examples, lexical fea-
tures can lead to overfitting. The diverse language

in tweets also make it more difficult to use lexical
features.

Our solution for this problem is to use a very sim-
ple method to mine context words for different enti-
ties from a large, unlabeled tweet corpus. The algo-
rithm works as follows:

1. Train an end-to-end entity linking system and
then apply it to a large, unlabeled tweet corpus

2. Extract contextual words for each entity type
based on the pseudo-labeled data.

3. Train the entity linking system again with new
contextual features.

In this paper, we only use the word before and the
word after as our contextual word for a candidate.
Note that while there are ambiguous phrases on the
surface (e.g., “friends” can be a TV show or just
a regular phrase), certain phrases are unambiguous
(e.g., “CSI : Miami”). As contextual words are often
shared within the same entity type (e.g. “watching”
is likely to appear before a tv show), those words can
potentially improve our final system.

Let wi denote the i-th word in the tweet and ti
denote the entity type for the i-th word.5 We use a
very simple rule to select a set of left context words
Q(R) for entity type R.

Q(R) = {wi | P (ti+1 = R|wi) > r, d(wi) > z}

where d(wi) represent the number of times the word
wi appears in the unlabeled set. The first rule is to
simply find a word which is more likely to be fol-
lowed by an entity. The second rule filter outs noisy
words (e.g., Twitter handles) in the unlabeled set.
The right context words are also extracted in a simi-
lar way.

To train the second end-to-end entity linking sys-
tem, we add one additional feature for the contextual
words. For the feature vector Φ(t, ci, e), the context
feature is active if the candidate ci is capitalized6 and
the context words around ci belongs to Q(R), given
R is the entity type for the entity e.

5The tag ti belongs to the entity type R if our system links a
candidate c to an entity with type R and c covers the word wi.

6The word “watching” can be a TV show while most of the
time it is not. These common makes this contextual feature
noisy. We found that the context feature can only be reliably
applied when the candidate is capitalized.
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4.3 Cohesiveness Score
There are several ways to consider entity-entity co-
hesiveness besides using the second-order features
directly. In our model, we also consider a modi-
fied cohesiveness score proposed in (Ferragina and
Scaiella, 2010). The idea behind the cohesiveness
score is to estimate the correlations between differ-
ent entities by using weighted Jaccard scores.7

There are two rounds in the procedure of com-
puting the cohesiveness score. We first estimate ap-
proximately the most probable entity for each candi-
date given all the other candidates in the same tweet.
In the second round, the cohesiveness score is then
produced with respect to the most probable entity
computed in the first round.

More formally, in the first round, we compute the
relevance score for each candidate and entity pair:

Rel(e, c|t) =

∑
c′ 6=c

∑
e′∈E(c′) P (e′|c′)Jac(e, e′)

|U(t)|
.

Then, the cohesiveness score is computed by

Scoh(e, c|t) =

∑
c′ 6=c Jac(e, ē(c

′))P (ē(c′)|c′)
|U(t)|

,

where the ē(c′) = arg maxe∈E(c′)Rel(e, c
′|t). We

then put the cohesiveness score as a feature for each
(e, c) pair. In practice, we found that the cohesive-
ness score in the model can significantly increase the
disambiguation ability of the model without using
the second-order information.

4.4 Inference
In order to train and test the SSVM model, one needs
to solve both the inference problem Eq. (3) and the
loss-augmented inference problem. Without second-
order features, the inference and loss-augmented in-
ference problems can be easily solved, given that
each component can be solved independently by

y′i = arg max
y∈E(ci)

wT Φ(t, ci, y) (3)

While the inference problem can be solved inde-
pendently, the training algorithm still considers the
whole assignment together in the training procedure.

7In our experiments, we only apply the cohesiveness score
technique on candidates which pass the filtering procedure. See
section 5 for more details for our filtering process.

Data #Tweets #Cand #Men. P@1
Train 473 8212 218 85.3%
Test 1 500 8950 249 87.7%
Test 2 488 7781 332 89.6%

Table 2: Labeled example statistics. “#Cand” represents
the total number of candidates we found in this dataset.
“#Men.” is the total number of mentions that disam-
biguate to an entity. The top-1 rate (P@1) represents the
proportion of the mentions that disambiguate to the most
linked entity in Wikipedia.

With the second-order features, the inference
problem becomes NP-hard. While one can resort to
using integer linear programming to find the optimal
solution, we choose not to do so. We instead use the
beam search algorithm. Our beam search algorithm
first arranges the candidates from left to right, and
then solve the inference problems approximately.

5 Experiments

We collected unlabeled Twitter data from two re-
sources and then asked human annotators to label
each tweet with a set of entities present. Our anno-
tators ignored the following: duplicate entities per
tweet, ambiguous entity mentions, and entities not
present in Wikipedia. We next describe the two sets
of Twitter data used as our training data and test-
ing data. In addition to these two datasets, we also
randomly sampled another 200 tweets as our devel-
opment set.

Ritter We sampled 473 and 500 tweets8 from the
data used in (Ritter et al., 2011) to be our training
data and test data, respectively. We did not use any
labels generated by (Ritter et al., 2011); our annota-
tors completely re-annotated each tweets with its set
of entities. We refer to the first set as Train and the
second set as Test 1.

Entertainment To check if our system has the
ability to generalize across different domains, we
sampled another 488 tweets related to entertain-
ment entities. Our main focus was to extract
tweets that contained TV shows, Movies, and

8We originally labeled 1000 tweets but then found 27 re-
peated tweets in the dataset. Therefore, we remove those 27
tweets in the training set.
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Books/Magazines. Identifying tweets from a spe-
cific domain is a research topic on its own, so we
followed (Dalvi et al., 2012), and used a keyword
matching method.9 After sampling this set of tweets,
we asked our annotators to label the data in the same
way as before (all entities are labeled, not just en-
tertainment entities). We refer to this tweet set as
Test 2.

After sampling, all tweets were then normalized
in the following way. First, we removed all retweet
symbols (RT) and special symbols, as these are to-
kens that may easily confuse NER systems. We
treated punctuation as separate tokens. Hashtags (#)
play a very important role in tweets as they often
carry critical information. We used the following
web service10 to break the hashtags into tokens (e.g.,
the service will break “#TheCloneWars” into “the
clone wars”) (Wang et al., 2011).

The statistics of our labeled examples are pre-
sented in Table 2. First, note that the average number
of mentions per tweet is well below 1. In fact, many
tweets are personal conversations and do not carry
any entities that can be linked to Wikipedia. Still,
many candidates are generated (such as “really”) for
those tweets, given that those candidates can still po-
tentially link to an entity (“really” could be a TV
channel). Therefore, it is very important to include
tweets without entities in the training set because we
do not want our system to create unnecessary links
to entities.

Another interesting thing to note is the percent-
age of entity mentions that disambiguate directly to
their most often linked entities in Wikipedia. If we
simply disambiguate each entity mention to its most
linked entity in Wikipedia, we can already achieve
85% to 90% accuracy, if mention detection is per-
fectly accurate. However, mention detection is a dif-
ficult problem as only about 3% of candidates are
valid entity mentions.

It is worthwhile to mention that, as per (Ferragina
and Scaiella, 2010), for computational efficiency,

9We use the following word list :“movie”, “tv”, “episode”,
“film”, “actor”, “actors”, “actress”, “director”, “directors”,
“movies”, “episodes”, “book”, “novel”, “reading”, “read”,
“watch”, “watching”, “show”, “books”, “novels”, “movies”,
“author” and “authors”.

10http://web-ngram.research.microsoft.
com/info/break.html

we apply several preprocessing steps before running
our entity linking system. First, for each anchor in
Wikipedia, we gather all entities it can disambiguate
to and remove from that anchor’s entity set all enti-
ties that are linked less than 2% of the time. Second,
we apply a modified filtering procedure similar to
that proposed in (Ferragina and Scaiella, 2010) to
filter the set of candidates per tweet.

Evaluation Our annotated datasets contain enti-
ties from many Wikipedia categories. For eval-
uation, we primarily focus on entities belonging
to a set of six core categories (Person, Location,
Organization, TV Show, Book/Magazine, Movie).
We believe it is necessary to focus upon core en-
tities, rather than considering all possible entities
in Wikipedia. Most common words in the English
language have their own Wikpedia page, but most
words are not important enough to be considered en-
tities. In general, there is a large degree of subjectiv-
ity when comparing different entity linking datasets;
different researchers have their own interpretation of
what constitutes an entity. For example, we exam-
ined the annotation used in (Meij et al., 2012) and
found it to be extremely lenient, when compared to
our own beliefs of what is an entity. Therefore, we
believe evaluating performance on restricted entity
types is the only fair way to compare different end-
to-end entity linking systems.

We evaluate the performance of our system on
a per-tweet basis, by comparing the set of anno-
tated “gold” entities with the set of entities predicted
by our system, and computing performance metrics
(precision, recall, F1). We choose to evaluate our
system on a per-tweet basis, as opposed to a per-
entity basis, because we wish to avoid the issue of
matching segmentations. For example, it is quite
common to observe multiple overlapping phrases in
a tweet that should be linked to the same entity (e.g.,
“President Obama” and “Obama”). When evaluat-
ing our system, we compute performance metrics for
both all entities and core entities.11

Parameters In our implementation, we fixed the
regularization parameter C = 10. When beam-

11To decide if an entity is a core entity or not, we use the
following procedure. For the gold entities, the annotators also
annotate type of the entity. We decide the entity type of the
predicted entities using the procedure described in Section 4.1.
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Model
Test 1 Test 2

P R F1 P R F1

Cucerzan 64.8 42.2 51.1 64.9 39.7 49.5
TagMe 38.8 69.0 49.7 34.9 70.3 46.7
SSVM 78.8 59.9 68.0 75.0 57.7 65.2

Table 3: Comparisons between different end-to-end en-
tity linking systems. We evaluate performance on core
entities, as it is the only fair way to compare different
systems.

search is used, the beam size is set to be 50, and
we only consider the top 10 candidates for each can-
didate to speed the inference process. In the context
word mining algorithm, r = 0.5% and z = 1000.

5.1 Results

In the following, we analyze the contributions of
each component in our system and compare our final
systems to other existing end-to-end entity linking
systems.

System Comparison We compare our final sys-
tem to other state-of-the-art systems in Table 3.
CUCERZAN represents a modified implementation
of the system in (Cucerzan, 2007). TagMe is an end-
to-end linking system that focuses on short texts,
including tweets. Our system significantly outper-
forms these two systems in both precision and re-
call. Note that CUCERZAN’s system is a state-of-
the-art system on well-written documents with pro-
vided entity mentions. The system (Cucerzan, 2007)
has been extended by the authors and won the TAC
KBP competition in 2010 (Ji et al., 2010).

There are two possible reasons to explain why our
system outperforms CUCERZAN. First, their men-
tion detection is a carefully designed system targeted
toward documents, not tweets. Their system has seg-
mentation issues when applied to Twitter, as it relies
heavily upon capitalization when identifying candi-
date entity mentions. Second, their system heav-
ily depends on the fact that related entities should
appear together within documents. However, given
that tweets are very short, some of their most impor-
tant features are not suitable for the Twitter domain.
Our system outperforms TagMe because we use a
more sophisticated machine learning approach, as
compared to their system. TagMe links too many

Structural SVM
Test 1 Test 2

All Core All Core
Base 35.9 42.9 47.7 52.5
+Cap. Rate 38.4 45.6 49.9 53.7
+Popularity 41.3 47.9 50.3 55.1
+Context Cap 43.7 52.0 50.7 54.8
+Entity Type 47.9 57.0 53.5 59.0
+Tfidf 53.2 63.1 56.8 61.9

Table 4: Feature Study: F1 for entity linking perfor-
mance. “All” means evaluation on all annotated entities.
“Core” means evaluation only on our six entity types.
Each row contains all additional features of the row above
it.

spurious entity mentions for common words. This is
a result of their algorithm’s over-emphasis on entity-
entity co-occurrence features.

Feature Study We study the contributions of each
feature group in our system in Table 4. We summa-
rize our discoveries as follows:

First, we find collecting statistics from a large cor-
pus helps the system significantly. In addition to
P (e|s), we find that capitalization rate features of-
fer around 3% to 4% F1 improvement in Test 1.
Similarly, popularity features are also important, as
it corrects bias existing in Wikipedia link statistics.
Compared to lexical features, using statistical fea-
tures offers a great advantage of reducing the need
for large amounts of labeled data.

We also find entity related features (Popularity,
Entity Type, Tf-idf) are crucial. Given that between
85% to 90% of our mentions should directly disam-
biguate to the most often linked entities, one might
think entity-specific features are not important in
our task. Interestingly, entity-specific features are
among the most important features. The discovery
confirms our hypothesis: it is critical to consider
mention detection and entity disambiguation as a
single problem, rather than as separate problems in
a two staged approach used by many other entity
linking systems. Note that capitalization rate and
context capitalization features are mention-specific.
Additionally, we find that mixing mention-specific
features and entity-specific features results in a bet-
ter model.
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Entity Type Words appearing before
the mention

Words appearing after the
mention

Person wr, dominating, rip, quar-
terback, singer, featuring,
defender, rb, minister, ac-
tress, twitition, secretary

tarde, format, noite, suf-
fers, dire, admits, sen-
ators, urges, performs,
joins

TV Show sbs, assistir, assistindo,
otm, watching, nw,
watchn, viagra, watchin,
ver

skit, performances,
premieres, finale, par-
ody, marathon, season,
episodes, spoilers, sketch

Table 5: An example of context words that are automati-
cally extracted from 20 million unlabeled tweets. For the
sake of brevity, we only display context words for two
categories. Note that there are misspelled words (such
as “watchn”) and abbreviations (such as nw) that do not
appear in well-written documents.

Advance Models
Test 1 Test 2

All Core All Core
SSVM (Table 4) 53.2 63.1 56.8 61.9
+Context 53.9 64.6 58.6 63.4
+Cohesiveness 55.6 66.5 59.7 65.1
+2nd order 58.1 68.0 60.6 65.2

Table 6: Evaluation results (F1) of the advanced models.
“+ Context” is the model that uses additional context fea-
tures extracted from 20 millions unlabeled tweets. “+ Co-
hesiveness” is the model with both additional context and
cohesiveness features. “+2nd order” is our final model
(which incorporates context, cohesiveness, and second-
order features).

Mining Context Words We verify the effective-
ness of adding contextual features that are extracted
automatically from large unlabeled data. We apply
our system (with all first-order features) on a set of
20 million unlabeled tweets we collected. Context
words are then extracted using the simple rules de-
scribed in Section 4. We list the top 10 words we
extracted in Table 5. Due to space limitations, we
only list the words for the Person and TV Show cat-
egories. The results are interesting as we are able
to find common misspelled words and abbreviations
used in Twitter. For example, we find that “watchn”
means “watching” and “nw” means “now watching,”
and they are usually words found before TV shows.
We also find tweeters frequently use abbreviations
for people’s jobs. For example, “wr” means “wide
receiver” and “rb” means “running back.” When
mined context is added into our system, the perfor-
mance improves significantly (Table 6). We note

that extending context mining algorithms in a large-
scale, principled approach is an important next re-
search topic.

Capturing Entity-Entity Relationships In this
paper, we use two methods to capture the relation-
ship between entities: adding the cohesiveness score
and using second order information. Until now, we
only considered features that can be extracted from
only one entity. Past research has shown that consid-
ering features that involve multiple entities can im-
prove entity linking performance, given that related
entities are more likely to appear together in a doc-
ument. When these type of features are added, we
need to perform beamsearch, as the exact inference
procedure can be prohibitively expensive.

As displayed in Table 6, we find that either adding
the cohesiveness score or using second order infor-
mation can improve prediction. Using both methods
improves the model even more. Comparing compu-
tation overhead, computing cohesiveness is signifi-
cantly more cost-effective than using second-order
information.

6 Conclusion

In this paper, we propose a structural SVM method
to address the problem of end-to-end entity linking
on Twitter. By considering mention detection and
entity disambiguation together, we build a end-to-
end entity linking system that outperforms current
state-of-the-art systems.

There are plenty of research problems left to be
addressed. Developing a better algorithm for min-
ing contextual words is an important research topic.
It would also be interesting to design a method that
jointly learns NER models and entity linking mod-
els.
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Abstract

Threaded discussion forums provide an im-
portant social media platform. Its rich user
generated content has served as an important
source of public feedback. To automatically
discover the viewpoints or stances on hot is-
sues from forum threads is an important and
useful task. In this paper, we propose a novel
latent variable model for viewpoint discov-
ery from threaded forum posts. Our model is
a principled generative latent variable model
which captures three important factors: view-
point specific topic preference, user identity
and user interactions. Evaluation results show
that our model clearly outperforms a number
of baseline models in terms of both clustering
posts based on viewpoints and clustering users
with different viewpoints.

1 Introduction

Threaded discussion forums provide an important
social media platform that allows netizens to express
their opinions, to ask for advice, and to form on-
line communities. In particular, responses to major
sociopolitical events and issues can often be found
in discussion forums, which serve as an impor-
tant source of public feedback. In such discussion
threads, we often observe heated debates over a con-
troversial issue, with different sides defending their
viewpoints with different arguments. For example,
after the presidential debate between Barack Obama
and Mitt Romney, there were heated discussions in
online forums like CreateDebate1 where some peo-
ple expressed their support for Obama while some

1http://www.createdebate.com/

others have their opposition to him. For a user who
is not closely following an event or issue, instead of
going through all the existing posts in a long thread,
she may want to quickly get an overview of the ma-
jor viewpoints and arguments given by the different
sides. For policy makers who want to obtain pub-
lic feedback on social issues from social media, it is
also desirable to automatically summarize the view-
points on an issue from relevant threads. In this pa-
per, we study the problem of modeling and discov-
ering different viewpoints in forum threads.

Recently there has been some work on finding
contrastive viewpoints from text. The model pro-
posed by Paul et al. (2010) assumes viewpoints and
topics are orthogonal dimensions. Another model
proposed by Fang et al. (2012) assumes that docu-
ments are already grouped by viewpoints and it fo-
cus on identifying contrastive viewpoint words un-
der the same topic. However, these existing stud-
ies are not based on interdependent documents like
threaded forum posts. As a result, at least two im-
portant characteristics of threaded forum data are not
considered in these models. (1) User identity: The
user or publisher of each forum post is known, and
a user may publish several posts in the same thread.
Since the same user’s opinion on an issue usually re-
mains unchanged, posts published by the same user
are likely to contain the same viewpoint. (2) User
interactions. A thread is like a conversation, where
users not only directly comment on the issue under
discussion but also comment on each other’s posts.
Users having different viewpoints may express their
disagreement or even attack each other while users
having the same viewpoint often support each other.
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The interaction expressions in forum posts may help
us infer the relation between two users and subse-
quently infer the viewpoints of the corresponding
posts.

In this paper, we propose a novel latent variable
model for viewpoint discovery from threaded forum
posts. Our model is based on the following obser-
vations: First, posts with different viewpoints tend
to focus on different topics. To illustrate this point,
we first apply the Latent Dirichlet Allocation (LDA)
model (Blei et al., 2003) on a thread about “will
you vote Obama” and obtain a set of topics. This
thread comes from a data set that has each user’s
viewpoint annotated. Using the ground truth view-
point labels, we group all posts published by users
with viewpoint 1 (or viewpoint 2) and compute the
topic proportions. The two topic distributions are
shown in Figure 1. We can see that indeed the two
viewpoints each have some dominating topics. Our
second observations is that the same user tends to
hold the same viewpoint. In our model, we use a
user-level viewpoint distribution to capture this ob-
servation, and the experiments show that it works
better than assuming a global viewpoint distribution.
Third, users with the same viewpoint are likely to
have positive interactions while users with different
viewpoints tend to have negative interactions. Using
a sentiment lexicon, we can first predict the polarity
of interaction expressions. We then propose a novel
way to incorporate this information into the latent
variable model. In summary, we capture the three
observations above in a principled generative latent
variable model. We present the details of our model
in Section 3.

Figure 1: Topic distributions of two viewpoints for the
thread “will you vote Obama?” The dotted line is the
average topic probability.

We use two tasks to evaluate our model. In the
first task, we evaluate how well posts with differ-
ent viewpoints are separated. In the second task, we

evaluate how well our model is able to group users
with different viewpoints. For both tasks, we com-
pare our model with an existing model as well as
a few degenerate versions of our model. The re-
sults show that our model can clearly outperform the
baselines in terms of three evaluation metrics. The
experiments are presented in Section 5.

The contributions of our work are threefold: (1)
We identify the importance of using user interac-
tions to help infer viewpoints in forum posts. (2) We
propose a principled latent variable model to jointly
model topics, viewpoints and user interactions. (3)
We empirically verify the validity of the three as-
sumptions in our model using real data sets.

2 Related Work

There are a few different lines of work that are re-
lated to our work. For discovering different view-
points from general text, Paul et al. (2010) used the
model proposed by Paul and Girju (2010) to jointly
model topics and viewpoints. They assume these
two concepts are orthogonal and they do not con-
sider user identity. In comparison, our model has
the notion of topics and viewpoints, but we explicitly
model the dependency of topics on viewpoints, i.e.
we assume each viewpoint has a topic distribution.
We also consider author identities as an important
factor of our model. Fang et al. (2012) proposed a
model that also combines topics and viewpoints. But
they assume that documents are already grouped by
viewpoints, which is not the case for forum posts.
Therefore, their model cannot be directly applied to
forum posts.

There has also been some work on finding view-
points from social media. Somasundaran and Wiebe
(2010) studied how to identify stances in online de-
bates. They used a supervised approach for classi-
fying stances in ideological debates. In comparison,
our model is an unsupervised method. The same au-
thors proposed an unsupervised method which relies
on associations of aspects with topics indicative of
stances mined from the Web for the task (Somasun-
daran and Wiebe, 2009). In contrast, our model is
also an unsupervised one but we do not rely on any
external knowledge.

Part of our work is related to detecting agree-
ment/disagreement from text. For this task, nor-
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mally supervised methods are used (Galley et al.,
2004; Abbott et al., 2011), which require sufficient
labeled training data. In our work, since we deal
with different languages, we use a lexicon-based
approach that does not need training data. Re-
cently, Mukherjee and Liu (2012) proposed an un-
supervised model to extract different types of ex-
pressions including agreement/disagreement expres-
sions. However, our focus is not to detect agree-
ment/disagreement expressions but to model the
interplay between agreement/disagreement expres-
sions and viewpoints. The work by Mukherjee and
Liu (2012) can potentially be combined with our
model.

Another line of related work is subgroup detec-
tion, which aims to separate users holding different
viewpoints. This problem has recently been stud-
ied by Abu-Jbara and Radev (2012), Dasigi et al.
(2012), Abu-Jbara et al. (2012) and Hassan et al.
(2012), where a clustering based approach is used.
Lu et al. (2012) studied both textual content and
social interactions to find opposing network from
online forums. In our experiments we show that
our model can also be used for subgroup detection,
but meanwhile we also directly identify viewpoints,
which is not the goal of existing work on subgroup
finding or opposing network extraction.

3 Model

3.1 Motivation

Before we formally present our latent variable
model for viewpoint discovery, let us first look at the
assumptions we would like to capture in the model.
Viewpoint-based topic distribution: The first as-
sumption we have is that different viewpoints tend
to touch upon different topics. This is because to
support a viewpoint, users need to provide evidence
and arguments, and for different viewpoints the ar-
guments are likely different. To capture this assump-
tion, in our model, we let each viewpoint have its
own distribution of topics. Given the viewpoint of
a post, the hidden topic of each word in the post is
chosen according to the corresponding topic distri-
bution associated with that viewpoint.
User identify: The second assumption we have
is that the same user tends to talk from the same
viewpoint, although there are also users who do not

clearly have a viewpoint. In our model, we assume
that there is a user-level viewpoint distribution. For
each post by a user, its viewpoint is drawn from the
corresponding viewpoint distribution.
User interaction: An important difference between
threaded forum posts and regular document collec-
tions such as news articles is that posts in the same
thread form a tree structure via the “reply-to” re-
lations. Many reply posts start with an expression
that comments on a previous post or directly ad-
dresses another user. These interaction expressions
may carry positive or negative sentiment, indicating
an agreement or a disagreement. For example, Ta-
ble 1 shows the interaction expressions from a few
sample posts with words such as “correct,” “agree,”
and “delusional,” implying the polarity of the inter-
action expressions. The polarity of these interaction
expressions can help us infer whether two posts or
two users hold the same viewpoint or not. In our
model, we assume that the polarity of each interac-
tion expression can be detected. Details of how we
perform this detection are in Section 3.4.

Post

+
You are correct. Obama got into office w/ everything · · ·
I agree with your post Dan. Obama is so · · ·

− Most of your post is delusional, especially the part · · ·
Are you freaking nutz? Palin is a BIMBO!

Table 1: Sample posts with positive (+) and negative(−)
interactions.

While the way to capture the first two assump-
tions discussed above is fairly standard, modeling
user interactions is something new. In our model,
we assume that the polarity of an interaction expres-
sion is generated based on the viewpoint of the cur-
rent post and the viewpoint of post(s) that the current
post replies to. The intuition is that if the viewpoints
are the same, we are more likely to see a positive in-
teraction whereas if the viewpoints are different we
are more likely to see a negative interaction.

3.2 Model description

We use the following notation to represent our data.
We consider a set of forum posts published by U dif-
ferent users on the same event or issue, where user
u (1 ≤ u ≤ U ) has published Nu posts. Let wu,n,l
(1 ≤ l ≤ Lu,n ) denote the l-th word in the n-th
post by user u, where Lu,n is the number of words
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in the n-th post by user u. wu,n,l is represented by
an index between 1 and V where V is the vocabu-
lary size. Furthermore, we assume that some of the
posts have user interaction expressions, where the
polarity of the expression is known. Without loss of
generality, let su,n ∈ {0, 1} denote the polarity of
the interaction expression of the n-th post by user
u. In addition, for each post that has an interaction
expression, we assume we also know the previous
post(s) it replies to. (In the case when the current
post replies to a user, we assume all that user’s ex-
isting posts are being replied to.) We refer to these
posts as the parent posts of the current post.

We assume that there are T topics where each
topic is essentially a word distribution, denoted as
ψt. We also assume that there are Y different view-
points expressed in the collection of posts. For most
controversial issues, Y can be set to 2. Each view-
point y has a topic distribution θy over the T top-
ics. While these T topics are meant to capture the
topical differences between viewpoints, since these
viewpoints are all about the same issue, there are
also some words commonly used by different view-
points. We therefore introduce a background topic
ψB to capture these words. Finally, each user u has
a distribution over the Y viewpoints, denoted as ϕu.

Figure 2: Plate notation of the Joint Viewpoint-Topic
Model with User Interaction (JVTM-UI). The dotted cir-
cle for Y means the variables represented by Y are not
new variables but a subset of the y variables.

Figure 2 shows the plate notation of the complete
model. We assume the following generation process
in our model. When user u generates her n-th post,
she first samples a viewpoint from ϕu. Let this view-
point be represented by a hidden variable yu,n. For
the l-th word in this post, she first samples an in-

dicator variable xu,n,l from a Bernoulli distribution
parameterized by π. If xu,n,l = 0, then she draws
wu,n,l from ψB . Otherwise, she first samples a topic,
denoted as zu,n,l, according to θyu,n , and then draws
wu,n,l from ψzu,n,l .

Furthermore, if this post is a reply to a previous
post or another user, she may first comment on the
parent post(s). The polarity of the interaction ex-
pression in the post is dependent on the viewpoint
yu,n and the viewpoints of the previous post(s). Let
us use Yu,n to denote the set of y variables associ-
ated with the parent posts of the current post. The
user draws su,n according to following distribution:

p(su,n = 1|yu,n,Yu,n, δ) =

∑
y′∈Yu,n

I(yu,n == y′) + δ

|Yu,n|+ 2δ
,

p(su,n = 0|yu,n,Yu,n, δ) = 1− p(su,n = 1|yu,n,Yu,n, δ), (1)

where I(·) is 1 if the statement inside is true and 0
otherwise, and δ > 0 is a smoothing parameter.

Finally, we assume that ψB , ψt, ϕu, θy and π all
have some uniform Dirichlet priors.

3.3 Inference
We use collapsed Gibbs sampling to estimate the
model parameters. In the initialization stage of
Gibbs sampling, for a reply post to a recipient, we
initialize its corresponding reply polarity s accord-
ing to all the labeled polarity of interaction words.
Specifically, if the majority of labeled interaction
words are positive, we set s = 1, otherwise we set
s = 0.

Let Y denote the set of all y variables, and
Y¬(u,n) denote Y excluding yu,n. Similar notation
is used for the other variables. We sample yu,n using
the following formula.

p(yu,n = k|Y¬(u,n),Z,S,X, α, η, δ)

∝
p(yu,n = k,Y¬(u,n)|α)

p(Y¬(u,n)|α)
·
p(Z|yu,n = k,Y¬(u,n),X, η)

p(Z¬(u,n)|Y¬(u,n),X¬(u,n), η)

·p(S|yu,n = k,Y¬(u,n), δ)

=
Cku,¬n + α

C
(·)
u,¬n + Y α

·

∏T
t=1

∏Ct
u,n−1

a=0 (Ct
k,¬(u,n)

+ η + a)∏C
(·)
u,n−1

b=0 (C
(·)
k,¬(u,n)

+ Tη + b)

·p(S|yu,n = k,Y¬(u,n), δ). (2)

Here all Cs are counters. Cku,¬n is the number of
times we observe the viewpoint k from u’s posts,
excluding the n-th post, based on Y¬(u,n). Ctu,n is
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the number of times we observe topic t from user
u’s n-th post, based on Zu,n. And Ctk,¬(u,n) is the
number of times we observe topic t associated with
viewpoint k, excluding user u’s n-th post. Note that
we need X to know which words are assigned to
the background topic so we can exclude them for
Ctu,n and Ctk,¬(u,n). C

(·)
u,¬n is the number of times we

observe any viewpoint from u’s posts, excluding the
n-th post. C(·)

u,n and C(·)
k,¬(u,n) are defined similarly.

The last term is further expanded as follows:

p(S|yu,n = k,Y¬(u,n), δ) = p(su,n|yu,n = k,Yu,n, δ)
·p(S¬(u,n)|yu,n = k,Y¬(u,n), δ). (3)

Here p(su,n|yu,n = k,Yu,n, δ) is computed ac-
cording to Eqn. (1). For the latter term, we need to
consider posts which reply to user u’s n-th post be-
cause the value of yu,n affects these posts.

p(S¬(u,n)|yu,n = k,Y¬(u,n), δ)

∝
∏

(u′,n′):yu,n∈Yu′,n′

p(su′,n′ |yu′,n′ ,Yu′,n′ , δ). (4)

Next, we show how we jointly sample xu,n,l
and zu,n,l. We jointly sample them because when
xu,n,l = 0, zu,n,l does not need a value. We have the
following formulas:

p(xu,n,l = 1, zu,n,l = t|X¬(u,n,l),Z¬(u,n,l),Y,W, γ, η, β, β
B

)

∝
C1
¬(u,n,l) + γ

C
(·)
¬(u,n,l)

+ 2γ
·
Ct

yu,n,l,¬(u,n,l) + η

C
(·)
yu,n,l,¬(u,n,l)

+ Tη
·
C

wu,n,l
t,¬(u,n,l)

+ β

C
(·)
t,¬(u,n,l)

+ V β
, (5)

p(xu,n,l = 0|X¬(u,n,l),Z¬(u,n,l),Y,W, γ, η, β, β
B

)

∝
C0
¬(u,n,l) + γ

C
(·)
¬(u,n,l)

+ 2γ
·
C

wu,n,l
B,¬(u,n,l)

+ βB

C
(·)
B,¬(u,n,l)

+ V βB
. (6)

Here again the Cs are counters defined in similar
ways as before. For example, C1

¬(u,n,l) is the num-
ber of times we observe 1 assigned to an x variable,
excluding xu,n,l.

3.4 Interaction polarity prediction
The problem of detecting agreement and disagree-
ment from forum posts is relatively new. One pos-
sible solution is to use supervised learning, which
requires training data (Galley et al., 2004; Abbott et
al., 2011; Andreas et al., 2012). However, training

data are also likely domain and language dependent,
which makes them hard for re-use. For our task, we
take a simpler approach and use a sentiment lexicon
together with some heuristics to predict the polar-
ity of interaction expressions. Specifically, we first
identify interaction sentences following the strate-
gies from Hassan et al. (2012). We assume sentences
containing mentions of the recipient of a post are in-
teraction sentences. Next, we consider words within
a text window of 8 words surrounding these men-
tions. We then use a subjectivity lexicon to label
these words. To form an English lexicon, we com-
bine three popular lexicons: the sentiment lexicon
used by Hu and Liu (2004), Multi-Perspective Ques-
tion Answering Subjectivity Lexicon by Wilson et
al. (2005) and SentiWordNet by Baccianella et al.
(2010). Since we also work with a Chinese data set,
to form the Chinese sentiment lexicon, we use opin-
ion words from HowNet2 and NTUSD by Ku et al.
(2007). To predict the polarity of an interaction ex-
pression, we simply check whether there are more
positive sentiment words or more negative sentiment
words in the expression, and label the interaction ex-
pression accordingly.

We would like to stress that since this interaction
classification step is independent of the latent vari-
able model, we can always apply a more accurate
method, but this is not the focus of this work.

4 Models for Comparison

In our experiments, we compare our model,
Joint Viewpoint-Topic Model with User Interaction
(JVTM-UI), with the following baseline models.
JVTM: The model is shown in Figure 3(a), a variant
of JVTM-UI that does not consider user interaction.
Through comparison with it, we can check the effect
of modeling user interactions.
JVTM-G: We consider JVTM-G in Figure 3(b), a
variant of JVTM which assumes a global viewpoint
distribution. Comparison with it allows us to check
the usefulness of user identity in the task.
UIM: The third model we consider is a User Interac-
tion Model (UIM) in Figure 3(c), where we rely on
only the users’ interactions to infer the viewpoints.
We use it to check how well viewpoints can be dis-
covered from only user interaction expressions.

2http://www.keenage.com/html/e_index.html
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Figure 3: (a) JVTM: Joint Viewpoint-Topic Model. (b) JVTM-G: JVTM with a global viewpoint distribution. (c)
UIM: User-Interaction Model.

TAM: The last model we consider is the one by Paul
et al. (2010). As TAM is applied at document collec-
tions, we first concatenate all the posts by the same
user into a pseudo document and then apply TAM.

5 Experiments and Analysis

In this section, we evaluate our model with a set of
baseline models using two data sets.

Name Issue #Posts #Users

EDS1 Vote for Obama 2599 197
EDS2 Arizona Immigration Law 738 59
EDS3 Tax Cuts 276 26

CDS1 Tencent and Qihoo dispute 30137 2507
CDS2 Fang Zhouzi questions Han Han 76934 1769
CDS3 Liu Xiang in London Olympics 29486 2774

Table 2: Some statistics of the data set.

5.1 Data Sets and Experimental Settings

We focus our work on finding users’ viewpoints on
a controversial issue, where we assume that there
are two contradictory viewpoints. We use two data
sets on controversial issues. The first data set comes
from Abu-Jbara et al. (2012) and Hassan et al.
(2012). This data set originally was used for finding
subgroups of users, so the annotations were done at
user level, i.e. for each user there is a label indicat-
ing which subgroup he/she belongs to. We use the
top-3 mostly discussed threads with two subgroups
for our study.

In reality, controversial issues are often discussed
across threads. We thus constructed another large
data set which contains more than one thread for
each issue. We chose three hot issues from one of
the most popular Chinese online forums — TianYa

Club3. The three issues are “Fang Zhouzi questions
Han Han”4, “Tencent and Qihoo dispute”5, and “Liu
Xiang in London Olympics”6. All these issues trig-
gered heated discussions on the forum and we found
that most of the users were divided into two different
groups.

We crawled the data set using the TianYa API7.
The API allows users to issue queries and get threads
most related to the queries. For each issue, we used
entities involved in the event as queries and obtained
750 threads for each query. We then extracted all the
posts in the threads. As there are users who posted
irrelevant posts in the forum, we then filtered out
those users who did not mention the entities or had
fewer than 4 posts.

We refer to the first set of data in English as EDS1,
EDS2 and EDS3, and the second set of data in Chi-
nese as CDS1, CDS2 and CDS3. Some statistics of
the resulting data set are shown in Table 2.

For all the models, we set Y = 2. We set T = 10
for the English data sets and T = 40 for the Chinese
data sets. We run 400 iterations of Gibbs sampling
as burn-in iterations and then take 100 samples with
a gap of 5 to obtain our final results. We empirically
set β = 0.01, βB = 0.1, γ = 10 and δ = 0.1 for our
model on all the data sets. α and η are set through
grid search where they take values in {0.01, 0.001}.
For each data set, we choose the best setting for each
model and report the corresponding results.

3http://en.wikipedia.org/wiki/Tianya_Club
4http://en.wikipedia.org/wiki/Fang_Zhouzi
5http://en.wikipedia.org/wiki/360_v._Tencent
6http://en.wikipedia.org/wiki/Liu_Xiang
7http://open.tianya.cn/index.php
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5.2 Identification of viewpoints

We first evaluate the models on the task of identi-
fying viewpoints. For fair comparison, each model
will output a viewpoint label for each post. For
JVTM-UI, JVTM, JVTM-G and UIM, after we learn
the model, each post will directly have a viewpoint
assignment. For TAM we cannot directly get each
post’s viewpoint as the model assumes a document-
level viewpoint distribution. To estimate each post’s
viewpoint in this model, we use viewpoint assign-
ment at the word level learnt from the model. Then
for each post, we label its viewpoint as the viewpoint
that has the majority count in the post.

Ideally, we would like to manually label all the
posts to obtain the ground truth for evaluation. Since
there are too many posts, we only labeled a sample
of them. For each issue, we randomly selected 150
posts to label their viewpoints. For each post, we
asked two different annotators to label its viewpoint.
We made sure that the annotators understand the is-
sue and the two major viewpoints before they anno-
tated the posts. Specifically, as the Chinese data sets
are about some controversial issues around the enti-
ties involved, we then defined two major viewpoints
as support and not support the entity who initiated
the event. The entities of data set CDS1, CDS2 and
CDS3 are Fang Zhouzi, Tencent and Liu Xiang re-
spectively. For each given post, the annotators were
asked to judge whether the post has expressed view-
points and if so, what is its corresponding view-
point. We measure the agreement score using Co-
hen’s kappa coefficient. The lowest agreement score
for an issue is 0.61 in the data set, showing good
agreement. We then used the set of posts that were
labeled with the same viewpoint by the two annota-
tors as our evaluation data for all the models.

Since our task is essentially a clustering problem,
we use purity and entropy to measure the perfor-
mance (Manning et al., 2008). Furthermore, we also
use accuracy where we choose the better alignment
of clusters with ground truth class labels and com-
pute the percentage of posts that are “classified” cor-
rectly. For purity and accuracy, the higher the mea-
sure is the better the performance. For entropy, the
lower the measure is the better the performance.

We give an overview of the all the averaged model
results on the data sets in Figure 4. We observed that

0.4

0.6

0.8

1.0

Purity Entropy Accuracy

JVTM-G
TAM

JVTM
UIM

JVTM-UI

Figure 4: Averaged results of the models in identification
of viewpoints.

UIM performs relatively better than other methods
except our model. This shows user interactions are
important features to identify post viewpoints. Over-
all, our model has a better performance as it is with
higher purity and accuracy, and lower entropy.

JVTM-UI UIM JVTM TAM JVTM-G

EDS1
P 0.77 0.74 0.64 0.65 0.63
E 0.72 0.76 0.90 0.92 0.94
A 0.77 0.74 0.61 0.60 0.57

EDS2
P 0.82 0.78 0.68 0.65 0.64
E 0.69 0.73 0.79 0.86 0.90
A 0.81 0.78 0.68 0.68 0.65

EDS3
P 0.79 0.73 0.65 0.64 0.62
E 0.67 0.79 0.88 0.89 0.87
A 0.79 0.73 0.65 0.64 0.62

CDS1
P 0.87 0.83 0.83 0.82 0.82
E 0.61 0.64 0.65 0.66 0.64
A 0.60 0.58 0.59 0.58 0.57

CDS2
P 0.71 0.65 0.61 0.63 0.60
E 0.80 0.85 0.92 0.95 0.96
A 0.71 0.65 0.61 0.61 0.59

CDS3
P 0.78 0.78 0.78 0.78 0.78
E 0.73 0.75 0.70 0.72 0.73
A 0.67 0.59 0.67 0.66 0.63

Table 3: Results on viewpoint identification on the all
data sets.

Table 3 shows the detailed results on the data
sets. We perform the 2-tailed paired t-test as used
by Abu-Jbara et al. (2012) on the results. All the re-
sult differences are at 10% significance level if not
with further clarification. First, JVTM has a better
performance over JVTM-G, which shows it is im-
portant to consider user identity in the task. Sec-
ond, JVTM and TAM have similar performance on
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EDS1 and CDS2, but JVTM has a relatively bet-
ter performance on EDS2, EDS3, CDS1 and CDS3.
This shows it is helpful to consider each viewpoint’s
topic preference. Although as studied by Paul et
al. (2010), by only using unigram features, TAM
may not be able to cluster viewpoints accurately,
our study shows that the results can be improved
when adding each viewpoint’s topic focus. Third,
UIM has relatively better performance than the other
models, which demonstrates that user interactions
alone can do a decent job in inferring viewpoints. Fi-
nally, our proposed model has the best performance
across the board in terms of all three evaluation met-
rics. Note that, our proposed model significantly
outperforms other methods at 5% significance level
except at 10% significance level over JVTM model.
This shows by jointly modeling topics, viewpoints
and user interactions, our model can better identify
posts with different viewpoints.

5.3 Identification of user groups

We also use another task to evaluate our model.
The task here is finding each user’s viewpoint and
subsequently grouping users by their viewpoints.
This task has been studied by Abu-Jbara and Radev
(2012), Dasigi et al. (2012), Abu-Jbara et al. (2012)
and Hassan et al. (2012). For the English data set,
the user-level group labels are provided by the orig-
inal data set. For the Chinese data set, we randomly
selected 150 users for each issue and manually la-
beled them according to their viewpoints as reflected
by their posts. If a user’s posts do not clearly suggest
a viewpoint, we label her as neutral. Again we asked
two human judges to do annotation. The agreement
scores are above 0.70 for all issues, showing sub-
stantial agreement. This score is higher than view-
point identification, which suggests that it is easier
to judge a user’s viewpoint than a single post’s view-
point. We use the set of users who have got the same
labels by the two human judges for our experiments.
Similarly we compute purity, entropy and accuracy
to evaluate the clustering results.

Figure 5 shows the averaged results of all the
models. Similar to previous experiment, our model
has a better performance compared to the competing
models.

The results on the each data set are shown in Ta-
ble 4. The tables show that similar trends can be
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0.8
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Purity Entropy Accuracy

JVTM-G
TAM

JVTM
UIM

JVTM-UI

Figure 5: Averaged results of the models in identification
of user groups.

JVTM-UI UIM JVTM TAM JVTM-G

EDS1
P 0.67 0.67 0.67 0.67 0.67
E 0.85 0.88 0.89 0.89 0.91
A 0.63 0.59 0.58 0.59 0.57

EDS2
P 0.77 0.77 0.77 0.77 0.77
E 0.72 0.76 0.74 0.75 0.76
A 0.62 0.59 0.60 0.58 0.59

EDS3
P 0.68 0.63 0.61 0.61 0.58
E 0.90 0.92 0.95 0.96 0.97
A 0.68 0.63 0.61 0.58 0.57

CDS1
P 0.64 0.60 0.61 0.61 0.60
E 0.91 0.97 0.96 0.96 0.97
A 0.61 0.55 0.55 0.56 0.53

CDS2
P 0.69 0.69 0.69 0.69 0.69
E 0.83 0.89 0.85 0.89 0.89
A 0.62 0.57 0.56 0.58 0.54

CDS3
P 0.67 0.63 0.64 0.60 0.60
E 0.89 0.91 0.92 0.93 0.96
A 0.64 0.62 0.60 0.56 0.54

Table 4: Results on identification of user groups on the
all the data sets.

observed for the task of user group identification.
We also perform the 2-tailed paired t-test on the re-
sults. We find our model significantly outperforms
other models in terms of accuracy at 5% significance
level, and purity and entropy at 10% significance
level. Overall speaking, our joint model performed
the best among all the models for this task for all
three metrics. This shows that it is important to con-
sider the topical preference of individual viewpoint,
user’s identify as well as the interactions between
users.
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Figure 6: The user interaction network in a discussion
thread about “will you vote obama.” Green (left) and
white (right) nodes represent users with two different
viewpoints. Red (thin) and blue(thick) edges represent
negative and positive interactions.

5.4 User interaction network

To gain some direct insight into our results, we show
the user interaction network from one thread in Fig-
ure 6. Here each node denotes a user, and its color
denotes the predicted viewpoint of that user. A link
between a pair of users means these users have in-
teractions and the interaction types have a dominant
polarity. The polarities of these links are predicted
using the interaction expressions and a sentiment
lexicon, whereas the viewpoints of different users
are learned by JVTM-UI, making use of the inter-
action polarities. The figure shows that clearly there
are mostly positive interactions between users with
the same viewpoint and mostly negative interactions
between users with different viewpoints. Note that,
our method to identify user interaction polarity is
rule-based. As this step serves as a preprocessing
step for our latent variable model, we can always
use a more accurate method to improve the perfor-
mances.

6 Conclusion

In this work, we proposed a novel latent variable
model for viewpoint discovery from threaded forum
posts. Our model is based on the three important fac-
tors: viewpoint specific topic preference, user iden-
tity and user interactions. Our proposed model cap-
tures these observations in a principled way. In par-
ticular, to incorporate the user interaction informa-
tion, we proposed a novel generative process. Em-
pirical evaluation on the real forum data sets showed
that our model could cluster both posts and users
with different viewpoints more accurately than the
baseline models we consider. To the best of our

knowledge, our work is the first to incorporate user
interaction polarity into a generative model to dis-
cover viewpoints.

In this work, we only considered unigrams. As
some previous work has shown, more complex lexi-
cal units such as n-grams (Mukherjee and Liu, 2012)
and dependency triplets (Paul et al., 2010) may im-
prove the performance of topic models. We will con-
sider these strategies in our future work. Currently
we use a simple heuristic-based classifier to predict
interaction polarity. In our further work, we plan
to consider more accurate methods using deeper lin-
guistic analysis. We did not study how to summarize
the discovered viewpoints in this work, which is also
something we will look into in our future work.
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Abstract 

This paper proposes to study the problem of 

identifying intention posts in online discus-

sion forums. For example, in a discussion fo-

rum, a user wrote “I plan to buy a camera,” 

which indicates a buying intention. This in-

tention can be easily exploited by advertisers. 

To the best of our knowledge, there is still no 

reported study of this problem. Our research 

found that this problem is particularly suited 

to transfer learning because in different do-

mains, people express the same intention in 

similar ways. We then propose a new transfer 

learning method which, unlike a general 

transfer learning algorithm, exploits several 

special characteristics of the problem. Exper-

imental results show that the proposed meth-

od outperforms several strong baselines, 

including supervised learning in the target 

domain and a recent transfer learning meth-

od. 

1 Introduction 

Social media content is increasingly regarded as 

an information gold mine. Researchers have stud-

ied many problems in social media, e.g., senti-

ment analysis (Pang & Lee, 2008; Liu, 2010) and 

social network analysis (Easley & Kleinberg, 

2010). In this paper, we study a novel problem 

which is also of great value, namely, intention 

identification, which aims to identify discussion 

posts expressing certain user intentions that can be 

exploited by businesses or other interested parties. 

For example, one user wrote, “I am looking for a 

brand new car to replace my old Ford Focus”. 

Identifying such intention automatically can help 

social media sites to decide what ads to display so 

that the ads are more likely to be clicked. 

This work focuses on identifying user posts 

with explicit intentions. By explicit we mean that 

the intention is explicitly stated in the text, no 

need to deduce (hidden or implicit intention). For 

example, in the above sentence, the author clearly 

expressed that he/she wanted to buy a car. On the 

other hand, an example of an implicit sentence is 

“Anyone knows the battery life of iPhone?” The 

person may or may not be thinking about buying 

an iPhone. 

To our knowledge, there is no reported study of 

this problem in the context of text documents. The 

main related work is in Web search, where user 

(or query) intent classification is a major issue 

(Hu et al., 2009; Li, 2010; Li, Wang, & Acero, 

2008). Its task is to determine what the user is 

searching for based on his/her keyword queries (2 

to 3 words) and his/her click data. We will discuss 

this and other related work in Section 2. 

We formulate the proposed problem as a two-

class classification problem since an application 

may only be interested in a particular intention. 

We define intention posts (positive class) as the 

posts that explicitly express a particular intention 

of interest, e.g., the intention to buy a product. 

The other posts are non-intention posts (negative 

class). Note that we do not exploit intention spe-

cific knowledge since our aim is to propose a ge-

neric method applicable to different types of 

intentions. 

There is an important feature about this prob-

lem which makes it amenable to transfer learning 

so that we do not need to label data in every do-

main. That is, for a particular kind of intention 

such as buying, the ways to express the intention 

in different domains are often very similar. This 

1041



fact can be exploited to build a classifier based on 

labeled data in some domains and apply it to a 

new/target domain without labeling any training 

data in the target domain. However, this problem 

also has some special difficulties that existing 

general transfer learning methods do not deal 

with. The two special difficulties of the proposed 

problem are as follows: 

1. In an intention post, the intention is typically 

expressed in only one or two sentences while 

most sentences do not express intention, which 

provide very noisy data for classifiers. Fur-

thermore, words/phrases used for expressing 

intention are quite limited compared to other 

types of expressions. These mean that the set 

of shared (or common) features in different 

domains is very small. Most of the existing ad-

vanced transfer learning methods all try to ex-

tract and exploit these shared features. The 

small number of such features in our task 

makes it hard for the existing methods to find 

them accurately, which in turn learn poorer 

classifiers. 

2. As mentioned above, in different domains, the 

ways to express the same intention are often 

similar. This means that only the positive (in-

tention) features are shared among different 

domains, while features indicating the negative 

class in different domains are very diverse. We 

then have an imbalance problem, i.e., the 

shared features are almost exclusively features 

indicating the positive class. To our 

knowledge, none of the existing transfer learn-

ing methods deals with this imbalance problem 

of shared features, which also results in inaccu-

rate classifiers.  

We thus propose a new transfer learning (or do-

main adaptation) method, called Co-Class, which, 

unlike a general transfer learning method, is able 

to deal with these difficulties in solving the prob-

lem. Co-Class works as follows: we first build a 

classifier   using the labeled data from existing 

domains, called the source data, and then apply 

the classifier to classify the target (domain) data 

(which is unlabeled). Based on the target data la-

beled by  , we perform a feature selection on the 

target data. The selected set of features is used to 

build two classifiers, one (  ) from the labeled 

source data and one (  ) from the target data 

which has been labeled by  . The two classifiers 

(   and   ) then work together to perform classi-

fication of the target data. The process then runs 

iteratively until the labels assigned to the target 

data stabilize. Note that in each iteration both 

classifiers are built using the same set of features 

selected from the target domain in order to focus 

on the target domain. The proposed Co-Class ex-

plicitly deals with the difficulties mentioned 

above (see Section 3). Our experiments using four 

real-life data sets extracted from four forum dis-

cussion sites show that Co-Class outperforms sev-

eral strong baselines. What is also interesting is 

that it works even better than fully supervised 

learning in the target domain itself, i.e., using both 

training and test data in the target domain. It also 

outperforms a recent state-of-the-art transfer 

learning method (Tan et al., 2009), which has 

been successfully applied to the NLP task of sen-

timent classification.  

In summary, this paper makes two main contri-

butions: 
1. It proposes to study the novel problem of inten-

tion identification. User intention is an im-
portant type of information in social media 
with many applications. To our knowledge, 
there is still no reported study of this problem.  

2. It proposes a new transfer learning method Co-
Class which is able to exploit the above two 
key issues/characteristics of the problem in 
building cross-domain classifiers. Our experi-
mental results demonstrate its effectiveness. 

2 Related Work 

Although we have not found any paper studying 

intention classification of social media posts, there 

are some related works in the domain of Web 

search, where user or query intent classification is 

a major issue (Hu et al., 2009; Li, 2010; Li et al., 

2008). The task there is to classify a query submit-

ted to a search engine to determine what the user 

is searching for. It is different from our problem 

because they classify based on the user-submitted 

keyword queries (often 2 to 3 words) together 

with the user’s click-through data (which repre-

sent the user’s behavior). Such intents are typical-

ly implicit because people usually do not issue a 

search query like “I want to buy a digital cam-

era.” Instead, they may just type the keywords 

“digital camera”. Our interest is to identify explic-

it intents expressed in full text documents (forum 

posts). Another related problem is online com-

mercial intention (OCI) identification (Dai et al., 
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2006; Hu et al., 2009), which focuses on capturing 

commercial intention based on a user query and 

web browsing history. In this sense, OCI is still a 

user query intent problem. 

In NLP, (Kanayama & Nasukawa, 2008) stud-

ied users’ needs and wants from opinions. For 

example, they aimed to identify the user needs 

from sentences such as “I’d be happy if it is 

equipped with a crisp LCD.” This is clearly dif-

ferent from our explicit intention to buy or to use 

a product/service, e.g., “I plan to buy a new TV.” 

Our proposed Co-Class technique is related to 

transfer learning or domain adaptation. The pro-

posed method belongs to “feature representation 

transfer" from source domain to target domain 

(Pan & Yang, 2010). Aue & Gamon (2005) tried 

training on a mixture of labeled reviews from oth-

er domains where such data are available and test 

on the target domain. This is basically one of our 

baseline methods 3TR-1TE in Section 4. Their 

work does not do multiple iterations and does not 

build two separate classifiers as we do. Some re-

lated methods were also proposed in (W. Dai, 

Xue, Yang & Yu, 2007; Tan et al., 2007; Yang, Si 

& Callan, 2006). More sophisticated transfer 

learning methods try to find common features in 

both the source and target domains and then try to 

map the differences of the two domains (Blitzer, 

Dredze, & Pereira, 2007; Pan, et al, 2010; Bolle-

gala, Weir & Carroll, 2011; Tan et al., 2009). 

Some researchers also used topic modeling of 

both domains to transfer knowledge (Gao & Li, 

2011; He, Lin & Alani, 2011). However, none of 

these methods deals with the two prob-

lems/difficulties of our task. Co-Class tackles 

them explicitly and effectively (Section 4). 

The proposed Co-Class method is also related 

to Co-Training method in (Blum & Mitchell, 

1998). We will compare them in detail in Section 

3.3. 

3 The Proposed Technique 

We now present the proposed technique. Our ob-

jective is to perform classification in the target 

domain by utilizing labeled data from the source 

domains. We use the term “source domains” as 

we can combine labeled data from multiple source 

domains. The target domain has no labeled data. 

Only the source domain data are labeled. 

To deal with the first problem in Section 1 (i.e., 

the difficulty of finding common features across 

different domains), Co-Class avoids it by using an 

EM-based method to iteratively transfer from the 

source domains to the target domain while ex-

ploiting feature selection in the target domain to 

focus on important features in the target domain. 

Since our ideas are developed starting from the 

EM (Expectation Maximization) algorithm and its 

shortcomings, we now introduce EM. 

3.1 EM Algorithm 

EM (Dempster, Laird, & Rubin, 1977) is a popu-

lar class of iterative algorithms for maximum like-

lihood estimation in problems with incomplete 

data. It is often used to address missing values in 

the data by computing expected values using ex-

isting values. The EM algorithm consists of two 

steps, the Expectation step (E-step) and the Max-

imization step (M-step). E-step basically fills in 

the missing data, and M-step re-estimates the pa-

rameters. This process iterates until convergence. 

Since our target data have no labels, which can be 

treated as missing values/data, the EM algorithm 

naturally applies. For text classification, each iter-

ation of EM (Nigam, McCallum, Thrun, & Mitch-

ell, 2000) usually uses the naïve Bayes (NB) 

classifier. Below, we first introduce the NB classi-

fier. 

Given a set of training documents  , each doc-

ument      is an ordered list of words. We use 

      to denote the word in the position   of   , 

where each word is from the vocabulary    
         | | , which is the set of all words con-

sidered in classification. We also have a set of 

classes         representing positive and neg-

ative classes. For classification, we compute the 

posterior probability       |   . Based on the 

Bayes rule and multinomial model, we have: 

      

   (1) 

 

and with Laplacian smoothing: 

    (2) 

where          is the number of times that the 

word    occurs in document   , and   (  |  )  

      is the probability of assigning class    to   . 

Assuming that word probabilities are independent 

given a class, we have the NB classifier: 
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  (3) 

The EM algorithm basically builds a classifier 
iteratively using NB and both the labeled source 
data and the unlabeled target data. However, the 
major shortcoming is that the feature set, even 
with feature selection, may fit the labeled source 
data well but not the target data because the target 
data has no labels to be used in feature selection. 
Feature selection is shown to be very important 
for this application as we will see in Section 4. 

3.2 FS-EM 

Based on the discussion above, the key to solve 

the problem of EM is to find a way to reflect the 

features in the target domain during the iterations. 

We propose two alternatives, FS-EM (Feature 

Selection EM) and Co-Class (Co-Classification). 

This sub-section presents FS-EM. 

EM can select features only before iterations 

using the labeled source data and keep using the 

same features in each iteration. However, these 

features only fit the labeled source data but not the 

target data. We then propose to select features 

during iterations, i.e., after each iteration, we re-

do feature selection. For this, we use the predicted 

classes of the target data. In naïve Bayes, we de-

fine the predicted class for document    as 

 
        

    
      |    

(4) 

The detailed algorithm for FS-EM is given in 

Figure 1. First, we select a feature set from the 

labeled source data    and then build an initial 

NB classifier (lines 1 and 2). The feature selection 

is based on Information Gain, which will be intro-

duced in Section 3.4. After that, we classify each 

document in the target data    to obtain its pre-

dicted class (lines 4-6). A new target data set    

is produced in line 7, which is    with added 

classes (predicted in line 5). Line 8 selects a new 

feature set   from the data    (which is discussed 

below), from which a new classifier   is built 

(line 9). The iteration stops when the predicted 

classes of    do not change any more (line 10). 

We now turn to the data set   , which can be 

formed with one of the two methods: 

1.          
2.       

The first method (called FS-EM1) merges the 

labeled source data    and the target data    

(with predicted classes). However, this method 

does not work well because the labeled source 

data can dominate    and the target domain fea-

tures are still not well represented. 

The second method (     ), denoted as FS-

EM2, selects features from the target domain data 

   only based on the predicted classes. The clas-

sifiers are built in iterations (lines 3-10) using on-

ly the target domain data. The weakness of this is 

that it completely ignores the labeled source data 

after initialization, but the source data does con-

tain some valuable information. Our final pro-

posed method Co-Class is able to solve this 

problem. 

3.3 Co-Class 

Co-Class is our final proposed algorithm. It con-

siders both the source labeled data and the target 

data with predicted classes. It uses the idea of FS-

EM, but is also inspired by Co-Training in (Blum 

& Mitchell, 1998). It additionally deals with the 

second issue identified in Section 1 (i.e., the im-

balance of shared positive and negative features). 

Co-Training is originally designed for semi-

supervised learning to learn from a small labeled 

and a large unlabeled set of training examples, 

which assumes the set of features in the data can 

be partitioned into two subsets, and each subset is 

sufficient for building an accurate classifier. The 

proposed Co-Class model is similar to Co-

Training in that it also builds two classifiers. 

However, unlike Co-Training, Co-Class does not 

partition the feature space. Instead, one classifier 

is built based on the target data with predicted 

classes (  ), and the other classifier is built using 

only the source labeled data (  ). Both classifiers 

use the same features (this is an important point) 

that are selected from the target data    only, in 

order to focus on the target domain. The final 

classification is based on both classifiers. Fur-

thermore, Co-Training only uses the data from the 

same domain. 

The detailed Co-Class algorithm is given in 

Figure 2. Lines 1-6 are the same as lines 1, 2 and 

4-7 in FS-EM. Line 8 selects new features   from 

  . Two naïve Bayes classifiers,    and   , are 

then built using the source data    and predicted 

target data    respectively with the same set of 
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features   (lines 9-10). Lines 11-13 classify each 

target domain document    using the two classifi-

ers.  (             ) is the aggregate function to 

combine the results of two classifiers. It is defined 

as: 

 (             )  {
                          
                                       

  

This aims to deal with the imbalanced feature 

problem. As discussed before, the expressions for 

stating a particular intention (e.g., buying) are 

very similar across domains but the non-intention 

expressions across domains are highly diverse, 

which result in strong positive features and weak 

negative features. We then need to restrict the 

positive class by requiring both classifiers to give 

positive predictions. If we use the method in Co-

Training (multiplying the probabilities of the two 

NB classifiers), the classification results deterio-

rate from iteration to iteration because the positive 

class recall gets higher and higher due to strong 

positive features, but the precision gets lower and 

lower. 

Since we build and use two classifiers for the 

final classification, we call the method Co-Class, 

short for Co-Classification. Co-Class is different 

from EM (Nigam et al., 2000) in two main aspects. 

First, it integrates feature selection into the itera-

tions, which has not been done before. Feature 

selection refines features to enhance the correla-

tion between the features and classes. Second, two 

classifiers are built based on different domains 

and combined to improve the classification. Only 

one classifier is built in existing EM methods, 

which gives poorer results (Section 4). 

3.4 Feature Selection 

As feature selection is important for our task, we 

briefly introduce the Information Gain (IG) meth-

od given in (Yang & Pedersen, 1997), which is a 

popular feature selection algorithm for text classi-

fication. IG is based on entropy reflecting the pu-

rity of the categories or classes by knowing the 

presence or absence of each feature, which is de-

fined as: 
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Using the IG value of each feature  , all fea-

tures can be ranked. As in normal classification 

tasks, the common practice is to use a set of top 

ranked features for classification. 

4 Evaluation 

We have conducted a comprehensive set of exper-

iments to compare the proposed Co-Class method 

with several strong baselines, including a state-of-

the-art transfer learning method. 

4.1 Experiment Settings 

Datasets: We created 4 different domain datasets 

crawled from 4 different forum discussion sites: 

Cellphone: http://www.howardforums.com/forums.php 

Electronics: http://www.avsforum.com/avs-vb/ 

Camera: http://forum.digitalcamerareview.com/ 

Algorithm FS-EM 

     Input:  Labeled data    and unlabeled data    

1   Select a feature set   based on IG from   ; 

2   Learn an initial naïve Bayes classifier   from     

         based on   (using Equations (1) and (2)); 

3   repeat 

4       for each document    in    do 

5                  ;   // predict the class of    using   

6       end 

7       Produce data    based on predicted class of   ; 

8       Select a new feature set   from   ; 
9       Learn a new classifier   on    

based on the new feature set  ; 

10 until the predicted classes of    stabilize 

11 Return the classifier   from the last iteration. 

Figure 1 – The FS-EM algorithm 

Algorithm Co-Class 

     Input:  Labeled data    and unlabeled data    

1   Select a feature set   based on IG from   ; 

2   Learn an initial naïve Bayes classifier   from            

         based on   (using Equations (1) and (2)); 

3  for each document    in    do 

4              ;   // predict the class of    using   

5    end 

6   Produce data    based on the predicted class of   ; 

7   repeat 

8       Select a new feature set   from   ; 

9       Build a naïve Bayes classifier    using   and   ; 

10     Build a naïve Bayes classifier    using   and   ; 

11     for each document    in    do 

12             (             ); // Aggregate function 

13     end 

14     Produce data    based on predicted class of   ; 

15 until the prediction classes of    stabilize 

16 Return classifiers    and    from the last iteration. 

Figure 2 – The Co-Class algorithm 
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TV: http://www.avforums.com/forums/tvs/  

For our experiments, we are interested in the in-

tention to buy, which is our intention or positive 

class. For each dataset, we manually labeled 1000 

posts. 

Labeling: We initially labeled about one fifth of 

posts by two human annotators. We found their 

labels highly agreed. We then used only one anno-

tator to complete the remaining labeling. The rea-

son for the strong labeling agreement is that we 

are interested in only explicit buying intentions, 

which are clearly expressed in each post, e.g., “I 

am in the market for a new smartphone.” There is 

little ambiguity or subjectivity in labeling. 

To ensure that the task is realistic, for all da-

tasets we keep their original class distributions as 

they are extracted from their respective websites 

to reflect the real-life situation. The intention class 

is always the minority class, which makes it much 

harder to predict due to the imbalanced class dis-

tribution. Table 1 gives the statistics of each da-

taset. On average, each post contains about 7.5 

sentences and 122 words. We have made the da-

tasets used in this paper publically available at the 

websites of the first two authors.  

Evaluation measures: For all experiments, we 

use precision, recall and F1-score as the evalua-

tion measures. They are suitable because our ob-

jective is to identify intention posts. 

4.2 One Domain Learning 

The objective of our work is to classify the target 

domain instances without labeling any target do-

main data. To set the background, we first give 

the results of one domain learning, i.e., assuming 

that there is labeled training data in the target do-

main (which is the traditional fully supervised 

learning).  We want to see how the results of Co-

Class compare with the fully supervised learning. 

For this set of experiments, we use naïve Bayes 

and SVM. For naïve Bayes, we use the Lingpipe 

implementation (http://alias-i.com/lingpipe/). For 

SVM, we use SVM
Light

 (Joachims, 1999) from 

(http://svmlight.joachims.org/) with the linear 

kernel as it has been shown by many researchers 

that linear kernel is sufficient for text classifica-

tion (Joachims, 1998; Yang and Liu, 1999). 

During labeling, we observed that the intention 

in an intention (positive) post is often expressed in 

the first few or the last few sentences. Hence, we 

tried to use the full post (denoted by Full), the first 

5 sentences (denoted by (5, 0)), and first 5 and last 

5 sentences (denoted by (5, 5)). We also experi-

mented with the first 3 sentences, and first 3 and 

last 3 sentences but their results were poorer. 

The experiments were done using 10-fold cross 

validation. For the number of selected features, 

we tried 500, 1000, 1500, 2000, 2500 and all. We 

also tried unigrams, bigrams, trigrams, and 4-

grams. To compare naïve Bayes with SVM, we 

tried each combination, i.e. number of features 

and n-grams, and found the best model for each 

method. We found that naïve Bayes works best 

when using trigrams with 1500 selected features. 

Bigrams with 1000 features are the best combina-

tion for SVM. Figure 3 shows the comparison of 

the best results (F1-scores) of naïve Bayes and 

SVM. 

From Figure 3, we make the following observa-

tions: 

1. SVM does not do well for this task. We tuned 

the parameters of SVM, but the results were 

similar to the default setting, and all were 

worse than naïve Bayes. We believe the main 

reason is that the data for this application is 

highly noisy because apart from one or two in-

tention sentences, other sentences in an inten-

tion post have little difference from those in a 

non-intention post. SVM does not perform well 

with very noisy data. When there are data 

points far away from their own classes, SVM 

Dataset 
No. of 

Intention 

No. of 

Non-Intention 

Total No. 

of posts 

Cellphone 184 816 1000 

Electronics 280 720 1000 

Camera 282 718 1000 

TV 263 737 1000 

Table 1: Datasets statistics with the buy intention 
 

 

Figure 3 – Naïve Bayes vs. SVM 
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tends to be strongly affected by such points 

(Wu & Liu, 2007). Naïve Bayes is more robust 

in the presence of noise due to its probabilistic 

nature. 

2. SVM using only the first few and/or last few 

sentences performs better than using full posts 

because full posts have more noise. However, 

it is still worse than naïve Bayes. 

3. For naïve Bayes, using full posts and the first 5 

and last 5 (5, 5) sentences give similar results, 

which is not surprising as (5, 5) has almost all 

the information needed. Without using the last 

5 sentence (5, 0), the results are poorer. 

We also found that without feature selection (us-

ing all features), the results are markedly worse 

for both naïve Bayes and SVM. This is under-

standable (as we discussed earlier) because most 

words and sentences in both intention and non-

intention posts are very similar. Thus, feature se-

lection is highly desirable for this application. 

Effect of different combinations: Table 2 gives 

the detailed F1-score results of naïve Bayes with 

best results in different n-grams (with best number 

of features). We can see that using trigrams pro-

duces the best results on average, but bigrams and 

4-grams are quite similar. It turns out that using 

trigrams with 1500 selected features performs the 

best. SVM results are not shown as they are poor-

er. 

In summary, we say that naïve Bayes is more 

suitable than SVM for our application and feature 

selection is crucial. In our experiments reported 

below, we will only use naïve Bayes with feature 

selection. 

4.3 Evaluation of Co-Class 

We now compare Co-Class with the baseline 

methods listed below. Note that for this set of ex-

periments, the source data all contain labeled 

posts from three domains and the target data con-

tain unlabeled posts in one domain. That is, for 

each target domain, we merge three other domains 

for training and the target domain for testing. For 

example, for the target of “Cellphone”, the model 

is built using the data from the other three do-

mains (i.e., “Electronics”, “Camera” and “TV”). 

The results are the classification of the model on 

the target domain “Cellphone”. Several strong 

baselines are described as follows: 

3TR-1TE: Use labeled data from three do-

mains to train and then classify the target (test) 

domain. There is no iteration. This method was 

used in (Aue & Gamon, 2005). 

EM: This is the algorithm in Section 3.1. The 

combined data from three domains are used as the 

labeled source data. The data of the remaining one 

domain are used as the unlabeled target data, 

which is also used as the test data (since it is unla-

beled). 

ANB: This is a recent transfer learning method 

(Tan et al., 2009). ANB uses frequently co-

occurring entropy (FCE) to pick out generalizable 

(or shared) features that occur frequently in both 

the source and target domains. Then, a weighted 

transfer version of naïve Bayes classifier is ap-

plied. We chose this method for comparison as it 

is a recent method, also based on naïve Bayes, and 

has been applied to the NLP task of sentiment 

Naïve Bayes 
(n-grams, features) 

Cellphone Electronics Camera TV 

Full 5,0 5,5 Full 5,0 5,5 Full 5,0 5,5 Full 5,0 5,5 
Unigrams, 2000 59.91 55.21 56.76 71.31 70.10 71.24 71.57 71.53 75.78 74.96 74.45 74.13 

Bigrams, 1500 61.97 54.29 59.17 70.71 71.46 72.48 77.02 74.12 77.38 79.76 77.71 79.72 

Trigrams, 1500 61.50 55.78 60.15 71.38 71.07 71.61 77.66 75.71 78.74 80.24 75.66 79.92 

4-grams, 2000 58.94 51.94 57.72 72.03 71.98 73.05 79.84 75.09 79.46 79.12 76.61 79.88 

Table 2: One-domain learning using naïve Bayes with n-grams (with best no. of features) 

Naïve Bayes 
(n-grams, features) 

Cellphone Electronics Camera TV 

Full 5,0 5,5 Full 5,0 5,5 Full 5,0 5,5 Full 5,0 5,5 
Trigrams, 2000 57.98 57.60 58.67 71.85 69.74 71.51 74.45 73.58 74.24 74.07 71.34 73.65 

Trigrams, 2500 58.08 57.48 59.12 72.27 69.65 71.82 76.15 73.64 76.31 74.02 71.25 73.49 

Trigrams, 3000 56.74 56.94 56.74 72.27 70.76 72.43 77.62 74.65 77.62 75.64 71.65 74.73 

Trigrams, 3500 56.60 56.81 57.21 71.86 70.40 72.24 77.17 74.85 76.68 74.25 71.10 73.37 

4-grams, 2000 58.94 51.94 57.72 72.03 71.98 73.05 79.84 75.09 79.46 79.12 76.61 79.88 

Table 3: F1-scores of 3TR-1TE with trigrams and different no. of features 
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classification, which to some extend is related to 

the proposed task of intention classification. ANB 

was also shown to perform better than EM and 

naïve Bayes transfer learning method (Dai et al., 

2007). 

We look at the results of 3TR-1TE first, which 

are shown in Table 3. Due to space limitations, we 

only show the trigrams F1-scores as they perform 

the best on average. Table 3 gives the number of 

features with trigrams. We can observe that on 

average using 3000 features gives the best F1-

score results. It has 1000 more features than one 

domain learning because we now combine three 

domains (3000 posts) for training and thus more 

useful features. 

From Table 3, we observe that the F1-score re-

sults of 3TR-1TE are worse than those of one do-

main learning (Table 2), which is intuitive 

because no training data are used from the target 

domain. But the results are not dramatically worse 

which indicate that there are some common fea-

tures in different domains, meaning people ex-

pressing the same intention in similar ways. 

Since we found that trigrams with 3000 features 

perform the best on average, we run EM, FS-

EM1, FS-EM2 and Co-Class based on trigrams 

with 3000 features. For the baseline ANB, we 

tuned the parameters using a development set 

(1/10 of the training data). We found that select-

ing 2000 generalizable/shared features gives the 

best results (the default is 500 in (Tan et al., 

2009)). We kept ANB’s other original parameter 

values. The F1-scores (averages over all 4 da-

tasets) with the number of iterations are shown in 

Figure 4. Iteration 0 is the result of 3TR-1TE. 

From Figure 4, we can make the following obser-

vations: 

1. EM makes a little improvement in iteration 1. 

After that, the results deteriorate. The gain of 

iteration 1 shows that incorporating the target 

domain data (unlabeled) is helpful. However, 

the selected features from source domains can 

only fit the labeled source data but not the tar-

get data, which was explained in Section 3.1. 

2. ANB improves slightly from iteration 1 to iter-

ation 6, but the results are all worse than those 

of Co-Class. We checked the generaliza-

ble/shared features of ANB and found that they 

were not suitable for our problem since they 

were mainly adjectives, nouns and sentiment 

verbs, which do not have strong correlation 

with intentions. This shows that it is hard to 

find the truly shared features indicating inten-

tions. Furthermore, ANB’s results are almost 

the same as those of EM. 

3. FS-EM2 behaves similarly to FS-EM1. After 

two iterations, the results start to deteriorate. 

Selecting features only from the target domain 

makes sense since it can reflect target domain 

data well. However, it also becomes worse 

with the increased number of iterations, due to 

strong positive features. With increased itera-

tions, positive features get stronger due to the 

imbalanced feature problem discussed in Sec-

tion 1. 

4. Co-Class performs much better than all other 

methods. With the increased number of itera-

tions, the results actually improve. Starting 

from iteration 7, the results stabilize. Co-Class 

solves the problem of strong positive features 

by requiring strong conditions for positive 

classification and focusing on features in the 

target domain only. Although the detailed re-

sults of precision and recall are not shown, the 

Co-Class model actually improves the F1-score 

by improving both the precision and recall.  

Significance of improvement: We now discuss 

the significance of improvements by comparing 

the results of Co-Class with other models. Table 4 

summarizes the results among the models. For 

Co-Class, we use the converged models at itera-

tion 7. We also include the One Domain learning 

results which are from fully supervised classifica-

tion in the target domains with trigrams and 1500 

features. The results of 3TR-1TE, EM, ANB, FS-

EM1, and FS-EM2 are obtained based on their 

settings which give the best results in Figure 4. 

 
Figure 4 – Comparison EM, ANB, FS-EM1, FS-EM2, 

and Co-Class across iterations (0 is 3TR-1TE) 
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It is clear from Table 4 that Co-Class is the best 

method in general. It is even better than the fully 

supervised One-Domain learning, although their 

results are not strictly comparable because One-

Domain learning uses training and test data from 

the same domain via 10-fold cross validation, 

while all other methods use one domain as the test 

data (the labeled data are from the other three do-

mains). One possible reason is that the labeled 

data are much bigger than those in One-Domain 

learning, which contain more expressions of buy-

ing intention. Note that FS-EM1 and FS-EM2 

work slightly better than Co-Class in domain 

“Camera” because it is the least noisy domain 

with very short posts while other domains (as 

source data) are quite noisy. With good quality 

data, FS-EM1 and FS-EM2 (also proposed in this 

paper) can do slightly better than Co-Class. Statis-

tical paired t-test shows that Co-Class performs 

significantly better than baseline methods 3TR-

1TE, EM, ANB and FS-EM1 at the confidence 

level of 95%, and better than FS-EM2 at the con-

fidence level of 94%. 

Effect of the number of training domains: In 

our experiments above, we used 3 source domain 

data and tested on one target domain. We now 

show what happens if we use only one or two 

source domain data and test on one target domain. 

We tried all possible combinations of source and 

target data. Figure 5 gives the average results over 

the four target/test domains. We can see that using 

more source domains is better due to more labeled 

data. With more domains, Co-Class also improves 

more over 3TR-1TE. 

5 Conclusion 

This paper studied the problem of identifying in-

tention posts in discussion forums. The problem 

has not been studied in the social media context. 

Due to special characteristics of the problem, we 

found that it is particularly suited to transfer learn-

ing. A new transfer learning method, called Co-

Class, was proposed to solve the problem. Unlike 

a general transfer learning method, Co-Class can 

deal with two specific difficulties of the problem 

to produce more accurate classifiers. Our experi-

mental results show that Co-Class outperforms 

strong baselines including classifiers trained using 

labeled data in the target domains and classifiers 

from a state-of-the-art transfer learning method. 
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Abstract

We describe a novel approach to detecting
empty categories (EC) as represented in de-
pendency trees as well as a new metric for
measuring EC detection accuracy. The new
metric takes into account not only the position
and type of an EC, but also the head it is a
dependent of in a dependency tree. We also
introduce a variety of new features that are
more suited for this approach. Tested on a sub-
set of the Chinese Treebank, our system im-
proved significantly over the best previously
reported results even when evaluated with this
more stringent metric.

1 Introduction

In modern theoretical linguistics, empty categories
(ECs) are an important piece of machinery in repre-
senting the syntactic structure of a sentence and they
are used to represent phonologically null elements
such as dropped pronouns and traces of dislocated
elements. They have also found their way into large-
scale treebanks which have played an important role
in advancing the state of the art in syntactic parsing.
In phrase-structure treebanks, ECs have been used to
indicate long-distance dependencies, discontinuous
constituents, and certain dropped elements (Marcus
et al., 1993; Xue et al., 2005). Together with la-
beled brackets and function tags, they make up the
full syntactic representation of a sentence.

The use of ECs captures some cross-linguistic
commonalities and differences. For example, while
both the Penn English TreeBank (PTB) (Marcus et
al., 1993) and the Chinese TreeBank (CTB) (Xue

et al., 2005) use traces to represent the extraction
site of a dislocated element, dropped pronouns (rep-
resented as *pro*s) are much more widespread in
the CTB. This is because Chinese is a pro-drop lan-
guage (Huang, 1984) that allows the subject to be
dropped in more contexts than English does. While
detecting and resolving traces is important to the in-
terpretation of the syntactic structure of a sentence in
both English and Chinese, the prevalence of dropped
nouns in Chinese text gives EC detection added sig-
nificance and urgency. They are not only an impor-
tant component of the syntactic parse of a sentence,
but are also essential to a wide range of NLP appli-
cations. For example, any meaningful tracking of
entities and events in natural language text would
have to include those represented by dropped pro-
nouns. If Chinese is translated into a different lan-
guage, it is also necessary to render these dropped
pronouns explicit if the target language does not al-
low pro-drop. In fact, Chung and Gildea (2010) re-
ported preliminary work that has shown a positive
impact of automatic EC detection on statistical ma-
chine translation.

Some ECs can be resolved to an overt element in
the same text while others only have a generic ref-
erence that cannot be linked to any specific entity.
Still others have a plausible antecedent in the text,
but are not annotated due to annotation limitations.
A common practice is to resolve ECs in two separate
stages (Johnson, 2002; Dienes and Dubey, 2003b;
Dienes and Dubey, 2003a; Campbell, 2004; Gab-
bard et al., 2006; Schmid, 2006; Cai et al., 2011).
The first stage is EC detection, where empty cate-
gories are first located and typed. The second stage
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is EC resolution, where empty categories are linked
to an overt element if possible.

In this paper we describe a novel approach to de-
tecting empty categories in Chinese, using the CTB
as training and test data. More concretely, EC de-
tection involves (i) identifying the position of the
EC, relative to some overt word tokens in the same
sentence, and (ii) determining the type of EC, e.g.,
whether it is a dropped pronoun or a trace. We fo-
cus on EC detection here because most of the ECs
in the Chinese Treebank are either not resolved to
an overt element or linked to another EC. For ex-
ample, dropped pronouns (*pro*) are not resolved,
and traces (*T*) in relative clauses are linked to an
empty relative pronoun (*OP*).

In previous work, ECs are either represented lin-
early, where ECs are indexed to the following word
(Yang and Xue, 2010) or attached to nodes in a
phrase structure tree (Johnson, 2002; Dienes and
Dubey, 2003b; Gabbard et al., 2006). In a linear
representation where ECs are indexed to the follow-
ing word, it is difficult to represent consecutive ECs
because that will mean more than one EC will be
indexed to the same word (making the classification
task more complicated). While in English consecu-
tive ECs are relatively rare, in Chinese this is very
common. For example, it is often the case that an
empty relative pronoun (*OP*) is followed imme-
diately by a trace (*T*). Another issue with the lin-
ear representation of ECs is that it leaves unspecified
where the EC should be attached, and crucial depen-
dencies between ECs and other elements in the syn-
tactic structure are not represented, thus limiting the
utility of this task.

In a phrase structure representation, ECs are at-
tached to a hierarchical structure and the problem
of multiple ECs indexed to the same word token can
be avoided because linearly consecutive ECs may be
attached to different non-terminal nodes in a phrase
structure tree. In a phrase structure framework, ECs
are evaluated based on their linear position as well
as on their contribution to the overall accuracy of
the syntactic parse (Cai et al., 2011).

In the present work, we propose to look at EC
detection in a dependency structure representation,
where we define EC detection as (i) determining its
linear position relative to the following word token,
(ii) determining its head it is a dependent of, and (iii)

determining the type of EC. Framing EC detection
this way also requires a new evaluation metric. An
EC is considered to be correctly detected if its linear
position, its head, and its type are all correctly de-
termined. We report experimental results that show
even using this more stringent measure, our EC de-
tection system achieved performance that improved
significantly over the state-of-the-art results.

The rest of the paper is organized as follows. In
Section 2, we will describe how to represent ECs
in a dependency structure in detail and present our
approach to EC detection. In Section 3, we describe
how linguistic information is encoded as features.
In Section 4, we discuss our experimental setup and
present our results. In Section 5, we describe related
work. Section 6 concludes the paper.

2 Approach

In order to detect ECs anchored in a dependency
tree, we first convert the phrase structure trees in the
CTB into dependency trees. After the conversion,
each word token in a dependency tree, including the
ECs, will have one and only one head (or parent).
We then train a classifier to predict the position and
type of ECs in the dependency tree. Let W be a se-
quence of word tokens in a sentence, and T is syn-
tactic parse tree for W , our task is to predict whether
there is a tuple (h, t, e), such that h and t are word to-
kens in W , e is an EC, h is the head of e, and t imme-
diately follows e. When EC detection is formulated
as a classification task, each classification instance
is thus a tuple (h, t). The input to our classifier is
T , which can either be a phrase structure tree or a
dependency tree. We choose to use a phrase struc-
ture tree because phrase structure parsers trained on
the Chinese Treebank are readily available, and we
also hypothesize that phrase structure trees have a
richer hierarchical structure that can be exploited as
features for EC detection.

2.1 Empty categories in the Chinese Treebank
According to the CTB bracketing guidelines (Xue
and Xia, 2000), there are seven different types of
ECs in the CTB. Below is a brief description of the
empty categories:

1. *pro*: small pro, used to represent dropped
pronouns.
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2. *PRO*: big PRO, used to represent shared el-
ements in control structures or elements that
have generic references.

3. *OP*: null operator, used to represent empty
relative pronouns.

4. *T*: trace left by movement such as topical-
ization and relativization.

5. *RNR*: right node raising.
6. *: trace left by passivization and raising.
7. *?*: missing elements of unknown category.

An example parse tree with ECs is shown in
Figure 1. In the example, there are two ECs, an
empty relative pronoun (*OP*) and a trace (*T*), a
common syntactic pattern for relative clauses in the
CTB.
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Figure 1: Empty categories in a phrase structure tree

2.2 Converting phrase structure to dependency
structure

We convert the phrase structure parses in the CTB
to dependency trees using the conversion tool that
generated the Chinese data sets for the CoNLL 2009
Shared Task on multilingual dependency parsing
and semantic role labeling (Hajič et al., 2009)1.
While the Chinese data of CoNLL 2009 Shared Task
does not include ECs, the tool has an option of pre-
serving the ECs in the conversion process. As an ex-
ample, the dependency tree in Figure 2 is converted
from the phrase structure tree in Figure 1, with the
ECs preserved.

1The tool can be downloaded at
http://www.cs.brandeis.edu/ clp/ctb/ctb.html.

In previous work EC detection has been formu-
lated as a classification problem with the target of
the classification being word tokens (Yang and Xue,
2010; Chung and Gildea, 2010), or constituents in
a parse tree (Gabbard et al., 2006). When word to-
kens are used as the target of classification, the task
is to determine whether there is an EC before each
word token, and what type EC it is. One shortcom-
ing with that representation is that more than one EC
can precede the same word token, as is the case in
the example in Figure 1, where both *OP* and *T*
precede 涉及 (“involve”). In fact, (Yang and Xue,
2010) takes the last EC when there is a sequence of
ECs and as a result, some ECs will never get the
chance to be detected. Notice that this problem can
be avoided in a dependency structure representation
if we make the target of classification a tuple that
consists of the following word token and the head of
the EC. From Figure 2, it should be clear that while
*OP* and *T* both precede the same word token涉
及 (“involve”), they have different heads, which are
的 (DE) and涉及 respectively.

Dependency-based EC detection also has other
nice properties. For ECs that are arguments of their
verbal head, when they are resolved to some overt
element, the dependency between the referent of
the EC and its head will be naturally established.
This can be viewed as an alternative to the approach
adopted by Levy and Manning (2004), where phrase
structure parses are augmented to recover non-local
dependencies. Dependency structures are also easily
decomposable into head/dependency pairs and this
makes the evaluation more straightforward. Each
classification instance can be evaluated indepen-
dently of other parts of the dependency structure.

2.3 One pass vs two passes

With pairs of tokens (h, t) as the classification tar-
get, all possible pairs in a sentence will have to be
considered and there will be a large number of (h,
t) tuples that are not associated with an EC, leading
to a highly imbalanced data set. One can conceive
a two-pass scenario where we first make a binary
decision of whether there is an empty category as-
sociated with the head in the first pass and then de-
termine whether there is an EC associated with the
tuple as well as the EC type in the second pass. The
alternative is to have a one-pass model in which we
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Figure 2: Empty categories in a dependency structure tree

add a NONE category indicating there is no EC as-
sociated with the tuple. With the seven EC types
presented earlier in this section, this will be an eight-
way classification problem. There are reasons for ei-
ther model: the one-pass model is simpler but in the
two-pass model we can bring different sources of in-
formation to bear on each sub-problem. Ultimately
which model leads to better accuracy is an empirical
question. We experimented with both models and it
turned out that they led to very similar results. In
this paper, we report results from the simpler one-
pass model.

3 Features

We explored a wide range of features, all derived
from the phrase structure parse tree (T ). With each
classification instance being a tuple (h, t), the “piv-
ots” for these features are h the head, t the word
token following the EC, and p, the word token pre-
ceding the EC. The features we tried fall into six
broad groups that are all empirically confirmed to
have made a positive contribution to our classifica-
tion task. These are (i) horizontal features, (ii) ver-
tical features, (iii) targeted grammatical construc-
tions, (iv) head information, (v) transitivity features,
and (vi) semantic role features. We obviously have
looked at features used in previous work on Chinese
EC detection, most notably (Yang and Xue, 2010),
which has also adopted a classification-based ap-
proach, but because we frame our classification task
very differently, we have to use very different fea-
tures. However, there is a subset of features we used
here that has at least a partial overlap with their fea-
tures, and such features are clearly indicated with ∗.

3.1 Horizontal features
The first group of features we use can be described
as horizontal features that exploit lexical context of
the head (h), the word token following the EC (t),

and the word token before the EC (p) . These in-
clude different combinations of h, t and p, as well
as their parts-of-speech. They also include various
linear distance features between h and t. Below is
the full list of lexical features:

1. ∗The token string representation of h, t and p,
as well as their part-of-speech tag (POS).

2. ∗The POS combination of h and t, the POS
combination of t and p.

3. The normalized word distance between h and
t, with the values of this feature being same,
immediately before, immediately after,
near before, and near after, and other.

4. The verb distance between h and t, defined as
the number of verbs that occur between h and
t.

5. The comma distance between h and t, defined
as the number of commas that occur between h
and t.

3.2 Vertical features
Vertical features are designed to exploit the hierar-
chical structure of the syntactic tree. Our hierar-
chical features are based on the following observa-
tions. An empty category is always located between
its left frontier and right frontier, anchored by t and
p. Given the lowest common ancestor A of p and
t, the right frontier is the path from t to A and the
left frontier is the path from the p to A. We also
define a path feature from h to t, which constrains
the distance between the EC and its head, just as it
constrains the distance between a predicate and its
argument in the semantic role labeling task (Gildea
and Jurafsky, 2002). Given the lowest common an-
cestor A′ of h and t, the path from h to t is the path
from h to A′ and from A′ to t.

In Figure 3, assuming that t is 迅速 (“rapidly”)
and h is 崛起 (“take off”), the vertical features ex-

1054



资本
capital

结构
structure

 的
DE

优化
optimization

使
make

青岛
Qingdao

一
one

批
CL

企业
enterprise

*PRO*

迅速
rapidly

崛起
take off

NP VP

DNP NP

IP

NP DEG

NN

VV NP IP

NN NN

NP NPQP

Q CLP

VPNP

ADVP VP

VVAD

NR
M

NN

"The optimization of the capital structure has led to the rapid 
take-off of a host of enterprises in Qingdao."

Figure 3: Empty category on the right frontier

tracted include:

1. The string representation of the right frontier,
AD↑ADVP↑VP↑IP↑VP

2. The path from the head t to h,
AD↑ADVP↑VP↓VP↓VV

3. The path from the head h to A,
VV↑VP↑VP↑IP↑VP. Notice there is not
always a path from h to A.

The vertical features are really a condensed rep-
resentation of a certain syntactic configuration that
helps to predict the presence or absence of an empty
category as well as the empty category type. For
example, the right frontier of *PRO* in Figure
3 AD↑ADVP↑VP↑IP↑VP represents a subjectless
IP. Had there been an overt subject in the place
of the *PRO*, the right frontier would have been
AD↑ADVP↑VP↑IP. Therefore, the vertical features
are discriminative features that can help detect the
presence or absence of an empty category.

3.3 Targeted grammatical constructions

The third group of features target specific, linguisti-
cally motivated grammatical constructions. The ma-
jority of features in this group hinge on the immedi-
ate IP (roughly corresponds to S in the PTB) ances-
tor of t headed by h. These features are only invoked
when t starts (or is on the left edge of) the immedi-
ate IP ancestor, and they are designed to capture the
context in which the IP ancestor is located. This con-
text can provide discriminative clues that may help
identify the types of empty category. For example,
both *pro*s and *PRO*s tend to occur in the sub-
ject position of an IP, but the larger context of the

IP often determines the exact empty category type.
In Figure 3, the IP that has a *PRO* subject is the
complement of a verb in a canonical object-control
construction. An IP can also be a sentential subject,
the complement of a preposition or a localizer (also
called postposition in the literature), or the comple-
ment in a CP (roughly SBAR in the PTB), etc. These
different contexts tend to be associated with differ-
ent types of empty categories. The full list of fea-
tures that exploit these contexts include:

1. ∗Whether t starts an IP
2. ∗Whether t starts a subjectless IP
3. The left sisters of the immediate IP parent that

t starts
4. The right sisters of the immediate IP parent that

t starts
5. The string representation of the governing verb

of the immediate IP parent that t starts
6. Whether the IP started by t is the complement

of a localizer phrase
7. Whether the immediate IP parent that t starts is

a sentential subject

3.4 Head information
Most ECs have a verb as its head, but when there is a
coordination VP structure where more than one VP
share an EC subject, only one such verb can be the
head of this EC. The phrase structure to dependency
structure conversion tool designates the first verb as
the head of the coordinated VP and thus the head of
the EC subject in the dependency structure. Other
verbs have no chance of being the head. We use a
VP head feature to capture this information. It is
a binary feature indicating whether a verb can be a
head.

3.5 Transitivity features
A transitivity lexicon has been extracted from the
Chinese Treebank and it is used to determine the
transitivity value of a word. A word can be
transitive, intransitive, or unknown if it is not a
verb. Ditransitive verbs are small in number and are
folded into transitive verbs. Transitivity features are
defined on h and constrained by word distance: it is
only used when h immediately precedes t. This fea-
ture category is intended to capture transitive verbs
that are missing an object.
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3.6 Semantic role features

There are apparent connections between semantic
role labeling and EC detection. The task of seman-
tic role labeling is typically defined as one of detect-
ing and classifying arguments for verbal or nomi-
nal predicates, with more work done so far on ver-
bal than nominal predicates. Although empty cat-
egories are annotated as arguments to verbal pred-
icates in linguistic resources such as the English
(Palmer et al., 2005) and Chinese (Xue and Palmer,
2009) Propbanks, they are often left out in seman-
tic role labeling systems trained on these resources.
This is because the best performing semantic role la-
beling systems rely on syntactic features extracted
from automatic parses (Gildea and Palmer, 2002;
Punyakanok et al., 2005) and the parsers that pro-
duce them do not generally reproduce empty cate-
gories. As a result, current semantic role labeling
systems can only recover explicit arguments. How-
ever, assuming that all the explicit arguments to a
predicate are detected and classified, one can infer
the empty arguments of a predicate from its explicit
arguments, given a list of expected arguments for
the predicate. The list of expected arguments can
be found in the “frame files” that are used to guide
probank annotation. We defined a semantic role fea-
ture category on h when it is a verb and the value of
this feature is the semantic role labels for the EC ar-
guments. Like transitivity features, this feature cate-
gory is also constrained by word distance. It is only
used when h immediately precedes t.

To extract semantic role features, we retrained a
Chinese semantic role labeling system on the Chi-
nese Propbank. We divided the Chinese Propbank
data into 10 different subsets, and automatically as-
signed semantic roles to each subset with a system
trained on the other nine subsets. Using the frame
files for the Chinese Propbank, we are able to infer
the semantic roles for the missing arguments and use
them as features.

4 Experimental Results

4.1 Experimental setup

Our EC detection models are trained and evaluated
on a subset of the Chinese TreeBank 6.0. The train-
ing/development/test data split in our experiments
is recommended in the CTB documentation. The

CTB file IDs for training, development and testing
are listed in Table 1. The development data is used
for feature selection and tuning, and results are re-
ported on the test set.

Train Dev Test
81-325, 400-454, 500-554 41-80 1-40

590-596, 600-885, 900 901-931

Table 1: Data set division.

As discussed in Section 2, the gold standard de-
pendency structure parses are converted from the
CTB parse trees, with the ECs preserved. From
these gold standard parse trees, we extract triples of
(e, h, t) where e is the EC type, h is (the position of)
the head of the EC, and t is (the position of) the word
token following the EC. During the training phrase,
features are extracted from automatic phrase struc-
ture parses and paired with these triples. The au-
tomatic phrase structure parses are produced by the
the Berkeley parser2 with a 10-fold cross-validation,
which each fold parsed using a model trained on the
other nine folds. Measured by the ParsEval met-
ric (Black et al., 1991), the parsing accuracy on
the CTB test set stands at 83.63% (F-score), with
a precision of 85.66% and a recall of 81.69%. We
chose to train a Maximum Entropy classifier using
the Mallet toolkit3 (McCallum, 2002) to detect ECs.

4.2 Evaluation metric

We use standard metrics of precision, recall and F-
measure in our evaluation. In a dependency struc-
ture representation, evaluation is very straightfor-
ward because individual arcs from the dependency
tree can be easily decomposed. An EC is considered
to be correctly detected if it is attached to the correct
head h, correctly positioned relative to t, and cor-
rectly typed. This is a more stringent measure than
metrics proposed in previous work, which evaluates
EC detection based on its position and type without
considering the head it is a dependent of.

4.3 Results

There are 1,838 total EC instances in the test set, and
if we follow (Yang and Xue, 2010) and collapse all

2http://code.google.com/p/berkeleyparser
3http://mallet.cs.umass.edu
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consecutive ECs before the same word token to one,
we will end up with a total EC count of 1,352, and
this is also the EC count used by (Cai et al., 2011)
in their evaluation. On the dependency-based repre-
sentation adopted here, after collapsing all consecu-
tive ECs before the same word token AND attached
to the same head to one, we end up with a total EC
count of 1,765. The distribution of the ECs in the
test set are presented in Table 2, with the EC count
per type from (Yang and Xue, 2010) in parenthesis
if it is different. The number of *OP*s, in particular,
has increased dramatically from 134 to 527, and this
is because a null relative pronoun (*OP*) immedi-
ately followed by a trace (*T*) in the subject posi-
tion of a relative clause is a very common pattern in
the Chinese Treebank, as illustrated in Figure 2. In
(Yang and Xue, 2010), the *OP*-*T* sequences are
collapsed into one, and only the *T*s are counted.
That leads to the much smaller count of *OP*s.

type count type count
*pro* 298 (290) *PRO* 305 (299)
*OP* 527 (134) *T* 584 (578)

* 19 *RNR* 32
*?* 0 total (1352)/1765/(1838)

Table 2: EC distribution in the CTB test set

Our results are shown in Table 3. These results
are achieved by using the full feature set presented
in Section 3. The overall accuracy by F1-measure is
0.574 if we assume there can only be one EC asso-
ciated with a given (h, t) tuple and hence the total
EC count in the gold standard is 1,765, or 0.561 if
we factor in all the EC instances and use the higher
total count of 1,838, which lowers the recall. If in-
stead we use the total EC count of 1,352 that was
used in previous work (Yang and Xue, 2010; Cai et
al., 2011), then the F1-measure is 0.660 because the
lower total count greatly improves the recall. This
is a significant improvement over the best previous
result reported by Cai et al (2011), which is an F1
measure of 0.586 on the same test set but based on
a less stringent metric of just comparing the EC po-
sition and type, without considering whether the EC
is attached to the correct head.

There are several observations worth noting from
these results. One is that our method performs par-
ticularly well on null relative pronouns (*OP*) and

class correct prec rec F1
*pro* 46 .397 .154 .222

*PRO* 162 .602 .531 .564
*OP* 344 .724 .653 .687
*T* 331 .673 .567 .615

* 0 0 0 0
*RNR* 20 .714 .625 .667

all 903 .653
.512 .574

(.491) (.561)
(.668) (.660)

CCG .660 .545 .586

Table 3: EC detection results on the CTB test set and
comparison with (Cai et al., 2011) [CCG]

traces (*T*), indicating that our features are effec-
tive in capturing information from relative clause
constructions. This accounts for most of the gain
compared with previous approaches. The *OP* cat-
egory, in particular, benefits most from the depen-
dency representation because it is collapsed to the
immediately following *T* in previous approaches
and does not even get a chance to be detected. On
the other hand, our model did poorly on dropped
pronouns (*pro*). One possible explanation is that
*pro*s generally occupy subject positions in a sen-
tence and is attached as an immediate child of an
IP, which is the top-level structure of a sentence
that an automatic parser tends to get wrong. Unlike
*PRO*, it is not constrained to well-defined gram-
matical constructions such as subject- and object-
control structures.

To evaluate the effectiveness of our features, we
also did an ablation study on the contribution of dif-
ferent feature groups. The most effective features
are the ones when taken out lead to the most drop in
accuracy. As should be clear from Table 4, the most
effective features are the horizontal features, fol-
lowed by vertical structures. Features extracted from
targeted grammatical constructions and features rep-
resenting whether h is the head of a coordinated VP
lead to modest improvement. Transitivity and se-
mantic role features make virtually no difference at
all. We believe it is premature to conclude that they
are not useful. Possible explanations for their lack
of effectiveness is that they are used in very limited
context and the accuracy of the semantic role label-
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ing system is not sufficient to make a difference.

class correct prec rec F1
all 903 .653 .512 .574 (.561)

-Horizontal 827 .627 .469 .536 (.524)
-Vertical 865 .652 .490 .559 (.547)
-Gr Cons 887 .646 .483 .565 (.552)
-V head 891 .651 .505 .569 (.556)
-Trans 899 .654 .509 .573 (.560)
-SRL 900 .657 .510 .574 (.561)

Table 4: Contribution of feature groups

5 Related Work

The work reported here follows a fruitful line of re-
search on EC detection and resolution, mostly in
English. Empty categories have initially been left
behind in research on syntactic parsing (Collins,
1999; Charniak, 2001) for efficiency reasons, but
more recent work has shown that EC detection can
be effectively integrated into the parsing process
(Schmid, 2006; Cai et al., 2011). In the meantime,
both pre-processing and post-processing approaches
have been explored in previous work as alternatives.
Johnson (2002) has showed that empty categories
can be added to the skeletal parses with reasonable
accuracy with a simple pattern-matching algorithm
in a postprocessing step. Dienes and Dubey (2003b;
2003a) achieved generally superior accuracy using a
machine learning framework without having to refer
to the syntactic structure in the skeletal parses. They
described their approach as a pre-processing step for
parsing because they only use as features morpho-
syntactic clues (passives, gerunds and to-infinitives)
that can be found in certain function words and part-
of-speech tags. Even better results, however, were
obtained by Campbell (2004) in a postprocessing
step that makes use of rules inspired by work in theo-
retical linguistics. Gabbard et al (2006) reported fur-
ther improvement largely by recasting the Campbell
rules as features to seven different machine learning
classifiers.

We adopted a machine-learning based postpro-
cessing approach based on insights gained from
prior work in English and on Chinese-specific con-
siderations. All things being equal, we believe that
a machine learning approach that can exploit partial

information is more likely to succeed than determin-
istic rules that have to make reference to morpho-
syntactic clues such as to-infinitives and gerunds that
are largely non-existent in Chinese. Without these
clues, we believe a preprocessing approach that does
not take advantage of skeletal parses is unlikely to
succeed either. The work we report here also builds
on emerging work in Chinese EC detection. Yang
and Xue (2010) reported work on detecting just the
presence and absence of empty categories without
further classifying them. Chung and Gildea (2010)
reported work on just detecting just a small subset
of the empty categories posited in the Chinese Tree-
Bank. Kong and Zhou (2010) worked on Chinese
zero anaphora resolution, where empty category de-
tection is a subtask. More recently, Cai et al (2011)
has successfully integrated EC detection into phrase-
structure based syntactic parsing and reported state-
of-the-art results in both English and Chinese.

6 Conclusions and Future Work

We described a novel approach to detecting empty
categories (EC) represented in dependency trees and
a new metric for measuring EC detection accuracy.
The new metric takes into account not only the po-
sition and type of an EC, but also the head it is a
dependent of in a dependency structure. We also
proposed new features that are more suited for this
new approach. Tested on a subset of the Chinese
Treebank, we show that our system improved signif-
icantly over the best previously reported results de-
spite using a more stringent evaluation metric, with
most of the gain coming from an improved represen-
tation. In the future, we intend to work toward re-
solving ECs to their antecedents when EC detection
can be done with adequate accuracy. We also plan to
test our approach on the Penn (English) Treebank,
with the first step being converting the Penn Tree-
bank to a dependency representation with the ECs
preserved.
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Péter Dienes and Amit Dubey. 2003a. Antecendant Re-
covery: Experiments with a Trace Tagger. In Proceed-
ings of the Conference on Empirical Methods in Natu-
ral Language Processing , Sapporo, Japan.
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Abstract

We study multi-source transfer parsing for
resource-poor target languages; specifically
methods for target language adaptation of
delexicalized discriminative graph-based de-
pendency parsers. We first show how recent
insights on selective parameter sharing, based
on typological and language-family features,
can be applied to a discriminative parser by
carefully decomposing its model features. We
then show how the parser can be relexicalized
and adapted using unlabeled target language
data and a learning method that can incorporate
diverse knowledge sources through ambiguous
labelings. In the latter scenario, we exploit
two sources of knowledge: arc marginals de-
rived from the base parser in a self-training
algorithm, and arc predictions from multiple
transfer parsers in an ensemble-training algo-
rithm. Our final model outperforms the state of
the art in multi-source transfer parsing on 15
out of 16 evaluated languages.

1 Introduction

Many languages still lack access to core NLP tools,
such as part-of-speech taggers and syntactic parsers.
This is largely due to the reliance on fully supervised
learning methods, which require large quantities of
manually annotated training data. Recently, meth-
ods for cross-lingual transfer have appeared as a
promising avenue for overcoming this hurdle for both
part-of-speech tagging (Yarowsky et al., 2001; Das
and Petrov, 2011) and syntactic dependency parsing
(Hwa et al., 2005; Zeman and Resnik, 2008; Ganchev
et al., 2009; McDonald et al., 2011; Naseem et al.,

∗Work primarily carried out while at Google, NY.

2012). While these methods do not yet compete with
fully supervised approaches, they can drastically out-
perform both unsupervised methods (Klein and Man-
ning, 2004) and weakly supervised methods (Naseem
et al., 2010; Berg-Kirkpatrick and Klein, 2010).

A promising approach to cross-lingual transfer
of syntactic dependency parsers is to use multiple
source languages and to tie model parameters across
related languages. This idea was first explored for
weakly supervised learning (Cohen and Smith, 2009;
Snyder et al., 2009; Berg-Kirkpatrick and Klein,
2010) and recently by Naseem et al. (2012) for multi-
source cross-lingual transfer. In particular, Naseem
et al. showed that by selectively sharing parameters
based on typological features of each language, sub-
stantial improvements can be achieved, compared
to using a single set of parameters for all languages.
However, these methods all employ generative mod-
els with strong independence assumptions and weak
feature representations, which upper bounds their ac-
curacy far below that of feature-rich discriminative
parsers (McDonald et al., 2005; Nivre, 2008).

In this paper, we improve upon the state of the art
in cross-lingual transfer of dependency parsers from
multiple source languages by adapting feature-rich
discriminatively trained parsers to a specific target
language. First, in §4 we show how selective sharing
of model parameters based on typological traits can
be incorporated into a delexicalized discriminative
graph-based parsing model. This requires a careful
decomposition of features into language-generic and
language-specific sets in order to tie specific target
language parameters to their relevant source language
counterparts. The resulting parser outperforms the
method of Naseem et al. (2012) on 12 out of 16 eval-
uated languages. Second, in §5 we introduce a train-
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ing method that can incorporate diverse knowledge
sources through ambiguously predicted labelings of
unlabeled target language data. This permits effective
relexicalization and target language adaptation of the
transfer parser. Here, we experiment with two differ-
ent knowledge sources: arc sets, which are filtered by
marginal probabilities from the cross-lingual transfer
parser, are used in an ambiguity-aware self-training
algorithm (§5.2); these arc sets are then combined
with the predictions of a different transfer parser in an
ambiguity-aware ensemble-training algorithm (§5.3).
The resulting parser provides significant improve-
ments over a strong baseline parser and achieves a
13% relative error reduction on average with respect
to the best model of Naseem et al. (2012), outper-
forming it on 15 out of the 16 evaluated languages.

2 Multi-Source Delexicalized Transfer

The methods proposed in this paper fall into the delex-
icalized transfer approach to multilingual syntactic
parsing (Zeman and Resnik, 2008; McDonald et al.,
2011; Cohen et al., 2011; Søgaard, 2011). In contrast
to annotation projection approaches (Yarowsky et al.,
2001; Hwa et al., 2005; Ganchev et al., 2009; Spreyer
and Kuhn, 2009), delexicalized transfer methods do
not rely on any bitext. Instead, a parser is trained
on annotations in a source language, relying solely
on features that are available in both the source
and the target language, such as “universal” part-of-
speech tags (Zeman and Resnik, 2008; Naseem et al.,
2010; Petrov et al., 2012), cross-lingual word clusters
(Täckström et al., 2012) or type-level features derived
from bilingual dictionaries (Durrett et al., 2012).1

This parser is then directly used to parse the target
language. For languages with similar typology, this
method can be quite accurate, especially when com-
pared to purely unsupervised methods. For instance,
a parser trained on English with only part-of-speech
features can correctly parse the Greek sentence in Fig-
ure 1, even without knowledge of the lexical items
since the sequence of part-of-speech tags determines
the syntactic structure almost unambiguously.

Learning with multiple languages has been shown
to benefit unsupervised learning (Cohen and Smith,

1Note that Täckström et al. (2012) and Durrett et al. (2012)
do require bitext or a bilingual dictionary. The same holds for
most cross-lingual representations, e.g., Klementiev et al. (2012).

Ο Τζόν έδωσε στην Μαρία το βιβλίο .
(The) (John) (gave) (to-the) (Maria) (the) (book) .
DET NOUN VERB ADP NOUN DET NOUN P

DET NSUBJ

ROOT

PREP POBJ

DOBJ

DET

PUNC

Figure 1: A Greek sentence which is correctly parsed by a
delexicalized English parser, provided that part-of-speech
tags are available in both the source and target language.

2009; Snyder et al., 2009; Berg-Kirkpatrick and
Klein, 2010). Annotations in multiple languages
can be combined in delexicalized transfer as well, as
long as the parser features are available across the in-
volved languages. This idea was explored by McDon-
ald et al. (2011), who showed that target language
accuracy can be improved by simply concatenating
delexicalized treebanks in multiple languages. In
similar work, Cohen et al. (2011) proposed a mixture
model in which the parameters of a generative target
language parser is expressed as a linear interpola-
tion of source language parameters, whereas Søgaard
(2011) showed that target side language models can
be used to selectively subsample training sentences
to improve accuracy. Recently, inspired by the phylo-
genetic prior of Berg-Kirkpatrick and Klein (2010),
Søgaard and Wulff (2012) proposed — among other
ideas — a typologically informed weighting heuristic
for linearly interpolating source language parameters.
However, this weighting did not provide significant
improvements over uniform weighting.

The aforementioned approaches work well for
transfer between similar languages. However, their
assumptions cease to hold for typologically divergent
languages; a target language can rarely be described
as a linear combination of data or model parameters
from a set of source languages, as languages tend
to share varied typological traits; this critical insight
is discussed further in §4. To account for this issue,
Naseem et al. (2012) recently introduced a novel gen-
erative model of dependency parsing, in which the
generative process is factored into separate steps for
the selection of dependents and their ordering. The
parameters used in the selection step are all language
independent, capturing only head-dependent attach-
ment preferences. In the ordering step, however, pa-
rameters are selectively shared between subsets of
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Feature Description

81A Order of Subject, Object and Verb
85A Order of Adposition and Noun
86A Order of Genitive and Noun
87A Order of Adjective and Noun

88A Order of Demonstrative and Noun
89A Order of Numeral and Noun

Table 1: Typological features from WALS (Dryer and
Haspelmath, 2011), proposed for selective sharing by
Naseem et al. (2012). Feature 89A has the same value for
all studied languages, while 88A differs only for Basque.
These features are therefore subsequently excluded.

source languages based on typological features of
the languages extracted from WALS — the World
Atlas of Language Structures (Dryer and Haspelmath,
2011) — as shown in Table 1. In the transfer scenario,
where no supervision is available in the target lan-
guage, this parser achieves the hitherto best published
results across a number of languages; in particular
for target languages with a word order divergent from
the source languages.

However, the generative model of Naseem et al. is
quite impoverished. In the fully supervised setting,
it obtains substantially lower accuracies compared
to a standard arc-factored graph-based parser (Mc-
Donald et al., 2005). Averaged across 16 languages,2

the generative model trained with full supervision on
the target language obtains an accuracy of 67.1%. A
comparable lexicalized discriminative arc-factored
model (McDonald et al., 2005) obtains 84.1%. Even
when delexicalized, this model reaches 78.9%. This
gap in supervised accuracy holds for all 16 languages.
Thus, while selective sharing is a powerful device for
transferring parsers across languages, the underly-
ing generative model used by Naseem et al. (2012)
restricts its potential performance.

3 Basic Models and Experimental Setup

Inspired by the superiority of discriminative graph-
based parsing in the supervised scenario, we inves-
tigate whether the insights of Naseem et al. (2012)
on selective parameter sharing can be incorporated
into such models in the transfer scenario. We first re-
view the basic graph-based parser framework and the

2Based on results in Naseem et al. (2012), excluding English.

experimental setup that we will use throughout. We
then delve into details on how to incorporate selec-
tive sharing in this model in §4. In §5, we show how
learning with ambiguous labelings in this parser can
be used for further target language adaptation, both
through self-training and through ensemble-training.

3.1 Discriminative Graph-Based Parser
Let x denote an input sentence and let y ∈ Y(x)
denote a dependency tree, where Y(x) is the set of
well-formed dependency trees spanning x. Hence-
forth, we restrictY(x) to projective dependency trees,
but all our methods are equally applicable in the non-
projective case. Provided a vector of model parame-
ters θ, the probability of a dependency tree y ∈ Y(x),
conditioned on a sentence x, has the following form:

pθ(y | x) =
exp

{
θ>Φ(x, y)

}∑
y′∈Y(x) exp {θ>Φ(x, y′)}

.

Without loss of generality, we restrict ourselves to
first-order models, where the feature function Φ(x, y)
factors over individual arcs (h,m) in y, such that

Φ(x, y) =
∑

(h,m)∈y

φ(x, h,m) ,

where h ∈ [0, |x|] and m ∈ [1, |x|] are the indices
of the head word and the dependent word of the
arc; h = 0 represents a dummy ROOT token. The
model parameters are estimated by maximizing the
log-likelihood of the training dataD = {(xi, yi)}ni=1,

L(θ;D) =
n∑
i=1

log pθ(yi | xi) .

We use the standard gradient-based L-BFGS algo-
rithm (Liu and Nocedal, 1989) to maximize the log-
likelihood. Eisner’s algorithm (Eisner, 1996) is used
for inference of the Viterbi parse and arc-marginals.

3.2 Data Sets and Experimental Setup
To facilitate comparison with the state of the art, we
use the same treebanks and experimental setup as
Naseem et al. (2012). Notably, we use the map-
ping proposed by Naseem et al. (2010) to map from
fine-grained treebank specific part-of-speech tags to
coarse-grained “universal” tags, rather than the more
recent mapping proposed by Petrov et al. (2012). For
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l

[l]⊗ h.p
[l]⊗ m.p
[l]⊗ h.p⊗ m.p

d⊗ w.81A⊗ 1[h.p = VERB ∧ m.p = NOUN]
d⊗ w.81A⊗ 1[h.p = VERB ∧ m.p = PRON]
d⊗ w.85A⊗ 1[h.p = ADP ∧ m.p = NOUN]
d⊗ w.85A⊗ 1[h.p = ADP ∧ m.p = PRON]
d⊗ w.86A⊗ 1[h.p = NOUN ∧ m.p = NOUN]
d⊗ w.87A⊗ 1[h.p = NOUN ∧ m.p = ADJ]

d⊗ l; [d⊗ l]⊗ h.p; [d⊗ l]⊗ m.p
[d⊗ l]⊗ h.p⊗ m.p
[d⊗ l]⊗ h.p⊗ h+1.p⊗ m−1.p⊗ m.p
[d⊗ l]⊗ h−1.p⊗ h.p⊗ m−1.p⊗ m.p
[d⊗ l]⊗ h.p⊗ h+1.p⊗ m.p⊗ m+1.p
[d⊗ l]⊗ h−1.p⊗ h.p⊗ m.p⊗ m+1.p
h.p⊗ between.p⊗ m.p

Delexicalized MSTParser Selectively sharedBare

Figure 2: Arc-factored feature templates for graph-based parsing. Direction: d ∈ {LEFT, RIGHT}; dependency length:
l ∈ {1, 2, 3, 4, 5+}; part of speech of head / dependent / words between head and dependent: h.p / m.p / between.p ∈
{NOUN, VERB, ADJ, ADV, PRON, DET, ADP, NUM, CONJ, PRT, PUNC, X}; token to the left / right of z: z−1 / z+1; WALS
features: w.X for X = 81A, 85A, 86A, 87A (see Table 1). [·] denotes an optional template, e.g., [d⊗ l] ⊗ h.p⊗ m.p
expands to templates d⊗ l⊗ h.p⊗ m.p and h.p⊗ m.p, so that the template also falls back on its undirectional variant.

each target language evaluated, the treebanks of the
remaining languages are used as labeled training data,
while the target language treebank is used for testing
only (in §5 a different portion of the target language
treebank is additionally used as unlabeled training
data). We refer the reader to Naseem et al. (2012) for
detailed information on the different treebanks. Due
to divergent treebank annotation guidelines, which
makes fine-grained evaluation difficult, all results
are evaluated in terms of unlabeled attachment score
(UAS). In line with Naseem et al. (2012), we use gold
part-of-speech tags and evaluate only on sentences
of length 50 or less excluding punctuation.

3.3 Baseline Models

We compare our models to two multi-source base-
line models. The first baseline, NBG, is the gener-
ative model with selective parameter sharing from
Naseem et al. (2012).3 This model is trained without
target language data, but we investigate the use of
such data in §5.4. The second baseline, Delex, is a
delexicalized projective version of the well-known
graph-based MSTParser (McDonald et al., 2005).
The feature templates used by this model are shown
to the left in Figure 2. Note that there is no selective
sharing in this model.

The second and third columns of Table 2 show the
unlabeled attachment scores of the baseline models
for each target language. We see that Delex performs
well on target languages that are related to the major-
ity of the source languages. However, for languages

3Model “D-,To” in Table 2 from Naseem et al. (2012).

that diverge from the Indo-European majority family,
the selective sharing model, NBG, achieves substan-
tially higher accuracies.

4 Feature-Based Selective Sharing

The results for the baseline models are not surpris-
ing considering the feature templates used by Delex.
There are two fundamental issues with these fea-
tures when used for direct transfer. First, all but
one template include the arc direction. Second,
some features are sensitive to local word order; e.g.,
[d⊗ l]⊗ h.p⊗ h+1.p⊗ m−1.p⊗ m.p, which models
direction as well as word order in the local contexts
of the head and the dependent. Such features do not
transfer well across typologically different languages.

In order to verify that these issues are the cause of
the poor performance of the Delex model, we remove
all directional features and all features that model
local word order from Delex. The feature templates
of the resulting Bare model are shown in the center
of Figure 2. These features only model selectional
preferences and dependency length, analogously to
the selection component of NBG. The performance
of Bare is shown in the fourth column of Table 2.
The removal of most of the features results in a per-
formance drop on average. However, for languages
outside of the Indo-European family, Bare is often
more accurate, especially for Basque, Hungarian and
Japanese, which supports our hypothesis.

4.1 Sharing Based on Typological Features
After removing all directional features, we now care-
fully reintroduce them. Inspired by Naseem et al.
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Graph-Based Models

Lang. NBG Delex Bare Share Similar Family

ar 57.2 43.3 43.1 52.7 52.7 52.7
bg 67.6 64.5 56.1 65.4 62.4 65.4
ca 71.9 72.0 58.1 66.1 80.2 77.6
cs 43.9 40.5 43.1 42.5 45.3 43.5
de 54.0 57.0 49.3 55.2 58.1 59.2
el 61.9 63.2 57.7 62.9 59.9 63.2
es 62.3 66.9 52.6 59.3 69.0 67.1
eu 39.7 29.5 43.3 46.8 46.8 46.8
hu 56.9 56.2 60.5 64.5 64.5 64.5
it 68.0 70.8 55.7 63.5 74.6 72.5
ja 62.3 38.9 50.6 57.1 64.6 65.9
nl 56.2 57.9 51.6 55.0 51.8 56.8
pt 76.2 77.5 63.0 72.7 78.4 78.4
sv 52.0 61.4 55.9 58.8 48.8 63.5
tr 59.1 37.4 36.0 41.7 59.5 59.4
zh 59.9 45.1 47.9 54.8 54.8 54.8

avg 59.3 55.1 51.5 57.4 60.7 62.0

Table 2: Unlabeled attachment scores of the multi-source
transfer models. Boldface numbers indicate the best result
per language. Underlined numbers indicate languages
whose group is not represented in the training data (these
default to Share under Similarity and Family). NBG is the
“D-,To” model in Table 2 from Naseem et al. (2012).

(2012), we make use of the typological features from
WALS (Dryer and Haspelmath, 2011), listed in Ta-
ble 1, to selectively share directional parameters be-
tween languages. As a natural first attempt at sharing
parameters, one might consider forming the cross-
product of all features of Delex with all WALS prop-
erties, similarly to a common domain adaptation tech-
nique (Daumé III, 2007; Finkel and Manning, 2009).
However, this approach has two issues. First, it re-
sults in a huge number of features, making the model
prone to overfitting. Second, and more critically, it
ties together languages via features for which they
are not typologically similar. Consider English and
French, which are both prepositional and thus have
the same value for WALS property 85A. These lan-
guages will end up sharing a parameter for the feature
[d⊗ l]⊗h.p = NOUN⊗m.p = ADJ⊗w.85A; yet they
have the exact opposite direction of attachment pref-
erence when it comes to nouns and adjectives. This
problem applies to any method for parameter mixing

that treats all the parameters as equal.
Like Naseem et al. (2012), we instead share pa-

rameters more selectively. Our strategy is to use the
relevant part-of-speech tags of the head and depen-
dent to select which parameters to share, based on
very basic linguistic knowledge. The resulting fea-
tures are shown to the right in Figure 2. For example,
there is a shared directional feature that models the or-
der of Subject, Object and Verb by conjoining WALS
feature 81A with the arc direction and an indicator
feature that fires only if the head is a verb and the de-
pendent is a noun. These features would not be very
useful by themselves, so we combine them with the
Bare features. The accuracy of the resulting Share
model is shown in column five of Table 2. Although
this model still performs worse than NBG, it is an
improvement over the Delex baseline and actually
outperforms the former on 5 out of the 16 languages.

4.2 Sharing Based on Language Groups
While Share models selectional preferences and arc
directions for a subset of dependency relations, it
does not capture the rich local word order informa-
tion captured by Delex. We now consider two ways of
selectively including such information based on lan-
guage similarity. While more complex sharing could
be explored (Berg-Kirkpatrick and Klein, 2010), we
use a flat structure and consider two simple groupings
of the source and target languages.

First, the Similar model consists of the features
used by Share together with the features from Delex
in Figure 2. The latter are conjoined with an indicator
feature that fires only when the source and target
languages share values for all the WALS features in
Table 1. This is accomplished by adding the template

f⊗ [w.81A⊗ w.85A⊗ w.86A⊗ w.87A⊗ w.88A]

for each template f in Delex. This groups: 1) Cata-
lan, Italian, Portuguese and Spanish; 2) Bulgarian,
Czech and English; 3) Dutch, German and Greek;
and 4) Japanese and Turkish. The remaining lan-
guages do not share all WALS properties with at
least one source language and thus revert to Share,
since they cannot exploit these grouped features.

Second, instead of grouping languages according
to WALS, the Family model is based on a simple
subdivision into Indo-European languages (Bulgar-
ian, Catalan, Czech, Greek, English, Spanish, Italian,
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Dutch, Portuguese, Swedish) and Altaic languages
(Japanese, Turkish). This is accomplished with in-
dicator features analogous to those used in Similar.
The remaining languages are again treated as isolates
and revert to Similar.

The results for these models are given in the last
two columns of Table 2. We see that by adding these
rich features back into the fold, but having them fire
only for languages in the same group, we can sig-
nificantly increase the performance — from 57.4%
to 62.0% on average when considering Family. If
we consider our original Delex baseline, we see an
absolute improvement of 6.9% on average and a rela-
tive error reduction of 15%. Particular gains are seen
for non-Indo-European languages; e.g., Japanese in-
creases from 38.9% to 65.9%. Furthermore, Family
achieves a 7% relative error reduction over the NBG
baseline and outperforms it on 12 of the 16 languages.
This shows that a discriminative graph-based parser
can achieve higher accuracies compared to generative
models when the features are carefully constructed.

5 Target Language Adaptation

While some higher-level linguistic properties of the
target language have been incorporated through se-
lective sharing, so far no features specific to the target
language have been employed. Cohen et al. (2011)
and Naseem et al. (2012) have shown that using
expectation-maximization (EM) to this end can in
some cases bring substantial accuracy gains. For dis-
criminative models, self-training has been shown to
be quite effective for adapting monolingual parsers to
new domains (McClosky et al., 2006), as well as for
relexicalizing delexicalized parsers using unlabeled
target language data (Zeman and Resnik, 2008). Sim-
ilarly Täckström (2012) used self-training to adapt a
multi-source direct transfer named-entity recognizer
(Täckström et al., 2012) to different target languages,
“relexicalizing” the model with word cluster features.
However, as discussed in §5.2, standard self-training
is not optimal for target language adaptation.

5.1 Ambiguity-Aware Training

In this section, we propose a related training method:
ambiguity-aware training. In this setting a discrimi-
native probabilistic model is induced from automat-
ically inferred ambiguous labelings over unlabeled

target language data, in place of gold-standard depen-
dency trees. The ambiguous labelings can combine
multiple sources of evidence to guide the estimation
or simply encode the underlying uncertainty from the
base parser. This uncertainty is marginalized out dur-
ing training. The structure of the output space, e.g.,
projectivity and single-headedness constraints, along
with regularities in the feature space, can together
guide the estimation, similar to what occurs with the
expectation-maximization algorithm.

Core to this method is the idea of an ambiguous
labeling ỹ(x) ⊆ Y(x), which encodes a set of pos-
sible dependency trees for an input sentence x. In
subsequent sections we describe how to define such
labelings. Critically, ỹ(x) should be large enough to
capture the correct labeling, but on the other hand
small enough to provide concrete guidance for model
estimation. Ideally, ỹ(x) will capture heterogenous
knowledge that can aid the parser in target language
adaptation. In a first-order arc-factored model, we
define ỹ(x) in terms of a collection of ambiguous
arc setsA(x) = {A(x,m)}|x|m=1, whereA(x,m) de-
notes the set of ambiguously specified heads for the
mth token in x. Then, ỹ(x) is defined as the set of
all projective dependency trees spanning x that can
be assembled from the arcs in A(x).

Methods for learning with ambiguous labelings
have previously been proposed in the context of
multi-class classification (Jin and Ghahramani, 2002),
sequence-labeling (Dredze et al., 2009), log-linear
LFG parsing (Riezler et al., 2002), as well as for
discriminative reranking of generative constituency
parsers (Charniak and Johnson, 2005). In contrast to
Dredze et al., who allow for weights to be assigned
to partial labels, we assume that the ambiguous arcs
are weighted uniformly. For target language adapta-
tion, these weights would typically be derived from
unreliable sources and we do not want to train the
model to simply mimic their beliefs. Furthermore,
with this assumption, learning is simply achieved
by maximizing the marginal log-likelihood of the
ambiguous training set D̃ = {(xi, ỹ(xi)}ni=1,

L(θ; D̃) =

n∑
i=1

log

 ∑
y∈ỹ(xi)

pθ(y | xi)

− λ ‖θ‖22 .
In maximizing the marginal log-likelihood, the model
is free to distribute probability mass among the trees
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in the ambiguous labeling to its liking, as long as the
marginal log-likelihood improves. The same objec-
tive function is used by Riezler et al. (2002) and Char-
niak and Johnson (2005). A key difference is that in
these works, the ambiguity is constrained through a
supervised signal, while we use ambiguity as a way
to achieve self-training, using the base-parser itself,
or some other potentially noisy knowledge source as
the sole constraints. Note that we have introduced
an `2-regularizer, weighted by λ. This is important
as we are now training lexicalized target language
models which can easily overfit. In all experiments,
we optimize parameters with L-BFGS. Note also that
the marginal likelihood is non-concave, so that we
are only guaranteed to find a local maximum.

5.2 Ambiguity-Aware Self-Training

In standard self-training — hereafter referred to as
Viterbi self-training — a base parser is used to la-
bel each unlabeled sentence with its most probable
parse tree to create a self-labeled data set, which is
subsequently used to train a supervised parser. There
are two reasons why this simple approach may work.
First, if the base parser’s errors are not too systematic
and if the self-training model is not too expressive,
self-training can reduce the variance on the new do-
main. Second, self-training allows for features in the
new domain with low support — or no support in the
case of lexicalized features — in the base parser to
be “filled in” by exploiting correlations in the feature
representation. However, a potential pitfall of this
approach is that the self-trained parser is encouraged
to blindly mimic the base parser, which leads to error
reinforcement. This may be particularly problematic
when relexicalizing a transfer parser, since the lexical
features provide the parser with increased power and
thereby an increased risk of overfitting to the noise.
To overcome this potential problem, we propose an
ambiguity-aware self-training (AAST) method that is
able to take the noise of the base parser into account.

We use the arc-marginals of the base parser to
construct the ambiguous labeling ỹ(x) for a sentence
x. For each token m ∈ [1, |x|], we first sort the set of
arcs in which m is the dependent, {(h,m)}|x|h=0, by
the marginal probabilities of the arcs:

pθ(h,m | x) =
∑

{y∈Y(x) | (h,m)∈y}

pθ(y | x)

We next construct the ambiguous arc set A(x,m) by
adding arcs (h,m) in order of decreasing probability,
until their cumulative probability exceeds σ, i.e. until∑

(h,m)∈A(x,m)

pθ(h,m | x) ≥ σ .

Lower values of σ result in more aggressive pruning,
with σ = 0 corresponding to including no arc and
σ = 1 corresponding to including all arcs. We always
add the highest scoring tree ŷ to ỹ(x) to ensure that
it contains at least one complete projective tree.

Figure 3 outlines an example of how (and why)
AAST works. In the Greek example, the genitive
phrase Η παραμονή σκαφών (the stay of vessels) is
incorrectly analyzed as a flat noun phrase. This is not
surprising given that the base parser simply observes
this phrase as DET NOUN NOUN. However, looking
at the arc marginals we can see that the correct anal-
ysis is available during AAST, although the actual
marginal probabilities are quite misleading. Further-
more, the genitive noun σκαφών also appears in other
less ambiguous contexts, where the base parser cor-
rectly predicts it to modify a noun and not a verb.
This allows the training process to add weight to the
corresponding lexical feature pairing σκαφών with a
noun head and away from the feature pairing it with
a verb. The resulting parser correctly predicts the
genitive construction.

5.3 Ambiguity-Aware Ensemble-Training
While ambiguous labelings can be used as a means
to improve self-training, any information that can
be expressed as hard arc-factored constraints can be
incorporated, including linguistic expert knowledge
and annotation projected via bitext. Here we explore
another natural source of information: the predic-
tions of other transfer parsers. It is well known that
combining several diverse predictions in an ensem-
ble often leads to improved predictions. However, in
most ensemble methods there is typically no learning
involved once the base learners have been trained
(Sagae and Lavie, 2006). An exception is the method
of Sagae and Tsujii (2007), who combine the outputs
of many parsers on unlabeled data to train a parser
for a new domain. However, in that work the learner
is not exposed to the underlying ambiguity of the
base parsers; it is only given the Viterbi parse of the
combination system as the gold standard. In contrast,
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Η παραμονή σκαφών επιτρέπεται μόνο τη μέρα

DET NOUN NOUN VERB ADV DET NOUN

0.55

0.44

0.62

0.36

0.10

0.87

Η παραμονή σκαφών επιτρέπεται μόνο τη μέρα

DET NOUN NOUN VERB ADV DET NOUN

Η παραμονή σκαφών επιτρέπεται μόνο τη μέρα

DET NOUN NOUN VERB ADV DET NOUN

Figure 3: An example of ambiguity-aware self-training
(AAST) on a sentence from the Greek self-training data.
The sentence roughly translates to The stay of vessels
is permitted only for the day. Top: Arcs from the base
model’s Viterbi parse are shown above the sentence. When
only the part-of-speech tags are observed, the parser tends
to treat everything to the left of the verb as a head-final
noun phrase. The dashed arcs below the sentence are
the arcs for the true genitive construction stay of vessels.
These arcs and the corresponding incorrect arcs in the
Viterbi parse are marked with their marginal probabilities.
Middle: The ambiguous labeling ỹ(x), which is used
as supervision in AAST. Additional non-Viterbi arcs are
present in ỹ(x); for clarity, these are not shown. When
learning with AAST, probability mass will be pushed to-
wards any tree consistent with ỹ(x). Marginal probabili-
ties are ignored at this stage, so that all arcs in ỹ(x) are
treated as equals. Bottom: The Viterbi parse of the AAST
model, which has selected the correct arcs from ỹ(x).

we propose an ambiguity-aware ensemble-training
(AAET) method that treats the union of the ensemble
predictions for a sentence x as an ambiguous labeling
ỹ(x). An additional advantage of this approach is
that the ensemble is compiled into a single model
and therefore does not require multiple models to be
stored and used at runtime.

It is straightforward to construct ỹ(x) from multi-
ple parsers. Let Ak(x,m) be the set of arcs for the
mth token in x according to the kth parser in the en-
semble. When arc-marginals are used to construct the
ambiguity set, |Ak(x,m)| ≥ 1, but when the Viterbi-
parse is used, Ak(x,m) is a singleton. We next form

A(x,m) =
⋃
kAk(x,m) as the ensemble arc ambi-

guity set from which ỹ(x) is assembled. In this study,
we combine the arc sets of two base parsers: first, the
arc-marginal ambiguity set of the base parser (§5.2);
and second, the Viterbi arc set from the NBG parser
of Naseem et al. (2012) in Table 2.4 Thus, the lat-
ter will have singleton arc ambiguity sets, but when
combined with the arc-marginal ambiguity sets of
our base parser, the result will encode uncertainty
derived from both parsers.

5.4 Adaptation Experiments

We now study the different approaches to target lan-
guage adaptation empirically. As in Naseem et al.
(2012), we use the CoNLL training sets, stripped of
all dependency information, as the unlabeled target
language data in our experiments. We use the Family
model as the base parser, which is used to label the
unlabeled target data with the Viterbi parses as well
as with the ambiguous labelings. The final model
is then trained on this data using standard lexical-
ized features (McDonald et al., 2005). Since labeled
training data is unavailable in the target language,
we cannot tune any hyper-parameters and simply set
λ= 1 and σ= 0.95 throughout. Although the latter
may suggest that ỹ(x) contains a high degree of am-
biguity, in reality, the marginal distributions of the
base model have low entropy and after filtering with
σ = 0.95, the average number of potential heads per
dependent ranges from 1.4 to 3.2, depending on the
target language.

The ambiguity-aware training methods, that is
ambiguity-aware self-training (AAST) and ambiguity-
aware ensemble-training (AAET), are compared to
three baseline systems. First, NBG+EM is the gen-
erative model of Naseem et al. (2012) trained with
expectation-maximization on additional unlabeled
target language text. Second, Family is the best dis-
criminative model from the previous section. Third,
Viterbi is the basic Viterbi self-training model. The
results of each of these models are shown in Table 3.

There are a number of things that can be observed.
First, Viterbi self-training helps slightly on average,
but the gains are not consistent and there are even
drops in accuracy for some languages. Second, AAST
outperforms the Viterbi variant on all languages and

4We do not have access to the marginals of NBG.
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Target Adaptation

Lang. NBG+EM Family Viterbi AAST AAET

ar 59.3 52.7 52.6 53.5 58.7
bg 67.0 65.4 66.4 67.9 73.0
ca 71.7 77.6 78.0 79.9 76.1
cs 44.3 43.5 43.6 44.4 48.3
de 54.1 59.2 59.7 62.5 61.5
el 67.9 63.2 64.5 65.5 69.6
es 62.0 67.1 68.2 68.5 66.9
eu 47.8 46.8 47.5 48.6 49.4
hu 58.6 64.5 64.6 65.6 67.5
it 65.6 72.5 71.6 72.4 73.4
ja 64.1 65.9 65.7 68.8 72.0
nl 56.6 56.8 57.9 58.1 60.2
pt 75.8 78.4 79.9 80.7 79.9
sv 61.7 63.5 63.4 65.5 65.5
tr 59.4 59.4 59.5 64.1 64.2
zh 51.0 54.8 54.8 57.9 60.7

avg 60.4 62.0 62.4 64.0 65.4

Table 3: Target language adaptation using unlabeled tar-
get data. AAST: ambiguity-aware self-training. AAET:
ambiguity-aware ensemble-training. Boldface numbers
indicate the best result per language. Underlined numbers
indicate the best result, excluding AAET. NBG+EM is the
“D+,To” model from Naseem et al. (2012).

nearly always improves on the base parser, although
it sees a slight drop for Italian. AAST improves the
accuracy over the base model by 2% absolute on av-
erage and by as much as 5% absolute for Turkish.
Comparing this model to the NBG+EM baseline, we
observe an improvement by 3.6% absolute, outper-
forming it on 14 of the 16 languages. Furthermore,
ambiguity-aware self-training appears to help more
than expectation-maximization for generative (unlex-
icalized) models. Naseem et al. observed an increase
from 59.3% to 60.4% on average by adding unlabeled
target language data and the gains were not consistent
across languages. AAST, on the other hand, achieves
consistent gains, rising from 62.0% to 64.0% on av-
erage. Third, as shown in the rightmost column of
Table 3, ambiguity-aware ensemble-training is indeed
a successful strategy; AAET outperforms the previ-
ous best self-trained model on 13 and NB&G+EM
on 15 out of 16 languages. The relative error reduc-
tion with respect to the base Family model is 9% on

average, while the average reduction with respect to
NBG+EM is 13%.

Before concluding, two additional points are worth
making. First, further gains may potentially be
achievable with feature-rich discriminative models.
While the best generative transfer model of Naseem
et al. (2012) approaches its upper-bounding super-
vised accuracy (60.4% vs. 67.1%), our relaxed self-
training model is still far below its supervised coun-
terpart (64.0% vs. 84.1%). One promising statistic
along these lines is that the oracle accuracy for the
ambiguous labelings of AAST is 75.7%, averaged
across languages, which suggests that other training
algorithms, priors or constraints could improve the
accuracy substantially. Second, relexicalization is a
key component of self-training. If we use delexical-
ized features during self-training, we only observe a
small average improvement from 62.0% to 62.1%.

6 Conclusions

We contributed to the understanding of multi-source
syntactic transfer in several complementary ways.
First, we showed how selective parameter sharing,
based on typological features and language family
membership, can be incorporated in a discriminative
graph-based model of dependency parsing. We then
showed how ambiguous labelings can be used to in-
tegrate heterogenous knowledge sources in parser
training. Two instantiations of this framework were
explored. First, an ambiguity-aware self-training
method that can be used to effectively relexicalize
and adapt a delexicalized transfer parser using unla-
beled target language data. Second, an ambiguity-
aware ensemble-training method, in which predic-
tions from different parsers can be incorporated and
further adapted. On average, our best model provides
a relative error reduction of 13% over the state-of-
the-art model of Naseem et al. (2012), outperforming
it on 15 out of 16 evaluated languages.
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Abstract

Grice characterized communication in terms
of the cooperative principle, which enjoins
speakers to make only contributions that serve
the evolving conversational goals. We show
that the cooperative principle and the associ-
ated maxims of relevance, quality, and quan-
tity emerge from multi-agent decision theory.
We utilize the Decentralized Partially Observ-
able Markov Decision Process (Dec-POMDP)
model of multi-agent decision making which
relies only on basic definitions of rationality
and the ability of agents to reason about each
other’s beliefs in maximizing joint utility. Our
model uses cognitively-inspired heuristics to
simplify the otherwise intractable task of rea-
soning jointly about actions, the environment,
and the nested beliefs of other actors. Our
experiments on a cooperative language task
show that reasoning about others’ belief states,
and the resulting emergent Gricean commu-
nicative behavior, leads to significantly im-
proved task performance.

1 Introduction

Grice (1975) famously characterized communica-
tion among rational agents in terms of an overarch-
ing cooperative principle and a set of more specific
maxims, which enjoin speakers to make contribu-
tions that are truthful, informative, relevant, clear,
and concise. Since then, there have been many at-
tempts to derive the maxims (or perhaps just their ef-
fects) from more basic cognitive principles concern-
ing how people make decisions, formulate plans,
and collaborate to achieve goals. This research

traces to early work by Lewis (1969) on signaling
systems. It has recently been the subject of ex-
tensive theoretical discussion (Clark, 1996; Merin,
1997; Blutner, 1998; Parikh, 2001; Beaver, 2002;
van Rooy, 2003; Benz et al., 2005; Franke, 2009)
and has been tested experimentally using one-step
games in which the speaker produces a message and
the hearer ventures a guess as to its intended refer-
ent (Rosenberg and Cohen, 1964; Dale and Reiter,
1995; Golland et al., 2010; Stiller et al., 2011; Frank
and Goodman, 2012; Krahmer and van Deemter,
2012; Degen and Franke, 2012; Rohde et al., 2012).

To date, however, these theoretical models and ex-
periments have not been extended to multi-step in-
teractions extending over time and involving both
language and action together, which leaves this work
relatively disconnected from research on planning
and goal-orientation in artificial agents (Perrault
and Allen, 1980; Allen, 1991; Grosz and Sidner,
1986; Bratman, 1987; Hobbs et al., 1993; Allen
et al., 2007; DeVault et al., 2005; Stone et al.,
2007; DeVault, 2008). We attribute this in large
part to the complexity of Gricean reasoning itself,
which requires agents to model each other’s belief
states. Tracking these as they evolve over time in re-
sponse to experiences is extremely demanding. Our
approach complements slot-filling dialog systems,
where the focus is on managing speech recogni-
tion uncertainty (Young et al., 2010; Thomson and
Young, 2010).

However, recent years have seen significant ad-
vances in multi-agent decision-theoretic models and
their efficient implementation. With the current pa-
per, we seek to show that the Decentralized Par-
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tially Observable Markov Decision Process (Dec-
POMDP) provides a robust, flexible foundation for
implementing agents that communicate in a Gricean
manner. Dec-POMDPs are multi-agent, partially-
observable models in which agents maintain be-
lief distributions over the underlying, hidden world
state, including the beliefs of the other players, and
speech actions change those beliefs. In this setting,
informative, relevant communication emerges as the
best way to maximize joint utility.

The complexity of pragmatic reasoning is still
forbidding, though. Correspondingly, optimal de-
cision making in Dec-POMDPs is NEXP complete
(Bernstein et al., 2002). To manage this issue, we
introduce several cognitively-plausible approxima-
tions which allow us to simplify the Dec-POMDP to
a single-agent POMDP, for which relatively efficient
solvers exist (Spaan and Vlassis, 2005). We demon-
strate our algorithms on a variation of the Cards task,
a partially-observable collaborative search problem
(Potts, 2012). Spatial language comprises the bulk
of communication in the Cards task, and we dis-
cuss a model of spatial semantics in Section 3. Us-
ing this task and a model of the meaning of spatial
language, we next discuss two agents that play the
game: ListenerBot (Section 4) makes decisions us-
ing a single-agent POMDP that does not take into
account the beliefs or actions of its partner, whereas
DialogBot (Section 5) maintains a model of its part-
ner’s beliefs. As a result of the cooperative structure
of the underlying model and the effects of commu-
nication within it, DialogBot’s contributions are rel-
evant, truthful, and informative, which leads to sig-
nificantly improved task performance.

2 The Cards Task and Corpus

The Cards corpus consists of 1,266 transcripts1 from
an online, two-person collaborative game in which
two players explore a maze-like environment, com-
municating with each other via a text chat window
(Figure 1). A deck of playing cards has been dis-
tributed randomly around the environment, and the
players’ task is to find six consecutive cards of the
same suit. Our implemented agents solve a sim-
plified version of this task in which the two agents

1Released by Potts (2012) at http://cardscorpus.
christopherpotts.net

Figure 1: The Cards corpus gameboard. Player 1’s
location is marked “P1”. The nearby yellow boxes
mark card locations. The dialogue history and chat
window are at the top. This board, the one we use
throughout, consists of 231 open grid squares.

must both end up co-located with a single card, the
Ace of Spades (AS). This is much simpler than the
six-card version from the human–human corpus, but
it involves the same kind of collaborative goal and
forces our agents to deal with the same kind of par-
tial knowledge about the world as the humans did.
Each agent knows its own location, but not his part-
ner’s, and a player can see the AS only when co-
located with it. The agents use (simplified) English
to communicate with each other.

3 Spatial Semantics

Much of the communication in the Cards task in-
volves referring to spatial locations on the board.
Accordingly, we focus on spatial language for our
artificial agents. In this section, we present a model
of spatial semantics, which we create by leveraging
the human–human Cards transcripts. We discuss the
spatial semantic representation, how we classify the
semantics of new locative expressions, and our use
of spatial semantics to form a high-level state space
for decision making.

3.1 Semantic Representation
Potts (2012) released annotations, derived from the
Cards corpus, which reduce 599 of the players’
statements about their locations to formulae of the
form δ (ϕ1 ∧ ·· · ∧ ϕk), where δ is a domain and
ϕ1, . . . ,ϕk are semantic literals. For example, the ut-
terance “(I’m) at the top right of the board” is anno-
tated as BOARD(top∧ right), and “(I’m) in bottom
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of the C room” is annotated as C room(bottom). Ta-
ble 1 lists the full set of semantic primitives that ap-
pear as domain expressions and literals.

Because the Cards transcripts are so highly struc-
tured, we can interpret these expressions in terms
of the Cards world itself. For a given formula
σ = δ (ϕ1 ∧ ·· · ∧ ϕk), we compute the number of
times that a player identified its location with (an
utterance translated as) σ while standing on grid
square (x,y). These counts are smoothed using
a simple 2D-smoothing scheme, detailed in (Potts,
2012), and normalized in the usual manner to form a
distribution over board squares Pr((x,y)|σ). These
grounded interpretations are the basis for commu-
nication between the artificial agents we define in
Section 4.

BOARD, SQUARE, right, middle, top, left, bot-
tom, corner, approx, precise, entrance, C room,
hall, room, sideways C, loop, reverse C,
U room, T room, deadend, wall, sideways F

Table 1: The spatial semantic primitives.

3.2 Semantics Classifier

Using the corpus examples of utterances paired with
their spatial semantic representations, we learn a set
of classifiers to predict a spatial utterance’s semantic
representation. We train a binary classifier for each
semantic primitive ϕi using a log-linear model with
simple bag of words features. The words are not
normalized or stemmed and we use whitespace tok-
enization. We additionally train a multi-class clas-
sifier for all possible domains δ . At test time, we
use the domain classifier and each primitive binary
classifier to produce a semantic representation.

3.3 Semantic State Space

The decision making algorithms that we discuss in
Section 4 are highly sensitive to the size of the state
space. The full representation of the game board
consists of 231 squares. Representing the location
of both players and the location of the card requires
3233 = 12,326,391 states, well beyond the capabil-
ities of current decision-making algorithms.

To ameliorate this difficulty, we cluster squares
together using the spatial referring expression cor-

Figure 2: Semantic state space clusters with k = 16.

pus. This approach follows from research that
shows that humans’ mental spatial representations
are influenced by their language (Hayward and Tarr,
1995). Our intuition is that human players do not
consider all possible locations of the card and play-
ers, but instead lump them into semantically coher-
ent states, such as “the card is in the top right cor-
ner.” Following this intuition, we cluster states to-
gether which have similar referring expressions, al-
lowing our agents to use language as a cognitive
technology and not just a tool for communication.

For each board square (x,y) we form a vector
φ(x,y) with φi(x,y) = Pr((x,y)|σi), where σi is the
ith distinct semantic representation in the corpus.
This forms a 136-dimensional vector for each board
square. We then use k-means clustering with a Eu-
clidean distance metric in this semantic space to
cluster states which are referred to similarly.

Figure 2 shows a clustering for k = 16 which we
utilize for the remainder of the paper. Denoting the
board regions by {1, . . . ,Nregions}, we compute the
probability of an expression σ referring to a region
r by averaging over the squares in the region:

Pr(r|σi) ∝ ∑
(x,y)∈ region r

Pr((x,y)|σi)

|{(x,y)|(x,y) ∈ region r}|

4 ListenerBot

We first introduce ListenerBot, an agent that does
not take into account the actions or beliefs of its
partner. ListenerBot decides what actions to take
using a Partially Observable Markov Decision Pro-
cess (POMDP). This allows ListenerBot to track its
beliefs about the location of the card and to incor-
porate linguistic advice. However, ListenerBot does
not produce utterances.

1074



A POMDP is defined by a tuple
(S,A,T,O,Ω,R,b0,γ). We explicate each com-
ponent with examples from our task. Figure 3(a)
provides the POMDP influence diagram.

States S is the finite state space of the world. The
state space S of ListenerBot consists of the location
of the player p and the location of the card c. As
discussed above in Section 3.3, we cluster squares of
the board into Nregions semantically coherent regions,
denoted by {1, . . . ,Nregions}. The state space over
these regions is defined as

S := {(p,c)|p,c ∈ {1, . . . ,Nregions}}
Two regions r1 and r2 are called adjacent, written
adj(r1,r2), if any of their constituent squares touch.

Actions A is the set of actions available to the
agent. ListenerBot can only take physical actions
and has no communicative ability. Physical actions
in our region-based state space are composed of two
types: traveling to a region and searching a region.
• travel(r): travel to region r
• search: player exhaustively searches the cur-

rent region

Transition Distributions The transition distribu-
tion T (s′|a,s) models the dynamics of the world.
This represents the ramifications of physical actions
such as moving around the map. For a state s =
(p,c) and action a = travel(r), the player moves to
region r if it is adjacent to p, and otherwise stays in
the same place:

T ((p′,c′)|travel(r),(p,c))=



1 adj(r, p)∧ p′ = r
∧c = c′

1 ¬adj(r, p)∧ p = p′

∧c = c′

0 otherwise
Search actions are only concerned with observations
and do not change the state of the world:2

T ((p′,c′)|search,(p,c)) = 1
[
p′ = p∧ c′ = c

]
The travel and search high-level actions are trans-
lated into low-level (up, down, left, right) actions
using a simple A∗ path planner.

Observations Agents receive observations from
a set O according to an observation distribution

2
1[Q] is the indicator function, which is 1 if proposition Q

is true and 0 otherwise.

Ω(o|s′,a). Observations include properties of the
physical world, such as the location of the card, and
also natural language utterances, which serve to in-
directly change agents’ beliefs about the world and
the beliefs of their interlocutors.

Search actions generate two possible observa-
tions: ohere and o¬here, which denote the presence
or absence of the card from the current region.

Ω(ohere|(p′,c′),search) = 1
[
p′ = c′

]
Ω(o¬here|(p′,c′),search) = 1

[
p′ 6= c′

]
Travel actions do not generate meaningful observa-
tions:

Ω(o¬here|(p′,c′), travel) = 1

Linguistic Advice We model linguistic advice as
another form of observation. Agents receive mes-
sages from a finite set Σ, and each message σ ∈ Σ

has a semantics, or distribution over the state space
Pr(s|σ). In the Cards task, we use the semantic dis-
tributions defined in Section 3. To combine the se-
mantics of language with the standard POMDP ob-
servation model, we apply Bayes’ rule:

Pr(σ |s) =
Pr(s|σ)Pr(σ)

∑σ ′ Pr(s|σ ′)Pr(σ ′)
(1)

The prior, Pr(σ), can be derived from corpus data.
By treating language as just another form of ob-
servation, we are able to leverage existing POMDP
solution algorithms. This approach contrasts with
previous work on communication in Dec-POMDPs,
where agents directly share their perceptual obser-
vations (Pynadath and Tambe, 2002; Spaan et al.,
2008), an assumption which does not fit natural lan-
guage.

Reward The reward function R(s,a) : S→ R rep-
resents the goals of the agent, who chooses actions
to maximize reward. The goal of the Cards task is
for both players to be on top of the card, so any ac-
tion that leads to this state receives a high reward R+.
All other actions receive a small negative reward R−,
which gives agents an incentive to finish the task as
quickly as possible.

R((p,c),a) =

{
R+ p = c
R− p 6= c

Lastly, γ ∈ [0,1) is the discount factor, specifying
the trade-off between immediate and future rewards.
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Figure 3: The decision diagram for the ListenerBot POMDP, the full Dec-POMDP, and the DialogBot ap-
proximation POMDP. The ListenerBot (a) only considers his own location p and the card location c. In the
full Dec-POMDP (b), both agents receive individual observations and choose actions independently. Opti-
mal decision making requires tracking all possible histories of beliefs of the other agent. In diagram (c), Di-
alogBot approximates the full Dec-POMDP as single-agent POMDP. At each time step, DialogBot marginal-
izes out the possible observations ō that ListenerBot received, yielding an expected belief state b̄.

Initial Belief State The initial belief state, b0 ∈
∆(S), is a distribution over the state space S. Lis-
tenerBot begins each game with a known initial lo-
cation p0 but a uniform distribution over the location
of the card c:

b0(p,c) ∝

{
1

Nregions
p = p0

0 otherwise

Belief Update and Decision Making The key de-
cision making problem in POMDPs is the construc-
tion of a policy π : ∆(S)→ A, a function from beliefs
to actions which dictates how the agent acts. Deci-
sion making in POMDPs proceeds as follows. The
world starts in a hidden state s0 ∼ b0. The agent
executes action a0 = π(b0). The underlying hid-
den world state transitions to s1 ∼ T (s′|a0,s0), the
world generates observation o0 ∼ Ω(o|s1,a0), and
the agent receives reward R(s0,a0). Using the obser-
vation o0, the agent constructs a new belief b1 ∈∆(S)
using Bayes’ rule:

bat ,ot
t+1 (s′) = Pr(s′|at ,ot ,bt)

=
Pr(ot |at ,s′,bt)Pr(s′|at ,bt)

Pr(ot |bt ,at)

=
Ω(ot |s′,at)∑s∈S T (s′|at ,s)bt(s)

∑s′′ Ω(ot |s′′,at)∑s∈S T (s′′|at ,s)bt(s)
This process is referred to as belief update and is
analogous to the forward algorithm in HMMs. To in-
corporate communication into the standard POMDP

model, we consider observations (o,σ) ∈ O × Σ

which are a combination of a perceptual observation
o and a received message σ . The semantics of the
message σ is included in the belief update equation
using Pr(s|σ), derived in Equation 1:

bat ,ot ,σt
t+1 (s′) =

Ω(o|s′,a) Pr(s′|σ)Pr(σ)
∑σ ′∈Σ

Pr(s′|σ ′)Pr(σ ′) ∑s∈S T (s′|a,s)bt(s)

∑s′′∈S Ω(o|s′′,a) Pr(s′′|σ)Pr(σ)
∑σ ′∈Σ

Pr(s′′|σ ′)Pr(σ ′) ∑s∈S T (s′′|a,s)bt(s)

Using this new belief state b1, the agent selects an
action a1 = π(b1), and the process continues.

An initial belief state b0 and a policy π to-
gether define a Markov chain over pairs of states
and actions. For a given policy π , we define a
value function V π : ∆(S)→ R which represents the
expected discounted reward with respect to that
Markov chain:

V π(b0) =
∞

∑
t=0

γ
t E[R(bt ,at)|b0,π]

The goal of the agent is find a policy π∗ which max-
imizes the value of the initial belief state:

π
∗ = argmax

π

V π(b0)

Exact computation of π∗ is PSPACE-complete (Pa-
padimitriou and Tsitsiklis, 1987), making approx-
imation algorithms necessary for all but the sim-
plest problems. We use Perseus (Spaan and Vlassis,
2005), an anytime approximate point-based value it-
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eration algorithm.

5 DialogBot

We now introduce DialogBot, a Cards agent which
is capable of producing linguistic advice. To decide
when and how to speak, DialogBot maintains a dis-
tribution over its partner’s beliefs and reasons about
the effects his utterances will have on those beliefs.
To handle these complexities, DialogBot models
the world as a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) (Bernstein
et al., 2002). See Figure 3(b) for the influence dia-
gram. The definition of Dec-POMDPs mirrors that
of the POMDP, with the following changes.

There is a finite set I of agents, which we re-
strict to two. Each agent takes an action ai at
each time step, forming a joint action ~a = (a1,a2).
Each agent receives its own observation oi accord-
ing to Ω(o1,o2|a1,a2,s′). The transition distribu-
tions T (s′|a1,a2,s) and the reward R(s,a1,a2) both
depend on both agents’ actions.

Optimal decision making in Dec-POMDPs re-
quires maintaining a probability distribution over
all possible sequences of actions and observations
(ā1, ō1, . . . , āt , ōt) that the other player might have
received. As t increases, we have an exponential in-
crease in the belief states an agent must consider.
Confirming this informal intuition, decision mak-
ing in Dec-POMDPs is NEXP-complete, a complex-
ity class above P-SPACE (Bernstein et al., 2002).
This computational complexity limits the applica-
tion of Dec-POMDPs to very small problems. To
address this difficulty we make several simplifying
assumptions, allowing us to construct a single-agent
POMDP which approximates the full Dec-POMDP.

Firstly, we assume that other agents do not take
into account our own beliefs, i.e., the other agent
acts like a ListenerBot. This bypasses the infinitely
nested belief problem by assuming that other agents
track one less level of nested beliefs, a common
approach (Goodman and Stuhlmüller, 2012; Gmy-
trasiewicz and Doshi, 2005).

Secondly, instead of tracking the full tree of pos-
sible observation histories, we maintain a point es-
timate b̄ of the other agent’s beliefs, which we
term the expected belief state. Rather than track-
ing each possible observation/action history of the

other agent, at each time step we marginalize out
the observations they could have received. Figure 4
compares this approach with exact belief update.

Thirdly, we assume that the other agent acts ac-
cording to a variant of the QMDP approximation
(Littman et al., 1995). Under this approximation, the
other agent solves a fully-observable MDP version
of the ListenerBot POMDP, yielding an MDP pol-
icy π̄ : S→ A. This critically allows us to approxi-
mate the other agent’s belief update using a specially
formed POMDP, which we detail next.

State Space To construct the approximate single-
agent POMDP from the full Dec-POMDP problem,
we formulate the state space as S× S. (See Figure
3(c) for the influence diagram.) We write a state
(s, s̄) ∈ S× S, where s is DialogBot’s beliefs about
the true state of the world, and s̄ is DialogBot’s esti-
mate of the other agent’s beliefs.

Transition Distribution The main difficulty
in constructing the approximate single-agent
POMDP is specifying the transition distribu-
tion T ((s′, s̄′)|a,(s, s̄)). To address this, we
break this distribution into two components:
T ((s′, s̄′)|a,(s, s̄)) = T̄ (s̄′|s′,a,(s, s̄))T (s′|a,s, s̄).
The first term dictates how DialogBot updates its
beliefs about the other agent’s beliefs:

T̄ (s̄′|s′,a,(s, s̄)) = Pr(s̄′|s′,a,(s, s̄))

= ∑
ō∈O

Pr(s̄′|a, ō, s̄,s)Pr(ō|s′,a, π̄(s̄))

= ∑
ō∈O

(
Ω(ō|s̄′,a, π̄(s̄))T (s̄′|a, π̄(s̄), s̄)

∑s̄′′ Ω(ō|s̄′′,a, π̄(s̄))T (s̄′′|a, π̄(s̄), s̄)

×Ω(ō|s′,a, π̄(s̄))
)

We sum over all observations ō the other agent could
have received, updating our probability of s̄′ as Lis-
tenerBot would have, multiplied by the probability
that ListenerBot would have received that observa-
tion, Ω(ō|s′, π̄(s̄)). The QMDP approximation al-
lows us to simulate ListenerBot’s belief update in
T̄ (s̄′|s′,a,(s, s̄)). Exact belief update would require
access to b̄: by using π̄(s̄) we can estimate the action
that ListenerBot would have taken.

In cases where s̄ contradicts s such that for all ō ei-
ther Ω(ō|s′, π̄(s̄)) = 0 or Ω(ō|s̄′, π̄(s̄)) = 0, we redis-
tribute the belief mass uniformly: T̄ (s̄′|s′,a,(s, s̄)) ∝
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(a) Exact multi-agent belief tracking
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(b) Approximate multi-agent belief tracking

Figure 4: Exact multi-agent belief tracking compared with our approximate approach. Each node represents
a belief state. In exact tracking (a), the agent tracks every possible history of observations that its partner
could have received, which grows exponentially in time. In approximate update (b), the agent considers each
possible observation and then averages the resulting belief states, weighted by the probability the other agent
received that observation, resulting in a single summary belief state b̄t+1. Under the QMDP approximation,
the agent considers what action the other agent would have taken if it completely believed the world was in
a certain state. Thus, there are four belief states resulting from b̄t , as opposed to two in the exact case.

1 ∀s̄′ 6= s̄. This approach to managing contradiction
is analogous to logical belief revision (Alchourronón
et al., 1985; Gärdenfors, 1988; Fermé and Hansson,
2011).

Speech Actions Speech actions are modeled by
how they change the beliefs of the other agent.
The effects of a speech actions are modeled in
T̄ (s̄′|s′,a,(s, s̄)), our model of how ListenerBot’s be-
liefs change. For a speech action a = say(σ) with
σ ∈ Σ,

T̄ (s̄′|s′,a,(s, s̄)) =

∑
ō∈O

(
Ω(ō|s̄′,a, π̄(s̄))Pr(σ |s̄′)T (s̄′|a, π̄(s̄), s̄)

∑s̄′′ Ω(ō|s̄′′,a, π̄(s̄))Pr(σ |s̄′′)T (s̄′′|a, π̄(s̄), s̄)

×Ω(ō|s′,a, π̄(s̄))
)

DialogBot is equipped with the five most
frequent speech actions: BOARD(middle),
BOARD(top), BOARD(bottom), BOARD(left),
and BOARD(right). It produces concrete utterances
by selecting a sentence from the training corpus
with the desired semantics.

Reward DialogBot receives a large reward when
both it and its partner are located on the card, and a
negative cost when moving or speaking:

R((p,c, p̄, c̄),a) =

{
R+ p = c∧ p̄ = c
R− p 6= c∨ p̄ 6= c

DialogBot’s reward is not dependent on the beliefs
of the other player, only the true underlying state of
the world.

6 Experimental Results

We now experimentally evaluate our semantic clas-
sifiers and the agents’ task performance.

6.1 Spatial Semantics Classifiers

We report the performance of our spatial seman-
tics classifiers, although their accuracy is not the fo-
cus of this paper. We use 10-fold cross validation
on a corpus of 577 annotated utterances. We used
simple bag-of-words features, so overfitting the data
with cross validation is not a pressing concern. Of
the 577 utterances, our classifiers perfectly labeled
325 (56.3% accuracy). The classifiers correctly pre-
dicted the domain δ of 515 (89.3%) utterances. The
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precision of our binary semantic primitive classifiers
was 969

1126 = .861 and recall 969
1242 = .780, yielding F1

measure .818.

6.2 Cards Task Evaluation

We evaluated our ListenerBot and DialogBot agents
in the Cards task. Using 500 randomly generated
initial player and card locations, we tested each
combination of ListenerBot and DialogBot partners.
Agents succeeded at a given initial position if they
both reached the card within 50 moves. Table 2
shows how many trials each dyad won and how
many high-level actions they took to do so.

Agents % Success Moves

LB & LB 84.4% 19.8
LB & DB 87.2% 17.5
DB & DB 90.6% 16.6

Table 2: The evaluation for each combination of
agents. LB = ListenerBot; DB = DialogBot.

Collaborating DialogBots performed the best,
completing more trials and using fewer moves than
the ListenerBots. The DialogBots initially explore
the space in a similar manner to the ListenerBots,
but then share card location information. This leads
to shorter interactions, as once the DialogBot finds
the card, the other player can find it more quickly.
In the combination of ListenerBot and DialogBot,
we see about half of the improvement over two Lis-
tenerBots. Roughly 50% of the time, the Listener-
Bot finds the card first, which doesn’t help the Di-
alogBot find the card any faster.

7 Emergent Pragmatics

Grice’s original model of pragmatics (Grice, 1975)
involves the cooperative principle and four maxims:
quality (“say only what you know to be true”), rela-
tion (“be relevant”), quantity (“be as informative as
is required; do not say more than is required”), and
manner (roughly, be clear and concise).

In most interactions, DialogBot searches for the
card and then reports its location to the other agent.
These reports obey quality in that they are made only
when based on actual observations. The behavior
is not hard-coded, but rather emerges, because only

accurate information serves the agents’ goals. In
contrast, sub-optimal policies generated early in the
POMDP solving process sometimes lie about card
locations. Since this behavior confuses the other
agent and thus has a lower utility, it gets replaced
by truthful communication as the policies improve.

We also capture the effects of relation and the first
clause of quantity, because the nature of the reward
function and the nested belief structures ensure that
DialogBot offers only relevant, informative informa-
tion. For instance, when DialogBot finds the card in
the lower left corner, it alternates saying “left” and
“bottom”, effectively overcoming its limited gener-
ation capabilities. Again, early sub-optimal policies
sometimes do not report the location of the card at
all, thereby failing to fulfill these maxims.

We expect these models to produce behavior con-
sistent with manner and the second clause of quan-
tity, but evaluating this claim will require a richer ex-
perimental paradigm. For example, if DialogBot had
a larger and more structured vocabulary, it would
have to choose between levels of specificity as well
as more or less economical forms.

8 Conclusion

We have shown that cooperative pragmatic behavior
can arise from multi-agent decision-theoretic mod-
els in which the agents share a joint utility func-
tion and reason about each other’s belief states.
Decision-making in these models is intractable,
which has been a major obstacle to achieving exper-
imental results in this area. We introduced a series
of approximations to manage this intractability: (i)
combining low-level states into semantically coher-
ent high-level ones; (ii) tracking only an averaged
summary of the other agent’s potential beliefs; (iii)
limiting belief state nesting to one level, and (iv)
simplifying each agent’s model of the other’s be-
liefs so as to reduce uncertainty. These approxima-
tions bring the problems under sufficient control that
they can be solved with current POMDP approxi-
mation algorithms. Our experimental results high-
light the rich pragmatic behavior this gives rise to
and quantify the communicative value of such be-
havior. While there remain insights from earlier the-
oretical proposals and logic-based methods that we
have not fully captured, our current results support

1079



the notion that probabilistic decision-making meth-
ods can yield robust, widely applicable models that
address the real-world difficulties of partial observ-
ability and uncertainty.
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Abstract 

We present open dialogue management and its 
application to relational databases. An open 
dialogue manager generates dialogue states, ac-
tions, and default strategies from the semantics 
of its application domain. We define three open 
dialogue management tasks. First, vocabulary 
selection finds the intelligible attributes in each 
database table. Second, focus discovery selects 
candidate dialogue foci, tables that have the 
most potential to address basic user goals. 
Third, a focus agent is instantiated for each dia-
logue focus with a default dialogue strategy 
governed by efficiency. We demonstrate the 
portability of open dialogue management on 
three very different databases. Evaluation of 
our system with simulated users shows that us-
ers with realistically limited domain knowledge 
have dialogues nearly as efficient as those of 
users with complete domain knowledge.  

1 Introduction 

This paper presents open dialogue management. 
An open dialogue manager (ODM) generates dia-
logue states, actions, and strategies from 
knowledge it computes about the semantics of its 
domain. A dialogue strategy is the procedure by 
which a system chooses its next action given the 
current state of the dialogue. The system's dialogue 
policy completely specifies which strategy to use 
in any dialogue state. Strategies can be handcrafted 
or learned. Reinforcement learning, the leading 
method for dialogue strategy learning, can yield 
powerful results but relies on small sets of states 
and actions predefined by the researcher. This 
reliance on domain expertise limits machine 

learned dialogue managers to the domains for 
which they were specifically designed, and 
contributes to the prevalence of handcrafted 
strategies over machine learning approaches for 
dialogue management in commercial applications 
(Paek & Pieraccini, 2008). We argue that open dia-
logue management, which exploits the semantics 
and contents of its database to generate actions, 
states and default strategies, is a step towards a 
dialogue manager that operates across domains.  

As a first step to open dialogue management we 
present ODDMER (OPEN-DOMAIN DIALOGUE 
MANAGER), the first dialogue system to generate 
its own dialogue strategy from relational databases. 
ODDMER’s vocabulary selection module uses 
supervised learning to determine each table’s intel-
ligible attributes, those most likely to be in the us-
er’s vocabulary. Its focus discovery module finds 
candidate dialogue foci, tables that have the most 
potential to address basic user goals. Foci are iden-
tified with schema summarization through a ran-
dom walk over the database schema that ranks ta-
bles by size, linguistic information, and connectivi-
ty. For each candidate focus, ODDMER instanti-
ates a focus agent that prompts users for values of 
intelligible attributes ordered by efficiency.  

 
Figure 1. ODDMER uses focus discovery and vocabu-
lary selection to choose its states, actions, and strategy. 
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This paper addresses a particular type of infor-
mation-seeking dialogue in which the user’s goal is 
to select a tuple from a table. Tuples are identified 
by constraints, attribute-value pairs elicited from a 
user during the dialogue. A typical user, however, 
cannot supply all values with equal readiness. For 
example, attributes such as primary or foreign keys 
are irrelevant or unintelligible to users. This results 
in a vocabulary problem, a mismatch between sys-
tem and user vocabulary (Furnas et al., 1987). Fur-
thermore, tables differ in their relevance to users. 
Tables that contain little semantic information have 
less potential to address user goals. Dialogue sys-
tems for relational databases often rely on manual 
pre-processing to select the attributes a typical user 
can most readily supply and identify the tables 
with the most relevance to basic user goals. An 
open dialogue system obviates this manual step by 
exploiting the database semantics.  

For example, Heiskell is a library database that 
includes a table for books (BOOK) and a table for 
book subject headings (HEADING). A typical pa-
tron wants a book, not a heading. Due to BOOK's 
larger size, its greater number of intelligible attrib-
utes, and its higher connectivity to other tables, 
ODDMER recognizes that a BOOK tuple satisfies a 
more basic user goal. BOOK has 32 attributes, most 
of which are numeric fields familiar to a librarian 
but arcane to the user. ODDMER selects the ta-
ble’s intelligible attributes as its vocabulary. It rec-
ognizes that a book’s author and title are intelligi-
ble, but the book’s ISBN is not. Consequently, 
ODDMER will not ask the user for the ISBN. 

ODDMER assumes a user of the Heiskell data-
base will be likely to know one or more intelligible 
attributes of books. ODDMER ranks intelligible 
attribute-value pairs by their semantic specificity, 
the degree to which they uniquely identify a tuple. 
To demonstrate the benefit of pre-computing this 
semantic information, we test ODDMER on three 
databases with simulated users of two knowledge 
levels. Complete-knowledge users know all attrib-
ute values. They have no vocabulary problem, will 
always be able to supply a requested constraint, 
and require no vocabulary selection to achieve 
maximum dialogue efficiency. Incomplete-
knowledge users have a more realistic vocabulary. 
They know values for different attributes with dif-
ferent probabilities. Without vocabulary selection, 
these users have long, inefficient dialogues. Given 
ODDMER’s vocabulary selection and efficient 

dialogue strategy, these users achieve their goals 
nearly as efficiently as complete-knowledge users.  

2 Related Work 

ODDMER is the first dialogue system to examine 
a database and choose which tables and attributes 
to use in dialogue. We envision open dialogue 
management as a suite of domain-independent pro-
cedures through which a dialogue manager can 
exploit its knowledge base. Hastie, Liu, and Lemon 
(2009) also generate policies from databases. They 
do not consider multiple tables, and they depend 
on handcrafted Business Process Models that ex-
plicitly specify the dialogue flow for the domain. 
This limits their method to domains with available 
models. Polifroni, Chung, and Seneff (2003) also 
argue for the importance of generic, domain-
independent dialogue managers. Their portable 
information presentation strategies cluster attribute 
values to summarize database contents for users. 
Neither of these works considers how to choose 
attributes or find which domain entities are likely 
objects of dialogue goals. Chotimongkol and 
Rudnicky (2008) use unsupervised learning to au-
tomatically acquire task-specific information from 
a corpus of in-domain human-human dialogue 
transcripts. They require a large corpus whereas we 
need only the underlying database.  

The vocabulary problem has received relatively 
little attention in dialogue research, and no method 
to automatically identify intelligible constraints has 
been previously demonstrated. Demberg and 
Moore (2006) choose constraints with a user model 
that records user importance, such as ‘price’ for a 
student in a restaurant domain. They require a 
manually crafted user model and must match mod-
el to user. Polifroni and Walker (2006) use attrib-
ute entropy to order system initiative prompts, but 
assume that both the table and the relevant attrib-
utes are known a priori. Varges, Weng, and Pon-
Barry (2006) develop a WOZ system in which a 
wizard recommends to real users what constraint to 
provide that will best narrow down results. Each of 
these works assumes all constraints are intelligible.  

Two recent works concentrate more closely on 
the vocabulary problem. Janarthanam and Lemon 
(2010) build a system that determines a user’s level 
of referring expression expertise, but manually de-
termine the set of possible expressions. Selfridge 
and Heeman (2010) simulate users with different 
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levels of domain knowledge. A novice has a 10% 
chance to know any constraint, and an expert a 
90% chance. They do not consider users who know 
different constraints with different probabilities as 
we do, and do not consider databases that contain 
attributes likely to be unintelligible to most users.  

Reinforcement learning, the leading approach 
for learning a dialogue strategy, demonstrates 
powerful results. For example, Rieser and Lemon 
(2009) find the optimal size of a list of tuples that 
match a user’s constraints and when to display it in 
different user environments. A dialogue strategy is 
treated as a policy, a function that maps states to 
actions. Policy optimization is a Markov decision 
process. Paek and Pieraccini (2008) argue that re-
inforcement learning is limited by its reliance upon 
small sets of manually defined states and actions, 
with no standard method to determine these. 
ODDMER identifies dialogue states and actions 
automatically. Its default strategy could be opti-
mized with reinforcement learning. 

Portability is an important research area in natu-
ral-language interfaces to databases (NLIDBs). An 
NLIDB parses a user utterance into a logical form, 
which is transformed into a database query. Users 
typically know the database structure and contents. 
TEAM (Grosz, 1983), the first portable NLIDB, 
questions a domain expert to acquire linguistic 
knowledge for new databases. More recently, the 
ORAKEL interface (Cimiano et al., 2008) partially 
derives a domain-specific lexicon from a generic 
ontology. Here we do not focus on parsing of user 
questions, but on the acquisition of dialogue states, 
actions, and strategies from a database. 

3 The ODDMER Dialogue System 

ODDMER’s vocabulary selection module finds 
each table’s intelligible attributes. Its focus discov-
ery module identifies candidate foci. A focus agent 
module instantiates dialogue agents for each focus. 
Their default strategy elicits attribute values from 
users in order of semantic specificity.  

3.1 Vocabulary Selection 

A vocabulary is the set of words and expressions 
used to discuss a domain. Domain entities can be 
identified by their descriptions, or sets of attribute-
value pairs. In order for a system and a user to 
profitably engage in a natural language dialogue 
about database items, descriptions should consist 

of attributes and values understood by both system 
and user. We define the vocabulary selection task 
as the automatic selection of attribute-value pairs 
that the system expects its users will use to de-
scribe domain entities. 

Successful vocabulary selection solves the vo-
cabulary problem. The vocabulary problem is a 
bottleneck to portability because the attributes a 
user is likely to know must be predetermined for 
existing systems. ODDMER learns a classifier to 
determine a table’s intelligible attributes. An at-
tribute is intelligible if its values are in a user’s 
vocabulary. A user interested in a particular item 
but unfamiliar with the structure of a database is 
more likely to recognize an intelligible attribute, 
and to know all or part of the relevant value.  

To determine intelligible attributes, ODDMER 
currently relies on a binary classifier that takes as 
input the values of each attribute found in a partic-
ular instantiation of a relational database. To train 
the classifier, we labeled a set of 84 attributes be-
longing to tables taken from the Microsoft Adven-
tureWorks Cycle Company database, a benchmark 
database packaged with Microsoft SQL Server. An 
attribute was labeled as intelligible if its values 
were likely to be known to a user. Four annotators 
worked independently to label the attributes. Pair-
wise agreement was 69%, and Krippendorff’s al-
pha (Krippendorff, 1980) was 0.42.  The low 
agreement can be attributed in part to the many 
ways to interpret the question annotators were to 
answer. The instructions indicated that the goal 
was to identify attributes corresponding to com-
mon-sense knowledge, but for a given table, anno-
tators were shown all the attributes and asked 
whether they would know a value. For an employ-
ee table, annotators disagreed on attributes such as 
birthdate, hire date, and organization level. If they 
had instead been asked whether anyone without 
access to the table might know a value, there may 
have been more agreement. 

 
Ratio of unique to total characters in all values 
Mean ratio of unique to total characters per value 
Ratio of numeric to total characters in all values 
Ratio of unique to total values 
Ratio of unique to total words in all values 
Total number of characters in all values 

Table 1. Representative features for attribute classifica-
tion used in the best-performing intelligibility classifier. 
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The training data for the classifier consisted of 
67 attributes that at least three annotators agreed on 
(22 intelligible, 45 not intelligible); pairwise 
agreement was 0.81 and Krippendorff’s alpha was 
0.61. They represented 8 tables and contained a 
total of 393,520 values, 123,901 of which were 
unique. For each attribute we extracted 17 features 
to represent the linguistic expressiveness of the 
attributes’ values. An attribute whose values are 
more like natural language is more intelligible. 
Table 1 lists the features of the best classifier. 

We tested several binary classifiers in Weka 
(Hall et al., 2009). ADTree (Freund & Mason, 
1999) with ten boosting iterations performed best, 
with 91% recall and 91% precision under 10-fold 
cross-validation. However, the ADTree models 
were overfitted to the AdventureWorks domain. 
The RIPPER rule-learning algorithm (Cohen, 
1995) achieved 77% precision and 78% recall. Be-
cause its learned model of three simple rules gen-
eralizes better to our domains, ODDMER uses the 
RIPPER intelligibility classifier. 

Given a table, the vocabulary selection module 
returns which of its attributes should be in the sys-
tem’s vocabulary. For the Heiskell Library domain, 
the 32 attributes of the BOOK table include many 
internal codes understood by librarians but not by 
users. Only the seven attributes shown in Table 2 
are classified as intelligible. Dialogues with only 
intelligible attributes should be more efficient for 
users with incomplete domain knowledge, because 
they will be more likely to know their values.  

ODDMER’s vocabulary selection module also 
computes the semantic specificity score of each 
attribute (Hixon, Passonneau, & Epstein, 2012). 
Semantic specificity rates an attribute on a scale 
from 0 to 1 according to how unambiguously its 
values map to rows in the database. More specific 
attributes are expected to be more efficient 
prompts. Table 2 lists the specificity values of the 
intelligible attributes for BOOK.  

 
Intelligible Attributes Specificity 

ANNOTATION 
TITLE 
SORTTITLE 
AUTHOR 
NARRATOR 
PUBLISHER 
SERIES 

0.958	  
0.878	  
0.878	  
0.300	  
0.018	  
0.016	  
0.003	  

Table 2. Intelligible attributes for BOOK sorted by speci-
ficity. (SORTTITLE is a duplicate of TITLE.) 

3.2 Candidate Dialogue Focus Discovery 

Information-seeking dialogues address diverse dia-
logue goals. For example, users may want to iden-
tify a tuple in a table (“I want a certain book by 
Stephen King.”), retrieve the value of an attribute 
for a given tuple (“Is my plane on time?” “Who 
wrote Moby Dick?”), aggregate over a set of tuples 
(“How many Italian restaurants are in this neigh-
borhood?”), or compare values of different tuples 
(“Which restaurant is more expensive?”). Each of 
these dialogue goals represents a distinct infor-
mation need. However, not all possible information 
needs in a domain are equally likely. For example, 
a user is unlikely to ask for the value of a primary 
key attribute, or to select a tuple from a table that 
contains only primary and foreign keys. A dialogue 
system should place less priority on addressing 
these peripheral dialogue goals.  

Given a particular domain, we assume that some 
goals are more basic than others. For example, the 
basic function of a library is to provide books to 
borrowers. Some libraries will also provide other 
material, or perform reference functions, but these 
are less basic. This notion of a basic goal is related 
to the basic categories proposed by Rosch (1978), 
who claimed that not all categories are equally use-
ful for cognition. Basic categories are more differ-
entiated from other categories, and have attributes 
that are common to all or most members of the 
category, thus provide us with more information 
(the principle of cognitive economy). Basic catego-
ries also mirror the structure of the perceptual and 
functional attributes of the natural world, thus 
serve us better in our daily activities. Typically a 
domain expert will identify the basic dialogue 
goals in a domain, but we suggest that the basic 
dialogue goals are discoverable in the underlying 
database. While a difficult problem, we are moti-
vated by work in the database literature to identify 
and rank the most likely queries for an arbitrary 
database (Jayapandian & Jagadish, 2008).  

We approach the problem of recovering dia-
logue goals from a database by restricting our at-
tention to the tuple selection task, a commonly 
studied type of information-seeking dialogue in 
which the user’s goal is to select a tuple from a 
table. A relational database typically consists of 
multiple tables, and each table can satisfy different 
user goals. Given a database composed of multiple 
tables, an open dialogue system calculates which 
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tables are larger, have more natural language con-
tent, and greater connectivity to other tables. We 
refer to these tables as candidate dialogue foci. 
This notion of candidate focus for a dialogue is 
similar to focus of attention (Grosz & Sidner, 
1986) in that information-seeking dialogues can be 
segmented to reflect the table both participants fo-
cus their attention on at a given time. We denote 
the task of identifying candidate foci in a relational 
database as focus discovery. 

ODDMER’s focus discovery module returns an 
ordered list of candidate foci, the focal summary. 
The highest ranked focus is the most relevant to 
basic user goals, those goals that pertain to the 
most information-rich and intelligible table. For 
our tuple-selection task, the highest-ranked focus is 
the table from which the system predicts a user 
will most likely want to select a tuple. A system 
that begins a dialogue by first mentioning the most 
relevant tables communicates the structure of the 
database better than does a system that lists all ta-
bles in a random order. Users with more special-
ized goals may be interested in more peripheral 
tables. For these users, more effort will be required 
to establish a dialogue focus: several tables may be 
proposed by the system and rejected before the 
user agrees to consider a given table.  In tests with 
real users, we would expect them to find it ac-
ceptable for a specialized goal to take more effort 
than a basic goal.  

We use schema summarization to find candidate 
focus tables. According to Yu and Jagadish (2006), 
a schema summary should convey a concise under-
standing of the underlying database schema. They 
identify table importance and coverage as criteria 
for good schema summaries. Their summaries for 
XML databases rank entities with higher cardinali-
ty (number of rows) and connectivity (number of 
joins) as more important. Yang, Procopiuc, and 
Srivastava (2009) extend schema summarization to 
relational databases. We closely follow the Yang 
algorithm but make modifications for dialogue to 
account for attribute intelligibility. 

A database schema is an undirected graph  
G = <R,E> where each node r  R corresponds to 
a table in a database and each edge e  E denotes 
a join between two tables. A schema summary is a 
set of the most important nodes in the schema. 
Yang and colleagues compute the importance of a 
table as a function of its size, total entropy of its 
attributes, and connectivity to other tables. To in-

corporate connectivity, they employ a random 
walk over the schema graph. The most important 
tables maintain the highest information content in 
the steady state of a random walk over the schema. 

A significant feature of their algorithm is that a 
table’s high-entropy attributes largely determine its 
importance. It is possible to artificially inflate a 
table’s importance under the Yang algorithm by 
introducing a new column of distinct integer val-
ues; numeric and linguistic values contribute 
equally to importance. For dialogue applications, 
this is undesirable. A table with more intelligible 
attributes is a more likely candidate focus because 
it can more readily be discussed. We therefore 
modify the Yang algorithm to compute table ver-
bality. Verbality is similar to importance except 
that where Yang and colleagues use all attributes, 
we use intelligible attributes identified by vocabu-
lary selection. 

A table’s verbality score is a function of its car-
dinality, the entropy of its intelligible attributes, 
and its connectivity to other tables. We apply vo-
cabulary selection to find natural language attrib-
utes. To calculate the verbality of a table T, let A 
be the attributes of T and let Aʹ′ A be those attrib-
utes of T whose values are intelligible, found by 
the classifier described previously. For BOOK, Aʹ′ 
consists of the attributes shown in Table 2. Define 
V, the verbal information content of a table, as 

 

where |T| is the cardinality of the table and H(a) is 
the entropy of the attribute a in Aʹ′. The entropy of 
a is given by 𝐻 𝑎 = − 𝑝! log 𝑝!!∈!  where K is 
the set of distinct values of a and pk is the fraction 
of rows in T for which a=k. If table T has no joins, 
V(T) is the final verbality score of T. Table 3 
shows V(T) for each T in Heiskell. 

To incorporate connectivity into verbality, we 
create a matrix of transition probabilities between 
every pair of nodes in the schema and determine 
which table maintains the highest information. Let 
J A be the attributes of T that join to other tables. 
The information transfer (IT) over the join j J is 

𝐼𝑇 𝑗 =
𝐻 𝑗

𝑉 𝑇 + 𝑞!𝐻 𝑎!∈!
 

where qa is the number of joins in which attribute a 
participates. Let P(T,R) be the transition probabil-
ity from table T to table R. For T≠R, P(T,R) is the 
sum of IT(j) for all joins j between T and R. These 

∈
∈

⊆

V (T ) = log(|T |)+ H (a)
a∈A '
∑

⊆
∈
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probabilities represent the flow of information be-
tween tables over their joins. The diagonal entries 
of the transition matrix are given by 

P(T,T) = , 
the information that stays within table T. We then 
define the verbality of table Ti to be the ith element 
in the stable distribution of a random walk over the 
NxN matrix whose elements are P(Ti,Tj) for i,j 
N. We follow Yang and colleagues and use power 
iteration to find the stable distribution. 
 

T V(T) Verbality(T) 
Book 88.2 45.4 
Heading 31.7 22.4 
BibHeadingLink 19.2 23.6 
CirculationHistory 17.9 24.9 
Holding Stats 15.2 24.0 
Patron Properties 12.7 21.9 
Reserve 12.2 25.5 
Patron 9.0 18.6 

Table 3. Verbalities of Heiskell. V(T) is the verbal in-
formation of T. Verbality(T) incorporates connectivity. 

Table 3 illustrates the verbalities of Heiskell be-
fore and after information transfer. BOOK clearly 
dominates. Before information transfer there is 
more verbal information V in BOOK than in the 
next four tables combined. After information trans-
fer reaches a steady state, its connectivity with oth-
er tables increases their verbality, but BOOK re-
mains the leading candidate by a large margin. 
HEADING’s verbality decreases sharply after in-
formation transfer because of its low connectivity.  

The focus discovery module returns a focal 
summary, a list of the top k tables with the highest 
verbalities. The focal summary is similar to the 
intensional summary described by Polifroni and 
Walker (2008), which communicates the contents 
of a single table to a user. A key difference is that 
the focal summary pertains to the entire database. 

ODDMER is currently limited to the table and 
attribute labels assigned by the database designer. 
For example, the Heiskell ‘BOOK’ table was la-
beled ‘BIBREC’ by the database designers, for Bib-
liographic Record. We renamed this table prior to 
its use as a backend for the dialogue system. But 
ODDMER has no way to determine if labels are 
meaningful. In many cases there is a disincentive 
towards meaningful table names to avoid conflicts 
with SQL keywords. Future work will explore how 
to infer more meaningful table and attribute labels 

from a database instantiation, for example by con-
sulting external knowledge bases to predict the 
entity a table represents. 

3.3 Focus agent generation 

Focus discovery fits naturally into an agent-based 
or agenda-based approach to dialogue management 
(Bohus & Rudnicky, 2009; Nguyen & Wobcke, 
2005). At the onset of a dialogue, ODDMER’s root 
agent announces the focal summary and prompts 
the user for her goal. Upon receipt of a user reply, 
it launches the appropriate focus agent, a finite 
state machine based on Information State Update 
(Traum & Larsson, 2003), whose parameters are a 
table, its list of intelligible attributes, and their 
computed specificity scores. The agent elicits con-
straints from the user until the current goal is satis-
fied or the user abandons the focus. Control over 
the dialogue then returns to the root, which queries 
the user for a new focus or ends the dialogue. Fig-
ure 2 shows a sample dialogue. 
 

1. S: Hello, I can help you find a Book. Would you 
like to find a Book?  
2. U: I’d like a Book. 
3. S: Do you know the annotation? 
4: U: No. 
5: S: Do you know the title? 
6. U: It’s Gone with the Wind 

Figure 2. ODDMER’s root agent gives the focal sum-
mary (k=1) in line 1. The BOOK focus agent launches in 
line 3 and prompts for the value of the most specific 
intelligible attribute. 
 

The default strategy of the focus agent is to elicit 
the most specific, intelligible constraints first. 
While intelligible attributes are more likely to be 
known by users, they are not equally valuable as 
item descriptions. As shown in Table 2, the speci-
ficities of NARRATOR, PUBLISHER, and SERIES are 
so low that a strategy involving them will likely 
lead to inefficient dialogues and unsatisfied users. 
The focus agent therefore orders its prompts for 
constraints by their specificity, and requests the 
most specific attributes first. Because specificity is 
a function of the database instantiation and not user 
knowledge, we expect that this strategy will lead to 
shorter, more efficient dialogues for all users. 

The dialogue starts with the root agent in con-
trol of the dialogue. The root agent announces the 
focal summary, the k tables with highest verbality. 

1 ( , )
T R
P T R

≠
−∑

∈
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Here we let k=1. The root agent parses the user’s 
reply to determine the focus of interest and launch-
es the appropriate agent. The agent interacts with 
the user to find a tuple from the table. Its default 
strategy elicits constraints from the user in order of 
semantic specificity. Because semantic specificity 
can apply to combinations of attributes, future 
work will investigate tradeoffs between efficiency 
and user effort in prompts for multiple attributes. 

The focus agent queries the database upon re-
ceipt of each new constraint. If the return size is 
small enough (here, a single tuple) it announces the 
result. Otherwise it continues to elicit constraints 
until all intelligible attributes have elicited values, 
at which point it announces all matching results. 
  ODDMER deals with three goal setbacks: (1) dis-
ambiguation, in which a query is under-constrained 
and matches multiple tuples; (2) over-constrained 
queries that have no matching tuple; and (3) attrib-
utes whose values are unknown to the user. The 
third setback is particularly prevalent in real-world 
databases. Our system addresses these setbacks 
with specific, intelligible vocabulary.  

4 Evaluation 

ODDMER finds foci and vocabulary for any rela-
tional database. We evaluate it on three very dif-
ferent domains. These databases were chosen for 
their variety, and are not equally suitable for dia-
logue. Our primary domain of consideration is 
Heiskell, the database of the Heiskell Library. 
Heiskell has eight tables. The largest table is CIR-
CULATION HISTORY, which contains 16 attributes 
with 244,072 rows. However, focus discovery 
identifies BOOK as the top candidate focus, which 
matches our intuition. Though BOOK is smaller at 
only 71,166 rows, it has 32 attributes of which 
seven are classified as intelligible. The classifier 
finds none of CIRCULATION HISTORY’s attributes 
intelligible. Manual inspection revealed CIRCULA-
TION HISTORY to consist primarily of alphanumeric 
codes relevant to the library rather than to users. 

The second domain we consider is Grocery, a 
small supermarket database used as a teaching tool 
in an undergraduate class at Hunter College. Gro-
cery has 20 tables. Their cardinalities range from 7 
to 197 rows. The top focus in Grocery represents 
the products sold in the store. It was the largest 
table with the greatest connectivity, and makes 

intuitive sense; it is the table a supermarket cus-
tomer would most likely want to talk about.  

To challenge our system we consider Eve, a 
freely available database for the virtual game Eve 
Online, a massively multiplayer online role-
playing game with over 400,000 subscribers. Eve 
has 78 tables and the game’s active community 
regularly accesses it to determine in-game goals 
and objects of interest. Eve is a challenge for 
ODDMER because it primarily contains numeric 
data for objects in the game world. These numeric 
attributes are of great interest to players but con-
found our assumption that dialogue goals correlate 
with high verbality. Moreover, connectivity plays 
no role in table verbality because Eve contains no 
joins. Focus discovery on Eve identifies INVTYPES, 
a table that represents in-game inventory items, as 
the best focus, even though vocabulary selection 
identifies only three of its 15 attributes as intelligi-
ble. The 12 unintelligible attributes were all nu-
meric. In general, focus discovery and vocabulary 
selection proved less effective on Eve than on 
Heiskell. In Eve the verbality scores of the top ta-
bles were close together without one outstanding 
focus candidate. 

4.1 Simulating the vocabulary problem 

A typical evaluation of a spoken dialogue system 
provides users with all the information needed to 
carry out a dialogue. Such a completely knowl-
edgeable user can unrealistically describe objects 
in the domain with the same vocabulary that the 
system uses. This means it does not experience the 
vocabulary problem. To test vocabulary selection, 
we simulate users with incomplete domain 
knowledge. In contrast with Selfridge and Heeman 
(2010), our limited-knowledge users are more like-
ly to know some attributes than others. 

User simulation is often used to stand in for real 
user dialogues, but it is a concern whether the dia-
logues are sufficiently realistic (Schatzmann, 
Georgila, & Young, 2005). Here, we use simula-
tion to exercise each dialogue system with a large 
number of cases in a highly controlled fashion. For 
simulated users, we can specify exactly what each 
user knows about the domain, thus simulation 
makes it possible to hold everything else the same 
while contrasting users with complete versus in-
complete domain knowledge.  We view this as a 
preliminary step towards evaluation with real us-
ers, which we hope to do in future work. 
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 Heiskell  Grocery Eve  
C/N/R 15.9 ± 0.4	   11.1 ± 0.2 16.3 ± 0.4 
C/N/S 9.0 ± 0.0 9.0 ± 0.0 9.0 ± 0.0 
C/V/R 11.5 ± 0.2 11.1 ± 0.3 10.6 ± 0.1 
C/V/S 9.5 ± 0.1 9.0 ± 0.0 9.0 ± 0.0 
L/N/R 25.3 ± 0.8 13.1 ± 0.2 17.7 ± 0.5 
L/N/S 16.5 ± 0.6 9.3 ± 0.1	   9.4 ± 0.1	  
L/V/R 12.4 ± 0.2	   12.2 ± 0.1	   10.7 ± 0.1	  
L/V/S 11.3 ± 0.2	   9.7 ± 0.1	   9.0 ± 0.0	  

Table 4. Mean dialogue length across domains. C/*/*: 
complete-knowledge user; L/*/*: incomplete-
knowledge user; */N/*: no vocabulary selection; */V/*: 
with vocabulary selection; */*/R: random order; */*/S: 
order by specificity. Intervals are 95% confidence. 

 
Our simulated user knows each attribute’s value 

with a different probability. Ideally we might esti-
mate these probabilities from a language model of 
a corpus in the domain. Unfortunately our domains 
contain many obscure names and non-verbal val-
ues for which we need non-zero probabilities. In-
stead, we estimate a probability for attribute value 
knowledge by calculating the frequency of total 
value occurrences in a subset of the New York 
Times portion of the English Gigaword corpus 
(Parker et al., 2011), a 4 million word corpus of 
news articles. These frequency values could have 
been used during vocabulary selection but we 
chose to reserve them for evaluation. 

The probability that the limited-knowledge user 
knows a particular value is the normalized fre-
quency that the attribute’s values appear in Giga-
word. We tokenized attribute values in our data-
bases to remove punctuation and case. We ignored 
word order so that, for example, the author values 
“King, Stephen” and “Stephen King” are equiva-
lent. For each value, we counted the articles in 
which all the value’s tokens co-occurred. For each 
attribute, we took the sum of these counts over all 
its values, and took its log to represent the proba-
bility that the user knows that attribute. We then 
normalized by the log of the highest-frequency 
attribute to enforce our assumption that the user 
usually knows at least one piece of information 
about her goal. This method is robust to attributes 
with missing values. Probabilities for the BOOK 
attributes were 100% for TITLE, 78% for AUTHOR, 
75% for PLACE PUBLISHED, and 73% for PUB-
LISHER. ISBN has a 0% probability because none 
of its values occur in the corpus. ANNOTATIONS, 
whose values are brief plot descriptions of each 

book, has a low 37%. Although its values con-
tained many common words, the words in a single 
annotation rarely co-occurred in one article. 

4.2 Testing the impact of domain knowledge 

We evaluate dialogue efficiency with two simulat-
ed users as measured by number of turns. The first 
user, C, has complete domain knowledge and al-
ways knows every constraint. The second, L, has 
limited, incomplete domain knowledge. When con-
fronted with the focal summary, the simulated user 
always chooses the top suggested focus. The dia-
logue ends when either a single tuple matching the 
constraints is found, or all constraints have been 
requested, in which case all matching tuples are 
announced. We measure average dialogue length 
of 1000 simulated dialogues for each user with 
vocabulary selection (V) and without (N), and with 
prompts ordered randomly (R) or by specificity 
(S). Table 4 shows the results. ANOVAs of all 
pairs of comparisons were highly significant. 

The longest dialogues for both users occur 
without vocabulary selection and with prompts in 
random order (*/N/R). The more attributes there 
are, the longer it takes a random order to achieve a 
constraint combination that forms a key, so C has 
long dialogues even though it knows every con-
straint. L experiences much longer dialogues be-
cause it is prompted for inefficient constraints, and 
is unlikely to know most of them. This difference 
is particularly noticeable in Heiskell. On average, 
L’s dialogues are ten turns longer. 

Ordering prompts by specificity without vocabu-
lary selection (*/N/S) yields a sharp increase in 
efficiency for both users. C’s dialogues achieve the 
minimum number of turns because it is immediate-
ly asked for the most specific constraint, which it 
always knows. In Heiskell, specificity decreases 
L’s average length from 25.3 to 16.5, a large in-
crease in efficiency but still much worse than C. 
For Eve, L performs better in the absence of vo-
cabulary selection. Specificity alone brings its av-
erage efficiency near optimum. This is because for 
Eve’s INVTYPES table, the most specific intelligible 
attribute is the item’s NAME, which our domain 
knowledge model predicts L will always know. 

Vocabulary selection is more effective than 
specificity for L on Heiskell. L is much more likely 
to know the selected attributes and its efficiency 
increases even when prompted for intelligible at-
tributes in a random order. Vocabulary selection is 
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less effective than specificity for C because C 
knows every attribute, but in general the intelligi-
ble attributes are also more specific, so selection 
increases C’s efficiency even with random 
prompts. Vocabulary selection combined with 
specificity (*/V/S) leads to a small decrease in ef-
ficiency for C on Heiskell over specificity alone. 
This is because the most specific intelligible attrib-
ute is slightly ambiguous, and C must occasionally 
supply extra constraints to disambiguate. However, 
with both specificity and vocabulary selection, L 
achieves a mean dialogue length of 11.3, requiring 
only two turns more than C to order a book.  

For Eve, vocabulary selection and order-by-
specificity are each effective individually, and 
yield similar dialogues for both L and C. This is 
because INVTYPES has only three intelligible at-
tributes, so the dialogue ends after at most three 
prompts. Our domain knowledge model predicts 
close to 100% knowledge for two of these.  

A comparison of the order-by-specificity strate-
gy used here with the order-by-entropy strategy 
described by Polifroni and Walker (2006) yielded 
no significant difference in dialogue length. The 
two strategies produce similar attribute orders. 

5 Conclusion and Open Questions 

We have demonstrated an open dialogue manage-
ment system, ODDMER, which formulates a dia-
logue strategy by computing metaknowledge about 
its database: table verbality, attribute intelligibility, 
and attribute specificity. Candidate dialogue foci 
are the tables with high verbality. For each candi-
date focus, ODDMER chooses an intelligible do-
main vocabulary and generates a default strategy 
that orders prompts by specificity. A simulated 
user facing the vocabulary problem achieves more 
efficient dialogues with vocabulary selection. Our 
method works well on the Heiskell Library data-
base, which has a particularly prominent candidate 
focus showing a clear separation between intelligi-
ble and unintelligible attributes. Focus discovery 
and vocabulary selection are less effective for nu-
meric databases without clear dialogue goals. For 
example, Eve’s top focus scored the highest verbal-
ity, even though the table contained only three in-
telligible attributes.  

Questions that arise from this work include how 
to extend focus discovery and vocabulary selection 
to numerical databases, how to extract strategies 

for goals other than tuple-selection from a data-
base, and how to automatically infer intelligible 
table and attribute labels. We are also interested in 
discovery of less rigid dialogue goals, for example, 
a library patron who would be satisfied by an al-
ternative book, and goals involving information 
aggregation where user utterances map to sophisti-
cated queries. We would like to investigate how 
optimal policies learned through reinforcement 
learning vary across domains. Future work will 
also scale to mixed-initiative open dialogue man-
agement, explore more sophisticated models of 
user domain knowledge, and evaluate portability 
on more databases. 

ODDMER uses the semantics of its domain rep-
resentation to discover what to talk about and how 
to talk about it. We envision a rich toolkit that ena-
bles a system to explore its database for knowledge 
to exploit in collaborative dialogues with its users. 
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Abstract

This paper explores the relationship between explicit
and predictive models of incremental speech under-
standing in a dialogue system that supports a finite
set of user utterance meanings. We present a method
that enables the approximation of explicit under-
standing using information implicit in a predictive
understanding model for the same domain. We show
promising performance for this method in a corpus
evaluation, and discuss its practical application and
annotation costs in relation to some alternative ap-
proaches.

1 Introduction
In recent years, there has been a growing interest among
researchers in methods for incremental natural language
understanding (NLU) for spoken dialogue systems; see
e.g. (Skantze and Schlangen, 2009; Sagae et al., 2009;
Schlangen et al., 2009; Heintze et al., 2010; DeVault et
al., 2011a; Selfridge et al., 2012). This work has gen-
erally been motivated by a desire to make dialogue sys-
tems more efficient and more natural, by enabling them to
provide lower latency responses (Skantze and Schlangen,
2009), human-like feedback such as backchannels that in-
dicate how well the system is understanding user speech
(DeVault et al., 2011b; Traum et al., 2012), and more in-
teractive response capabilities such as collaborative com-
pletions of user utterances (DeVault et al., 2011a), more
adaptive handling of interruptions (Buschmeier et al.,
2012), and others.

This paper builds on techniques developed in previous
work that has adopted a predictive approach to incremen-
tal NLU (DeVault et al., 2011a). On this approach, at
specific moments while a user’s speech is in progress,
an attempt is made to predict what the full meaning of
the complete user utterance will be. Predictive models
can be contrasted with explicit approaches to incremen-
tal NLU. We use the term explicit understanding to refer

to approaches that attempt to determine the meaning that
has been expressed explicitly in the user’s partial utter-
ance so far (without predicting further aspects of mean-
ing to come). Explicit understanding of partial utterances
can be implemented using statistical classification or se-
quential tagging models (Heintze et al., 2010).

Both predictive and explicit incremental NLU capabil-
ities can be valuable in a dialogue system. Prediction
can support specific response capabilities, such as sys-
tem completion of user utterances (DeVault et al., 2011a)
and reduced response latency.1 However, explicit models
support additional and complementary capabilities. For
instance, depending on the application domain (Heintze
et al., 2010) and on the individual utterance (DeVault et
al., 2011b), it may be difficult for a system to predict a
user’s impending meaning with confidence. Neverthe-
less, it may often be possible for systems to determine
the meaning of what a user has said so far, and to take
action based on this partial understanding. As one exam-
ple, items in a user interface could be highlighted when
mentioned by a user (Buß and Schlangen, 2011). An-
other capability would be to provide grounding feedback,
such as verbal back-channels or head nods (in embod-
ied systems), to indicate when the system is understand-
ing the user’s meaning (Traum et al., 2012). Explicit ut-
terance meanings also allow a system to distinguish be-
tween meaning that has been expressed and meaning that
is merely implied or inferred, which may be less reliable.
In the near future, as incremental processing capabilities
in dialogue systems grow, it may prove valuable for di-
alogue systems to combine both predictive and explicit
incremental understanding capabilities.

In this paper, we present a technique for approximating
a user’s explicit meaning using an existing predictive un-
derstanding framework (DeVault et al., 2011a). The spe-
cific new contributions in this paper are (1) to show that

1A simple approach to reducing response latency is to begin to plan
a response to the predicted meaning while the user is still speaking.
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an estimate of a user’s explicit utterance meaning can be
derived from this kind of predictive understanding model
(Section 2); (2) to quantify the performance of this new
method in a corpus evaluation (Section 3); (3) to provide
concrete examples and discussion of the annotation costs
associated with implementing this technique, in relation
to some alternative approaches to explicit understanding
(Section 4). Our results and discussion show that the
proposed method offers promising performance, has rela-
tively low annotation costs, and enables explicit and pre-
dictive understanding to be easily combined within a di-
alogue system. It may therefore be a useful incremental
understanding technique for some dialogue systems.

2 Technical Approach and Data Set
In Sections 2.1-2.3, we briefly summarize the data set and
approach to predictive incremental NLU (DeVault et al.,
2011a) that serves as the starting point for the new work
in this paper. Sections 2.4 and 2.5 present our new ap-
proach to explicit understanding based on this approach.

2.1 Data set
For the experiments reported here, we use a corpus of
user utterances collected with the SASO-EN spoken dia-
logue system (Hartholt et al., 2008; Traum et al., 2008).
Briefly, this system is designed to allow a trainee to prac-
tice multi-party negotiation skills by engaging in face to
face negotiation with virtual humans. The scenario in-
volves a negotiation about the possible re-location of a
medical clinic in an Iraqi village. A human trainee plays
the role of a US Army captain, and there are two virtual
humans that he negotiates with: Doctor Perez, the head
of an NGO clinic, and a local village elder, al-Hassan.
The captain’s main objective is to convince the doctor and
the elder to move the clinic out of an unsafe marketplace
area.

The corpus used for the experiments in this paper in-
cludes 3,826 training and 449 testing utterances drawn
from user dialogues in this domain. The corpus and its se-
mantic annotation are described in (DeVault et al., 2010;
DeVault et al., 2011a). All user utterances have been au-
dio recorded, transcribed, and manually annotated with
the correct NLU output frame for the entire utterance.
(We discuss the cost of this annotation in Section 4.) Each
NLU output frame contains a set of attributes and values
that represent semantic information linked to a domain-
specific ontology and task model (Traum, 2003). Exam-
ples of the NLU output frames are included in Figures 2,
3, and 5.

2.2 Predictive incremental NLU
This approach uses a predictive incremental NLU mod-
ule, mxNLU (Sagae et al., 2009; DeVault et al., 2011a),
which is based on maximum entropy classification. The

approach treats entire individual frames as output classes,
and extracts input features from partial ASR results. To
define the incremental understanding problem, the audio
of the utterances in the training data were fed through
an ASR module, PocketSphinx (Huggins-Daines et al.,
2006), in 200 millisecond chunks, and each partial ASR
result produced by the ASR was recorded. Each par-
tial ASR result then serves as an incremental input to
mxNLU. NLU is predictive in the sense that, for each
partial ASR result, the task of mxNLU is to produce as
output the complete frame that has been associated by a
human annotator with the user’s complete utterance, even
if that utterance has not yet been fully processed by the
ASR.

The human annotation defines a finite set S =
{S1, ..., SN} of possible NLU output frames, where each
frame Si = {e1, ..., en} is a set of key-value pairs or
frame elements. For notation, a user utterance u generally
creates a sequence of m partial ASR results 〈r1, ..., rm〉,
where each ASR result rj is a partial text such as we need
to move. Let Gu denote the correct (or “gold”) frame for
the complete utterance u. For each result rj and for each
complete frame Si, the maximum entropy model pro-
vides P (Gu = Si|rj). The NLU output frame SNLU

j is
the complete frame for which this probability is highest.

2.3 Performance of predictive incremental NLU

The performance of this predictive incremental NLU
framework has been evaluated using the training and
test portions of the SASO-EN data set described in Sec-
tion 2.1. Performance is quantified by looking at pre-
cision, recall, and F-score of the frame elements that
compose the predicted (SNLU

j ) and correct (Gu) frames
for each partial ASR result. When evaluated over all
the 5,736 partial ASR results for the 449 test utterances,
the precision/recall/F-Score of this predictive NLU, in
relation to the complete frames, are 0.67/0.47/0.56, re-
spectively. When evaluated on only the ASR results
for complete test utterances, these scores increase to
0.81/0.71/0.76, respectively.

2.4 Assigning probability to frame elements

An interesting question is whether we can use this model
to attach useful probabilities not only to complete pre-
dicted frames but also to the individual frame elements
that make up those frames. To explore this, for each par-
tial ASR result rj in each utterance u, and for each frame
element e in SASO-EN, let us model the probability that
e will be part of the correct frame for the complete utter-
ance as:

P (e ∈ Gu|rj) =
∑

Si:e∈Si

P (Gu = Si|rj) (1)
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Figure 1: Calibration of frame element probabilities.

This method derives the probability of frame elements
from the probabilities assigned to the possible frames that
contain them. Computing this sum is straightforward in a
finite semantic domain such as SASO-EN.

We computed this probability for all frame elements
e and all partial ASR results rj in our test set, yielding
approximately 478,000 probability values. We grouped
these probability values into bins of size 0.05, and cal-
culated the frequency with which the frame elements in
each bin were indeed present in the correct frame Gu for
the relevant utterance u. The results are presented in Fig-
ure 1, which shows that the probability values derived
from Equation (1) are relatively “well calibrated”, in the
sense that the relative frequency with which a frame el-
ement is in the final frame is very close to the numeric
probability assigned by Equation (1). The figure also
shows how frequently the model assigns various proba-
bility ranges to frame elements (blue dotted line, plotted
against the secondary right axis). Note that most frame
elements are assigned very little probability for most par-
tial ASR results.

We conclude from these observations that the probabil-
ities assigned by (1) could indeed carry useful informa-
tion about the likelihood that individual key values will
be present in the complete utterance meaning.

2.5 Selecting probable frame elements
In exploring the model of frame element probabilities
given in Equation (1), we observed that often the reason

a frame element has lower probability, at a given point
within a user utterance, is that it is a prediction rather than
something that has been expressed explicitly. Building on
this observation, our technique for estimating the user’s
explicit meaning uses a probability threshold to select
those individual frame elements which are most likely to
be in the frame for a complete utterance, according to the
predictive model. That is, at each partial result rj , we
estimate the user’s explicit meaning using a constructed
frame:

SSUB
j = {e|P (e ∈ Gu|rj) ≥ τ} (2)

This approximation could work well if, in practice, the
most probable frame elements prove to match fairly
closely the user’s non-incremental utterance meaning at
the point this frame is constructed. We evaluate this in
the next section.

Note that, in general, the returned subset of frame
elements may not be identical to any complete frame
Si ∈ S; rather it will correspond to parts of these com-
plete frames or “subframes”.

3 Performance Evaluation
To evaluate this technique, we constructed subsets of
frame elements or “explicit subframes” using Equation
(2) and various minimum probability thresholds τ for par-
tial ASR results in our test set. We then compared the
resulting subframes both to the final complete frame Gu

for each utterance u, and also to manually annotated sub-
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Explicit subframe (with frame element probabilities) Predicted complete frame Annotated subframe

Partial ASR result: hello

0.813 <S>.sem.speechact.type greeting <S>.sem.speechact.type greeting
<S>.addressee doctor-perez

<S>.sem.speechact.type greeting

Partial ASR result: hello elder

0.945 <S>.sem.speechact.type greeting
0.934 <S>.addressee elder-al-hassan

<S>.sem.speechact.type greeting
<S>.addressee elder-al-hassan

<S>.sem.speechact.type greeting
<S>.addressee elder-al-hassan

Figure 2: Explicit subframes and predicted complete frames for two partial ASR results in a user utterance of hello elder.

frames that represent human judgments of explicit incre-
mental utterance meaning.

To collect these judgments, we hand-annotated a word-
meaning alignment for 50 random utterances in our test
set.2 To perform this annotation, successively larger pre-
fixes of each utterance transcript were mapped to succes-
sively larger subframes of the full frame for the complete
utterance. The annotated subframes for each utterance
prefix were selected to be explicit; they include only those
frame elements that are explicitly expressed in the corre-
sponding prefix of the user’s utterance. (We discuss the
cost of this annotation in Section 4.)

We provide a simple concrete example in Figure 2.
This example shows two partial ASR results during
an utterance of hello elder by a user. For each par-
tial ASR result, three frames are indicated horizon-
tally. At the right, labeled “Annotated subframe”, we
show the human judgment of explicit incremental ut-
terance meaning for this partial utterance. Our hu-
man judge has indicated that the word hello corresponds
to the frame element <S>.sem.speechact.type
greeting, and that the words hello elder correspond
to an expanded frame that includes the frame element
<S>.addressee elder-al-hassan.

At the left, labeled “Explicit subframe”, we show
the subframe selected by Equation (2) for each par-
tial ASR result, with threshold τ = 0.5. A relevant
background fact for this example is that in this sce-
nario, the user can generally address either of two vir-
tual humans who are present, Doctor Perez or Elder
Al-Hassan. After the user has said hello, the frame
element <S>.sem.speechact.type greeting is
assigned probability 0.813 by Equation (1), and only this
frame element appears in the explicit subframe.

In the middle, labeled “Predicted complete frame”, the
figure also shows the full predicted frame from mxNLU
at each point. After the user has said hello, the full
predicted output includes an additional frame element,
<S>.addressee doctor-perez, indicating a pre-
diction that the addressee of this user utterance will be
Doctor Perez rather than Elder al-Hassan. However, the

2Note that no utterances in our training set were annotated.

probability assigned to this prediction by Equation (1) is
less than 0.5, and so this predicted frame element is ex-
cluded from the explicit subframe. And indeed, this is the
correct explicit representation of the meaning of hello in
this system.

This simple example illustrates how our proposed tech-
nique can enable a dialogue system to have access to both
explicit and predicted utterance meaning as a user’s ut-
terance progresses. An excerpt from a more complex
utterance is given in Figure 3. This example shows in-
cremental outputs for two partial ASR results during a
user utterance of we will provide transportation at no
cost. In this example, the explicit subframe for we
will includes frame elements that convey that the cap-
tain (i.e. the user) is promising to do something. This
subframe does not exactly match the human judgment
of explicit meaning at the right, which does not include
at this point the <S>.sem.agent captain-kirk
and <S>.sem.type event frame elements. How-
ever, the explicit subframe more closely matches the hu-
man judgment than does the predicted complete frame
from mxNLU (middle column), which includes an in-
correct prediction that the captain is promising to de-
liver medical supplies (represented by the key values
<S>.sem.event deliver and <S>.sem.theme
medical-supplies). For the next partial ASR re-
sult shown in the figure, the explicit subframe correctly
adds several additional frame elements which formalize
the meaning of the phrase provide transportation in this
scenario as having the army move the clinic out of the
market area.

To understand more quantitatively how well this tech-
nique works, we evaluated this technique in the SASO-
EN test corpus, using different probability thresholds in
the range [0.5,1.0). We present the results in Figure 4. To
understand the effect of the threshold τ , note that, in gen-
eral, the effect of selecting a higher threshold should be to
“cherry pick” those frame elements which are most likely
to appear in the complete frame Gu, thereby increasing
precision while decreasing recall of the frame elements in
SSUB

j in relation to Gu. In the figure, we can see that this
is indeed the case. The lines marked “(complete frame)”
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Explicit subframe (with frame element probabilities) Predicted complete frame Annotated subframe

Partial ASR result: we will

0.856 <S>.mood declarative
0.824 <S>.sem.agent captain-kirk
0.663 <S>.sem.modal.intention will
0.663 <S>.sem.speechact.type promise
0.776 <S>.sem.type event

<S>.mood declarative
<S>.sem.agent captain-kirk
<S>.sem.event deliver
<S>.sem.modal.intention will
<S>.sem.speechact.type promise
<S>.sem.theme medical-supplies
<S>.sem.type event

<S>.mood declarative
<S>.sem.modal.intention will
<S>.sem.speechact.type promise

Partial ASR result: we will provide transportation

0.991 <S>.mood declarative
0.990 <S>.sem.agent captain-kirk
0.927 <S>.sem.event move
0.905 <S>.sem.instrument us-army
0.964 <S>.sem.modal.intention will
0.927 <S>.sem.source market
0.964 <S>.sem.speechact.type promise
0.928 <S>.sem.theme clinic
0.989 <S>.sem.type event

<S>.mood declarative
<S>.sem.agent captain-kirk
<S>.sem.event move
<S>.sem.instrument us-army
<S>.sem.modal.intention will
<S>.sem.source market
<S>.sem.speechact.type promise
<S>.sem.theme clinic
<S>.sem.type event

<S>.mood declarative
<S>.sem.agent captain-kirk
<S>.sem.event move
<S>.sem.instrument us-army
<S>.sem.modal.intention will
<S>.sem.source market
<S>.sem.speechact.type promise
<S>.sem.theme clinic
<S>.sem.type event

Figure 3: Explicit subframes and predicted complete frames for two partial ASR results in a user utterance of we will provide
transportation at no cost.
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Figure 4: The effect of threshold on precision, recall, and F-Score of explicit subframes. All scores are measured in relation to
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in the figure evaluate the returned subframes in relation
to the complete frameGu associated with the user’s com-
plete utterance. We see that this method enables us to
select subsets of frame elements that are most likely to
appear in Gu: by increasing the threshold, it is possible
to return subframes which are of increasingly higher pre-
cision in relation to the final frame Gu, but that also have
lower recall.

We also evaluated the returned subframes in relation to
the hand-annotated subframes, to assess its performance
at identifying the user’s explicit meaning. For an utter-
ance u that generates partial ASR results 〈r1, ..., rm〉,
we denote the hand-annotated subframe corresponding to
partial ASR result rj by GSUB

j . In the lines marked “(an-
notated subframe)”, we show the precision, recall, and
F-score of the explicit subframe for each ASR result rj
in relation to the annotated subframe GSUB

j .
As a first observation, note that at any threshold level,

the explicit subframes do better at recalling the hand-
annotated subframe elements than they do at recalling the
complete frame elements. This means our new method is
better at recalling what has been said already by the user
than it is at predicting what will be said, as intended. We
have seen two examples of this already, for the partial
ASR result hello in Figure 2, and for the partial ASR re-
sult we will in Figure 3.

A second observation in Figure 4 is that precision re-
mains better against the complete utterance frame than
against the hand-annotated subframe (at all threshold lev-
els). This indicates that the explicit subframes are often
still predicting some aspects of the full frame. An exam-
ple of this is given in Figure 5, where the user’s partial
utterance we need to is assigned an explicit subframe that
includes frame elements describing an event of moving
the clinic, which the user has not said explicitly. This
happens because, in the SASO-EN domain, in fact there
is nothing else that the interlocutors need to do besides
move the clinic. So based on the NLU training data,
the data-driven probabilities assigned by Equation (1) de-
scribe the additional frame elements as about as probable
as the ones capturing the we need to part of the semantics
(given at the right).

Finally, a third observation is that overall, the preci-
sion, recall, and F-score results against the annotated sub-
frames using our method are surprisingly strong. For
example, when evaluating the explicit subframes over
all partial ASR results, an F-score of 0.75 is attained at
thresholds in the range 0.5-0.55. This F-score is sub-
stantially better than the F-score of our predictive NLU
in relation to the final full frames, which is 0.56 when
evaluated over all partial ASR results. This means that
our proposed model works better as an explicit incre-
mental NLU than mxNLU works as a predictive incre-
mental NLU. Further, we observe that this F-score of

0.75 against hand-annotated subframes is approximately
as good as the F-score of 0.76 that is achieved when
mxNLU is used to interpret complete utterances. We
therefore conclude that the proposed model is a promis-
ing and viable approach to explicit incremental NLU in
SASO-EN.

4 Discussion and Related Approaches
In this section, we discuss some of the practical aspects
of using the technique presented here, in relation to some
alternative approaches.

An important consideration for NLU techniques is the
cost, in both time and knowledge, of the annotation that
is needed. One attractive aspect of our technique is that
the only semantic annotation that is required is the asso-
ciation of complete user utterances with complete NLU
output frames. This task can be performed by anyone fa-
miliar with the scenario and the semantic frame format,
such as a system developer or scenario designer. In fact,
the annotation of the SASO-EN data set we use in this
paper has been described in (DeVault et al., 2010), which
reports that the overall corpus of 4678 token utterances
was semantically annotated at an average rate of about 10
seconds per unique utterance.

The model in Equation (2) is what (Heintze et al.,
2010) call a hybrid output approach, in which larger and
larger frames are provided as partial input grows, but
in which a detailed alignment between surface text and
frames is not provided by the incremental NLU compo-
nent. They contrast hybrid output systems with tech-
niques that deliver either whole-frame output (like the
predictive mxNLU) or aligned output that connects indi-
vidual words to their meanings. A data-driven approach
to providing aligned outputs would involve preparing
a more detailed annotated corpus that aligns individ-
ual words and surface expressions to their corresponding
frame elements. Given such a word-aligned corpus, one
could train several kinds of models to produce the aligned
outputs incrementally. One strategy would be to use a se-
quential tagging model such as a CRF to tag partial utter-
ances with the frame elements that capture their explicit
meaning, as in (Heintze et al., 2010).

Using a machine learning approach that models a
more detailed alignment between surface text and frames
would be one way to more cleanly separate explicit from
predictive aspects of meaning. Preparing the training data
for such models, however, would create additional an-
notation costs. As part of creating the annotated sub-
frames for the evaluation presented in Section 3, we mea-
sured the time requirement for such annotation of word-
meaning alignments at about 30 seconds per unique ut-
terance. Performing full word-meaning alignment there-
fore takes about three times as much time as the com-
plete utterance annotation needed for our technique. Ad-
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Explicit subframe (with frame element probabilities) Predicted complete frame Annotated subframe

Partial ASR result: we

0.753 <S>.mood declarative
0.687 <S>.sem.agent captain-kirk
0.692 <S>.sem.type event

<S>.mood declarative
<S>.sem.agent captain-kirk
<S>.sem.event deliver
<S>.sem.modal.possibility can
<S>.sem.speechact.type offer
<S>.sem.theme medical-supplies
<S>.sem.type event

Partial ASR result: we need to

0.945 <S>.mood declarative
0.928 <S>.sem.agent captain-kirk
0.900 <S>.sem.event move
0.816 <S>.sem.modal.deontic must
0.900 <S>.sem.source market
0.900 <S>.sem.speechact.type statement
0.906 <S>.sem.theme clinic
0.930 <S>.sem.type event

<S>.mood declarative
<S>.sem.agent captain-kirk
<S>.sem.event move
<S>.sem.modal.deontic must
<S>.sem.source market
<S>.sem.speechact.type statement
<S>.sem.theme clinic
<S>.sem.type event

<S>.mood declarative
<S>.sem.modal.deontic must
<S>.sem.speechact.type statement

Figure 5: Explicit subframes and predicted complete frames for two partial ASR results in a user utterance of we need to move the
clinic.

ditionally, this task requires a greater degree of linguis-
tic knowledge and sophistication, as the annotator must
be able to segment the utterance and align specific sur-
face segments with potentially complex aspects of mean-
ing such as modality, polarity, speech act types, and
others. An example of the kinds of complexities that
arise is illustrated in Figure 3, where the relationship be-
tween specific words like “provide” and “transportation”
to frame elements like <S>.sem.event move and
<S>.sem.theme clinic is not transparent, even if
it is straightforward to mark the whole utterance as con-
veying that meaning in this domain. We have generally
found this alignment task challenging for people without
advanced linguistics training.

The reason we describe the method in this paper as an
approximation of explicit NLU is that, partly because it
is trained without detailed word-meaning alignments, it
can be expected to occasionally include some predictive
aspects of user utterance meaning. An example of this is
the method’s explicit subframe output for the phrase we
need to in Figure 5.

Another way to approximate explicit NLU would be
using the method (Heintze et al., 2010) call an ensem-
ble of classifiers; it involves training an individual clas-
sifier for each frame key. Like the method presented
here, an ensemble of classifiers can be easily trained to
predict those frame elements that will appear in the fi-
nal frame Gu for each utterance. And like our method,
prediction with an ensemble of classifiers does not re-
quire detailed annotation of word-meaning alignment in
the training data. One difference is that, with our method,
by selecting an appropriate threshold, it is easy to enforce
certain consistency properties on subframe outputs. In an
ensemble of classifiers approach, there is no immediate

guarantee that the output frame constructed by the inde-
pendent classifiers will be internally consistent from the
standpoint of downstream system modules (Heintze et al.,
2010). For example, in the SASO-EN domain, an NLU
frame should not contain frame elements that mix aspects
of events and states in the SASO-EN ontology; e.g., the
frame element <S>.sem.type event should not co-
occur in an NLU output frame with the frame element
<S>.sem.object-id market (which would be ap-
propriate for a state frame but not for an event frame).
With the method proposed here, if we select a threshold
τ that is greater than 0.5, and if none of the complete
NLU frames contain incompatible key values (which is
relatively easy to enforce as part of the annotation task),
then it will be mathematically impossible for two incom-
patible frame elements to be returned in a subframe.3

Ultimately, a classification method that is trained on
word-meaning aligned data and that uses additional tech-
niques to ensure that only valid, grammatical output
frames are produced could prove to be an attractive ap-
proach. In future work, we will explore such techniques,
and compare both their performance as well as their anno-
tation and development costs to the approximation tech-
nique presented here.

5 Conclusion
The analysis in this paper has explored a method of ap-
proximating explicit incremental NLU using predictive

3Suppose frame element ei is incompatible with ej , and that
P (ei ∈ Gu|rj) > 0.5. By stipulation, no complete frame S ∈ S
such that ei ∈ S will also contain ej . Since we know that the total
probability of all the frames containing ei must be greater than 0.5 in
order for ei to be selected, we can infer that the total probability of all
frames including ej must be less than 0.5, and thus that ej will not be
selected.
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techniques in finite semantic domains. We have shown
that an estimate of a user’s explicit utterance meaning
can be derived from an existing predictive understand-
ing model in an example domain. We have quantified
the performance of this new method in a corpus evalu-
ation, showing that the method returns incremental ex-
plicit subframes with performance – as measured by pre-
cision, recall, and F-Score against hand-annotated sub-
frames – that is competitive with a current statistical,
data-driven approach for understanding complete spoken
utterances in the same domain. We have provided ex-
amples that illustrate its strengths and weaknesses, and
discussed the annotation costs associated with imple-
menting this technique in relation to some alternative ap-
proaches. The method requires no additional annotation
beyond what is needed for training an NLU module to
understand complete spoken utterances. (Hand annota-
tion of word-meaning alignment for a small number of
utterances may be performed in order to tune the se-
lected threshold and evaluate explicit understanding per-
formance.) The method provides a free parameter that
can be used to target the most advantageous levels of pre-
cision and recall for a particular dialogue system applica-
tion. In future work, we will explore additional machine
learning models that leverage richer training data, and in-
vestigate further the combination of explicit and predic-
tive techniques.
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Abstract

In this paper we propose a new approach to
the generation of pseudowords, i.e., artificial
words which model real polysemous words.
Our approach simultaneously addresses the
two important issues that hamper the gener-
ation of large pseudosense-annotated datasets:
semantic awareness and coverage. We eval-
uate these pseudowords from three different
perspectives showing that they can be used as
reliable substitutes for their real counterparts.

1 Introduction

A fundamental problem in computational linguis-
tics is the paucity of manually annotated data, such
as part-of-speech tagged sentences, treebanks, and
logical forms, which exist only for few languages
(Ide et al., 2010). A case in point is the lack of
abundant sense annotated data, which hampers the
performance and coverage of lexical semantic tasks
such as Word Sense Disambiguation (Navigli, 2009;
Navigli, 2012, WSD) and semantic role labeling
(Gildea and Jurafsky, 2002). A possible way to
break this bottleneck is to use pseudowords, i.e., arti-
ficial words constructed by conflating a set of unam-
biguous words, with the aim of modeling polysemy
in real ambiguous words. The idea of pseudowords
was originally proposed by Gale et al. (1992) and
Schütze (1992) for WSD evaluation, but later found
application in other tasks such as selectional prefer-
ences (Erk, 2007; Bergsma et al., 2008; Chambers
and Jurafsky, 2010), Word Sense Induction (Bor-
dag, 2006; Di Marco and Navigli, 2013) or studies

concerning the effects of the amount of data on ma-
chine learning for natural language disambiguation
(Banko and Brill, 2001). Being made up of monose-
mous words, pseudowords can potentially be used to
create large amounts of pseudosense-annotated data
at virtually no cost, hence enabling large-scale stud-
ies in lexical semantics. Unfortunately, though, the
extent of their usability for such a purpose is ham-
pered by two main issues: semantic awareness and
wide coverage.

Semantic awareness corresponds to the constraint
that pseudowords, in order to be realistic, are ex-
pected to have senses which are in a semantic rela-
tionship (thus modeling systematic polysemy). Re-
cent work has focused on this issue and, by exploit-
ing either specific lexical hierarchies (Nakov and
Hearst, 2003; Lu et al., 2006), or the WordNet struc-
ture (Otrusina and Smrz, 2010), have succeeded in
generating pseudowords which are comparable to
real words in terms of disambiguation difficulty. The
second challenge is coverage, which corresponds to
the number of distinct pseudowords an algorithm
can generate. When coupled with the semantic
awareness issue, wide coverage is hampered by the
difficulty in generating thousands of pseudowords
which mimic existing polysemous words.

Unfortunately, none of the existing approaches to
the generation of pseudowords can meet both these
challenges simultaneously, and this has hindered
the generation of a large pseudosense-annotated
dataset. For instance, approaches which exploit the
monosemous neighbors of a target sense in Word-
Net (Otrusina and Smrz, 2010) can be used to gener-
ate pseudowords with good semantic awareness, but
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they have low coverage of ambiguous nouns when
many pseudosense-tagged sentences are needed (cf.
Section 2.1.1).

In this paper we propose a new approach, based
on Personalized PageRank, which simultaneously
addresses the two above-mentioned issues concern-
ing the generation of pseudowords (i.e., seman-
tic awareness and coverage), and hence enables
the generation of large-scale pseudosense-annotated
datasets. We perform three different experiments to
show that our pseudowords are good at modeling ex-
isting ambiguous words in terms of disambiguation
difficulty, representativeness of real senses and dis-
tinguishability of the artificial senses. As a byprod-
uct of this work, we generate a large dataset that pro-
vides 1000 tagged sentences for each of the 15,935
pseudowords modeled after real ambiguous nouns in
WordNet 3.0.

2 Pseudowords

A pseudoword p = w1*w2*. . . *wn is an artificially-
generated ambiguous word of polysemy degree n
which is usually created by conflating n unique un-
ambiguous words wi called pseudosenses. For in-
stance, airplane*river is a pseudoword with two
meanings explicitly identified by its pseudosenses:
airplane and river. Pseudowords are particularly in-
teresting as they can be used to introduce controlled
artificial ambiguity into a corpus. Given a pseu-
doword p and an untagged corpus C, this artificial
tagging is achieved by substituting all occurrences of
wi in C with p for each pseudosense i ∈ {1, . . . , n}.
As a result, each occurrence of the pseudoword p is
tagged with the underlying sense wi. As an example,
consider the following two sentences:

a1. The Wright brothers invented the airplane.

a2. The Nile is the longest river in the world.

If we replace the individual occurrences of air-
plane and river with the pseudoword airplane*river
while noting the replaced term as the corresponding
sense, we obtain the following pseudosense-tagged
sentences:

b1. The Wright brothers invented the airplane*river.

b2. The Nile is the longest airplane*river in the world.

As a result of this procedure, we obtain a corpus
of sentences containing the occurrences of an arti-
ficially ambiguous word p, for each of which we
know its correct sense annotation wi. Virtually any
number of pseudowords can be created, resulting in
a large pseudosense-annotated corpus. An obvious
restriction on the choice of pseudosenses is that they
need to be unambiguous, so as to avoid the introduc-
tion of uncontrolled ambiguity. Another constraint
is that the constituent wi must satisfy a minimum oc-
currence frequency in the corpus C. This minimum
frequency corresponds to the number of annotated
sentences that are requested for the task of interest
which will exploit the resulting annotated corpus.

An immediate way of generating a pseudoword
would be to randomly select its constituents from
the set of all monosemous words given by a lexi-
con (e.g., WordNet). However, constructing a pseu-
doword by merely combining a random set of unam-
biguous words selected on the basis of their falling
in the same range of occurrence frequency (Schütze,
1992), or leveraging homophones and OCR ambi-
guities (Yarowsky, 1993), does not provide a suit-
able model of a real polysemous word (Gaustad,
2001; Nakov and Hearst, 2003). This is because
in the real world different senses, unless they are
homonymous, share some semantic or pragmatic re-
lation. Therefore, random pseudowords will typ-
ically model only homonymous distinctions (such
as the centimeter vs. curium senses of cm), while
they will fall short of modeling systematic polysemy
(such as the lack vs. insufficiency senses of defi-
ciency).

2.1 Semantically-aware Pseudowords

In order to cope with the above-mentioned lim-
its of random pseudowords, an artificial word has
to model an existing word by providing a one-to-
one correspondence between each pseudosense and
a corresponding sense of the modeled word. For
instance, the pseudoword lack*shortfall is a good
model of the real word deficiency in that its pseu-
dosenses preserve the meanings of their correspond-
ing real word’s senses. We call this kind of artificial
words semantically-aware pseudowords.

In the next two subsections, we will describe two
techniques (the second of which is presented for
the first time in this paper) for the generation of
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Minimum Polysemy OverallFrequency 2 3 4 5 6 7 8 9 10 11 12 >12
0 87 82 74 71 67 70 60 64 45 46 44 28 83
500 41 31 24 15 12 13 10 7 7 0 0 0 35
1000 31 20 16 7 4 6 4 3 0 0 0 0 25

Table 1: Ambiguous noun coverage percentage of vicinity-based pseudowords by degree of polysemy for different
values of minimum pseudosense occurrence frequency in Gigaword.

semantically-aware pseudowords. In what follows
we focus on nominal pseudowords, and leave the ex-
tension to other parts of speech to future work.

2.1.1 Vicinity-based Pseudowords

A computational lexicon such as WordNet (Fell-
baum, 1998) can be used as the basis for the
automatic generation of semantically-aware pseu-
dowords, an idea which was first proposed by
Otrusina and Smrz (2010). WordNet can be viewed
as a graph in which synsets act as nodes and the lexi-
cal and semantic relationships among them as edges.
Given a sense, the approach looks into its surround-
ing synsets in the WordNet graph in order to find
a related monosemous term that can represent that
sense. As search space, the approach considers: the
other literals in the same synset, the genus phrase
from its textual definition, direct siblings, and di-
rect hyponyms. If no monosemous candidate can be
found, this space is further extended to hypernyms
and meronyms. Hereafter, we term this approach as
vicinity-based.

For example, consider the generation process of
the vicinity-based pseudoword corresponding to the
term coke, which has three senses in WordNet 3.0.
There exist multiple monosemous candidates for
each sense: dozens of candidates (such as biomass
and butane) in the direct siblings’ vicinity of the
first sense, coca cola, pepsi, and pepsi cola for the
second sense, and nose candy and coca cola for
the third sense. Among these candidates Otrusina
and Smrz (2010) select those whose occurrence fre-
quency ratio in a given text corpus is most similar to
that of the senses of the corresponding real word as
given by a sense-annotated corpus. Clearly, a suffi-
ciently large sense-tagged corpus is required for cal-
culating the occurrence frequency of the individual
senses of a word. This is a limitation of the vicinity-
based approach.

In addition, as we mentioned earlier, we need
pseudowords that can enable the generation of large-
scale pseudosense-tagged corpora. For this to be
achieved, each pseudosense is required to occur with
a relatively high frequency in a given text corpus.
The vicinity-based approach can, however, identify
at best only a few representatives for each pseu-
dosense, thus undermining its ability to cover many
ambiguous nouns. Table 1 shows the percentage
of ambiguous nouns in WordNet that can be mod-
eled using the vicinity-based approach when differ-
ent minimum numbers of annotated sentences are
requested, i.e. each pseudosense is required to oc-
cur in at least 0 (i.e., no minimum frequency restric-
tion), 500, or 1000 unique sentences in the reference
corpus (we use Gigaword (Graff and Cieri, 2003)
in our experiments). In the Table, beside the over-
all coverage percentage, we present the coverage by
degree of polysemy and for three different values of
minimum pseudosense occurrence frequency. Even
though the overall coverage is over 80% when no re-
striction on minimum frequency is considered (first
row in the Table), this high coverage drops rapidly
when we request some hundred sentences per sense.
For instance, only 25% of the ambiguous nouns in
WordNet can be modeled using this approach when
a minimum frequency of 1000 noun occurrences is
required (last row of Table 1), with most of the cov-
ered words having low polysemy (in fact about 93%
of them are either 2- or 3-sense nouns). This se-
vere limitation of the vicinity-based approach hin-
ders a wide-coverage modeling of ambiguous nouns
in WordNet, thus preventing it from being an op-
tion for the generation of a large-scale pseudosense-
annotated dataset.

With a view to addressing the above-mentioned
issues and to enable wide coverage, in the next sub-
section we propose a flexible approach for the gen-
eration of semantically-aware pseudowords.
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2.1.2 Similarity-based Pseudowords
The vicinity-based pseudoword generation ap-

proach works on local subgraphs of WordNet, con-
sidering mostly all those candidates which are in a
direct relationship with a real sense si, and treating
them as potentially good representatives of si. We
propose an extension to this approach which exploits
the WordNet semantic network in its entirety, hence
enabling us to determine a graded degree of similar-
ity between si and all the senses of all other words
in WordNet.

We chose a graph-based similarity measure for
two reasons: firstly, it comes as a natural exten-
sion of the vicinity-based method, and, secondly, al-
ternative context-based methods such as Lin’s mea-
sure (Lin, 1998) have been shown to require a wide-
coverage sense-tagged dataset in order to calculate
similarities on a sense-by-sense basis for all words in
the lexicon (Otrusina and Smrz, 2010). As our sim-
ilarity measure we selected the Personalized PageR-
ank (Haveliwala, 2002, PPR) algorithm. PPR basi-
cally computes the probability according to which a
random walker at a specific node in a graph would
visit an arbitrary node in the same graph. The al-
gorithm estimates, for a specific node in a graph,
a probability distribution (called PPR vector) which
determines the importance of any given node in the
graph for that specific node. When applied to a
semantic graph, this importance can be interpreted
as semantic similarity. PPR has previously been
used as a core component for semantic similarity1

(Hughes and Ramage, 2007; Agirre et al., 2009)
and Word Sense Disambiguation (Agirre and Soroa,
2009).

Algorithm 1 shows the procedure for the genera-
tion of our similarity-based pseudowords. The algo-
rithm takes an ambiguous word w as input, and out-
puts its corresponding similarity-based pseudoword
Pw whose ith pseudosense models the ith sense of
w, together with a confidence score which we detail
below.

Given w, the algorithm iterates over the synsets
corresponding to its individual senses (lines 4-13)
and finds the most suitable pseudosenses for Pw. For

1Top-ranking synsets will contain words which are most
likely similar to the target sense, whereas we move to a graded
notion of relatedness as far as lower-ranking ones are concerned
(Agirre et al., 2009).

Algorithm 1 Generate a similarity-based pseudoword
Input: an ambiguous word w in WordNet
Output: a “similarity-based” pseudoword Pw

a confidence score averageRank
1: Pw ← ∅
2: totalRank← 0
3: i← 1
4: for each s ∈ Synsets(w)
5: similarSynsets← PersonalizedPageRank(s)
6: sort similarSynsets in descending order
7: for each s′ ∈ similarSynsets
8: totalRank← totalRank + 1
9: for each w′ ∈ SynsetLiterals(s′)

10: if |Synsets(w′)|=1 & Freq(w′)>minFreq then
11: Pw ← Pw ∪ {(i, w′)}
12: break
13: i← i + 1
14: averageRank← totalRank/|Synsets(w)|
15: return (Pw, averageRank)

each synset s of w, we start the PPR algorithm from
s (line 5) and collect the probability distribution vec-
tor output by PPR (similarSynsets in the algorithm),
which determines the probability of reaching each
synset in WordNet starting from s. We then sort
this vector (line 6) and check if each of its nomi-
nal synsets (s′) contains a monosemous word (line
10). This search continues until a suitable candi-
date is found that satisfies a certain minimum oc-
currence frequency minFreq. When this occurs, the
selected monosemous candidate w′ is saved as the
corresponding pseudosense for the ith sense of Pw

(line 11). We iterate these steps for all synsets of w.
In line 14 we calculate the averageRank, a value

given by the average of synset positions in the simi-
larSynsets lists from which the pseudosenses of Pw

are picked out. We later use this value as a confi-
dence score while evaluating our pseudowords. Fi-
nally, the algorithm returns the corresponding pseu-
doword Pw along with its averageRank score (line
15). We show in Table 2 some examples of ambigu-
ous words together with their similarity-based pseu-
dowords.

Thanks to the large search space of our similarity-
based approach, we are always able to select a
monosemous candidate for each pseudosense, thus
resolving the coverage issue regarding vicinity-
based pseudowords. A question that arises here is
that of how often our algorithm needs to resort to
lower-ranking items in the similarSynsets list. To
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Word Similarity-based Pseudoword
bernoulli physicist*mathematician*astronomer
coach football coach*tutor*passenger car*clarence*

public transport
green greenery*common*labor leader*

green party*river*golf course*greens*max
horoscope forecast*diagram
sunray sunbeam*vine*sunlight
lifter athlete*thief

Table 2: Similarity-based pseudowords generated for
six different nouns in WordNet 3.0 (with minimum fre-
quency of 1000 occurrences in Gigaword). Pseudosenses
which could not be modeled using the vicinity-based ap-
proach are shown in bold.

verify this, we analyzed the averageRank values out-
put by Algorithm 1. Table 3 shows for each poly-
semy degree and for three different values of min-
Freq, the mean and mode statistics of the averageR-
ank scores of the generated similarity-based pseu-
dowords for all the 15,935 polysemous nouns in
WordNet 3.0. As expected, the higher the number of
required sentences per pseudosense (minFreq), the
further the algorithm descends through the list simi-
larSynsets to select a pseudosense. However, as can
be seen from the mode statistics in the Table, even
when minFreq is set to a large value, most of the
pseudosenses are picked from the highest-ranking
positions in the similarSynsets list.

3 Evaluation

Our novel similarity-based algorithm for the gen-
eration of pseudowords inherently tackles the cov-
erage issue. To test whether our generated pseu-
dowords also cope with the issue of semantic aware-
ness we carried out three separate evaluations so
as to assess their strength in modeling semantic
properties of their corresponding real senses from
different perspectives. These will be described in
the next three subsections. Since our aim was to
leverage pseudowords for the creation of a large-
scale pseudosense-annotated dataset, we performed
evaluations on pseudowords generated with minFreq
per pseudosense set to 1000 (i.e., we can gener-
ate at least 1000 annotated sentences for each pseu-
dosense).

minFreq 0 500 1000
poly. mean mode mean mode mean mode

2 2.0 1.0 14.8 2.0 25.4 4.0
3 2.3 1.7 13.4 2.7 21.0 5.5
4 2.3 1.8 12.3 5.8 19.8 6.8
5 2.3 1.8 12.9 5.6 20.0 10.0
6 2.4 2.0 13.7 4.5 18.7 8.8
7 2.3 2.1 11.5 6.3 16.0 6.1
8 2.2 1.8 11.3 9.6 17.2 10.8
9 2.4 2.0 10.7 10.9 15.6 15.1

10 2.2 2.0 10.1 7.0 14.3 12.1
11 2.4 2.1 10.2 7.1 14.2 17.3
12 2.5 2.4 11.0 4.4 14.4 14.4

>12 2.6 1.0 9.3 2.0 13.7 4.0
overall 2.1 1.0 14.1 2.0 23.4 4.0

Table 3: Statistics of averageRank scores for the full set
of 15,935 similarity-based pseudowords modeled after
ambiguous nouns in WordNet 3.0: we show mean and
mode statistics for three different values of minimum oc-
currence frequency (0, 500, and 1000). We show the av-
erage value in the case of multiple modes.

3.1 Disambiguation Difficulty of Pseudowords

Our first experiment is an extrinsic evaluation of
pseudowords. Ideally, pseudowords are expected to
show a similar degree of difficulty to real ambigu-
ous words in a disambiguation task (Otrusina and
Smrz, 2010; Lu et al., 2006). We thus experimen-
tally tested this assumption on similarity-based and
random pseudowords. Given its low coverage, we
excluded the vicinity-based approach from this ex-
periment.

Starting from a sense-tagged lexical sample
dataset for a set of ambiguous nouns, for each such
noun and for each kind of pseudoword, we automat-
ically generated a pseudosense-annotated dataset by
enforcing the same sense distribution as the cor-
responding real ambiguous noun. This constraint
was particularly important for random pseudowords
since they do not model the corresponding real am-
biguous words (see Section 2). An analysis was then
performed to compare the disambiguation perfor-
mance of a supervised WSD system on a given am-
biguous word against its corresponding pseudoword.

Specifically, for our manually sense-tagged cor-
pus we used the Senseval-3 English lexical sample
dataset (Mihalcea et al., 2004), which contains 3593
and 1807 sense-tagged sentences for 20 ambiguous
nouns (with an average polysemy degree of 5.8) in
its training and test sets, respectively. We generated,
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with minFreq = 1000, the similarity-based pseu-
dowords corresponding to these 20 nouns, as well
as a set of 20 random pseudowords with the same
polysemy degrees. We note that, in this setting, the
vicinity-based approach could only generate pseu-
dowords corresponding to 5 of the 20 nouns.

In order to create the datasets for our experiments,
for each of our similarity-based and random pseu-
dowords, we sampled unique sentences from the En-
glish Gigaword corpus (Graff and Cieri, 2003) ac-
cording to the same sense distributions given by the
Senseval-3 training and test datasets for the corre-
sponding real word. Next, we performed WSD on
our three datasets, namely: the Senseval-3 dataset
of real words, and the two artificially sense-tagged
datasets for the similarity-based and random pseu-
dowords. As our WSD system for this experiment,
we used It Makes Sense (IMS), a state-of-the-art su-
pervised WSD system (Zhong and Ng, 2010).

WSD recall2 performance values on the above-
mentioned datasets are shown in Table 4. For the
random setting, in order to ensure stability, the re-
sults are averaged on a set of 25 different pseu-
dowords modeling a given ambiguous noun. We
can see from the Table that the overall system
performance with the similarity-based pseudowords
(75.14%) is much closer to the real setting (73.26%)
than it is with random pseudowords (78.80%). For
random pseudowords, the overall recall over 25 runs
ranges from 75.40% to 80.80%.

Moreover, the similarity-based approach exhibits
a closer WSD recall performance to that of real data
(|RE−SB| column in the table) for 15 of the 20
nouns (shown in bold in the Table). Accordingly,
the overall sum of the differences (distance) between
the recall values is 129.3 for similarity-based pseu-
dowords, which is considerably lower than the 196.4
for random pseudowords (averaged over 25 runs
whose distances range from 158.3 to 262.0).

To further corroborate our findings, we calculated
the Pearson’s r correlation between recall values on
real words with those obtained on the corresponding
pseudowords. Similarity-based pseudowords obtain
the high correlation of 0.74, whereas this value drops
to 0.54 for random pseudowords. Even worse, we

2Since in our experiments the WSD system always provides
an answer for each item in the test set, the values of precision,
recall and F1 will be equal.

Word RE SB RND |RE−SB| |RE−RND|
argument 50.44 68.79 77.15 18.35 26.71
arm 92.30 85.69 88.11 6.61 4.19
atmosphere 70.52 69.15 80.44 1.37 10.32
audience 81.28 73.74 83.76 7.54 4.22
bank 85.76 83.07 82.46 2.69 3.99
degree 78.42 81.58 80.59 3.16 4.35
difference 62.46 61.43 75.17 1.03 12.90
difficulty 52.72 51.82 67.23 0.90 14.97
disc 78.62 76.48 78.07 2.14 6.18
image 71.78 75.76 81.50 3.98 10.02
interest 77.34 73.19 71.70 4.15 6.85
judgment 55.64 66.87 59.64 11.23 9.01
organization 80.36 72.86 78.65 7.50 3.65
paper 60.84 66.29 73.14 5.45 12.59
party 82.94 80.00 81.04 2.94 3.74
performance 58.56 64.76 73.86 6.20 15.52
plan 88.42 85.41 87.39 3.01 3.12
shelter 58.48 74.75 80.21 16.27 21.73
sort 67.64 88.15 77.37 20.51 9.73
source 63.46 67.74 66.26 4.28 7.03
overall 73.26 75.14 78.80 129.31 196.35

Table 4: Recall percentage of IMS on the 20 nouns of the
Senseval-3 lexical-sample test set (RE) compared to the
corresponding similarity-based (SB) and random (RND)
pseudowords. The last 2 columns show absolute differ-
ences between the real and the two pseudoword settings.

observed a high variation of correlation (in the range
of [0.18, 0.67]) over the 25 sets of random pseu-
dowords (0.54 being the average).

3.2 Representative Power of Pseudosenses

The ideal case for pseudosenses would be that of
being in a synonymous relationship with the cor-
responding real sense, i.e., selected from the same
WordNet synset. But given that many of the Word-
Net synsets do not contain monosemous terms, the
similarity-based approach often needs to look fur-
ther into other related synsets to find a suitable pseu-
dosense. To get a clear idea of the exact statistics, we
went through all our similarity-based pseudowords
and, for each pseudosense wi, checked the relation-
ship in WordNet between the synset containing wi

and the corresponding real sense. Table 5 shows
for three values of minFreq the distribution of pseu-
dosenses across different types of WordNet relation-
ships, also including indirect ones. As can be seen
in the Table, when minFreq is set to 0, a large por-
tion of pseudosenses (around 75%) are selected from
synonyms or generalization/specialization relations
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minFreq 0 500 1000

R
el

at
io

n
ty

pe

Synonyms 33.0 7.6 5.4
Hypernyms 33.4 16.1 13.0
Hyponyms 9.1 6.1 4.9
Meronyms 0.2 0.2 0.2
Siblings 8.2 17.2 16.6
Indirect relations 16.1 52.8 59.9

Table 5: Percentage of similarity-based pseudosenses ob-
tained from different types of WordNet relations.

(hypernym and hyponyms). However, this percent-
age drops to about 23% when minFreq = 1000. This
suggests that many of our pseudosenses are mod-
eled from indirect relations when higher values of
minFreq are used. This can potentially increase the
risk of an undesirable modeling in which meanings
are not properly preserved. For this reason, we car-
ried out another experiment to assess the representa-
tive power of similarity-based pseudosenses. To this
end, we randomly sampled 110 pseudowords (from
the entire set of 15,935 pseudowords generated with
minimum frequency of 1000), 10 for each degree of
polysemy, from 2 to 12, totaling 770 pseudosenses.
Then we presented each of these pseudowords3 to
two annotators who were asked to judge the degree
of representativeness of its pseudosenses based on
the following scores: 1: completely unrelated, 2:
somewhat related, 3: good substitute, or 4: perfect
substitute.

As an example, the scores assigned by the two
annotators to different pseudosenses of the pseu-
doword generated for the noun representative are
shown in Table 6. The overall representativeness
score for each pseudoword is calculated by aver-
aging the scores assigned to its individual pseu-
dosenses. For instance, the overall scores calculated
for the pseudoword representative are 3.75 and 3.50
(as given by the two annotators). The first row in
Table 7 shows the average representativeness scores
for each degree of polysemy on the full set of 770
pseudosenses. It can be seen that the score remains
around 3.0 for all polysemy degrees from 2 to 12.
Despite the fact that only one fifth of pseudosenses
are taken from synonyms, hypernyms and hyponyms
(when minFreq is 1000, cf. Table 5), the overall

3For each pseudoword, we provided annotators with the cor-
responding real word, as well as its synsets and glosses as given
by WordNet.

Sense Definition (in short)

Sc
or

e
1

Sc
or

e
2

{Synset}
> Corresponding Pseudosense

a person who represents others
3 3{representative}

> negotiator
an advocate who represents someone else’s policy

4 4{spokesperson, interpreter, representative, voice}
> spokesperson
a member of the U.S. House of Representatives

4 4{congressman, congresswoman, representative}
> congressman
an item of information that is typical of a group

4 3{example, illustration, instance, representative}
> case in point
average score 3.75 3.50

Table 6: Examples of representativeness scores assigned
by the annotators to pseudosenses of the term representa-
tive.

representativeness score of 3.12 shows that most of
these pseudosenses can be considered as good sub-
stitutes for their corresponding real senses. There-
fore we conclude that not only does our similarity-
based pseudoword generation approach extend the
coverage of the vicinity-based method from 25% to
100% (when minFreq = 1000), but also that the
pseudosenses coming from more distant synsets as
ranked by PPR are still good representatives on av-
erage.

3.3 Distinguishability of Pseudosenses

In addition to assessing the representativeness of
pseudosenses, their degree of distinguishability has
to be determined. In other words, we have to de-
termine how easily each pseudosense can be distin-
guished from the others in a pseudoword. Our rea-
son for having such an experiment is readily illus-
trated by way of an example: consider the similarity-
based pseudoword philanthropist*benefactor4 cor-
responding to the noun donor5. Even though both
pseudosenses are good representatives for their cor-
responding senses, the distinguishability of the two

4From WordNet: “Philanthropist: someone who makes
charitable donations intended to increase human well-being”;
“Benefactor: a person who helps people or institutions (espe-
cially with financial help)”.

5donor has 2 senses according to WordNet 3.0: (1) “person
who makes a gift of property”; (2) “(medicine) someone who
gives blood or tissue or an organ to be used in another person”.
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Polysemy 2 3 4 5 6 7 8 9 10 11 12 Overall
Representativeness score 3.3 3.4 3.1 3.1 2.9 3.1 2.9 2.8 3.3 3.1 3.3 3.12
Distinguishability score 0.90 0.83 0.83 0.82 0.81 0.77 0.75 0.73 0.80 0.71 0.70 0.79

Table 7: Average representativeness and distinguishability scores for pseudosenses of different polysemy classes
(scores range from 1 to 4 for representativeness and from 0 to 1 for distinguishability evaluation).

real senses is not preserved in the pseudoword. For
instance, benefactor is a suitable pseudosense for
both senses of donor, whereas philanthropist cannot
be used in the blood donation sense.

Therefore we carried out another manual evalua-
tion to test the efficacy of pseudowords in preserving
the distinguishability of senses of real words. To this
end, for each pseudoword Pw (from the same set of
110 sampled pseudowords used in Section 3.2) we
presented its corresponding pseudosenses in random
order to two annotators and asked them to associate
each pseudosense with the most appropriate Word-
Net sense of the real word w. Then we calculated
a distinguishability score for each polysemy degree
by dividing the number of correct mappings by the
total number of senses.

For instance, for the similarity-based pseudoword
corresponding to the word representative (shown
in Table 6), we provided the shuffled list of pseu-
dosenses [spokesperson, case in point, negotiator,
congressman] to each annotator and asked them to
sort the list according to the WordNet sense inven-
tory of representative (i.e., map each pseudosense to
its most suitable real sense). Both annotators cor-
rectly mapped all pseudosenses of this pseudoword;
hence, the distinguishability score given by each an-
notator for this pseudoword was 4/4 = 1.

The average distinguishability scores for each de-
gree of polysemy, as well as the overall score, is
shown in Table 7 (second row). Each value is an
average of the scores obtained from the two an-
notators. It can be seen that the distinguishability
score decreases for higher degrees of polysemy. The
score, however, remains above 0.70 with highly-
polysemous pseudowords. The overall score of 0.79
shows that similarity-based pseudowords effectively
preserve the distinguishability of senses of their real
counterparts. In other words, they do not tend
to have over-generalized pseudosenses which cover
more than one sense.

4 Related Work

The idea of pseudowords dates back to 1992, when
it was first proposed as a means of generating large
amounts of artificially annotated evaluation data for
WSD algorithms (Gale et al., 1992; Schütze, 1992).
However, as mentioned earlier in Section 2, con-
structing a pseudoword by combining a random set
of unambiguous words, as was done in these early
works, can not model systematic polysemy (Gaus-
tad, 2001; Nakov and Hearst, 2003), since differ-
ent senses of a real ambiguous word, unless it is
homonymous, share some semantic or pragmatic re-
lation.

Several researchers addressed the issue of produc-
ing semantically-aware pseudowords that can model
semantic relationships between senses. Nakov
and Hearst (2003) used lexical category mem-
bership from a medical term hierarchy (extracted
from MeSH6 (Medical Subject Headings)) to cre-
ate “more plausibly-motivated” pseudowords. By
considering the frequency distributions from lexi-
cal category co-occurrence, they produced a set of
pseudowords which were closer to real ambiguous
words in terms of disambiguation difficulty than
random pseudowords. However, this approach re-
quires a specific hierarchical lexicon and falls short
of creating many pseudowords with high polysemy
(the authors report generating pseudowords with two
senses only).

More recent work has focused on the identifica-
tion of monosemous representatives in the surround-
ing of a sense, i.e., selected among concepts directly
related to the given sense. Lu et al. (2006) mod-
eled senses of a real ambiguous word by picking
out the most similar monosemous morpheme from a
Chinese hierarchical lexicon. Pseudowords are then
constructed by conflating these morphemes accord-
ingly. However, this method leverages a specific
Chinese hierarchical lexicon, in which different lev-

6http://www.nlm.nih.gov/mesh
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els of the hierarchy correspond to different levels of
sense granularity. A more flexible technique is pro-
posed by Otrusina and Smrz (2010) who model am-
biguous words in WordNet. Their vicinity-based ap-
proach searches the surroundings of each particular
sense in the WordNet graph in order to find an un-
ambiguous representative for that sense. However,
as we described in Section 2.1.1, while the approach
addresses the semantic awareness issue, it falls short
of providing a high coverage, an issue which we
tackle in our novel similarity-based approach.

5 Conclusion and Future Work

In this paper we proposed a new technique for the
generation of pseudowords which, in contrast to
existing work, can simultaneously tackle the two
major issues associated with pseudowords, i.e., se-
mantic awareness and coverage. Our approach can
be used to model any given ambiguous noun in
WordNet, hence enabling the generation of large-
scale pseudosense-annotated datasets for thousands
of pseudowords. We performed three experiments
to evaluate the reliability of our pseudowords. We
showed that the similarity-based pseudowords are
highly correlated with their real counterparts in
terms of disambiguation difficulty. Further evalua-
tions demonstrated that this approach is able to pro-
vide a good semantic modeling of individual senses
of real words while preserving their distinguishabil-
ity.

We are releasing to the research community
the entire set of 15,935 pseudowords, i.e., for
all WordNet polysemous nouns (http://lcl.
uniroma1.it/pseudowords/). This set of
pseudowords (together with the English Gigaword
corpus) can be used to generate a large pseudosense-
tagged dataset containing ≥1000 annotated sen-
tences for every sense of all the pseudowords mod-
eled after real ambiguous nouns in WordNet. The
resulting dataset could be a good complement for
MASC (Ide et al., 2010) which, being human-
created, can provide 1000 sense-annotated sentences
for just a few words.

We hope that the availability of this resource will
enable large-scale experiments in tasks such as se-
mantic role labeling, semantic parsing, and Word
Sense Disambiguation. Specifically, as future work,

we plan to utilize the generated pseudosense-tagged
dataset to perform an in-depth study of different
WSD paradigms. We also plan to extend our work
to other part-of-speech tags.

Acknowledgments

The authors gratefully acknowledge
the support of the ERC Starting
Grant MultiJEDI No. 259234.

References
Eneko Agirre and Aitor Soroa. 2009. Personalizing

PageRank for word sense disambiguation. In Proceed-
ings of the 12th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL ’09, pages 33–41, Athens, Greece.

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
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Abstract

In this paper we consider the problem of label-
ing the languages of words in mixed-language
documents. This problem is approached in a
weakly supervised fashion, as a sequence la-
beling problem with monolingual text sam-
ples for training data. Among the approaches
evaluated, a conditional random field model
trained with generalized expectation criteria
was the most accurate and performed consis-
tently as the amount of training data was var-
ied.

1 Introduction

Language identification is a well-studied problem
(Hughes et al., 2006), but it is typically only studied
in its canonical text-classification formulation, iden-
tifying a document’s language given sample texts
from a few different languages. But there are sev-
eral other interesting and useful formulations of the
problem that have received relatively little attention.
Here, we focus on the problem of labeling the lan-
guages of individual words within a multilingual
document. To our knowledge, this is the first paper
to specifically address this problem.

Our own motivation for studying this problem
stems from issues encountered while attempting to
build language resources for minority languages. In
trying to extend parts of Kevin Scannell’s Crúbadán
project (Scannell, 2007), which automatically builds
minority language corpora from the Web, we found
that the majority of webpages that contain text in
a minority language also contain text in other lan-
guages. Since Scannell’s method builds these cor-

pora by bootstrapping from the pages that were re-
trieved, the corpus-building process can go disas-
trously wrong without accounting for this problem.
And any resources, such as a lexicon, created from
the corpus will also be incorrect.

In this paper, we explore techniques for per-
forming language identification at the word level in
mixed language documents. Our results show that
one can do better than independent word language
classification, as there are clues in a word’s context:
words of one language are frequently surrounded by
words in the same language, and many documents
have patterns that may be marked by the presence of
certain words or punctuation. The methods in this
paper also outperform sentence-level language iden-
tification, which is too coarse to capture most of the
shifts between language.

To evaluate our methods, we collected and man-
ually annotated a corpus of over 250,000 words
of bilingual (though mostly non-parallel) text from
the web. After running several different weakly-
supervised learning methods, we found that a condi-
tional random field model trained with generalized
expectation criteria is the most accurate and per-
forms quite consistently as the amount of training
data is varied.

In section 2, we review the related work. In sec-
tion 3, we define the task and describe the data and
its annotation. Because the task of language identi-
fication for individual words has not been explicitly
studied in the literature, and because of its impor-
tance to the overall task, we examine the features
and methods that work best for independent word
language identification in section 4. We begin to ex-
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amine the larger problem of labeling the language
of words in context in section 5 by describing our
methods. In section 6, we describe the evaluation
and present the results. We present our error analy-
sis in section 7 and conclude in section 8.

2 Related Work

Language identification is one of the older NLP
problems (Beesley, 1988), especially in regards to
spoken language (House and Neuburg, 1977), and
has received a fair share of attention through the
years (Hughes et al., 2006). In its standard formu-
lation, language identification assumes monolingual
documents and attempts to classify each document
according to its language from some closed set of
known languages.

Many approaches have been proposed, such as
Markov models (Dunning, 1994), Monte Carlo
methods (Poutsma, 2002), and more recently sup-
port vector machines with string kernels, but nearly
all approaches use the n-gram features first sug-
gested by (Cavnar and Trenkle, 1994). Performance
of language identification is generally very high with
large documents, usually in excess of 99% accuracy,
but Xia et al. (2009) mention that current methods
still can perform quite poorly when the class of po-
tential languages is very large or the texts to be clas-
sified are very short.

This paper attempts to address three of the on-
going issues specifically mentioned by Hughes et
al. (2006) in their survey of textual language iden-
tification: supporting minority languages, sparse or
impoverished training data, and multilingual docu-
ments.

A number of methods have been proposed in re-
cent years to apply to the problems of unsuper-
vised and weakly-supervised learning. Excluding
self- and co-training methods, these methods can
be categorized into two broad classes: those which
bootstrap from a small number of tokens (some-
times called prototypes) (Collins and Singer, 1999;
Haghighi and Klein, 2006), and those which impose
constraints on the underlying unsupervised learning
problem (Chang et al., 2007; Bellare et al., 2009;
Druck et al., 2008; Ganchev et al., 2010).

Constraint-based weakly supervised learning has
been applied to some sequence labeling problems,

through such methods as contrastive estimation
(Smith and Eisner, 2005), generalized expectation
criteria (Mann and McCallum, 2008), alternating
projections (Singh et al., 2010), and posterior reg-
ularization (Ganchev et al., 2010).

Perhaps the work that is most similar to this work
is the study of code-switching within NLP literature.
Most of the work done has been on automatically
identifying code-switch points (Joshi, 1982; Solorio
and Liu, 2008). The problem of identifying lan-
guage in the presence of code-switching has seen
the most attention in the realm of speech process-
ing (Chu et al., 2007; Lyu and Lyu, 2008), among
many others. Though code-switching has been well-
studied linguistically, it is only one possible rea-
son to explain why a document contains multiple
languages, and is actually one of the less common
causes observed in our corpus. For that reason, we
approach this problem more generally, assuming no
specific generative process behind multilingual text.

3 Task Definition

The task we describe in this paper is a sequence
labeling problem, labeling a word in running text
according to the language to which it belongs. In
the interest of being able to produce reliable hu-
man annotations, we limit ourselves to texts with
exactly two languages represented, though the tech-
niques developed in this paper would certainly be
applicable to documents with more than two lan-
guages. The two languages represented in the paper
are known a priori by the labeler and the only train-
ing data available to the labeler is a small amount
of sample text in each of the two languages repre-
sented.

In most NLP sequence labeling problems, the re-
searchers can safely assume that each sequence (but
not each item in the sequence) is independent and
identically distributed (iid) according to some un-
derlying distribution common to all the documents.
For example, it is safe to assume that a sentence
drawn from WSJ section 23 can be labeled by a
model trained on the other sections. With the task
of this paper we cannot assume that sequences from
different documents are iid, (e.g. One document
may have 90% of its words in Basque, while another
only has 20%), but we do make the simplifying as-
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sumption that sequences within the same document
are iid.

Because of this difference, the labeler is presented
each document separately and must label its words
independently of any other document. And the train-
ing data for this task is not in the form of labeled
sequences. Rather, the models in this task are given
two monolingual example texts which are used only
to learn a model for individual instances. Any se-
quential dependencies between words must be boot-
strapped from the document. It is this aspect of
the problem that makes it well-suited for weakly-
supervised learning.

It is worth considering whether this problem is
best approached at the word level, or if perhaps
sentence- or paragraph-level language identification
would suffice for this task. In those cases, we could
easily segment the text at the sentence or paragraph
level and feed those segments to an existing lan-
guage identifier. To answer this question we seg-
mented our corpus into sentences by splitting at ev-
ery period, exclamation point, or question mark (an
overly agressive approximation of sentence segmen-
tation). Even if every sentence was given the cor-
rect majority label under this sentence segmentation,
the maximum possible word-level accuracy that a
sentence-level classifier could achieve is 85.8%, and
even though this number reflects quite optimistic
conditions, it is still much lower than the methods
of this paper are able to achieve.

3.1 Evaluation Data

To build a corpus of mixed language documents, we
used the BootCat tool (Baroni and Bernardini, 2004)
seeded with words from a minority language. Boot-
Cat is designed to automatically collect webpages
on a specific topic by repeatedly searching for key-
words from a topic-specific set of seed words. We
found that this method works equally well for lan-
guages as for topics, when seeded with words from
a specific language. Once BootCat returned a col-
lection of documents, we manually identified docu-
ments from the set that contained text in both the tar-
get language and in English, but did not contain text
in any other languages. Since the problem becomes
trivial when the languages do not share a character
set, we limited ourselves to languages with a Latin
orthography.

Language # words Language # words
Azerbaijani 4114 Lingala 1359
Banjar 10485 Lombard 18512
Basque 5488 Malagasy 6779
Cebuano 17994 Nahuatl 1133
Chippewa 15721 Ojibwa 24974
Cornish 2284 Oromo 28636
Croatian 17318 Pular 3648
Czech 886 Serbian 2457
Faroese 8307 Slovak 8403
Fulfulde 458 Somali 11613
Hausa 2899 Sotho 8198
Hungarian 9598 Tswana 879
Igbo 11828 Uzbek 43
Kiribati 2187 Yoruba 4845
Kurdish 531 Zulu 20783

Table 1: Languages present in the corpus and their
number of words before separating out English text.

We found that there was an important balance to
be struck concerning the popularity of a language. If
a language is not spoken widely enough, then there
is little chance of finding any text in that language on
the Web. Conversely if a language is too widely spo-
ken, then it is difficult to find mixed-language pages
for it. The list of languages present in the corpus
and the number of words in each language reflects
this balance as seen in Table 1.

For researchers who wish to make use this data,
the set of annotations used in this paper is available
from the first author’s website1.

3.2 Annotation

Before the human annotators were presented with
the mixed-language documents fetched by Boot-
Cat, the documents were first stripped of all HTML
markup, converted to Unicode, and had HTML es-
cape sequences replaced with the proper Unicode
characters. Documents that had any encoding er-
rors (e.g. original page used a mixture of encodings)
were excluded from the corpus.

1http://www-personal.umich.edu/˜benking/
resources/mixed-language-annotations-
release-v1.0.tgz
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ENG: because of LUTARU.Thank you ntate T.T! Sevice...
SOT: Retselisitsoemonethi ekare jwale hotla sebetswa ...
ENG: Lesotho is heading 4 development #big-ups Mr ...
SOT: Basotho bare monoana hao its’upe.
ENG: Just do the job and lets see what you are made ...
SOT: Malerato Mokoena Ntate Thabane, molimo ...
ENG: It is God who reigns and if God is seen in your ...
SOT: Mathabo Letsie http://www.facebook.com/taole. ...
ENG: As Zuma did he should introduce a way of we can ...
SOT: Msekhotho Matona a rona ha a hlomamisoe, re ...

Table 2: An example of text from an annotated
English-Sotho web page.

Since there are many different reasons that the
language in a document may change (e.g. code-
switching, change of authors, borrowing) and many
variations thereof, we attempted to create a broad
set of annotation rules that would cover many cases,
rather than writing a large number of very specific
rules. In cases when the language use was ambigu-
ous, the annotators were instructed simply to make
their best guess. Table 2 shows an example of an
annotated document.

Generally, only well-digested English loanwords
and borrowings were to be marked as belonging to
the foreign language. If a word appeared in the con-
text of both languages, it was permissible for that
word to receive different labels at different times,
depending on its context.

Ordinary proper names (like “John Williams” or
“Chicago”) were to be marked as belonging to the
language of the context in which they appear. This
rule also applied to abbreviations (like “FIFA” or
“BBC”). The exception to this rule was proper
names composed of common nouns (like “Stairway
to Heaven” or “American Red Cross”) and to abbre-
viations that spelled out English words, which were
to be marked as belonging to the language of the
words they were composed of.

The annotators were instructed not to assign la-
bels to numbers or punctuation, but they were al-
lowed to use numbers as punctuation as clues for as-
signing other labels.

3.3 Human Agreement

To verify that the annotation rules were reasonable
and led to a problem that could potentially be solved
by a computer, we had each of the annotators mark

Language # words Language # words
Azerbaijani 211 Lingala 1816
Banjar 450 Lombard 2955
Basque 1378 Malagasy 4038
Cebuano 1898 Nahuatl 3544
Chippewa 92 Ojibwa 167
Cornish 2096 Oromo 1443
Croatian 1505 Pular 1285
Czech 1503 Serbian 1515
English 16469 Slovak 1504
Faroese 1585 Somali 1871
Fulfulde 1097 Sotho 2154
Hausa 2677 Tswana 2191
Hungarian 1541 Uzbek 1533
Igbo 2079 Yoruba 2454
Kiribati 1891 Zulu 1075
Kurdish 1674

Table 3: Number of total words of training data for
each language.

up a small shared set of a few hundred words from
each of eight documents, in order to measure the
inter-annotator agreement.

The average actual agreement was 0.988, with 0.5
agreement expected by chance for a kappa of 0.975.

3.4 Training Data
Following Scannell (2007), we collected small
monolingual samples of 643 languages from four
sources: the Universal Declaration of Human
Rights2, non-English Wikipedias3, the Jehovah’s
Witnesses website4, and the Rosetta project (Lands-
bergen, 1989).

Only 30 of these languages ended up being used
in experiments. Table 3 shows the sizes of the mono-
lingual samples of the languages used in this paper.

2The Universal Declaration of Human Rights is a document
created by the United Nations and translated into many lan-
guages. As of February 2011 there were 365 versions available
from http://www.unicode.org/udhr/

3As of February 2011, there were 113 Wikipedias in differ-
ent languages. Current versions of Wikipedia can be accessed
from http://meta.wikimedia.org/wiki/List of
Wikipedias

4As of February 2011, there were 310 versions of the site
available at http://www.watchtower.org

1113



They range from 92 for Chippewa to 16469 for En-
glish. Most of the languages have between 1300 and
1600 words in their example text. To attempt to mit-
igate variation caused by the sizes of these language
samples, we sample an equal number of words with
replacement from each of English and a second lan-
guage to create the training data.

4 Word-level Language Classification

We shift our attention momentarily to a subproblem
of the overall task: independent word-level language
classification. While the task of language identifica-
tion has been studied extensively at the document,
sentence, and query level, little or no work has been
done at the level of an individual word. For this rea-
son, we feel it is prudent to formally evaluate the fea-
tures and classifiers which perform most effectively
at the task of word language classification (ignoring
any sequential dependencies at this point).

4.1 Features
We used a logistic regression classifier to experiment
with combinations of the following features: charac-
ter unigrams, bigrams, trigrams, 4-grams, 5-grams,
and the full word. For these experiments, the train-
ing data consisted of 1000 words sampled uniformly
with replacement from the sample text in the appro-
priate languages. Table 4 shows the accuracies that
the classifier achieved when using different sets of
features averaged over 10 independent runs.

Features Accuracy
Unigrams 0.8056
Bigrams 0.8783
Trigrams 0.8491
4-grams 0.7846
5-grams 0.6977
{1,2,3,4,5}-grams 0.8817
{1,2,3,4,5}-grams, word 0.8819

Table 4: Logistic regression accuracy when trained
using varying features.

The use of all available features seems to be the
best option, and we use the full set of features in
all proceeding experiments. This result also concurs
with the findigs of (Cavnar and Trenkle, 1994), who
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Figure 1: Learning curves for logistic regression,
naı̈ve Bayes, decision tree, and Winnow2 on the in-
dependent word classification problem as the num-
ber of sampled words in each training example
changes from 10 to 1000.

found 1-5-grams to be most effective for document
language classification.

4.2 Classifiers

Using all available features, we compare four MAL-
LET (McCallum, 2002) classifiers: logistic regres-
sion, naı̈ve Bayes, decision tree, and Winnow2. Fig-
ure 1 shows the learning curves for each classifier as
the number of sampled words comprising each train-
ing example is varied from 10 to 1000.

Since a naı̈ve Bayes classifier gave the best per-
formance in most experiments, we use naı̈ve Bayes
as a representative word classifier for the rest of the
paper.

5 Methods

Moving onto the main task of this paper, labeling
sequences of words in documents according to their
languages, we use this section to describe our meth-
ods.

Since training data for this task is limited and is
of a different type than the evaluation data (labeled
instances from monolingual example texts vs. la-
beled sequences from the multilingual document),
we approach the problem with weakly- and semi-
supervised methods.
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The sequence labeling methods are presented
with a few new sequence-relevant features, which
are not applicable to independent word classification
(since these features do not appear in the training
data):

• a feature for the presence of each possible non-
word character (punctuation or digit) between
the previous and the current words

• a feature for the presence of each possible non-
word character between the current and next
words

In addition to independent word classification,
which was covered in section 4, we also imple-
ment a conditional random field model trained with
generalized expectation criteria, a hidden Markov
model (HMM) trained with expectation maximiza-
tion (EM), and a logistic regression model trained
with generalized expectation criteria.

We had also considered that a semi-Markov CRF
(Sarawagi and Cohen, 2004) could be useful if
we could model segment lengths (a non-Markovian
feature), but we found that gold-standard segment
lengths did not seem to be distributed according to
any canonical distribution, and we did not have a re-
liable way to estimate these segment lengths.

5.1 Conditional Random Field Model trained
with Generalized Expectation

Generalized expectation (GE) criteria (Druck et al.,
2008) are terms added to the objective function of
a learning algorithm which specify preferences for
the learned model. When the model is a linear
chain conditional random field (CRF) model, we can
straightforwardly express these criteria in the objec-
tive function with a KL-divergence term between the
expected values of the current model p̃ and the pre-
ferred model p̂ (Mann and McCallum, 2008).

O(θ;D,U) =
∑
d

log pθ(y
(d)|x(d))−

∑
k θk

2σ2

− λD(p̂||p̃θ)

Practically, to compute these expectations, we
produce the smoothed MLE on the output label dis-
tribution for every feature observed in the training

data. For example, the trigram “ter” may occur
27 times in the English sample text and 34 times
in the other sample text, leading to an MLE of
p̂(eng|ter) ≈ 0.44.

Because we do not expect the true marginal label
distribution to be uniform (i.e. the document may
not have equal numbers of words in each language),
we first estimate the expected marginal label distri-
bution by classifying each word in the document in-
dependently using naı̈ve Bayes and taking the result-
ing counts of labels produced by the classifier as an
MLE estimate for it: p̂(eng) and p̂(non).

We use these terms to bias the expected label dis-
tributions over each feature. Let Feng and Fnon re-
spectively be the collections of all training data fea-
tures with the two labels. For every label l ∈ L =
{eng,non} and every feature f ∈ Feng∪Fnon, we
calculate

p(l|f) =
count(f,Fl) + δ

count(f,
⋃
iFi) + δ|L|

× p̂(l)

puniform(l)
,

the biased maximum likelihood expected output
label distribution. To avoid having p(l|f) = 0,
which can cause the KL-divergence to be undefined,
we perform additive smoothing with δ = 0.5 on the
counts before multiplying with the biasing term.

We use the implementation of CRF with GE cri-
teria from MALLET (McCallum, 2002), which uses
a gradient descent algorithm to optimize the objec-
tive function. (Mann and McCallum, 2008; Druck,
2011)

5.2 Hidden Markov Model trained with
Expectation Maximization

A second method we used was a hidden Markov
model (HMM) trained iteratively using the Expec-
tation Maximization algorithm (Dempster et al.,
1977). Here an HMM is preferable to a CRF be-
cause it is a generative model and therefore uses pa-
rameters with simple interpretations. In the case of
an HMM, it is easy to estimate emission and transi-
tion probabilities using an external method and then
set these directly.

To initialize the HMM, we use a uniform distri-
bution for transition probabilities, and produce the
emission probabilities by using a naı̈ve Bayes clas-
sifier trained over the two small language samples.
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In the expectation step, we simply pass the docu-
ment through the HMM and record the labels it pro-
duces for each word in the document.

In the maximization step, we produce maximum-
likelihood estimates for transition probabilities from
the transitions between the labels produced. To
estimate emission probabilities, we retrain a naı̈ve
Bayes classifier on the small language samples along
the set of words from the document that were labeled
as being in the respective language. We iterated this
process until convergence, which usually took fewer
than 10 iterations.

We additionally experimented with a naı̈ve Bayes
classifier trained by EM in the same fashion, except
that it had no transition probabilities to update. This
classifier’s performance was almost identical to that
of the GE-trained MaxEnt method mentioned in the
following section, so we omit it from the results and
analysis for that reason.

5.3 Logistic Regression trained with
Generalized Expectation

GE criteria can also be straightforwardly applied to
the weakly supervised training of logistic regression
models. The special case where the constraints spec-
ified are over marginal label distributions, is called
label regularization.

As with the CRF constraint creation, here we first
use an ordinary supervised naı̈ve Bayes classifier in
order to estimate the marginal label distributions for
the document, which can be used to create more ac-
curate output label expectations that are biased to
the marginal label distributions over all words in the
document.

We use the MALLET implementation of a GE-
trained logistic regression classifier, which opti-
mizes the objective function using a gradient descent
algorithm.

5.4 Word-level Classification

Our fourth method served as a baseline and did
not involve any sequence labeling, only independent
classification of words. Since naı̈ve Bayes was the
best performer among word classification methods,
we use that the representative of independent word
classification methods. The implementation of the
naı̈ve Bayes classifier is from MALLET.

0 200 400 600 800 1,000
0.7

0.75

0.8

0.85

0.9

0.95

Sampled Words

A
cc
u
ra
cy

naı̈ve Bayes
GE-trained logistic regression

EM-trained HMM
GE-trained CRF

Figure 2: Learning curves for naı̈ve Bayes, logistic
regression trained with GE, HMM trained with EM,
and CRF trained with GE as the number of sampled
words in each training example changes from 10 to
1000.

We also implemented a self-trained CRF, initially
trained on the output of this naı̈ve Bayes classifier,
and trained on its own output in subsequent itera-
tions. This method was not able to consistently out-
perform the naı̈ve Bayes classifier after any number
of iterations.

6 Evaluation and Results

We evaluated each method using simple token-level
accuracy, i.e. whether the correct label was assigned
to a word in the document. Word boundaries were
defined by punctuation or whitespace, and no tokens
containing a digit were included. Figure 2 displays
the accuracy for each method as the number of sam-
pled words from each language example is varied
from 10 to 1000.

In all the cases we tested, CRF trained with GE
is clearly the most accurate option among the meth-
ods examined, though the EM-trained HMM seemed
to be approaching a similar accuracy with large
amounts of training data. With a slight edge in ef-
ficiency also in its favor, we think the GE+CRF ap-
proach, rather than EM+HMM, is the best approach
for this problem because of its consistent perfor-
mance across a wide range of training data sizes.
In its favor, the EM+HMM approach has a slightly
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lower variance in its performance across different
files, though not at a statistically significant level.

Contrary to most of the results in (Mann and Mc-
Callum, 2010), a logistic regression classifier trained
with GE did not outperform a standard supervised
naı̈ve Bayes classifier. We suspect that this is due
to the different nature of this problem as compared
to most other sequence labeling problems, with the
classifier bootstrapping over a single document only.
In the problems studied by Mann and McCallum, the
GE-trained classifier was able to train over the entire
training set, which was on average about 50,000 in-
stances, far more than the number of words in the
average document in this set (2,500).

7 Error Analysis

In order to analyze the types of mistakes that the
models made we performed an error analysis on ten
randomly selected files, looking at each mislabeled
word and classifying the error according to its type.
The results of this analysis are in Table 5. The three
classes of errors are (1) named entity errors, when
a named entity is given a label that does not match
the label it was given in the original annotation, (2)
shared word errors, when a word that could belong
to either language is classified incorrectly, and (3)
other, a case that covers all other types of errors.

Method NE SW Other
GE+CRF 41% 10% 49%
EM+HMM 50% 14% 35%
GE+MaxEnt 37% 12% 51%
Naı̈ve Bayes 42% 17% 40%

Table 5: Types of errors and their proportions among
the different methods. NE stands for Named Entity,
SW stands for Shared Word, and Other covers all
other types of errors.

Our annotation rules for named entities specified
that named entities should be given a label match-
ing their context, but this was rather arbitrary, and
not explicitly followed by any of the methods, which
treat a named entity as if it was any other token. This
was the one of most frequent types of error made by
each of the methods and in our conclusion in sec-
tion 8, we discuss ways to improve it.

In a regression analysis to determine which fac-
tors had the greatest correlations with the GE-
trained CRF performance, the estimated proportion
of named entities in the document had by far the
greatest correlation with CRF accuracy of anything
we measured. Following that in decreasing order of
correlation strength were the cosine similarity be-
tween English and the document’s second language,
the number of words in the monolingual example
text (even though we sampled from it), and the aver-
age length of gold-standard monolingual sequences
in the document.

The learning curve for GE-trained CRF in Fig-
ure 2 is somewhat atypical as far as most machine
learning methods are concerned: performance is
typically non-decreasing as more training data is
made available.

We believe that the model is becoming over-
constrained as more words are used to create the
constraints. The GE method does not have a way
to specify that some of the soft constraints (for the
labels observed most frequently in the sample text)
should be more important than other constraints
(those observed less frequently). When we mea-
sure the KL-divergence between the label distribu-
tions predicted by the constraints and the true la-
bel distribution, we find that this divergence seems
to reach its minimum value between 600 and 800
words, which is where the GE+CRF also seems to
reach its maximum performance.

The step with a naı̈ve Bayes classifier estimating
the marginal label distribution ended up being quite
important overall. Without it, the accuracy dropped
by more than a full percentage point absolute. But
the problem of inaccurate constraint estimation is
one that needs further consideration. Some possible
ways to address it may be to prune the constraints
according to their frequency or perhaps according to
a metric like entropy, or to vary the GE-criteria coef-
ficient in the objective function in order to penalize
the model less for varying from the expected model.

8 Conclusion

This paper addresses three of the ongoing issues
specifically mentioned by Hughes et al. (2006) in
their survey of textual language identification. Our
approach is able to support minority languages; in
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fact, almost all of the languages we tested on would
be considered minority languages. We also address
the issue of sparse or impoverished training data.
Because we use weakly-supervised methods, we are
able to successfully learn to recognize a language
with as few as 10 words of training data5. The last
and most obvious point we address is that of multi-
lingual documents, which is the focus of the paper.

We present a weakly-supervised system for iden-
tifying the languages of individual words in mixed-
language documents. We found that across a broad
range of training data sizes, a CRF model trained
with GE criteria is an accurate sequence classifier
and is preferable to other methods for several rea-
sons.

One major issue to be improved upon in future
work is how named entities are handled. A straight-
forward way to approach this may be to create an-
other label for named entities, which (for the pur-
poses of evaluation) would be considered not to be-
long to any of the languages in the document. We
could simply choose not to evaluate a system on the
named entity tokens in a document. Alternatively,
the problem of language-independent named entity
recognition has received some attention in the past
(Tjong Kim Sang and De Meulder, 2003), and it may
be beneficial to incorporate such a system in a robust
word-level language identification system.

Going forward, an issue that needs to be ad-
dressed with this method is its dependence on know-
ing the set of possible languages a priori. Because
we don’t see an easy way to adapt this method to ac-
curately label words in documents from a possible
set of thousands of languages when the document
itself may only contain two or three languages, we
would propose the following future work.

We propose a two-step approach to general word-
level language identification. The first step would be
to examine a multilingual document, and with high
accuracy, list the languages that are present in the
document. The second step would be identical to the
approach described in this paper (but with the two-
language restriction lifted), and would be responsi-
ble for labeling the languages of individual words,
using the set of languages provided by the first step.

5With only 10 words of each language as training data, the
CRF approach correctly labels 88% of words
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Abstract

Non-expert annotation services like Amazon’s
Mechanical Turk (AMT) are cheap and fast
ways to evaluate systems and provide categor-
ical annotations for training data. Unfortu-
nately, some annotators choose bad labels in
order to maximize their pay. Manual iden-
tification is tedious, so we experiment with
an item-response model. It learns in an un-
supervised fashion to a) identify which an-
notators are trustworthy and b) predict the
correct underlying labels. We match perfor-
mance of more complex state-of-the-art sys-
tems and perform well even under adversarial
conditions. We show considerable improve-
ments over standard baselines, both for pre-
dicted label accuracy and trustworthiness es-
timates. The latter can be further improved
by introducing a prior on model parameters
and using Variational Bayes inference. Ad-
ditionally, we can achieve even higher accu-
racy by focusing on the instances our model is
most confident in (trading in some recall), and
by incorporating annotated control instances.
Our system, MACE (Multi-Annotator Compe-
tence Estimation), is available for download1.

1 Introduction
Amazon’s MechanicalTurk (AMT) is frequently

used to evaluate experiments and annotate data in
NLP (Callison-Burch et al., 2010; Callison-Burch
and Dredze, 2010; Jha et al., 2010; Zaidan and
Callison-Burch, 2011). However, some turkers try to
maximize their pay by supplying quick answers that
have nothing to do with the correct label. We refer to

1Available under http://www.isi.edu/
publications/licensed-sw/mace/index.html

this type of annotator as a spammer. In order to mit-
igate the effect of spammers, researchers typically
collect multiple annotations of the same instance so
that they can, later, use de-noising methods to infer
the best label. The simplest approach is majority
voting, which weights all answers equally. Unfor-
tunately, it is easy for majority voting to go wrong.
A common and simple spammer strategy for cate-
gorical labeling tasks is to always choose the same
(often the first) label. When multiple spammers
follow this strategy, the majority can be incorrect.
While this specific scenario might seem simple to
correct for (remove annotators that always produce
the same label), the situation grows more tricky
when spammers do not annotate consistently, but in-
stead choose labels at random. A more sophisticated
approach than simple majority voting is required.

If we knew whom to trust, and when, we could
reconstruct the correct labels. Yet, the only way
to be sure we know whom to trust is if we knew
the correct labels ahead of time. To address this
circular problem, we build a generative model of the
annotation process that treats the correct labels as
latent variables. We then use unsupervised learning
to estimate parameters directly from redundant
annotations. This is a common approach in the
class of unsupervised models called item-response
models (Dawid and Skene, 1979; Whitehill et al.,
2009; Carpenter, 2008; Raykar and Yu, 2012).
While such models have been implemented in
other fields (e.g., vision), we are not aware of their
availability for NLP tasks (see also Section 6).

Our model includes a binary latent variable that
explicitly encodes if and when each annotator is
spamming, as well as parameters that model the
annotator’s specific spamming “strategy”. Impor-
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tantly, the model assumes that labels produced by
an annotator when spamming are independent of
the true label (though, a spammer can still produce
the correct label by chance).

In experiments, our model effectively differenti-
ates dutiful annotators from spammers (Section 4),
and is able to reconstruct the correct label with high
accuracy (Section 5), even under extremely adver-
sarial conditions (Section 5.2). It does not require
any annotated instances, but is capable of including
varying levels of supervision via token constraints
(Section 5.2). We consistently outperform major-
ity voting, and achieve performance equal to that of
more complex state-of-the-art models. Additionally,
we find that thresholding based on the posterior la-
bel entropy can be used to trade off coverage for ac-
curacy in label reconstruction, giving considerable
gains (Section 5.1). In tasks where correct answers
are more important than answering every instance,
e.g., when constructing a new annotated corpus, this
feature is extremely valuable. Our contributions are:
• We demonstrate the effectiveness of our model

on real world AMT datasets, matching the ac-
curacy of more complex state-of-the-art sys-
tems

• We show how posterior entropy can be used to
trade some coverage for considerable gains in
accuracy

• We study how various factors affect perfor-
mance, including number of annotators, anno-
tator strategy, and available supervision

• We provide MACE (Multi-Annotator Compe-
tence Estimation), a Java-based implementa-
tion of a simple and scalable unsupervised
model that identifies malicious annotators and
predicts labels with high accuracy

2 Model
We keep our model as simple as possible so that it

can be effectively trained from data where annotator
quality is unknown. If the model has too many
parameters, unsupervised learning can easily pick
up on and exploit coincidental correlations in the
data. Thus, we make a modeling assumption that
keeps our parameterization simple. We assume that
an annotator always produces the correct label when

N

Ti

M
Aij

Sij

T

A2

C2

A3

C3

A1

C1

Figure 1: Graphical model: Annotator j produces
label Aij on instance i. Label choice depends on
instance’s true label Ti, and whether j is spam-
ming on i, modeled by binary variable Sij . N =
|instances|, M = |annotators|.

for i = 1 . . . N :
Ti ∼ Uniform

for j = 1 . . .M :
Sij ∼ Bernoulli(1− θj)
if Sij = 0 :

Aij = Ti

else :
Aij ∼ Multinomial(ξj)

Figure 2: Generative process: see text for descrip-
tion.

he tries to. While this assumption does not reflect
the reality of AMT, it allows us to focus the model’s
power where it’s important: explaining away labels
that are not correlated with the correct label.

Our model generates the observed annotations as
follows: First, for each instance i, we sample the
true label Ti from a uniform prior. Then, for each
annotator j we draw a binary variable Sij from a
Bernoulli distribution with parameter 1 − θj . Sij

represents whether or not annotator j is spamming
on instance i. We assume that when an annotator
is not spamming on an instance, i.e. Sij = 0, he
just copies the true label to produce annotation Aij .
If Sij = 1, we say that the annotator is spamming
on the current instance, and Aij is sampled from
a multinomial with parameter vector ξj . Note that
in this case the annotation Aij does not depend on
the true label Ti. The annotations Aij are observed,
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while the true labels Ti and the spamming indicators
Sij are unobserved. The graphical model is shown
in Figure 1 and the generative process is described
in Figure 2.

The model parameters are θj and ξj . θj specifies
the probability of trustworthiness for annotator j
(i.e. the probability that he is not spamming on
any given instance). The learned value of θj will
prove useful later when we try to identify reliable
annotators (see Section 4). The vector ξj determines
how annotator j behaves when he is spamming. An
annotator can produce the correct answer even while
spamming, but this can happen only by chance since
the annotator must use the same multinomial param-
eters ξj across all instances. This means that we only
learn annotator biases that are not correlated with
the correct label, e.g., the strategy of the spammer
who always chooses a certain label. This contrasts
with previous work where additional parameters are
used to model the biases that even dutiful annotators
exhibit. Note that an annotator can also choose not
to answer, which we can naturally accommodate be-
cause the model is generative. We enhance our gen-
erative model by adding Beta and Dirichlet priors on
θj and ξj respectively which allows us to incorporate
prior beliefs about our annotators (section 2.1).

2.1 Learning
We would like to set our model parameters to

maximize the probability of the observed data, i.e.,
the marginal data likelihood:

P (A; θ, ξ) =X
T,S

h NY
i=1

P (Ti) ·
MY

j=1

P (Sij ; θj) · P (Aij |Sij , Ti; ξj)
i

where A is the matrix of annotations, S is the
matrix of competence indicators, and T is the vector
of true labels.

We maximize the marginal data likelihood using
Expectation Maximization (EM) (Dempster et al.,
1977), which has successfully been applied to
similar problems (Dawid and Skene, 1979). We ini-
tialize EM randomly and run for 50 iterations. We
perform 100 random restarts, and keep the model
with the best marginal data likelihood. We smooth
the M-step by adding a fixed value δ to the fractional
counts before normalizing (Eisner, 2002). We find
that smoothing improves accuracy, but, overall,
learning is robust to varying δ, and set δ = 0.1

num labels .

We observe, however, that the average annota-
tor proficiency is usually high, i.e., most annota-
tors answer correctly. The distribution learned by
EM, however, is fairly linear. To improve the cor-
relation between model estimates and true annotator
proficiency, we would like to add priors about the
annotator behavior into the model. A straightfor-
ward approach is to employ Bayesian inference with
Beta priors on the proficiency parameters, θj . We
thus also implement Variational-Bayes (VB) train-
ing with symmetric Beta priors on θj and symmet-
ric Dirichlet priors on the strategy parameters, ξj .
Setting the shape parameters of the Beta distribution
to 0.5 favors the extremes of the distribution, i.e.,
either an annotator tried to get the right answer, or
simply did not care, but (almost) nobody tried “a lit-
tle”. With VB training, we observe improved corre-
lations over all test sets with no loss in accuracy. The
hyper-parameters of the Dirichlet distribution on ξj
were clamped to 10.0 for all our experiments with
VB training. Our implementation is similar to John-
son (2007), which the reader can refer to for details.

3 Experiments
We evaluate our method on existing annotated

datasets from various AMT tasks. However, we
also want to ensure that our model can handle
adversarial conditions. Since we have no control
over the factors in existing datasets, we create
synthetic data for this purpose.

3.1 Natural Data
In order to evaluate our model, we use the

datasets from (Snow et al., 2008) that use discrete
label values (some tasks used continuous values,
which we currently do not model). Since they
compared AMT annotations to experts, gold anno-
tations exist for these sets. We can thus evaluate
the accuracy of the model as well as the proficiency
of each annotator. We show results for word sense
disambiguation (WSD: 177 items, 34 annotators),
recognizing textual entailment (RTE: 800 items,
164 annotators), and recognizing temporal relation
(Temporal: 462 items, 76 annotators).

3.2 Synthetic Data
In addition to the datasets above, we generate

synthetic data in order to control for different
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factors. This also allows us to create a gold standard
to which we can compare. We generate data sets
with 100 items, using two or four possible labels.

For each item, we generate answers from 20
different annotators. The “annotators” are functions
that return one of the available labels according
to some strategy. Better annotators have a smaller
chance of guessing at random.

For various reasons, usually not all annotators see
or answer all items. We thus remove a randomly
selected subset of answers such that each item is
only answered by 10 of the annotators. See Figure
3 for an example annotation of three items.

annotators

ite
m

s – 0 0 1 – 0 – – 0 –
1 – – 0 – 1 0 – – 0
– – 0 – 0 1 – 0 – 0

Figure 3: Annotations: 10 annotators on three items,
labels {1, 0}, 5 annotations/item. Missing annota-
tions marked ‘–’

3.3 Evaluations
First, we want to know which annotators to trust.

We evaluate whether our model’s learned trustwor-
thiness parameters θj can be used to identify these
individuals (Section 4).

We then compare the label predicted by our model
and by majority voting to the correct label. The
results are reported as accuracy (Section 5). Since
our model computes posterior entropies for each
instance, we can use this as an approximation for the
model’s confidence in the prediction. If we focus on
predictions with high confidence (i.e., low entropy),
we hope to see better accuracy, even at the price of
leaving some items unanswered. We evaluate this
trade-off in Section 5.1. In addition, we investigate
the influence of the number of spammers and their
strategy on the accuracy of our model (Section 5.2).

4 Identifying Reliable Annotators
One of the distinguishing features of the model

is that it uses a parameter for each annotator to
estimate whether or not they are spamming. Can
we use this parameter to identify trustworthy indi-
viduals, to invite them for future tasks, and block
untrustworthy ones?

RTE Temporal WSD
raw agreement 0.78 0.73 0.81
Cohen’s κ 0.70 0.80 0.13
G-index 0.76 0.73 0.81
MACE-EM 0.87 0.88 0.44
MACE-VB (0.5,0.5) 0.91 0.90 0.90

Table 1: Correlation with annotator proficiency:
Pearson ρ of different methods for various data sets.
MACE-VB’s trustworthiness parameter (trained
with Variational Bayes with α = β = 0.5) corre-
lates best with true annotator proficiency.

It is natural to apply some form of weighting.
One approach is to assume that reliable annotators
agree more with others than random annotators.
Inter-annotator agreement is thus a good candidate
to weigh the answers. There are various measures
for inter-annotator agreement.

Tratz and Hovy (2010) compute the average
agreement of each annotator and use it as a weight
to identify reliable ones. Raw agreement can be
directly computed from the data. It is related to
majority voting, since it will produce high scores for
all members of the majority class. Raw agreement
is thus a very simple measure.

In contrast, Cohen’s κ corrects the agreement
between two annotators for chance agreement. It
is widely used for inter-annotator agreement in
annotation tasks. We also compute the κ values
for each pair of annotators, and average them for
each annotator (similar to the approach in Tratz and
Hovy (2010)). However, whenever one label is more
prevalent (a common case in NLP tasks), κ overesti-
mates the effect of chance agreement (Feinstein and
Cicchetti, 1990) and penalizes disproportionately.
The G-index (Gwet, 2008) corrects for the number
of labels rather than chance agreement.

We compare these measures to our learned trust-
worthiness parameters θj in terms of their ability to
select reliable annotators. A better measure should
lend higher score to annotators who answer correctly
more often than others. We thus compare the ratings
of each measure to the true proficiency of each
annotator. This is the percentage of annotated items
the annotator answered correctly. Methods that can
identify reliable annotators should highly correlate
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to the annotator’s proficiency. Since the methods
use different scales, we compute Pearson’s ρ for the
correlation coefficient, which is scale-invariant. The
correlation results are shown in Table 1.

The model’s θj correlates much more strongly
with annotator proficiency than either κ or raw
agreement. The variant trained with VB performs
consistently better than standard EM training, and
yields the best results. This show that our model
detects reliable annotators much better than any
of the other measures, which are only loosely
correlated to annotator proficiency.

The numbers for WSD also illustrate the low κ
score resulting when all annotators (correctly) agree
on a small number of labels. However, all inter-
annotator agreement measures suffer from an even
more fundamental problem: removing/ignoring
annotators with low agreement will always improve
the overall score, irrespective of the quality of their
annotations. Worse, there is no natural stopping
point: deleting the most egregious outlier always
improves agreement, until we have only one anno-
tator with perfect agreement left (Hovy, 2010). In
contrast, MACE does not discard any annotators,
but weighs their contributions differently. We are
thus not losing information. This works well even
under adversarial conditions (see Section 5.2).

5 Recovering the Correct Answer

RTE Temporal WSD
majority 0.90 0.93 0.99
Raykar/Yu 2012 0.93 0.94 —
Carpenter 2008 0.93 — —
MACE-EM/VB 0.93 0.94 0.99
MACE-EM@90 0.95 0.97 0.99
MACE-EM@75 0.95 0.97 1.0
MACE-VB@90 0.96 0.97 1.0
MACE-VB@75 0.98 0.98 1.0

Table 2: Accuracy of different methods on data sets
from (Snow et al., 2008). MACE-VB uses Varia-
tional Bayes training. Results @n use the n% items
the model is most confident in (Section 5.1). Results
below double line trade coverage for accuracy and
are thus not comparable to upper half.

The previous sections showed that our model reli-
ably identifies trustworthy annotators. However, we

also want to find the most likely correct answer. Us-
ing majority voting often fails to find the correct la-
bel. This problem worsens when there are more than
two labels. We need to take relative majorities into
account or break ties when two or more labels re-
ceive the same number of votes. This is deeply un-
satisfying.

Figure 2 shows the accuracy of our model on
various data sets from Snow et al. (2008). The
model outperforms majority voting on both RTE
and Temporal recognition sets. It performs as well
as majority voting for the WSD task. This last set
is somewhat of an exception, though, since almost
all annotators are correct all the time, so majority
voting is trivially correct. Still, we need to ensure
that the model does not perform worse under such
conditions. The results for RTE and Temporal data
also rival those reported in Raykar and Yu (2012)
and Carpenter (2008), yet were achieved with a
much simpler model.

Carpenter (2008) models instance difficulty as
a parameter. While it seems intuitively useful to
model which items are harder than other, it increases
the parameter space more than our trustworthiness
variable. We achieve comparable performance with-
out modeling difficulty, which greatly simplifies
inference. The model of Raykar and Yu (2012) is
more similar to our approach, in that it does not
model item difficulty. However, it adds an extra step
that learns priors from the estimated parameters. In
our model, this is part of the training process. For
more details on both models, see Section 6.

5.1 Trading Coverage for Accuracy
Sometimes, we want to produce an answer for ev-

ery item (e.g., when evaluating a data set), and some-
times, we value good answers more than answering
all items (e.g., when developing an annotated
corpus). Jha et al. (2010) have demonstrated how to
achieve better coverage (i.e., answer more items) by
relaxing the majority voting constraints. Similarly,
we can improve accuracy if we only select high qual-
ity annotations, even if this incurs lower coverage.

We provide a parameter in MACE that allows
users to set a threshold for this trade-off: the
model only returns a label for an instance if it is
sufficiently confident in its answer. We approximate
the model’s confidence by the posterior entropy of

1124



MACE-EM
MACE-VB
majority

Figure 4: Tradeoff between coverage and accuracy for RTE (left) and temporal (right). Lower thresholds
lead to less coverage, but result in higher accuracy.

each instance. However, entropy depends strongly
on the specific makeup of the dataset (number of
annotators and labels, etc.), so it is hard for the user
to set a specific threshold.

Instead of requiring an exact entropy value, we
provide a simple thresholding between 0.0 and 1.0
(setting the threshold to 1.0 will include all items).
After training, MACE orders the posterior entropies
for all instances and selects the value that covers
the selected fraction of the instances. The threshold
thus roughly corresponds to coverage. It then only
returns answers for instances whose entropy is
below the threshold. This procedure is similar to
precision/recall curves.

Jha et al. (2010) showed the effect of varying the
relative majority required, i.e., requiring that at least
n out of 10 annotators have to agree to count an
item. We use that method as baseline comparison,
evaluating the effect on coverage and accuracy
when we vary n from 5 to 10.

Figure 4 shows the tradeoff between coverage
and accuracy for two data sets. Lower thresholds
produce more accurate answers, but result in lower
coverage, as some items are left blank. If we pro-
duce answers for all items, we achieve accuracies
of 0.93 for RTE and 0.94 for Temporal, but by
excluding just the 10% of items in which the model
is least confident, we achieve accuracies as high as
0.95 for RTE and 0.97 for Temporal. We omit the
results for WSD here, since there is little headroom
and they are thus not very informative. Using Varia-
tional Bayes inference consistently achieves higher

results for the same coverage than the standard im-
plementation. Increasing the required majority also
improves accuracy, although not as much, and the
loss in coverage is larger and cannot be controlled.
In contrast, our method allows us to achieve better
accuracy at a smaller, controlled loss in coverage.

5.2 Influence of Strategy, Number of
Annotators, and Supervision

Adverse Strategy We showed that our model
recovers the correct answer with high accuracy.
However, to test whether this is just a function of
the annotator pool, we experiment with varying
the trustworthiness of the pool. If most annotators
answer correctly, majority voting is trivially correct,
as is our model. What happens, however, if more
and more annotators are unreliable? While some
agreement can arise from randomness, majority
voting is bound to become worse—can our model
overcome this problem? We set up a second set of
experiments to test this, using synthetic data. We
choose 20 annotators and vary the amount of good
annotators among them from 0 to 10 (after which
the trivial case sets in). We define a good annotator
as one who answers correctly 95% of the time.2

Adverse annotators select their answers randomly or
always choose a certain value (minimal annotators).
These are two frequent strategies of spammers.

For different numbers of labels and varying
percentage of spammers, we measure the accuracy

2The best annotators on the Snow data sets actually found
the correct answer 100% of the time.
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a) random annotators b) minimal annotators

Figure 5: Influence of adverse annotator strategy on label accuracy (y-axis). Number of possible labels
varied between 2 (top row) and 4 (bottom row). Adverse annotators either choose at random (a) or always
select the first label (b). MACE needs fewer good annotators to recover the correct answer.

MACE-EM
MACE-VB
majority

Figure 6: Varying number of annotators: effect on prediction accuracy. Each point averaged over 10 runs.
Note different scale for WSD.

of our model and majority voting on 100 items,
averaged over 10 runs for each condition. Figure
5 shows the effect of annotator proficiency on both
majority voting and our method for both kinds of
spammers. Annotator pool strategy affects majority

voting more than our model. Even with few good
annotators, our model learns to dismiss the spam-
mers as noise. There is a noticeable point on each
graph where MACE diverges from the majority
voting line. It thus reaches good accuracy much
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faster than majority voting, i.e., with fewer good an-
notators. This divergence point happens earlier with
more label values when adverse annotators label
randomly. In general, random annotators are easier
to deal with than the ones always choosing the first
label. Note that in cases where we have a majority
of adversarial annotators, VB performs worse than
EM, since this condition violates the implicit as-
sumptions we encoded with the priors in VB. Under
these conditions, setting different priors to reflect
the annotator pool should improve performance.

Obviously, both of these pools are extremes: it is
unlikely to have so few good or so many malicious
annotators. Most pools will be somewhere in
between. It does show, however, that our model
can pick up on reliable annotators even under very
unfavorable conditions. The result has a practical
upshot: AMT allows us to require a minimum rating
for annotators to work on a task. Higher ratings
improve annotation quality, but delay completion,
since there are fewer annotators with high ratings.
The results in this section suggest that we can find
the correct answer even in annotator pools with low
overall proficiency. We can thus waive the rating
requirement and allow more annotators to work on
the task. This considerably speeds up completion.

Number of Annotators Figure 6 shows the effect
different numbers of annotators have on accuracy.
As we increase the number of annotators, MACE
and majority voting achieve better accuracy results.
We note that majority voting results level or even
drop when going from an odd to an even number.
In these cases, the new annotator does not improve
accuracy if it goes with the previous majority (i.e.,
going from 3:2 to 4:2), but can force an error when
going against the previous majority (i.e., from 3:2 to
3:3), by creating a tie. MACE-EM and MACE-VB
dominate majority voting for RTE and Temporal.
For WSD, the picture is less clear, where majority
voting dominates when there are fewer annotators.
Note that the differences are minute, though (within
1 percentage point). For very small pool sizes (< 3),
MACE-VB outperforms both other methods.

Amount of Supervision So far, we have treated
the task as completely unsupervised. MACE does
not require any expert annotations in order to
achieve high accuracy. However, we often have

annotations for some of the items. These annotated
data points are usually used as control items (by
removing annotators that answer them incorrectly).
If such annotated data is available, we would like
to make use of it. We include an option that lets
users supply annotations for some of the items,
and use this information as token constraints in the
E-step of training. In those cases, the model does
not need to estimate the correct value, but only has
to adjust the trust parameter. This leads to improved
performance.3

We explore for RTE and Temporal how per-
formance changes when we vary the amount of
supervision in increments of 5%.4 We average over
10 runs for each value of n, each time supplying an-
notations for a random set of n items. The baseline
uses the annotated label whenever supplied, other-
wise the majority vote, with ties split at random.

Figure 7 shows that, unsurprisingly, all methods
improve with additional supervision, ultimately
reaching perfect accuracy. However, MACE uses
the information more effectively, resulting in
higher accuracy for a given amount of supervision.
This gain is more pronounced when only little
supervision is available.

6 Related Research
Snow et al. (2008) and Sorokin and Forsyth

(2008) showed that Amazon’s MechanicalTurk use
in providing non-expert annotations for NLP tasks.
Various models have been proposed for predicting
correct annotations from noisy non-expert annota-
tions and for estimating annotator trustworthiness.
These models divide naturally into two categories:
those that use expert annotations for supervised
learning (Snow et al., 2008; Bian et al., 2009), and
completely unsupervised ones. Our method falls
into the latter category because it learns from the
redundant non-expert annotations themselves, and
makes no use of expertly annotated data.

Most previous work on unsupervised models
belongs to a class called “Item-response models”,
used in psychometrics. The approaches differ with
respect to which aspect of the annotation process

3If we had annotations for all items, accuracy would be per-
fect and require no training.

4Given the high accuracy for the WSD data set even in the
fully unsupervised case, we omit the results here.
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Figure 7: Varying the amount of supervision: effect on prediction accuracy. Each point averaged over 10
runs. MACE uses supervision more efficiently.

they choose to focus on, and the type of annotation
task they model. For example, many methods ex-
plicitly model annotator bias in addition to annotator
competence (Dawid and Skene, 1979; Smyth et al.,
1995). Our work models annotator bias, but only
when the annotator is suspected to be spamming.

Other methods focus modeling power on instance
difficulty to learn not only which annotators are
good, but which instances are hard (Carpenter,
2008; Whitehill et al., 2009). In machine vision,
several models have taken this further by parameter-
izing difficulty in terms of complex features defined
on each pairing of annotator and annotation instance
(Welinder et al., 2010; Yan et al., 2010). While
such features prove very useful in vision, they are
more difficult to define for the categorical problems
common to NLP. In addition, several methods are
specifically tailored to annotation tasks that involve
ranking (Steyvers et al., 2009; Lee et al., 2011),
which limits their applicability in NLP.

The method of Raykar and Yu (2012) is most
similar to ours. Their goal is to identify and filter
out annotators whose annotations are not correlated
with the gold label. They define a function of the
learned parameters that is useful for identifying
these spammers, and then use this function to build
a prior. In contrast, we use simple priors, but incor-
porate a model parameter that explicitly represents
the probability that an annotator is spamming. Our
simple model achieves the same accuracy on gold

label predictions as theirs.

7 Conclusion
We provide a Java-based implementation, MACE,

that recovers correct labels with high accuracy, and
reliably identifies trustworthy annotators. In
addition, it provides a threshold to control the
accuracy/coverage trade-off and can be trained with
standard EM or Variational Bayes EM. MACE
works fully unsupervised, but can incorporate token
constraints via annotated control items. We show
that even small amounts help improve accuracy.

Our model focuses most of its modeling power
on learning trustworthiness parameters, which
are highly correlated with true annotator relia-
bility (Pearson ρ 0.9). We show on real-world
and synthetic data sets that our method is more
accurate than majority voting, even under ad-
versarial conditions, and as accurate as more
complex state-of-the-art systems. Focusing on high-
confidence instances improves accuracy consider-
ably. MACE is freely available for download under
http://www.isi.edu/publications/
licensed-sw/mace/index.html.
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Abstract

We propose a supervised lexical substitu-
tion system that does not use separate clas-
sifiers per word and is therefore applicable
to any word in the vocabulary. Instead of
learning word-specific substitution patterns, a
global model for lexical substitution is trained
on delexicalized (i.e., non lexical) features,
which allows to exploit the power of super-
vised methods while being able to general-
ize beyond target words in the training set.
This way, our approach remains technically
straightforward, provides better performance
and similar coverage in comparison to unsu-
pervised approaches. Using features from lex-
ical resources, as well as a variety of features
computed from large corpora (n-gram counts,
distributional similarity) and a ranking method
based on the posterior probabilities obtained
from a Maximum Entropy classifier, we im-
prove over the state of the art in the LexSub
Best-Precision metric and the Generalized Av-
erage Precision measure. Robustness of our
approach is demonstrated by evaluating it suc-
cessfully on two different datasets.

1 Introduction

In recent years, the task of automatically providing
lexical substitutions in context (McCarthy and Nav-
igli, 2007) received much attention. The premise
to be able to replace words in a sentence with-
out changing its meaning gave rise to applications
like linguistic steganography (Topkara et al., 2006;
Chang and Clark, 2010), semantic text similarity
(Agirre et al., 2012), and plagiarism detection (Gipp
et al., 2011).

Lexical substitution, a special form of contex-
tual paraphrasing where only a single word is re-
placed, is closely related to word sense disambigua-
tion (WSD): polysemous words have possible sub-
stitutions reflecting several senses, and the correct
sense has to be picked to avoid spurious system be-
havior. However, no explicit word sense inventory is
required for lexical substitution (Dagan et al., 2006).

The prominent tasks in a lexical substitution sys-
tem are generation and ranking, i.e. to generate a set
of possible substitutions for the target word and then
to rank this set of possible substitutions according to
their contextual fitness. The task to generate a high
quality set of possible substitutions is challenging in
itself, for two reasons. First, the available lexical
resources are seldom complete in listing synonyms.
Second, manually annotated substitutions show that
not all synonyms of a word are appropriate in a given
context, and many good substitutions have other lex-
ical relation than synonymy to the original word.

In this work, we present a supervised lexical sub-
stitution system that, unlike the usual lexical sam-
ple supervised approaches, can produce substitu-
tions for targets that are not contained in the train-
ing material. We reach this by using non-lexical
features from heterogeneous evidence, including
lexical-semantic resources and distributional simi-
larity, n-gram and shallow syntactic features based
on large, unannotated background corpora. In light
of the existence of lexical resources such as Word-
Net (Fellbaum, 1998) or machine readable dictio-
naries that can serve as the source for lexical infor-
mation, and with the ever-increasing availability of
large unannotated corpora for many languages and
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domains, our proposal enables us to leverage the
quality gain of supervised machine learning while
generalizing over a large vocabulary through the
avoidance of lexicalized features. Using a single
classifier for all substitution targets in this way re-
sults in an all-words substitution system. As our re-
sults demonstrate, our model improves over the state
of the art in lexical substitution with practically no
open parameters that have to be optimized and se-
lected carefully according to the dataset at hand.

2 Related Work

Previous works in lexical substitution either ad-
dress both the generation and the ranking tasks, and
are therefore applicable to any word without pre-
labeled data (c.f. the Semeval 2007 task (McCarthy
and Navigli, 2007) and related work) or focus on
the more challenging ranking step only (c.f. Erk
and Padó (2008) and related work). The latter ap-
proaches take the list of possible substitutions di-
rectly from the testing data as a workaround to gen-
erating the possible substitutions, and merely evalu-
ate the ranking capabilities of these methods.

The most accurate lexical substitution systems
use supervised machine learning to train (and test)
a separate classifier per target word, using lexical
and shallow syntactic features. These systems rely
on the existence of a large number of annotated
examples (i.e. sentences together with the con-
textually valid substitutions) for each word. Bie-
mann (2012) describes a supervised lexical sub-
stitution system for frequent nouns. Exploiting a
large amount of sense tagged examples and (sense-
specific) data annotated with substitutions, an ac-
curate coarse-grained WSD model is trained and
then the most frequent substitutions of the predicted
sense are assigned to the new occurrences of the tar-
get words. The results demonstrate that lexical sub-
stitution of noun targets can be attained with very
high precision (over 90%) if sufficient training ma-
terial is available. However, due to high annotation
costs, methods that do not require labeled training
data per target scale better to a large vocabulary.

Knowledge-based systems like e.g. by Hassan et
al. (2007), who use a number of knowledge-based
and unsupervised methods and combine these clues
using a voting scheme, do not need training data per

target. The combination of different signals, how-
ever, has to be done manually. Unsupervised sys-
tems that rely on distributional similarity (Thater et
al., 2011) or topic models (Li et al., 2010) are single
signals in this sense, and their development is guided
by the performance and observations on standard
datasets. Such signals, however, can also be kept
simple avoiding any task-specific optimization and
can be integrated in a single model for all words us-
ing a limited amount of training data and delexical-
ized features, as in Senselearner (Mihalcea and Cso-
mai, 2005) for weakly supervised all-words disam-
biguation. This way, task specific development can
be replaced by a machine learning component and
the resulting model applies also to unseen words,
similar to the knowledge-based approaches.

2.1 Full Lexical Substitution Systems

Related works that address the lexical substitution
problem according to the settings established by the
English Lexical Substitution Task (McCarthy and
Navigli, 2007) at Semeval 2007 (LexSub) typically
employ a simple ranking strategy based on local
n-gram frequencies and focus on finding an opti-
mal source of possible substitutions, as the selec-
tion of lexical resources has largest impact on the
overall system performance: Sinha and Mihalcea
(2009) systematically explored the benefits of mul-
tiple lexical resources and found that a supervised
combination of several resources lead to statisti-
cally significant improvements in accuracy (about
3.5% points over the best single resource, WordNet).
They tested LSA (Deerwester et al., 1990), ESA
(Gabrilovich and Markovitch, 2007) and n-gram fre-
quencies for contextualization and found n-gram fre-
quencies to be more effective than dimensionality
reduction techniques by a large margin. Their im-
provements were obtained by supervised learning on
the combination of several lexical resources. Our
work, on the other hand, is concerned with using
more advanced features and we obtain significant
improvements based on a diverse set of features and
a different learning setup: we train a model for con-
textualization, rather than to combine substitutions
from several different resources.

A recent work by Sinha and Mihalcea (2011) used
an approach based on graph centrality to rank the
candidates and achieved comparable performance
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to n-gram-frequency-based ranking. To summarize,
the use of n-gram frequencies for ranking and Word-
Net as the (most appropriate single) source of syn-
onyms is competitive to more complex solutions and
provides a simple and strong lexical substitution sys-
tem. This motivated the follow-up work by Chang
and Clark (2010) to use WordNet and n-grams in a
linguistic steganography application and this moti-
vates us to use this method as our baseline.

2.2 Ranking Word Meaning in Context

Another prominent line of related work focused
solely on the accurate ranking of a pre-given set of
possible synonyms, according to their plausibility as
a substitution in a given context. Typically, lexi-
cal substitution data is used for evaluation purposes,
taking the candidate substitutions directly from the
test data. This choice is motivated by the assump-
tion that better semantic models should rank near-
synonyms more accurately according to how they fit
in the original word’s context.

Erk and Padó (2008) proposed the use of multiple
vector representations of words, where the basic rep-
resentation corresponds to a standard co-occurrence
vector, while further vectors are used to characterize
words according to their inverse selectional prefer-
ence statistics for typical dependency relations. The
representation of a word in its context is computed
via combining the basic representation of a word
with the inverse selectional preference vectors of its
related words from the context. Ranking is done by
comparing vectors of possible substitutions with the
substitution target. Thater et al. (2010) took a sim-
ilar approach but used second order co-occurrence
vectors and report improved performance.

An exemplar-based approach is presented by Erk
and Padó (2010) and Reisinger and Mooney (2010b)
to model word meaning with respect to its context:
instead of representing the word and the context as
separate vectors and combining them, a set of word
occurrences in similar contexts is picked first, and
then only these exemplars are used to represent the
word in context. While this approach provides good
results with relatively simple and transparent mod-
els, each occurrence of a word has a unique repre-
sentation (that can only be computed at testing time),
and it is computationally expensive to scale these
models to a large number of examples.

Dinu and Lapata (2010) used a bag of words la-
tent variable model to characterize the meaning of a
word as a distribution over a set of latent variables
(that is, probabilistic senses). Contextualized repre-
sentation of word meaning is then attained by con-
ditioning the model on the context words in which
the target word occurs. A similar approach has
been evaluated for word similarity (Reisinger and
Mooney, 2010a) and word sense disambiguation (Li
et al., 2010).

Although our main goal here is to develop a full-
fledged lexical substitution system, we mainly fo-
cus on the construction of better ranking models
based on supervised machine learning and delexi-
calized features that scale well for unseen words.
This approach has similar properties (applicability
to all words without word-specific training data) to
the knowledge-based and unsupervised models de-
scribed above, so we will also refer to these systems
for comparison.

3 Datasets

In our work, we use two major freely available
datasets that contain human-annotated substitutions
for single words in their full-sentence context.

3.1 LexSub dataset

This dataset was introduced in the Lexical Substi-
tution task at Semeval 20071. It consists of 2002
sentences for a total of 201 words (10 sentences
per word, but 8 sentences does not have gold stan-
dard labels). Each sentence was assigned to 5 na-
tive speaker annotators, who entered as many para-
phrases or substitutions as they found appropriate
for the word in context. Paraphrases are assigned a
weight (or frequency) that denotes how many anno-
tators suggested that particular word as a substitute.

3.2 TWSI

A similar, but larger dataset is the Turk Bootstrap
Word Sense Inventory (TWSI2, (Biemann, 2012)).
The data was collected through a three-step crowd-
sourcing process and comprises 24,647 sentences

1download at http://nlp.cs.swarthmore.edu/
semeval/tasks/task10/data.shtml

2http://www.ukp.tu-darmstadt.de/data/
lexical-resources/twsi-lexical-substitutions/
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for a total of 1,012 target nouns, where crowdwork-
ers have provided substitutions for a target word in
context. We did not use the roughly 150,000 sense-
labeled contexts and the sense inventory of this re-
source, i.e. this dataset – as used in this study – is
transparent to the LexSub data. For the majority of
the data, responses from 3 annotators were collected
per context, and there are on average 24 sentences
per target word in the dataset. Due to this, the aver-
age weight of good substitutions is somewhat lower
than in the LexSub dataset (1.27 vs. 1.58 in Lex-
Sub), but the average number of unique substitutions
per target word is slightly higher in TWSI (average
of 22 words / target vs. 17 in LexSub).

3.3 Source of Possible Substitutions

In our lexical substitution system, we used WordNet
as the source for candidate synonyms. For each sub-
stitution target, we took all synonyms from all of the
word’s WordNet synsets as candidates, together with
the words from synsets in similar to, entailment and
also see relation to these synsets3. In order to evalu-
ate and compare our ranking methodology in a trans-
parent way with those studies that focused just on
the candidate ranking task, we also performed exper-
iments where we pooled the set of candidates from
the gold standard dataset. This setting ensures that
each set contains a positive candidate, and that all
human-suggested paraphrases are available as posi-
tive examples for a given sentence.

The main characteristics of the datasets (with both
WordNet or the gold standard as the source of candi-
date substitutions) are summarized in Table 1. The
rows in the table indicate the source of possible sub-
stitutions, number of target words, instances with at
least one non-multiword possible substitution, aver-
age size of candidate sets, and number of instances
with no good candidate and frequency of different
labels. The labels denote how many annotators pro-
posed a particular word as substitution in the given
context and can be interpreted as a measure of good-
ness: the higher the value, the better the candidate
fits in the context. Similarly, the label 0 denotes the
total number of negative examples in our datasets,
i.e. bad substitutions – words that belong to the can-

3This candidate set was found best for WordNet by Martinez
et al. (2007).

LexSub TWSI
source WN Gold St. WN Gold St.
# words 201 201 908 1007
#inst 2002 2002 22543 24643
avg. set 21 17 7.5 22
# empty 508 17 11165 620
#0 39465 27300 151538 443993
#1 1302 4698 10678 77417
#2 582 1251 4171 17585
#3 308 571 2069 5629
#4 212 319 74 325
#5+ 129 179 121 411

Table 1: Details of the datasets: WN=WordNet

didate set for a particular target word, but are not
listed as good substitutions in the given context in
the dataset.

4 Methodology

4.1 Experimental Setup and Evaluation

We follow previous works in lexical substitution and
evaluate our models using the Generalized Average
Precision (GAP) (Kishida, 2005) measure which as-
sesses the quality of the entire ranked list. In addi-
tion, we also provide the precision of our system at
the first rank (P@1), i.e. the percentage of correct
paraphrases at rank 1. This is a realistic evaluation
criterion for many applications, such as paraphras-
ing for linguistic steganography: it is the highest-
ranked candidate that can be used to replace the orig-
inal word (the manipulated text should preserve the
original meaning) and there is no straightforward
way to exploit multiple correct answers. In addition,
we also provide the Semeval 2007 best precision4

metric (McCarthy and Navigli, 2007) for the Lex-
Sub dataset for comparison to Semeval 2007 partic-
ipants. This metric also evaluates the first guess of
a system (per context), but gives less credit to easier
contexts, where several good options exist. This fact
motivates us to use P@1 rather than the best preci-
sion metric in all other experiments.

4Since our system always provides an answer, the Semeval
2007 best recall equals best precision.
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4.2 Machine Learning on Delexicalized
Features

After the list of potential substitutions is obtained,
lexical substitution is cast as a ranking task where
the goal is to prefer contextually plausible substitu-
tions over implausible ones. The goal of this study
is to learn a ranking model that is applicable to any
word, for which a list of synonyms is available. A
supervised model can generalize over the example
target words in the datasets, if aggregate features
can be defined that have the same semantics regard-
less of the actual context, target word or candidate
substitution they are computed from. Having such a
representation, one can expect to learn patterns that
generalize over the words/contexts seen in the train-
ing dataset, and thus the setup constitutes a super-
vised all-word system.

To simulate an all-word scenario, we perform a
10-fold cross validation in our experiments, splitting
the dataset into equal-sized folds randomly on the
target word level. That is, all sentences for a particu-
lar target word fall into the same fold and thus either
the training or the test set (but never both). This way
we always train and test the model on disjoint sets of
words and as such, the learnt models cannot exploit
word-specific properties. This makes our results re-
alistic estimates of an open vocabulary paraphrasing
system, where we would apply the models (mostly)
to words that were not in the training material.

4.2.1 Machine Learning Model
In our experiments, we used a Maximum Entropy

(MaxEnt) classifier model implemented in the Mal-
let (McCallum, 2002) package and trained a binary
classifier to predict if a given substitution is valid in
a particular context or not.

We chose to use Maximum Entropy models for
two main reasons: MaxEnt is not sensitive to param-
eter settings and handles correlated features well,
which is crucial in our situation where many features
are highly correlated.

Due to the low number of positive examples in the
datasets (see Table 1, labels 1-5+) and to emphasize
better paraphrases suggested by several annotators,
we assigned a weight to positive instances during the
training process equal to their score (the number of
annotators suggesting that paraphrase; the weight of
negative instances was set to 1).

The output of the MaxEnt classifier is a posterior
probability distribution for each target/substitution
pair, denoting the probabilities of the instance to
be a good or a bad substitution, given the feature
values that describe both the words and their con-
text. The ranking over a set of candidates can be
naturally induced based on their posterior scores for
the positive class, i.e. a number that denotes ’how
good the candidate is, given the context’. That is,
the best substitution candidate s (characterized by a
set of features F) from a set of candidates S is ob-
tained as argmaxs∈S[P (good|F)], the next best as
the argmax of the remaining elements, and so on.

This pointwise approach to subset ranking (Cos-
sock and Zhang, 2008) is arguably simplistic, but
several studies (c.f. Li et al. (2007; Busa-Fekete
et al. (2011)) found this approach to perform rea-
sonably well given that the model provides accurate
probability estimates, which is the case for MaxEnt.

4.3 Delexicalized Features

We use heterogeneous sources of information to de-
scribe each target word/candidate substitution pair
in its context. The most important features describe
the syntagmatic coherence of the substitute in con-
text, measured as local n-gram frequencies obtained
from web data, in a sliding window around the tar-
get word. In addition we use features to describe the
(non-positional, i.e. non-local) distributional simi-
larity of the target and its candidate substitution in
terms of sentence level co-occurrence statistics col-
lected from newspaper texts. A further set of fea-
tures captures the properties of the target and can-
didate word in a lexical resource (WordNet), such
as their number of senses, how frequent senses are
synonymous, etc. Lastly, we use part of speech pat-
terns to describe the target word in context. This
way, unlike many other methods suggested in previ-
ous works (Thater et al., 2011; Erk and Padó, 2008),
our model does not require deep syntactic analysis
of the test sentences in order to rank the candidates.
Even though we make intensive use of WordNet to
compute some of our feature functions, this is not
a severe restriction for a practical paraphrasing sys-
tem: one has to have a decent lexical resource in or-
der to mine a reasonable set of candidate synonyms
and such a resource can also serve as a source for
features in the classifier. The rest of the feature func-
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tions exploit only large unannotated corpora and a
POS tagger at application time.

For a target word t, and candidate substitution si

from a set of candidates S, we used the features be-
low. Each numeric feature is used both in the form
given below, and set-wise scaled to [0, 1] (we leave
it to the classifier to pick the more useful form of
information). For the LexSub dataset, each feature
is defined once for all instances, and once specific
to the four POS categories in the dataset. That is
each instance would have the described features de-
fined twice, once the general form (defined for every
instance) and once the form according to the pre-
dicted POS category of the target word. This allows
the model to learn general and also POS-specific
patterns based on the information described below
(i.e. frequency thresholds, distributional properties
etc. for nouns or verbs etc. in particular). We denote
the left and right contexts around t and all words in
the sentence except t with cl, cr and c, respectively)

4.3.1 Lexical Resource Features
We used Wordnet 3.0 as the source for substi-

tution candidates and as a source for delexicalized
features. We found the measure of ambiguity and
the sense number to provide useful information in
a more general context: it is informative how many
senses a word has, and it is informative from which
sense number of the substitution target the substitu-
tion candidate came from, since they are ordered by
corpus frequency. In addition, we used the synsets
IDs of the words’ hypernyms as features, which can
capture more general semantics (the word to replace
is ’animate’, ’abstract’, etc.). The following features
were extracted from WordNet:

• number of senses of t and si in WordNet

• the sense numbers of t and si which are syn-
onymous (in case they are direct synonyms, c.f.
WN sense numbers encode sense frequencies)

• binary features for synset IDs of the hypernyms
of the synset containing t and si (this feature
type did not significantly improve results)

4.3.2 Corpus-based Features
In order to create a Distributional Thesaurus (DT)

similar to Lin (1998), we parsed a source corpus

of 120M sentence English newspaper texts from
the LCC5 (Richter et al., 2006) with the Stanford
parser (de Marneffe et al., 2006) and used depen-
dencies to extract features for words: each depen-
dency triple (w1, r, w2) denoting a dependency of
type r between words w1 and w2 results in a fea-
ture (r, w2) characterizing w1, and a feature (w1, r)
characterizing w26. After counting the frequency
of each feature for each word, we apply a signifi-
cance measure (log-likelihood test (LL), (Dunning,
1993)), rank features per word according to their
significance, and prune the data, keeping only the
1000 most salient features (Fw) per word7. The sim-
ilarity of two words is then given by the number
of their common features. Our distributional the-
saurus provides a list of the 1000 most salient fea-
tures and a ranked list of up to 200 similar words
(simw, based on the number of shared features) for
all words above a certain frequency in the source
corpus. We compute the following features to char-
acterize a target word / substitution pair:

• To what extent the context c characterizes si:∑
c∈Fsi

LL(Fsi (c))∑
sj∈S

∑
c∈Fsj

LL(Fsj (c))

• percentage of shared words among
the top k similar words to t and
to si:

|simt|k∩|simsi |k
max(|simt|k,|simsi |k) , for k =

1, 5, 10, 20, 50, 100, 2008

• percentage of shared salient features among the
top k features of t and si, globally and re-
stricted to the words from the target sentence:

|Ft|k∩|Fsi |k
max(|Ft|k,|Fsi |k) and |Ft|k∩|Fsi |k∩|c|

|c| , for k =
1, 5, 10, 20, 50, 100, 1000

• boolean feature indicating whether si ∈ simt

or not (in top 100 similar words)
5http://corpora.informatik.uni-leipzig.de/
6open source implementation and data available at

http://sourceforge.net/p/jobimtext
7The pruning operation greatly reduces runtime at the-

saurus collection, rendering memory reduction techniques like
(Charikar et al., 2004) as unnecessary.

8The various values for k trade off the salience of this fea-
ture for coverage: only very few substitutions have overlap in
the top 1-5 similar words set, but if this happens, it is a very
strong indicator of contextual fitness, whereas overlap within
the top 100-200 similar words is present for much more tar-
get/substitution pairs, but it is a weaker indicator of fitness.
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4.3.3 Local n-gram Features (from Web 1T)
Syntagmatic coherence, measured as the n-gram

frequency of the context with the candidate substi-
tution serves as the basis of ranking in the best Se-
meval 2007 system (Giuliano et al., 2007), which is
also our baseline method here. We use the same n-
grams as features in our supervised model:

• 1-5-gram frequencies in a sliding window
around t: freq(clsicr)/freq(cltcr), normal-
ized w.r.t t

• 1-5-gram frequencies in a sliding window
around t: freq(clsicr)/

∑
freq(clScr), nor-

malized w.r.t. S

• for each of x in {’and’, ’or’, ’,’}, 3-5-
gram frequencies in a sliding window around
t: freq(cltxsicr)/freq(cltcr) (how frequently
the target and candidate are part of a list or con-
junctive phrase)

4.3.4 Shallow Syntactic Features
We also use part of speech information (from

TreeTagger (Schmid, 1994)) as features, in order
to enable the model to learn POS-specific patterns.
This is especially important for the LexSub dataset,
which contains examples from all major parts of
speech (the TWSI dataset contains only noun tar-
gets). Specifically, we use:

• 1-3-grams of main POS categories in a window
around t, e.g. NVV for a noun, verb, verb con-
text

• Penn Treebank POS code of t

4.3.5 Example
For clarity, we exemplify our delexicalized fea-

tures briefly. Using WordNet as a source for the
word bright, we considered the 11 words brilliant,
vivid, smart, burnished, lustrous, shining, shiny,
undimmed, brilliant, hopeful, promising from the
synsets of bright, and 64 further words from its re-
lated synsets (e.g. intelligent, glimmery, polished,
happy, ...) as potential paraphrases. That is, for
the sentence ”He was bright and independent and
proud.”, where the human annotators listed intelli-
gent, clever as suitable paraphrases, our system had
1 correct (intelligent) and 74 incorrect substituions

in the candidate set (that is, clever is not found in
WordNet in the above described way). The substitu-
tion intelligent in this context is characterized by a
total of 178 active features. Of those, 112 features
are based on local n-gram features (Sect. 4.3.3),
where the large number stems from different n in
n-gram, as well as the different variants of normal-
ization and copies for the particular POS (here: JJ)
and for all POS. For instance, ”bright” and ”intelli-
gent” are frequently occurring in comma-separated
enumerations, and ”intelligent” fits well in the target
context based on n-gram probabilities. The second
largest block of features is constituted by 48 active
distributional similarity features (Sect. 4.3.2), which
are also available per POS and for different normal-
izations. Here is e.g. captured that the candidate
has a high distributional similarity to the target with
respect to our background corpus. The 12 shallow
syntatic features (Sect 4.3.4) capture various present
POS patterns around the target, and the 6 resource-
based features (Sect. 4.3.1) e.g. inform about the
number of senses of the target (10) and the candi-
date (4).

4.4 Results

Now, we describe our results in detail. First we com-
pare our system on two datasets with a competitive
baseline, which uses the same candidate set as our
ML-based model, and the simple and effective rank-
ing function based on Google n-grams described by
Giuliano et al. (2007). Later on we analyze how the
four major feature groups contribute to the results in
a feature ablation experiment, and then we provide
a detailed and thorough comparison to earlier works
that are similar to the model presented here and used
the same dataset (LexSub) for evaluation.

4.4.1 Semeval 2007 Lexical Substitution
In Table 2 we report results on the LexSub dataset.

As can be seen, our model outperforms the baseline
by a significant margin (p < 0.01 for all measures,
using a paired t-test for significance). Both the over-
all rankings and the P@1 scores are of higher quality
than the rankings based only on n-grams.

4.4.2 Turk Bootstrap Word Sense Inventory
The results on the TWSI dataset are provided in

Table 3. Our model outperforms the baseline in all
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cand. from WN from Gold St.
GAP P@1 GAP P@1

Baseline 36.8 31.1 46.9 49.5
Our model 43.8 40.2 52.4 57.7

Table 2: Comparison to the baseline on LexSub 2007.

cand. from WN from Gold St.
GAP P@1 GAP P@1

Baseline 33.8 28.2 44.4 44.5
Our model 36.6 32.4 47.2 49.5

Table 3: Comparison to the baseline on the TWSI dataset.

the comparisons similar to the LexSub dataset. The
differences are not so pronounced but still highly
significant (p < 0.01). This is consistent with the
observation by several Semeval 2007 participants
and with a per-POS analysis of our results on Lex-
Sub: the ranking task seems to be more challenging
for nouns than for other parts of speech. When us-
ing WordNet, for about half (11165/22543) of the
instances, individual scores are 0 (cf. Table 1). For
the other half, avg. P@1 score is around 0.7, which
results in 0.324 overall. Note that the task of ranking
in avg. 7.5 items is considerably easier than rank-
ing in avg. 22 items, which explains the high P@1
scores for cases where good candidates exist – also,
a random ranker would score higher in this case.

These results demonstrate that the proposed
delexicalized approach is superior to a competitive
baseline across two datasets.

4.5 Feature Exploration

We explored the contribution of our various fea-
ture types on the LexSub dataset with candidate set
from the gold standard. Our MaxEnt model rely-
ing only on local n-gram frequency features, i.e. the

GAP P@1
w/o n-gram features 47.3 48.9
w/o distr. thesaurus 49.8 55.0
w/o POS features 51.6 56.3
w/o WN features 51.7 57.0
Our model (all) 52.4 57.7

Table 4: Feature ablation experiment (on LexSub dataset,
with candidates from Gold Standard).

same information as the baseline model, achieved a
GAP score of 48.3 and P@1 of 52.1, respectively.
This result is significantly better than the baseline
(p < 0.01), i.e. the machine learnt ranking model
is better than a state-of-the-art handcrafted ranker
based on the same data. All single feature groups,
when combined with n-grams, lead to significant im-
provements (p < 0.01), which proves the usefulness
of each feature group. In order to assess the contri-
bution of each group to the overall system perfor-
mance, we performed a feature ablation experiment.
That is, we trained the MaxEnt model with using
all feature groups (this equals the model in Table 2)
and then with leaving each of the feature groups out
once. As can be seen, all feature groups improve the
overall results in a noticeable way, i.e. their contri-
bution is complementary.

4.5.1 Comparison to Previous Works
In Table 5 we compare our method with previous

works in the field, using the LexSub dataset.

candidates from WN from Gold Standard
Best-P GAP

PadóErk10 38.6
Giuliano 12.93 DinuLapata 42.9
Martinez 12.68 Thater10 46.0
Sinha 13.60 Thater11 51.7
Baseline 11.75 Baseline 46.9
Our model 15.94 Our model 52.4

Table 5: Comparison to previous works (LexSub dataset).

In the left column of Table 5, we compare the per-
formance of our system to representative Semeval
2007 participants, namely Martinez et al. (2007) and
Giuliano et al. (2007). In order to make a fair com-
parison, we report scores for the official test data
of Semeval 2007, using a 10-fold cross-validation
scheme. Martinez et al. (2007) developed their sys-
tem based on WordNet and we use the same can-
didate set here that they proposed in their system
description. Our reimplementation of (Giuliano et
al., 2007) performs below the original scores, due
to the more restricted source of substitution can-
didates (they use more lexical resources), yet uses
the same ranking methodology based on Google n-
grams that we adopted here as our baseline. We also
report the best previous result for this task, which
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was achieved via the (supervised) combination of
lexical resources to improve the performance (Sinha
and Mihalcea, 2009). Our model outperforms this
result by a large margin for the best-precision eval-
uation (mode-P, precision measured on those exam-
ples where there is a clear best substitution provided
by humans was 26.3%, compared to 21.3% reported
by Sinha and Mihalcea (2009). This is especially
promising in light of the fact that we use only a sin-
gle source (WordNet) for synonyms and achieve our
improvements through more advanced delexicalized
features in an improved ranking model. Sinha and
Mihalcea (2009), on the other hand, used compara-
bly simple features for contextualization, of which
n-gram features were deemed most successful. As
Sinha and Mihalcea (2009) showed improvements
through utilizing several synonym sources, a combi-
nation of their approach with ours should allow for
further improvements in the future.

In the right column of Table 5, we compare our
model to previous works that addressed only the
ranking task, and report performance on the whole
dataset (i.e. trial and test). As can be seen, the
methodology proposed here outperforms previous
ranking models, without the need to develop a high-
quality ranking model by hand, and without the need
to parse the test sentences. Our delexicalized super-
vised model only requires the development of fea-
tures, and achieves excellent results without major
task-specific tuning or customization: we omitted
the optimization of the feature set and the parame-
ters of the learning model. This fact makes us as-
sume that the proposed model can be applied more
quickly and easily than previous models that have
several important design aspects to choose from.

5 Conclusion and Future Work

In this study, we presented a supervised approach to
all-words lexical substitution based on delexicalized
features, which enables us to fully exploit the power
of supervised models while ensuring applicability to
a large, open vocabulary.

Results demonstrate the feasibility of this method:
our MaxEnt-based ranking approach improved over
the baseline in all settings and yielded – to our
knowledge – the best scores for lexical substitu-
tion with automatically gathered synonyms on the

Semeval 2007 LexSub dataset. Also, it performed
slightly better than the state of the art for candidates
pooled from the gold standard without any parame-
ter tuning or empirical design choices.

In this study, we established transparency be-
tween Semeval-style and ranking-only studies in
lexical substitution – two lines of work that were dif-
ficult to compare in the past. Further, we observe
similar improvements on two different datasets,
showing the robustness of the approach.

While previous works showed the potential of
more/improved lexical resources for lexical substi-
tution, we improved over the best Semeval-style per-
formance just by exploiting an improved ranking
model over a standard WordNet-based candidate set.
These results indicate that improvements from lexi-
cal resources and better ranking models are additive,
thus we want to add more lexical resources in our
system in the future.

Of course there are several other ways to improve
further the work described here. First of all, simi-
lar to the best ranking approaches (e.g. Thater et al.
(2011)), one could use contextualized feature func-
tions to make global information from the distri-
butional thesaurus more accurate. Instead of using
globally calculated similarities, information from
the distributional thesaurus could be contextualized
via constraining the statistics with words from the
context.

Other natural ways to improve the model de-
scribed here are to make heavier use of parser infor-
mation or to employ pair-wise or list-wise machine
learning models (Cao et al., 2007), which are specif-
ically designed for subset ranking. Lastly, while in-
trinsic evaluation of lexical substitution is important,
we would like to show its practicability in tasks such
as steganography or information retrieval.
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Montréal, Canada.

Chris Biemann. 2012. Creating a System for Lexi-
cal Substitutions from Scratch using Crowdsourcing.
Language Resources and Evaluation: Special Issue
on Collaboratively Constructed Language Resources,
46(2).
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Abstract

In this paper, we present a novel method for the
computation of compositionality within a distri-
butional framework. The key idea is that com-
positionality is modeled as a multi-way interac-
tion between latent factors, which are automat-
ically constructed from corpus data. We use
our method to model the composition of sub-
ject verb object triples. The method consists
of two steps. First, we compute a latent factor
model for nouns from standard co-occurrence
data. Next, the latent factors are used to induce
a latent model of three-way subject verb object
interactions. Our model has been evaluated on
a similarity task for transitive phrases, in which
it exceeds the state of the art.

1 Introduction

In the course of the last two decades, significant
progress has been made with regard to the automatic
extraction of lexical semantic knowledge from large-
scale text corpora. Most work relies on the distribu-
tional hypothesis of meaning (Harris, 1954), which
states that words that appear within the same contexts
tend to be semantically similar. A large number of
researchers have taken this dictum to heart, giving
rise to a plethora of algorithms that try to capture
the semantics of words by looking at their distribu-
tion in text. Up till now, however, most work on the
automatic acquisition of semantics only deals with
individual words. The modeling of meaning beyond
the level of individual words – i.e. the combination
of words into larger units – is to a large degree left
unexplored.

The principle of compositionality, often attributed
to Frege, is the principle that states that the meaning
of a complex expression is a function of the meaning
of its parts and the way those parts are (syntactically)
combined (Frege, 1892). It is the fundamental prin-
ciple that allows language users to understand the
meaning of sentences they have never heard before,
by constructing the meaning of the complex expres-
sion from the meanings of the individual words. Re-
cently, a number of researchers have tried to reconcile
the framework of distributional semantics with the
principle of compositionality (Mitchell and Lapata,
2008; Baroni and Zamparelli, 2010; Coecke et al.,
2010; Socher et al., 2012). However, the absolute
gains of the systems remain a bit unclear, and a sim-
ple method of composition – vector multiplication –
often seems to produce the best results (Blacoe and
Lapata, 2012).

In this paper, we present a novel method for the
joint composition of a verb with its subject and di-
rect object. The key idea is that compositionality is
modeled as a multi-way interaction between latent
factors, which are automatically constructed from
corpus data. In order to adequately model the multi-
way interaction between a verb and its subject and
objects, a significant part of our method relies on
tensor algebra. Additionally, our method makes use
of a factorization model appropriate for tensors.

The remainder of the paper is structured as follows.
In section 2, we give an overview of previous work
that is relevant to the task of computing composition-
ality within a distributional framework. Section 3
presents a detailed description of our method, in-
cluding an overview of the necessary mathematical

1142



machinery. Section 4 illustrates our method with a
number of detailed examples. Section 5 presents a
quantitative evaluation, and compares our method
to other models of distributional compositionality.
Section 6, then, concludes and lays out a number of
directions for future work.

2 Previous Work

In recent years, a number of methods have been de-
veloped that try to capture compositional phenomena
within a distributional framework. One of the first
approaches to tackle compositional phenomena in a
systematic way is Mitchell and Lapata’s (2008) ap-
proach. They explore a number of different models
for vector composition, of which vector addition (the
sum of each feature) and vector multiplication (the
elementwise multiplication of each feature) are the
most important. They evaluate their models on a
noun-verb phrase similarity task, and find that the
multiplicative model yields the best results, along
with a weighted combination of the additive and mul-
tiplicative model.

Baroni and Zamparelli (2010) present a method
for the composition of adjectives and nouns. In their
model, an adjective is a linear function of one vector
(the noun vector) to another vector (the vector for the
adjective-noun pair). The linear transformation for a
particular adjective is represented by a matrix, and
is learned automatically from a corpus, using partial
least-squares regression.

Coecke et al. (2010) present an abstract theoreti-
cal framework in which a sentence vector is a func-
tion of the Kronecker product of its word vectors,
which allows for greater interaction between the dif-
ferent word features. A number of instantiations of
the framework are tested experimentally in Grefen-
stette and Sadrzadeh (2011a) and Grefenstette and
Sadrzadeh (2011b). The key idea is that relational
words (e.g. adjectives or verbs) have a rich (multi-
dimensional) structure that acts as a filter on their
arguments. Our model uses an intuition similar to
theirs.

Socher et al. (2012) present a model for composi-
tionality based on recursive neural networks. Each
node in a parse tree is assigned both a vector and
a matrix; the vector captures the actual meaning of
the constituent, while the matrix models the way

it changes the meaning of neighbouring words and
phrases.

Closely related to the work on compositionality
is research on the computation of word meaning in
context. Erk and Padó (2008, 2009) make use of
selectional preferences to express the meaning of a
word in context; the meaning of a word in the pres-
ence of an argument is computed by multiplying the
word’s vector with a vector that captures the inverse
selectional preferences of the argument. Thater et
al. (2009, 2010) extend the approach based on se-
lectional preferences by incorporating second-order
co-occurrences in their model. And Dinu and La-
pata (2010) propose a probabilistic framework that
models the meaning of words as a probability distri-
bution over latent factors. This allows them to model
contextualized meaning as a change in the original
sense distribution. Dinu and Lapata use non-negative
matrix factorization (NMF) to induce latent factors.
Similar to their work, our model uses NMF – albeit
in a slightly different configuration – as a first step
towards our final factorization model.

In general, latent models have proven to be useful
for the modeling of word meaning. One of the best
known latent models of semantics is Latent Seman-
tic Analysis (Landauer and Dumais, 1997), which
uses singular value decomposition in order to auto-
matically induce latent factors from term-document
matrices. Another well known latent model of mean-
ing, which takes a generative approach, is Latent
Dirichlet Allocation (Blei et al., 2003).

Tensor factorization has been used before for the
modeling of natural language. Giesbrecht (2010)
describes a tensor factorization model for the con-
struction of a distributional model that is sensitive to
word order. And Van de Cruys (2010) uses a tensor
factorization model in order to construct a three-way
selectional preference model of verbs, subjects, and
objects. Our underlying tensor factorization – Tucker
decomposition – is the same as Giesbrecht’s; and
similar to Van de Cruys (2010), we construct a la-
tent model of verb, subject, and object interactions.
The way our model is constructed, however, is sig-
nificantly different. The former research does not
use any syntactic information for the construction
of the tensor, while the latter makes use of a more
restricted tensor factorization model, viz. parallel
factor analysis (Harshman and Lundy, 1994).
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The idea of modeling compositionality by means
of tensor (Kronecker) product has been proposed
in the literature before (Clark and Pulman, 2007;
Coecke et al., 2010). However, the method presented
here is the first that tries to capture compositional
phenomena by exploiting the multi-way interactions
between latent factors, induced by a suitable tensor
factorization model.

3 Methodology

3.1 Mathematical preliminaries

The methodology presented in this paper requires
a number of concepts and mathematical operations
from tensor algebra, which are briefly reviewed in
this section. The interested reader is referred to Kolda
and Bader (2009) for a more thorough introduction
to tensor algebra (including an overview of various
factorization methods).

A tensor is a multidimensional array; it is the gen-
eralization of a matrix to more than two dimensions,
or modes. Whereas matrices are only able to cap-
ture two-way co-occurrences, tensors are able to cap-
ture multi-way co-occurrences.1 Following prevail-
ing convention, tensors are represented by boldface
Euler script notation (X), matrices by boldface capi-
tal letters (X), vectors by boldface lower case letters
(x), and scalars by italic letters (x).

The n-mode product of a tensor X ∈ RI1×I2×...×IN

with a matrix U ∈ RJ×In is denoted by X×n U, and
is defined elementwise as

(X×n U)i1...in−1 jin+1...iN =
In

∑
in=1

xi1i2...iN u jin (1)

The Kronecker product of matrices A ∈ RI×J and
B∈RK×L is denoted by A⊗B. The result is a matrix
of size (IK)× (JL), and is defined by

A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B . . . aIJB

 (2)

1In this research, we limit ourselves to three-way co-
occurrences of verbs, subject, and objects, modelled using a
three-mode tensor.

A special case of the Kronecker product is the
outer product of two vectors a ∈ RI and b ∈ RJ , de-
noted a◦b. The result is a matrix A ∈ RI×J obtained
by multiplying each element of a with each element
of b.

Finally, the Hadamard product, denoted A ∗B,
is the elementwise multiplication of two matrices
A ∈ RI×J and B ∈ RI×J , which produces a matrix
that is equally of size I× J.

3.2 The construction of latent noun factors

The first step of our method consists in the construc-
tion of a latent factor model for nouns, based on their
context words. For this purpose, we make use of non-
negative matrix factorization (Lee and Seung, 2000).
Non-negative matrix factorization (NMF) minimizes
an objective function – in our case the Kullback-
Leibler (KL) divergence – between an original matrix
VI×J and WI×KHK×J (the matrix multiplication of
matrices W and H) subject to the constraint that all
values in the three matrices be non-negative. Param-
eter K is set � I,J so that a reduction is obtained
over the original data. The factorization model is
represented graphically in figure 1.

= xV W
H

k

k

n
o
u
n
s

context words

n
o
u
n
s

context words

Figure 1: Graphical representation of NMF

NMF can be computed fairly straightforwardly,
alternating between the two iterative update rules
represented in equations 3 and 4. The update rules
are guaranteed to converge to a local minimum in the
KL divergence.

Haµ ←Haµ

∑i Wia
Viµ

(WH)iµ

∑k Wka
(3)

Wia←Wia
∑µ Haµ

Viµ
(WH)iµ

∑v Hav
(4)

3.3 Modeling multi-way interactions

In our second step, we construct a multi-way interac-
tion model for subject verb object (svo) triples, based
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on the latent factors induced in the first step. Our
latent interaction model is inspired by a tensor factor-
ization model called Tucker decomposition (Tucker,
1966), although our own model instantiation differs
significantly. In order to explain our method, we
first revisit Tucker decomposition, and subsequently
explain how our model is constructed.

3.3.1 Tucker decomposition
Tucker decomposition is a multilinear generaliza-

tion of the well-known singular value decomposition,
used in Latent Semantic Analysis. It is also known as
higher order singular value decomposition (HOSVD,
De Lathauwer et al. (2000)). In Tucker decomposi-
tion, a tensor is decomposed into a core tensor, multi-
plied by a matrix along each mode. For a three-mode
tensor X ∈ RI×J×L, the model is defined as

X = G×1 A×2 B×3 C (5)

=
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqrap ◦bq ◦ cr (6)

Setting P,Q,R� I,J,L, the core tensor G repre-
sents a compressed, latent version of the original ten-
sor X; matrices A ∈RI×P, B ∈RJ×Q, and C ∈RL×R

represent the latent factors for each mode, while
G ∈ RP×Q×R indicates the level of interaction be-
tween the different latent factors. Figure 2 shows a
graphical representation of Tucker decomposition.2
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Figure 2: A graphical representation of Tucker decompo-
sition

2where P = Q = R = K, i.e. the same number of latent factors
K is used for each mode

3.3.2 Reconstructing a Tucker model from
two-way factors

Computing the Tucker decomposition of a tensor
is rather costly in terms of time and memory require-
ments. Moreover, the decomposition is not unique:
the core tensor G can be modified without affecting
the model’s fit by applying the inverse modification
to the factor matrices. These two drawbacks led us
to consider an alternative method for the construc-
tion of the Tucker model. Specifically, we consider
the factor matrices as given (as the output from our
first step), and proceed to compute the core tensor G.
Additionally, we do not use a latent representation
for the first mode, which means that the first mode is
represented by its original instances.

Our model can be straightforwardly applied to lan-
guage data. The core tensor G models the latent
interactions between verbs, subject, and objects. G

is computed by applying the n-mode product to the
appropriate mode of the original tensor (equation 7),

G = X×2 WT ×3 WT (7)

where XV×N×N is our original data tensor, consisting
of the weighted co-occurrence frequencies of svo
triples (extracted from corpus data), and WN×K is
our latent factor matrix for nouns. Note that we do
not use a latent representation for the verb mode. To
be able to efficiently compute the similarity of verbs
(both within and outside of compositional phrases),
only the subject and object mode are represented by
latent factors, while the verb mode is represented
by its original instances. This means that our core
tensor G will be of size V ×K×K.3 A graphical
representation is given in figure 3.

Note that both tensor X and factor matrices W are
non-negative, which means our core tensor G will
also be non-negative.

3.4 The composition of svo triples

In order to compute the composition of a particular
subject verb object triple 〈s,v,o〉, we first extract the
appropriate subject vector ws and object vector wo

(both of length K) from our factor matrix W, and

3It is straightforward to also construct a latent factor model
for verbs using NMF, and include it in the construction of our
core tensor; we believe such a model might have interesting
applications, but we save this as an exploration for future work.
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Figure 3: A graphical representation of our model instan-
tiation without the latent verb mode

compute the outer product of both vectors, resulting
in a matrix Y of size K×K.

Y = ws ◦wo (8)

Our second and final step is then to weight the
original verb matrix Gv of latent interactions (the
appropriate verb slice of tensor G) with matrix Y,
containing the latent interactions of the specific sub-
ject and object. This is carried out by taking the
Hadamard product of Gv and Y.

Z = Gv ∗Y (9)

4 Example

In this section, we present a number of example com-
putations that clarify how our model is able to capture
compositionality. All examples come from actual cor-
pus data, and are computed in a fully automatic and
unsupervised way.

Consider the following two sentences:

(1) The athlete runs a race.

(2) The user runs a command.

Both sentences contain the verb run, but they rep-
resent clearly different actions. When we compute
the composition of both instances of run with their
respective subject and object, we want our model to
show this difference.

To compute the compositional representation of
sentences (1) and (2), we proceed as follows. First,
we extract the latent vectors for subject and object
(wathlete and wrace for the first sentence, wuser and
wcommand for the second sentence) from matrix W.

Next, we compute the outer product of subject and
object – wathlete ◦wrace and wuser ◦wcommand – which
yields matrices Y〈athlete,race〉 and Y〈user,command〉. By
virtue of the outer product, the matrices Y – of size
K×K – represent the level of interaction between the
latent factors of the subject and the latent factors of
the object. We can inspect these interactions by look-
ing up the factor pairs (i.e. matrix cells) with the high-
est values in the matrices Y. Table 1 presents the fac-
tor pairs with highest value for matrix Y〈athlete,race〉;
table 2 represents the factor pairs with highest value
for matrix Y〈user,command〉. In order to render the fac-
tors interpretable, we include the three most salient
words for the various factors (i.e. the words with the
highest value for a particular factor).

The examples in tables 1 and 2 give an impression
of the effect of the outer product: semantic features
of the subject combine with semantic features of the
object, indicating the extent to which these features
interact within the expression. In table 1, we notice
that animacy features (28, 195) and a sport feature
(25) combine with a ‘sport event’ feature (119). In
table 2, we see that similar animacy features (40,
195) and technological features (7, 45) combine with
another technological feature (89).

Similarly, we can inspect the latent interactions of
the verb run, which are represented in the tensor slice
Grun. Note that this matrix contains the verb seman-
tics computed over the complete corpus. The most
salient factor interactions for Grun are represented in
table 3.

Table 3 illustrates that different senses of the verb
run are represented within the matrix Grun. The first
two factor pairs hint at the ‘organize’ sense of the
verb (run a seminar). The third factor pair repre-
sents the ‘transport’ sense of the verb (the bus runs
every hour).4 And the fourth factor pair represents
the ‘execute’ or ‘deploy’ sense of run (run Linux,
run a computer program). Note that we only show
the factor pairs with the highest value; matrix G con-
tains a value for each pairwise combination of the
latent factors, effectively representing a rich latent
semantics for the verb in question.

The last step is to take the Hadamard product of
matrices Y with verb matrix G, which yields our final

4Obviously, hour is not an object of the verb, but due to
parsing errors it is thus represented.
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factors subject object value

〈195,119〉 people (.008), child (.008), adolescent (.007) cup (.007), championship (.006), final (.005) .007
〈25,119〉 hockey (.007), poker (.007), tennis (.006) cup (.007), championship (.006), final (.005) .004
〈90,119〉 professionalism (.007), teamwork (.007), confi-

dence (.006)
cup (.007), championship (.006), final (.005) .003

〈28,119〉 they (.004), pupil (.003), participant (.003) cup (.007), championship (.006), final (.005) .003

Table 1: Factor pairs with highest value for matrix Y〈athlete,race〉

factors subject object value

〈7,89〉 password (.009), login (.007), username (.007) filename (.007), null (.006), integer (.006) .010
〈40,89〉 anyone (.004), reader (.004), anybody (.003) filename (.007), null (.006), integer (.006) .007
〈195,89〉 people (.008), child (.008), adolescent (.007) filename (.007), null (.006), integer (.006) .006
〈45,89〉 website (.004), Click (.003), site (.003) filename (.007), null (.006), integer (.006) .006

Table 2: Factor pairs with highest value for matrix Y〈user,command〉

matrices, Zrun,〈athlete,race〉 and Zrun,〈user,command〉. The
Hadamard product will act as a bidirectional filter
on the semantics of both the verb and its subject
and object: interactions of semantic features that are
present in both matrix Y and G will be highlighted,
while the other interactions are played down. The
result is a representation of the verb’s semantics tuned
to its particular subject-object combination. Note that
this final step can be viewed as an instance of function
application (Baroni and Zamparelli, 2010). Also
note the similarity to Grefenstette and Sadrzadeh’s
(2011a,2011b) approach, who equally make use of
the elementwise matrix product in order to weight
the semantics of the verb.

We can now go back to our original tensor G, and
compute the most similar verbs (i.e. the most similar
tensor slices) for our newly computed matrices Z.5

If we do this for matrix Zrun,〈athlete,race〉, our model
comes up with verbs finish (.29), attend (.27), and
win (.25). If, instead, we compute the most similar
verbs for Zrun,〈user,command〉, our model yields execute
(.42), modify (.40), invoke (.39).

Finally, note that the design of our model natu-
rally takes into account word order. Consider the
following two sentences:

(3) man damages car

(4) car damages man

5Similarity is calculated by measuring the cosine of the vec-
torized and normalized representation of the verb matrices.

Both sentences contain the exact same words, but the
process of damaging described in sentences (3) and
(4) is of a rather different nature. Our model is able
to take this difference into account: if we compute
Zdamage,〈man,car〉 following sentence (3), our model
yields crash (.43), drive (.35), ride (.35) as most sim-
ilar verbs. If we do the same for Zdamage,〈car,man〉 fol-
lowing sentence (4), our model instead yields scare
(.26), kill (.23), hurt (.23).

5 Evaluation

5.1 Methodology

In order to evaluate the performance of our tensor-
based factorization model of compositionality, we
make use of the sentence similarity task for transi-
tive sentences, defined in Grefenstette and Sadrzadeh
(2011a). This is an extension of the similarity task
for compositional models developed by Mitchell and
Lapata (2008), and constructed according to the same
guidelines. The dataset contains 2500 similarity
judgements, provided by 25 participants, and is pub-
licly available.6

The data consists of transitive verbs, each paired
with both a subject and an object noun – thus form-
ing a small transitive sentence. Additionally, a ‘land-
mark’ verb is provided. The idea is to compose both
the target verb and the landmark verb with subject
and noun, in order to form two small compositional

6http://www.cs.ox.ac.uk/activities/

CompDistMeaning/GS2011data.txt
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factors subject object value

〈128,181〉 Mathematics (.004), Science (.004), Economics
(.004)

course (.005), tutorial (.005), seminar (.005) .058

〈293,181〉 organization (.007), association (.007), federa-
tion (.006)

course (.005), tutorial (.005), seminar (.005) .053

〈60,140〉 rail (.011), bus (.009), ferry (.008) third (.004), decade (.004), hour (.004) .038
〈268,268〉 API (.008), Apache (.007), Unix (.007) API (.008), Apache (.007), Unix (.007) .038

Table 3: Factor combinations for Grun

phrases. The system is then required to come up with
a suitable similarity score for these phrases. The cor-
relation of the model’s judgements with human judge-
ments (scored 1–7) is then calculated using Spear-
man’s ρ . Two examples of the task are provided in
table 4.

p target subject object landmark sim

19 meet system criterion visit 1
21 write student name spell 6

Table 4: Two example judgements from the phrase simi-
larity task defined by Grefenstette and Sadrzadeh (2011a)

Grefenstette and Sadrzadeh (2011a) seem to cal-
culate the similarity score contextualizing both the
target verb and the landmark verb. Another possibil-
ity is to contextualize only the target verb, and com-
pute the similarity score with the non-contextualized
landmark verb. In our view, the latter option pro-
vides a better assessment of the model’s similar-
ity judgements, since contextualizing low-similarity
landmarks often yields non-sensical phrases (e.g. sys-
tem visits criterion). We provide scores for both
contextualized and non-contextualized landmarks.

We compare our results to a number of different
models. The first is Mitchell and Lapata’s (2008)
model, which computes the elementwise vector mul-
tiplication of verb, subject and object. The second
is Grefenstette and Sadrzadeh’s (2011b) best scoring
model instantiation of the categorical distributional
compositional model (Coecke et al., 2010). This
model computes the outer product of the subject and
object vector, the outer product of the verb vector
with itself, and finally the elementwise product of
both results. It yields the best score on the transitive
sentence similarity task reported to date.

As a baseline, we compute the non-contextualized

similarity score for target verb and landmark. The up-
per bound is provided by Grefenstette and Sadrzadeh
(2011a), based on interannotator agreement.

5.2 Implementational details

All models have been constructed using the UKWAC

corpus (Baroni et al., 2009), a 2 billion word corpus
automatically harvested from the web. From this data,
we accumulate the input matrix V for our first NMF

step. We use the 10K most frequent nouns, cross-
classified by the 2K most frequent context words.7

Matrix V is weighted using pointwise mutual infor-
mation (PMI, Church and Hanks (1990)).

A parsed version of the corpus is available, which
has been parsed with MaltParser (Nivre et al., 2006).
We use this version in order to extract our svo triples.
From these triples, we construct our tensor X, using
1K verbs × 10K subjects × 10K objects. Note once
again that the subject and object instances in the sec-
ond step are exactly the same as the noun instances
in the first step. Tensor X has been weighted using a
three-way extension of PMI, following equation 10
(Van de Cruys, 2011).

pmi3(x,y,z) = log
p(x,y,z)

p(x)p(y)p(z)
(10)

We set K = 300 as our number of latent factors.
The value was chosen as a trade-off between a model
that is both rich enough, and does not require an
excessive amount of memory (for the modeling of
the core tensor). The algorithm runs fairly effi-
ciently. Each NMF step is computed in a matter of
seconds, with convergence after 50–100 iterations.
The construction of the core tensor is somewhat more

7We use a context window of 5 words, both before and after
the target word; a stop list was used to filter out grammatical
function words.
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evolved, but does not exceed a wall time of 30 min-
utes. Results have been computed on a machine with
Intel Xeon 2.93Ghz CPU and 32GB of RAM.

5.3 Results

The results of the various models are presented in ta-
ble 5; multiplicative represents Mitchell and Lapata’s
(2008) multiplicative model, categorical represents
Grefenstette and Sadrzadeh’s (2011b) model, and
latent represents the model presented in this paper.

model contextualized non-contextualized

baseline .23

multiplicative .32 .34
categorical .32 .35
latent .32 .37

upper bound .62

Table 5: Results of the different compositionality models
on the phrase similarity task

In the contextualized version of the similarity task
(in which the landmark is combined with subject
and object), all three models obtain the same result
(.32). However, in the non-contextualized version
(in which only the target verb is combined with sub-
ject and object), the models differ in performance.
These differences are statistically significant.8 As
mentioned before, we believe the non-contextualized
version of the task gives a better impression of the
systems’ ability to capture compositionality. The
contextualization of the landmark verb often yields
non-sensical combinations, such as system visits crite-
rion. We therefore deem it preferable to compute the
similarity of the target verb in composition (system
meets criterion) to the non-contextualized semantics
of the landmark verb (visit).

Note that the scores presented in this evalua-
tion (including the baseline score) are significantly
higher than the scores presented in Grefenstette and
Sadrzadeh (2011b). This is not surprising, since the
corpus we use – UKWAC – is an order of magni-
tude larger than the corpus used in their research –
the British National Corpus (BNC). Presumably, the
scores are also favoured by our weighting measure.

8 p < 0.01; model differences have been tested using stratified
shuffling (Yeh, 2000).

In our experience, PMI performs better than weight-
ing with conditional probabilities.9

6 Conclusion

In this paper, we presented a novel method for the
computation of compositionality within a distribu-
tional framework. The key idea is that composition-
ality is modeled as a multi-way interaction between
latent factors, which are automatically constructed
from corpus data. We used our method to model
the composition of subject verb object combinations.
The method consists of two steps. First, we com-
pute a latent factor model for nouns from standard
co-occurrence data. Next, the latent factors are used
to induce a latent model of three-way subject verb
object interactions, represented by a core tensor. Our
model has been evaluated on a similarity task for tran-
sitive phrases, in which it matches and even exceeds
the state of the art.

We conclude with a number of future work issues.
First of all, we would like to extend our framework in
order to incorporate more compositional phenomena.
Our current model is designed to deal with the latent
modeling of subject verb object combinations. We
would like to investigate how other compositional
phenomena might fit within our latent interaction
framework, and how our model is able to tackle the
computation of compositionality across a differing
number of modes.

Secondly, we would like to further explore the
possibilities of our model in which all three modes
are represented by latent factors. The instantiation
of our model presented in this paper has two latent
modes, using the original instances of the verb mode
in order to efficiently compute verb similarity. We
think a full-blown latent interaction model might
prove to have interesting applications in a number of
NLP tasks, such as the paraphrasing of compositional
expressions.

Finally, we would like to test our method using a
number of different evaluation frameworks. We think
tasks of similarity judgement have their merits, but in
a way are also somewhat limited. In our opinion, re-
search on the modeling of compositional phenomena
within a distributional framework would substantially

9Contrary to the findings of Mitchell and Lapata (2008), who
report a high correlation with human similarity judgements.
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benefit from new evaluation frameworks. In particu-
lar, we think of a lexical substitution or paraphrasing
task along the lines of McCarthy and Navigli (2009),
but specifically aimed at the assessment of composi-
tional phenomena.
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Abstract

Twitter offers an unprecedented advantage on
live reporting of the events happening around
the world. However, summarizing the Twit-
ter event has been a challenging task that was
not fully explored in the past. In this paper,
we propose a participant-based event summa-
rization approach that “zooms-in” the Twit-
ter event streams to the participant level, de-
tects the important sub-events associated with
each participant using a novel mixture model
that combines the “burstiness” and “cohesive-
ness” properties of the event tweets, and gen-
erates the event summaries progressively. We
evaluate the proposed approach on different
event types. Results show that the participant-
based approach can effectively capture the
sub-events that have otherwise been shadowed
by the long-tail of other dominant sub-events,
yielding summaries with considerably better
coverage than the state-of-the-art.

1 Introduction

Twitter has increasingly become a critical source of
information. People report the events they are ex-
periencing or publish comments on a wide variety
of events happening around the world, ranging from
the unexpected natural disasters, regional riots, to
many scheduled events, such as sports games, po-
litical debates, local festivals, and even academic
conferences. The Twitter data streams thus cover
a broad range of events and broadcast these in-
formation in a live manner. Event summarization
in this paper aims to generate a representative and
concise textual description of the scheduled events

that are being lively reported on Twitter, providing
people with an alternative means of observing the
world beyond the traditional journalism. Specifi-
cally, we investigate scheduled events of different
types, including six of the NBA (National Basket-
ball Association) sports games and a representative
conference event, namely the Apple CEO’s keynote
speech in the Apple Worldwide Developers Confer-
ence (WWDC 2012)1. All these events have excited
great discussion among the Twitter community.

Summarizing the Twitter event is a challenging
task that has yet been fully explored in the past.
Most previous summarization studies focus on the
well-formatted news documents, as driven by the
annual DUC2 and TAC3 evaluations. In contrast,
the Twitter messages (a.k.a., tweets) are very short
and noisy, containing nonstandard terms such as ab-
breviations, acronyms, emoticons, etc. (Liu et al.,
2011b; Liu et al., 2012; Eisenstein, 2013). The
noisy contents also cause great difficulties to the tra-
ditional NLP tools such as NER and dependency
parser (Ritter et al., 2011; Foster et al., 2011), lim-
iting the possibility of applying finer-grained event
analysis tools. In nature, the event tweets are closely
associated with the timeline and are drastically dif-
ferent from a static collection of news documents.
The tweets converge into text streams that pulse
along the timeline and cluster around the important
moments or sub-events. These “sub-events” are of
crucial importance since they represent a surge of in-
terest from the Twitter audience and the correspond-

1https://developer.apple.com/wwdc/
2http://duc.nist.gov/
3http://www.nist.gov/tac/
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Figure 1: Example Twitter event stream (upper) and par-
ticipant stream (lower). Event stream contains tweets
related to an NBA basketball game (Spurs vs Thunder)
scheduled on May 31, 2012; participant stream contains
tweets corresponding to the player Russell Westbrook in
team Thunder. X-axis denotes the timeline and y-axis
represents the number of tweets per 10-second interval.

ing key information must be reflected in the event
summary. As such, event summarization research
has been focusing on developing accurate sub-event
detection systems and generating text descriptions
that can best summarize the sub-events in a progres-
sive manner (Chakrabarti and Punera, 2011; Nichols
et al., 2012; Zubiaga et al., 2012).

In Figure 1, we show an example Twitter event
stream and one of its “participant” streams. The
event stream contains all the tweets related to an
NBA basketball game Spurs vs Thunder; while
the participant stream contains only tweets corre-
sponding to the player Russell Westbrook in this
game. Previous research on event summarization
focuses on identifying the important moments from
the coarse-level event stream. This may yield sev-
eral side effects: first, the spike patterns are not
clearly identifiable from the overall event stream,
though they are more clearly seen if we “zoom-in” to
the participant level; second, it is arguable whether
the important sub-events can be accurately detected
based solely on the tweet volume change; third, a
popular participant or sub-event can elicit huge vol-
ume of tweets which dominant the event discussion
and shield less prominent sub-events. For example,
in the NBA games, discussions about the key players
(e.g., “LeBron James”, “Kobe Bryant”) can heavily
shadow other important participants or sub-events,
resulting in an event summary with repetitive de-
scriptions about the dominant players.

In this work, we propose a novel participant-
based event summarization approach, which dynam-
ically identifies the participants from data streams,
then “zooms-in” the event stream to participant
level, detects the important sub-events related to
each participant using a novel time-content mixture
model, and generates the event summary progres-
sively by concatenating the descriptions of the im-
portant sub-events. Results show that the mixture
model-based sub-event detection approach can effi-
ciently incorporate the “burstiness” and “cohesive-
ness” of the participant streams, and the participant-
based event summarization can effectively capture
the sub-events that have otherwise been shadowed
by the long-tail of other dominant sub-events, yield-
ing summaries with considerably better coverage
than the state-of-the-art approach.

2 Related Work

Mining Twitter for event information has received
increasing attention in recent years. Many research
studies focus on identifying the trending events from
Twitter and providing a concise and dynamic visual-
ization of the information. The identified events are
often represented using a set of keywords. (Petro-
vic et al., 2010) proposed an algorithm based on
locality-sensitive hashing for detecting new events
from a stream of Twitter posts. (O’Connor et al.,
2010; Becker et al., 2011b; Becker et al., 2011a;
Weng et al., 2011) proposed demo systems to dis-
play the event-related themes and popular tweets,
allowing the users to navigate through their topic
of interest. (Zhao et al., 2011) described an effort
to perform data collection and event recognition de-
spite various limits to the free access of Twitter data.
(Diao et al., 2012) integrated both temporal infor-
mation and users’ personal interests for bursty topic
detection from the microblogs. (Ritter et al., 2012)
described an open-domain event-extraction and cat-
egorization system, which extracts an open-domain
calendar of significant events from Twitter.

With the identified events of interest, there is an
ever-increasing demand for event summarization,
which distills the huge volume of Twitter discus-
sions into a concise and representative textual de-
scription of the events. Many studies start with
the text summarization approaches that have been
shown to perform well on the news documents and
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develop adaptations to fit these methods to a col-
lection of event tweets. (Sharifi et al., 2010b) pro-
posed a graph-based phrase reinforcement algorithm
to build a one-sentence summary from a collection
of topic tweets. (Sharifi et al., 2010a; Inouye and
Kalita, 2011) presented a hybrid TF-IDF approach
to extract one- or multiple-sentence summary for
each topic. (Liu et al., 2011a) proposed to use
the concept-based ILP framework for summarizing
the Twitter trending topics, using both tweets and
the webpages linked from the tweets as input text
sources. (Harabagiu and Hickl, 2011) introduced a
generative framework that incorporates event struc-
ture and user behavior information in summarizing
multiple microblog posts related to the same topic.

Regarding summarizing the data streams, (Mar-
cus et al., 2011) introduced a “TwitInfo” system to
visually summarize and track the events on Twit-
ter. They proposed an automatic peak detection and
labeling algorithm for the social streams. (Taka-
mura et al., 2011) proposed a summarization model
based on the facility location problem, which gener-
ates summary for a stream of short documents along
the timeline. (Chakrabarti and Punera, 2011) pro-
posed an event summarization algorithm based on
learning an underlying hidden state representation
of the event via hidden Markov models. (Louis and
Newman, 2012) presented a method for summariz-
ing a collection of tweets related to a business. The
proposed procedure aggregates tweets into subtopic
clusters which are then ranked and summarized
by a few representative tweets from each cluster.
(Nichols et al., 2012; Zubiaga et al., 2012) focused
on real-time event summarization, which detects the
sub-events by identifying those moments where the
tweet volume has increases sharply, then uses var-
ious weighting schemes to perform tweet selection
and finally generates the event summary.

Our work is different from the above research
studies in three folds: first, we propose to “zoom-
in” the Twitter event streams to the participant
level, which allows us to clearly identify the im-
portant sub-events associated with each participant
and generate a balanced event summary with com-
prehensive coverage of all the important sub-events;
second, we propose a novel time-content mixture
model approach for sub-event detection, which ef-
fectively leverages the “burstiness” and “cohesive-

ness” of the event tweets and accurately detects
the participant-level sub-events. Third, we evalu-
ate the participant-based event summarization sys-
tem on different event types and demonstrate that the
proposed approach outperforms the state-of-the-art
method by a considerable margin.

3 Participant-based Event Summarization

We propose a novel participant-centered event sum-
marization approach that consists of three key com-
ponents: (1) “Participant Detection” dynamically
identifies the event participants and divides the
entire event stream into a number of participant
streams (Section 3.1); (2) “Sub-event Detection” in-
troduces a novel time-content mixture model ap-
proach to identify the important sub-events associ-
ated with each participant; these “participant-level
sub-events” are then merged along the timeline to
form a set of “global sub-events”4, which capture
all the important moments in the event stream (Sec-
tion 3.2); (3) “Summary Tweet Extraction” extracts
the representative tweets from the global sub-events
and forms a comprehensive coverage of the event
progress (Section 3.3).

3.1 Participant Detection
We define event participants as the entities that play
a significant role in shaping the event progress. “Par-
ticipant” is a general concept to denote the event
participating persons, organizations, product lines,
etc., each of which can be captured by a set of
correlated proper nouns. For example, the NBA
player “LeBron Raymone James” can be represented
by {LeBron James, LeBron, LBJ, King James, L.
James}, where each proper noun represents a unique
mention of the participant. In this work, we automat-
ically identify the proper nouns from tweet streams,
filter out the infrequent ones using a threshold ψ,
and cluster them into individual event participants.
This process allows us to dynamically identify the
key participating entities and provide a full-coverage
for these participants in the event summary.

4We use “participant sub-events” and “global sub-events”
respectively to represent the important moments happened on
the participant-level and on the entire event-level. A “global
sub-event” may consist of one or more “participant sub-events”.
For example., the “steal” action in the basketball game typically
involves both the defensive and offensive players, and can be
generated by merging the two participant-level sub-events.
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We formulate the participant detection in a hier-
archical agglomerative clustering framework. The
CMU TweetNLP tool (Gimpel et al., 2011) was used
for proper noun tagging. The proper nouns (a.k.a.,
mentions) are grouped into clusters in a bottom-up
fashion. Two mentions are considered similar if they
share (1) lexical resemblance, and (2) contextual
similarity. For example, in the following two tweets
“Gotta respect Anthony Davis, still rocking the uni-
brow”, “Anthony gotta do something about that uni-
brow”, the two mentions Anthony Davis and An-
thony are referring to the same participant and they
share both character overlap (“anthony”) and con-
text words (“unibrow”, “gotta”). We use sim(ci, cj)
to represent the similarity between two mentions ci
and cj , defined as:

sim(ci, cj) = lex sim(ci, cj)×cont sim(ci, cj)

where the lexical similarity (lex sim(·)) is defined
as a binary function representing whether a mention
ci is an abbreviation, acronym, or part of another
mention cj , or if the character edit distance between
the two mentions is less than a threshold θ5:

lex sim(ci, cj)=


1 ci(cj) is part of cj(ci)
1 EditDist(ci, cj) < θ
0 Otherwise

We define the context similarity (cont sim(·)) of
two mentions as the cosine similarity between their
context vectors ~vi and ~vj . Note that on the tweet
stream, two temporally distant tweets can be very
different even though they are lexically similar, e.g.,
two slam dunk shots performed by the same player
at different time points are different. We there-
fore restrain the context to a segment of the tweet
stream |Sk| and then take the weighted average of
the segment-based similarity as the final context
similarity. To build the context vector, we use term
frequency (TF) as the term weight and remove all the
stopwords. We use |D| to represent the total tweets
in the event stream.

cont sim|Sk|(ci, cj) = cos(~vi, ~vj)

cont sim(ci, cj) =
∑

k

|Sk|
|D|
× cont sim|Sk|(ci, cj)

5θ was empirically set as 0.2×min{|ci|, |cj |}

t w
W

zπ
|D|

μ σ θ θ'
K B

Figure 2: Plate notation of the mixture model.

Similarity between two clusters of mentions are de-
fined as the maximum possible similarity between a
pair of mentions, each from one cluster:

sim(Ci, Cj) = max
ci∈Ci,cj∈Cj

sim(ci, cj)

We perform bottom-up agglomerative clustering on
the mentions until a stopping threshold δ has been
reached for sim(Ci, Cj). The clustering approach
naturally groups the frequent proper nouns into par-
ticipants. The participant streams are then formed
by gathering the tweets that contain one or more
mentions in the participant cluster.

3.2 Mixture Model-based Sub-event Detection

A sub-event corresponds to a topic that emerges
from the data stream, being intensively discussed
during a short period, and then gradually fades away.
The tweets corresponding to a sub-event thus de-
mand not only “temporal burstiness” but also a cer-
tain degree of “lexical cohesiveness”. To incorporate
both the time and content aspects of the sub-events,
we propose a mixture model approach for sub-event
detection. Figure 2 shows the plate notation.

In the proposed model, each tweet d in the data
stream D is generated from a topic z, weighted by
πz . Each topic is characterized by both its content
and time aspects. The content aspect is captured by
a multinomial distribution over the words, param-
eterized by θ; while the time aspect is character-
ized by a Gaussian distribution, parameterized by µ
and σ, with µ represents the average time point that
the sub-event emerges and σ determines the duration
of the sub-event. These distributions bear similari-
ties with the previous work (Hofmann, 1999; Allan,
2002; Haghighi and Vanderwende, 2009). In addi-
tion, there are often background or “noise” topics
that are being constantly discussed over the entire
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event evolvement process and do not present the de-
sired “burstiness” property. We use a uniform dis-
tribution U(tb, te) to model the time aspect of these
“background” topics, with tb and te being the event
beginning and end time points. The content aspect
of a background topic is modeled by similar multi-
nomial distribution, parameterized by θ′. We use the
maximum likelihood parameter estimation. The data
likelihood can be represented as:

L(D) =
∏
d∈D

∑
z

{πzpz(td)
∏
w∈d

pz(w)}

where pz(td) models the timestamp of tweet d under
the topic z; pz(w) corresponds to the word distribu-
tion in topic z. They are defined as:

pz(td) =
{
N(td;µz, σz) if z is a sub-event topic
U(tb, te) if z is background topic

pz(w) =
{
p(w; θz) if z is a sub-event topic
p(w; θ′z) if z is background topic

where both p(w; θz) and p(w; θ′z) are multinomial
distributions over the words. Initially, we assume
there are K sub-event topics and B background top-
ics and use the EM algorithm for model fitting. The
EM equations are listed below:

E-step:

p(zd = j) ∝
πjN(d;µj , σj)

∏
w∈d

p(w; θj) if j <= K

πjU(tb, te)
∏

w∈d

p(w; θ′j) else

M-step:

πj ∝
∑

d

p(zd = j)

p(w; θj) ∝
∑

d

p(zd = j)× c(w, d)

p(w; θ′j) ∝
∑

d

p(zd = j)× c(w, d)

µj =
∑

d p(zd = j)× td∑K
j=1

∑
d p(zd = j)

σ2
j =

∑
d p(zd = j)× (td − µj)2∑K

j=1

∑
d p(zd = j)

To process the data stream D, we divide the data
into 10-second bins and process each bin at a time.

The peak time of a sub-event was determined as
the bin that has the most tweets related to this sub-
event. During EM initialization, the number of sub-
event topics K was empirically decided by scanning
through the data stream and examine tweets in ev-
ery 3-minute stream segment. If there was a spike6,
we add a new sub-event to the model and use the
tweets in this segment to initialize the value of µ,
σ, and θ. Initially, we use a fixed number of back-
ground topics with B = 4. A topic re-adjustment
was performed after the EM process. We merge two
sub-events in a data stream if they (1) locate closely
in the timeline, with peaks times within a 2-minute
window; and (2) share similar word distributions:
among the top-10 words with highest probability in
the word distributions, there are over 5 words over-
lap. We also convert the sub-event topics to back-
ground topics if their σ values are greater than a
threshold β7. We then re-run the EM to obtain the
updated parameters. The topic re-adjustment pro-
cess continues until the number of sub-events and
background topics do not change further.

We obtain the “participant sub-events” by ap-
plying this sub-event detection approach to each of
the participant streams. The “global sub-events”
are obtained by merging the participant sub-events
along the timeline. We merge two participant sub-
events into a global sub-event if (1) their peaks are
within a 2-minute window, and (2) the Jaccard simi-
larity (Lee, 1999) between their associated tweets is
greater than a threshold (set to 0.1 empirically). The
tweets associated with each global sub-event are the
ones with p(z|d) greater than a threshold γ, where z
is one of the participant sub-events and γ was set to
0.7 empirically. After the sub-event detection pro-
cess, we obtain a set of global sub-events and their
associated event tweets.8

3.3 Summary Tweet Extraction
We extract a representative tweet from each of the
global sub-events and concatenate them to form an
informative event summary. Note that our goal in
this work is to identify all the important moments

6We use the algorithm described in (Marcus et al., 2011) as
a baseline and ad hoc spike detection algorithm.

7β was set to 5 minutes in our experiments.
8We empirically set some threshold values in the topic re-

adjustment and sub-event merging process. In future, we would
like to explore more principled way of parameter selection.
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Event Date Duration #Tweets
Lakers vs Okc 05/19/2012 3h10m 218,313

N Celtics vs 76ers 05/23/2012 3h30m 245,734
B Celtics vs Heat 05/30/2012 3h30m 345,335
A Spurs vs Okc 05/31/2012 3h 254,670

Heat vs Okc (1) 06/12/2012 3h30m 331,498
Heat vs Okc (2) 06/21/2012 3h30m 332,223

Apple’s WWDC’12 Conf. 06/11/2012 3h30m 163,775

Table 1: Statistics of the data set, including six NBA bas-
ketball games and the WWDC 2012 conference event.

for event summarization, but not on proposing new
methods for tweet selection. We thus use the Hybrid
TF-IDF approach (Sharifi et al., 2010a; Liu et al.,
2011a) to extract the representative sentences from
a collection of tweets. In this approach, each tweet
was considered as a sentence. The sentences were
ranked according to the average TF-IDF score of the
consisting words; top weighted sentences were it-
eratively extracted, while excluding those that have
high cosine similarity with the existing summary
sentences. (Inouye and Kalita, 2011) showed the
Hybrid TF-IDF approach performs constantly better
than the phrase reinforcement algorithm and other
traditional summarization systems.

4 Data Corpus

We evaluate the proposed event summarization ap-
proach on six NBA basketball games and a repre-
sentative conference event, namely the Apple CEO’s
keynote speech in the Apple Worldwide Develop-
ers Conference (WWDC 2012)9. We use the het-
erogeneous event types to verify that the proposed
approach can robustly and efficiently produce sum-
maries on different event streams. The tweet streams
corresponding to these events are collected using
the Twitter Streaming API10 with pre-defined key-
word set. For NBA games, we use the team names,
first name and last name of the players and head
coaches as keywords for retrieving the event tweets;
for the WWDC conference, the keyword set contains
about 20 terms related to the Apple event, such as
“wwdc”, “apple”, “mac”, etc. We crawl the tweets
in real-time when these scheduled events are taking
place; nevertheless, certain non-event tweets could
be mis-included due to the broad coverage of the
used keywords. During preprocessing, we filter out

9https://developer.apple.com/wwdc/
10https://dev.twitter.com/docs/streaming-apis

Time Action (Sub-event) Score
9:22 Chris Bosh misses 10-foot two point shot 7-2
9:22 Serge Ibaka defensive rebound 7-2
9:11 Kevin Durant makes 15-foot two point shot 9-2
8:55 Serge Ibaka shooting foul (Shane Battier draws 9-2

the foul)
8:55 Shane Battier misses free throw 1 of 2 9-2
8:55 Miami offensive team rebound 9-2
8:55 Shane Battier makes free throw 2 of 2 9-3

Table 2: An example clip of the play-by-play live cov-
erage of an NBA game (Heat vs Okc). “Time” corre-
sponds to the minutes left in the current quarter of the
game; “Score” shows the score between the two teams.

the tweets containing URLs, non-English tweets,
and retweets since they are less likely containing
new information regarding the event progress. Ta-
ble 1 shows statistics of the event tweets after the
filtering process. In total, there are over 1.8 million
tweets used in the event summarization experiments.

We use the play-by-play live coverage collected
from the ESPN11 and MacRumors12 websites as ref-
erence, which provide detailed descriptions of the
NBA and WWDC events as they unfold. Table 2
shows an example clip of the play-by-play descrip-
tions of an NBA game. Ideally, each item in the live
coverage descriptions may correspond to a sub-event
in the tweet streams, but in reality, not all actions
would attract enough attention from the Twitter au-
dience. We use a human annotator to manually filter
out the actions that did not lead to any spike in the
corresponding participant stream. The rest items are
projected to the participant and event streams as the
goldstandard sub-events. The projection was man-
ually performed since the “game clock” associated
with the goldstandard (first column in Table 2) does
not align well with the “wall clock” due to the game
rules such as timeout and halftime rest. To evalu-
ate the participant detection performance, we ask the
annotator to manually group the proper noun men-
tions into clusters, each cluster corresponds to a par-
ticipant. The mentions that do not correspond to any
participant are discarded. The goldstandard event
summaries are generated by manually selecting one
representative tweet from each of the groundtruth
global sub-events. We choose not to use the play-
by-play descriptions as reference summaries since
their vocabulary is rather limited and do not overlap
with the tweet language.

11http://espn.go.com/nba/scoreboard
12http://www.macrumorslive.com/archive/wwdc12/

1157



Example Participants - NBA game
westbrook, russell westbrook
stephen jackson, steven jackson, jackson
james, james harden, harden
ibaka, serge ibaka
oklahoma city thunder, oklahoma
gregg popovich, greg popovich, popovich
kevin durant, kd, durant
thunder, okc, #okc, okc thunder, #thunder

Example Participants - WWDC Conference
macbooks, mbp, macbook pro, macbook air,...
google maps, google, apple maps
wwdc, apple wwdc, #wwdc
os, mountain, os x mountain, os x
iphone 4s, iphone 3gs, iphone

Table 3: Example participants automatically detected
from the NBA game Spurs vs Okc (2012-5-31) and the
WWDC’12 conference.

5 Experimental Results

We evaluate the participant-based event summariza-
tion in a cascaded fashion and present results for
each of the three components, including the par-
ticipant detection (Section 5.1), sub-event detection
(Section 5.2), and quantitative and qualitative evalu-
ation of example event summaries (Section 5.3).

5.1 Participant Detection Results

In Table 3, we show example participants that were
automatically detected by the proposed hierarchical
agglomerative clustering approach. We note that the
clusters include various mentions of the same event
participant, e.g., “gregg popovich”, “greg popovich”,
and “popovich” are both referring to the head coach
of the team Spurs; “macbooks”, “macbook pro”,
“mbp” are referring to a line of products from Apple.
Quantitatively, we evaluate the participant detection
results on both participant- and mention-level. As-
sume the system-detected and the goldstandard par-
ticipant clusters are Ts and Tg respectively. We de-
fine a correct participant as a system detected par-
ticipant with more than half of its associated men-
tions are included in a goldstandard participant (re-
ferred to as the hit participant). As a result, we
can define the participant-level precision and recall
as below:

participant-prec = #correct-participants/|Ts|
participant-recall = #hit-participants/|Tg|

Note that a correct participant may include incor-
rect mentions, and that more than one correct par-

Figure 3: Participant detection performance. The upper
figures represent the participant-level precision and re-
call scores; while the lower figures represent the mention-
level precision and recall. X-axis corresponds to the six
NBA games and the WWDC conference.

ticipants may correspond to the same hit participant,
both of which are undesired. In the latter case, we
use representative participant to refer to the cor-
rect participant which contains the most mentions
in the hit participant. In this way, we build a 1-
to-1 mapping from the detected participants to the
groundtruth participants. Next, we define correct
mentions as the union of the overlapping mentions
between all pairs of representative and hit partici-
pants. Then we calculate the mention-level precision
and recall as the number of correct mentions divided
by the total mentions in the system or goldstandard
participant clusters.

Figure 3 shows the participant- and mention-level
precision and recall scores. We experimented with
different similarity measures for the agglomerative
clustering approach13. The “global context” means
that the context vectors are created from the entire
data stream; this may not perform well since dif-
ferent participants can share similar global context.
E.g., the terms “shot”, “dunk”, “rebound” can ap-
pear in the context of any NBA players and are not

13The stopping threshold δ was set to 0.15, local context
length is 3 minutes, and frequency threshold ψ was set to 200.
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Participant-level Sub-event Detection Global Sub-event Detection
Event #P #S Spike MM #S Spike Participant + Spike Participant + MM

R P F R P F R P F R P F R P F

Lakers vs Okc 9 65 0.75 0.31 0.44 0.71 0.39 0.50 48 0.67 0.38 0.48 0.94 0.19 0.32 0.88 0.40 0.55
Celtics vs 76ers 10 88 0.52 0.39 0.45 0.53 0.43 0.47 60 0.65 0.51 0.57 0.72 0.18 0.29 0.78 0.39 0.52
Celtics vs Heat 14 152 0.53 0.29 0.37 0.50 0.38 0.43 67 0.57 0.41 0.48 0.97 0.21 0.35 0.91 0.28 0.43
Spurs vs Okc 12 98 0.78 0.46 0.58 0.84 0.57 0.68 81 0.41 0.42 0.41 0.88 0.35 0.50 0.91 0.54 0.68

Heat vs Okc (1) 15 123 0.75 0.27 0.40 0.72 0.35 0.47 85 0.41 0.47 0.44 0.94 0.20 0.33 0.96 0.34 0.50
Heat vs okc (2) 13 153 0.74 0.36 0.48 0.76 0.43 0.55 92 0.41 0.33 0.37 0.88 0.21 0.34 0.87 0.38 0.53

WWDC’12 10 56 0.64 0.14 0.23 0.59 0.33 0.42 43 0.53 0.26 0.35 0.77 0.14 0.24 0.70 0.31 0.43
Average 12 105 0.67 0.32 0.42 0.66 0.41 0.50 68 0.52 0.40 0.44 0.87 0.21 0.34 0.86 0.38 0.52

Table 4: Sub-event detection results on both participant and the event streams. “Spike” corresponds to the spike
detection algorithm proposed in (Marcus et al., 2011); “MM” represents our proposed time-content mixture model
approach. “#P” and “#S” list the number of participants and sub-events in each event stream.

discriminative enough. We found that adding the
lexical similarity measure greatly boosted the clus-
tering performance, especially on the mention-level,
and that combining the lexical similarity with the lo-
cal context is even more helpful for some events.
We notice that two events (celtics vs 76ers and
celtics vs heat) yield relatively low precision on both
participant- and mention-level. Taking a close look
at the data, we found that these two events acciden-
tally co-occurred with other popular events, namely
the TV program “American Idol” finale and the NBA
Draft. The keyword based data crawler thus includes
many noisy tweets in the event streams, leading to
some false participants being detected.

5.2 Sub-event Detection Results
We compare our proposed time-content mixture
model (noted as “MM”) against the spike detection
algorithm proposed in (Marcus et al., 2011) (noted
as “Spike”) . The spike algorithm is based on the
tweet volume change. It uses 10 seconds as a time
unit, calculates the tweet arrival rate in each unit,
and identifies the rates that are significantly higher
than the mean tweet rate. For these rate spikes, the
algorithm finds the local maximum of tweet rate and
identify a window surrounding the local maximum.
We tune the parameter of the “Spike” approach (set
τ = 4) so that it yields similar recall values as the
mixture model approach. We then apply the “MM”
and “Spike” approaches to both the participant and
event streams and evaluate the sub-event detection
performance. Results are shown in Table 4. A sys-
tem detected sub-event is considered to match the
goldstandard sub-event if its peak time is within a
2-minute window of the goldstandard.

We first apply the “Spike” and “MM” approach to

the participant streams. The participant streams on
which we cannot detect any meaningful sub-events
have been excluded, the resulting number of partic-
ipants are listed in Table 4 and denoted as “#P”.
In general, we found the “MM” approach can per-
form better since it inherently incorporates both the
“burstiness” and “lexical cohesiveness” of the event
tweets, while the “Spike” approach relies solely on
the “burstiness” property. Note that although we di-
vide the entire event stream into participant streams,
some key participants still own huge amount of dis-
cussion and the spike patterns are not always clearly
identifiable. The time-content mixture model gains
advantages in these cases.

We apply three settings to detect global sub-
events on the data streams. “Spike” directly ap-
plies the spike algorithm on the entire event stream;
the “Participant + Spike” and “Participant + MM”
approaches first perform sub-event detection on the
participant streams and then merge the detected sub-
events along the timeline to generate global sub-
events. Note that there are fewer goldstandard
sub-events (“#S”) on the global streams since each
global sub-event may correspond to one or multiple
participant-level sub-events. Because of the averag-
ing effect, spike patterns on the entire event stream
is less obvious than those on the participant streams.
As a result, few spikes have been detected on the
event stream using the “Spike” algorithm, which
leads to low recall as compared to other participant-
based approaches. It also indicates that, by dividing
the entire event stream into participant streams, we
have a better chance of identifying the sub-events
that have otherwise been shadowed by the domi-
nant sub-events or participants. The two participant-
based methods yield similar recall but “Participant
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+ Spike” yields slightly worse precision, since it is
very sensitive to the spikes on the participant-level,
leading to the rise of false alarms. The “Participant +
MM” approach is much better in precision, which is
consistent to our findings on the participant streams.

5.3 Summarization Results

Summarization evaluation has been a longstanding
issue in the literature (Nenkova and Mckeown, 2011;
Liu and Liu, 2010). There are even less studies fo-
cusing on evaluating the event summaries generated
from data streams. Since the summary annotation
takes quite some effort, we sample a 10-minute seg-
ment from each of the seven event streams and ask
a human annotator to select representative tweets
for each segment. We then compare the system
summaries against the manual summaries using the
ROUGE-1 (Lin, 2004) metric. The quantitative re-
sults and qualitative analysis are presented in Table 5
and Table 6 respectively. Note that the ROUGE
scores are based solely on the n-gram overlap be-
tween the system and reference summaries, which
may not be the most appropriate measure for eval-
uating the Twitter event summaries. However, we
do notice that the accurate sub-event detection per-
formance can successfully translate into a gain of
the ROUGE scores. Qualitatively, the participant-
based event summarization approach focus more on
extracting tweets associated with the targeted partic-
ipants, which could lead to better text coherence.

6 Conclusion and Future Work

In this work, we made an initial attempt to gen-
erate event summaries using Twitter data streams.
We proposed a participant-based event summariza-
tion approach which “zooms-in” the Twitter event
streams to the participant level, detects the impor-
tant sub-events associated with each participant us-
ing a novel mixture model that incorporates both the
“burstiness” and “cohesiveness” of tweets, and gen-
erates the event summaries progressively. Results
show that the proposed approach can effectively cap-
ture the sub-events that have otherwise been shad-
owed by the long-tail of other dominant sub-events,
yielding summaries with considerably better cover-
age. Without loss of generality, we report results
on the entire event streams, though the proposed ap-
proach can well be applied in an online fashion.

Event Method R(%) P(%) F(%)

NBA Average
Spike 14.73 23.24 16.87
Participant + Spike 54.60 14.65 22.40
Participant + MM 54.36 23.06 31.53

WWDC Conf.
Spike 26.58 39.62 31.82
Participant + Spike 49.37 25.16 33.33
Participant + MM 42.77 31.73 36.07

Table 5: ROUGE-1 scores of summarization

Method Summary

Manual

Good drive for durant
Pretty shot by Duncan
Good 3 point tony parker
Nice move westbrook
Good shot Westbrook

Spike
Game 3. Spurs vs. OKC
Okc and spurs game.

Participant
+ Spike

OKLAHOMA CITY THUNDER vs san antonio
spurs!! YA
I hope okc win the series. Ill hate too see the heat
play San Antonio
we aint in San Antonio anymore.
NBA: SA 0 OKC 8, 9:11 1st.#TeamOkc
San antonio spurs for 21 consecutive win? #nba
Somebody Should Stop Tim Duncan.
Pass the damn ball Westbrook
Good 3 pointer tony parker!

Participant
+ MM

Tim Duncan shot is so precise
Tim Duncan is gettin started
Good 3 pointer tony parker!
Sefalosa guarding tony parker. Good fucking move
coach brooks
Westbrook = 2 Fast 2 Furious
Niggas steady letting Tim Duncan shoot
Westbrook mid range shot is automatic

Table 6: Example summaries for an event segment. Par-
ticipants are marked using italicized text.

There are many challenges left in this line of re-
search. Having a standardized evaluation metric for
event summaries is one of them. In the current work,
we employed ROUGE-1 for summary evaluation,
since it has been shown to correlate well with the hu-
man judgements on noisy text genres (Liu and Liu,
2010). We would like to explore other evaluation
metrics (e.g., ROUGE-2, -SU4, Pyramid (Nenkova
et al., 2007)) and the human evaluation in future.
We will also explore better ways of integrating the
sub-event detection and summarization approaches.
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Abstract

This paper presents G-FLOW, a novel system
for coherent extractive multi-document sum-
marization (MDS).1 Where previous work on
MDS considered sentence selection and or-
dering separately, G-FLOW introduces a joint
model for selection and ordering that balances
coherence and salience. G-FLOW’s core rep-
resentation is a graph that approximates the
discourse relations across sentences based on
indicators including discourse cues, deverbal
nouns, co-reference, and more. This graph en-
ables G-FLOW to estimate the coherence of a
candidate summary.

We evaluate G-FLOW on Mechanical Turk,
and find that it generates dramatically bet-
ter summaries than an extractive summarizer
based on a pipeline of state-of-the-art sentence
selection and reordering components, under-
scoring the value of our joint model.

1 Introduction

The goal of multi-document summarization (MDS)
is to produce high quality summaries of collections
of related documents. Most previous work in ex-
tractive MDS has studied the problems of sentence
selection (e.g., (Radev, 2004; Haghighi and Vander-
wende, 2009)) and sentence ordering (e.g., (Lapata,
2003; Barzilay and Lapata, 2008)) separately, but
we believe that a joint model is necessary to produce
coherent summaries. The intuition is simple: if the
sentences in a summary are first selected—without
regard to coherence—then a satisfactory ordering of
the selected sentences may not exist.

1System and data at http://knowitall.cs.washington.edu/gflow/

doc1: Bomb-
ing in
Jerusalem

doc1: Anger
from Israelis

doc1: Suspen-
sion of peace
accord due to
bombing

doc2: Hamas
claims respon-
sibility

doc5: Pales-
tinians con-
demn attack

doc4: Mubarak
urges peace
accord

doc5: Pales-
tinians urge
peace accord

doc3: Clinton
urges peace
accord

Figure 1: An example of a discourse graph covering a
bombing and its aftermath, indicating the source docu-
ment for each node. A coherent summary should begin
with the bombing and then describe the reactions. Sen-
tences are abbreviated for compactness.

An extractive summary is a subset of the sen-
tences in the input documents, ordered in some
way.2 Of course, most possible summaries are in-
coherent. Now, consider a directed graph where the
nodes are sentences in the collection, and each edge
represents a pairwise ordering constraint necessary
for a coherent summary (see Figure 1 for a sample
graph). By definition, any coherent summary must
obey the constraints in this graph.

Previous work has constructed similar graphs au-
tomatically for single document summarization and
manually for MDS (see Section 2). Our system,
G-FLOW extends this research in two important
ways. First, it tackles automatic graph construction
for MDS, which requires novel methods for identi-
fying inter-document edges (Section 3). It uses this

2We focus exclusively on extractive summaries, so we drop
the word “extractive” henceforth.
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State-of-the-art MDS system G-FLOW

• The attack took place Tuesday near Cailaco in East Timor, a
former Portuguese colony, according to a statement issued by the
pro-independence Christian Democratic Union of East Timor.
• The United Nations does not recognize Indonesian claims to East
Timor.

• In a decision welcomed as a landmark by Portugal, European Union
leaders Saturday backed calls for a referendum to decide the fate of East
Timor, the former Portuguese colony occupied by Indonesia since 1975.
• Indonesia invaded East Timor in 1975 and annexed it the following
year.

• Bhichai Rattakul, deputy prime minister and president of the
Bangkok Asian Games Organizing Committee, asked the Foreign
Ministry to urge the Saudi government to reconsider withdrawing
its 105-strong team.
• The games will be a success.

• Thailand won host rights for the quadrennial games in 1995, but
setbacks in preparations led officials of the Olympic Council of Asia late
last year to threaten to move the games to another country.
• Thailand showed its nearly complete facilities for the Asian Games to
a tough jury Thursday - the heads of the organizing committees from the
43 nations competing in the December event.

Table 1: Pairs of sentences produced by a pipeline of a state-of-the-art sentence extractor (Lin and Bilmes, 2011) and
sentence orderer (Li et al., 2011a), and by G-FLOW.

graph to estimate coherence of a candidate summary.
Second, G-FLOW introduces a novel methodology
for joint sentence selection and ordering (Section 4).
It casts MDS as a constraint optimization problem
where salience and coherence are soft constraints,
and redundancy and summary length are hard con-
straints. Because this optimization problem is NP-
hard, G-FLOW uses local search to approximate it.

We report on a Mechanical Turk evaluation that
directly compares G-FLOW to state-of-the-art MDS
systems. Using DUC’04 as our test set, we com-
pare G-FLOW against a combination of an extractive
summarization system with state-of-the-art ROUGE
scores (Lin and Bilmes, 2011) followed by a state-
of-the-art sentence reordering scheme (Li et al.,
2011a). We also compare G-FLOW to a combina-
tion of an extractive system with state-of-the-art co-
herence scores (Nobata and Sekine, 2004) followed
by the reordering system. In both cases participants
substantially preferred G-FLOW. Participants chose
G-FLOW 54% of the time when compared to Lin,
and chose Lin’s system 22% of the time. When com-
pared to Nobata, participants chose G-FLOW 60%
of the time, and chose Nobata only 20% of the time.
The remainder of the cases were judged equivalent.

A further analysis shows that G-FLOW’s sum-
maries are judged superior along several dimensions
suggested in the DUC’04 evaluation (including co-
herence, repetitive text, and referents). A compar-
ison against manually written, gold standard sum-
maries, reveals that while the gold standard sum-
maries are preferred in direct comparisons, G-FLOW

has nearly equivalent scores on almost all dimen-
sions suggested in the DUC’04 evaluation.

The paper makes the following contributions:

• We present G-FLOW, a novel MDS system that

jointly solves the sentence selection and order-
ing problems to produce coherent summaries.
• G-FLOW automatically constructs a domain-

independent graph of ordering constraints over
sentences in a document collection, based on
syntactic cues and redundancy across docu-
ments. This graph is the backbone for estimat-
ing the coherence of a summary.

• We perform human evaluation on blind test
sets and find that G-FLOW dramatically outper-
forms state-of-the-art MDS systems.

2 Related Work

Most existing research in multi-document summa-
rization (MDS) focuses on sentence selection for in-
creasing coverage and does not consider coherence
of the summary (Section 2.1). Although coherence
has been used in ordering of summary sentences
(Section 2.2), this work is limited by the quality of
summary sentences given as input. In contrast, G-
FLOW incorporates coherence in both selection and
ordering of summary sentences.

G-FLOW can be seen as an instance of discourse-
driven summarization (Section 2.3). There is prior
work in this area, but primarily for summarization of
single documents. There is some preliminary work
on the use of manually-created discourse models in
MDS. Our approach is fully automated.

2.1 Subset Selection in MDS
Most extractive summarization research aims to in-
crease the coverage of concepts and entities while
reducing redundancy. Approaches include the use of
maximum marginal relevance (Carbonell and Gold-
stein, 1998), centroid-based summarization (Sag-
gion and Gaizauskas, 2004; Radev et al., 2004), cov-
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ering weighted scores of concepts (Takamura and
Okumura, 2009; Qazvinian et al., 2010), formula-
tion as minimum dominating set problem (Shen and
Li, 2010), and use of submodularity in sentence se-
lection (Lin and Bilmes, 2011). Graph centrality has
also been used to estimate the salience of a sentence
(Erkan and Radev, 2004). Approaches to content
analysis include generative topic models (Haghighi
and Vanderwende, 2009; Celikyilmaz and Hakkani-
Tur, 2010; Li et al., 2011b), and discriminative mod-
els (Aker et al., 2010).

These approaches do not consider coherence as
one of the desiderata in sentence selection. More-
over, they do not attempt to organize the selected
sentences into an intelligible summary. They are
often evaluted by ROUGE (Lin, 2004), which is
coherence-insensitive. In practice, these approaches
often result in incoherent summaries.

2.2 Sentence Reordering

A parallel thread of research has investigated taking
a set of summary sentences as input and reordering
them to make the summary fluent. Various algo-
rithms use some combination of topic-relatedness,
chronology, precedence, succession, and entity co-
herence for reordering sentences (Barzilay et al.,
2001; Okazaki et al., 2004; Barzilay and Lapata,
2008; Bollegala et al., 2010). Recent work has also
used event-based models (Zhang et al., 2010) and
context analysis (Li et al., 2011a).

The hypothesis in this research is that a pipelined
combination of subset selection and reordering will
produce high-quality summaries. Unfortunately,
this is not true in practice, because sentences are se-
lected primarily for coverage without regard to co-
herence. This methodology often leads to an inad-
vertent selection of a set of disconnected sentences,
which cannot be put together in a coherent sum-
mary, irrespective of how the succeeding algorithm
reorders them. In our evaluation, reordering had lim-
ited impact on the quality of the summaries.

2.3 Coherence Models and Summarization

Research on discourse analysis of documents pro-
vides a basis for modeling coherence in a docu-
ment. Several theories have been developed for
modeling discourse, e.g., Centering Theory, Rhetor-
ical Structure Theory (RST), Penn Discourse Tree-

Bank (Grosz and Sidner, 1986; Mann and Thomp-
son, 1988; Wolf and Gibson, 2005; Prasad et al.,
2008). Numerous discourse-guided summariza-
tion algorithms have been developed (Marcu, 1997;
Mani, 2001; Taboada and Mann, 2006; Barzilay and
Elhadad, 1997; Louis et al., 2010). However, these
approaches have been applied to single document
summarization and not to MDS.

Discourse models have seen some application to
summary generation in MDS, for example, using a
detailed semantic representation of the source texts
(McKeown and Radev, 1995; Radev and McKe-
own, 1998). A multi-document extension of RST
is Cross-document Structure Theory (CST), which
has been applied to MDS (Zhang et al., 2002; Jorge
and Pardo, 2010). However, these systems require
a stronger input, such as a manual CST-annotation
of the set of documents. Our work can be seen as
an instance of summarization based on lightweight
CST. However, a key difference is that our proposed
algorithm is completely automated and does not re-
quire any additional human annotation. Addition-
ally, while incorporating coherence into selection,
this work does not attempt to order the sentences
coherently, while our approach performs joint selec-
tion and ordering.

Discourse models have also been used for evalu-
ating summary quality (Barzilay and Lapata, 2008;
Louis and Nenkova, 2009; Pitler et al., 2010). Fi-
nally, there is work on generating coherent sum-
maries in specific domains, such as scientific articles
(Saggion and Lapalme, 2002; Abu-Jbara and Radev,
2011) using domain-specific cues like citations. In
contrast, our work generates summaries without any
domain-specific knowledge. Other research has fo-
cused on identifying coherent threads of documents
rather than sentences (Shahaf and Guestrin, 2010).

3 Discourse Graph

As described in Section 1, our goal is to identify
pairwise ordering constraints over a set of input sen-
tences. These constraints specify a multi-document
discourse graph, which is used by G-FLOW to eval-
uate the coherence of a candidate summary.

In this graph G, each vertex is a sentence and an
edge from si to sj indicates that sj can be placed
right after si in a coherent summary. In other words,
the two share a discourse relationship. In the fol-
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lowing three sentences (from possibly different doc-
uments) there should be an edge from s1 to s2, but
not between s3 and the other sentences:
s1 Militants attacked a market in Jerusalem.
s2 Arafat condemned the bombing.
s3 The Wye River Accord was signed in Oct.
Discourse theories have proposed a variety of re-

lationships between sentences such as background
and interpretation. RST has 17 such relations (Mann
and Thompson, 1988) and PDTB has 16 (Prasad et
al., 2008). While we seek to identify pairs of sen-
tences that have a relationship, we do not attempt to
label the edges with the exact relation.

We use textual cues from the discourse literature
in combination with the redundancy inherent in re-
lated documents to generate edges. Because this
methodology is noisy, the graph used by G-FLOW is
an approximation, which we refer to as an approx-
imate discourse graph (ADG). We first describe the
construction of this graph, and then discuss the use
of the graph for summary generation (Section 4).

3.1 Deverbal Noun Reference

Often, the main description of an event is mentioned
in a verbal phrase and subsequent references use
deverbal nouns (nominalization of verbs) (e.g., ‘at-
tacked’ and ‘the attack’). In this example, the noun
is derivationally related to the verb, but that is not al-
ways the case. For example, ‘bombing’ in s2 above
refers to ‘attacked’ in s1.

We identify verb-noun pairs with this relationship
as follows. First, we locate a set of candidate pairs
from WordNet: for each verb v, we determine po-
tential noun references n using a path length of up to
two in WordNet (moving from verb to noun is pos-
sible via WordNet’s ‘derivationally related’ links).

This set captures verb-noun pairs such as (‘to at-
tack’, ‘bombing’), but also includes generic pairs
such as (‘to act’, ‘attack’). To filter such errors
we score the candidate references. Our goal is to
emphasize common pairs and to deemphasize pairs
with common verbs or verbs that map to many
nouns. To this end, we score pairs by (c/p) ∗ (c/q),
where c is the number of times the pair (v, n) ap-
pears in adjacent sentences, p is the number of times
the verb appears, and q is the number of times that
v appears with a different noun. We generate these
statistics over a background corpus of 60,000 arti-

cles from the New York Times and Reuters, and
filter out candidate pairs scoring below a threshold
identified over a small training set.

We construct edges in the ADG between pairs of
sentences containing these verb to noun mappings.
To our knowledge, we are the first to use deverbal
nouns for summarization.

3.2 Event/Entity Continuation

Our second indicator is related to lexical chains
(Barzilay and Lapata, 2008). We add an edge in
the ADG from a sentence si to sj if they contain
the same event or entity and the timestamp of si is
less than or equal to the timestamp of sj (timestamps
generated with (Chang and Manning, 2012)).

3.3 Discourse Markers

We use 36 explicit discourse markers (e.g., ‘but’,
‘however’, ‘moreover’) to identify edges between
two adjacent sentences of a document (Marcu and
Echihabi, 2002). This indicator lets us learn an edge
from s4 to s5 below:
s4 Arafat condemned the bombing.
s5 However, Netanyahu suspended peace talks.

3.4 Inferred Edges

We exploit the redundancy of information in MDS
documents to infer edges to related sentences. An
edge (s, s′′) can be inferred if there is an existing
edge (s, s′) and s′ and s′′ express similar informa-
tion. As an example, the edge (s6, s7) can be in-
ferred based on edge (s4, s5):
s6 Arafat condemned the attack.
s7 Netanyahu has suspended the talks.
To infer edges we need an algorithm to identify

sentences expressing similar information. To iden-
tify these pairs, we extract Open Information Extrac-
tion (Banko et al., 2007) relational tuples for each
sentence, and we mark any pair of sentences with
an equivalent relational tuple as redundant (see Sec-
tion 4.3). The inferred edges allow us to propagate
within-document discourse information to sentences
from other documents.

3.5 Co-referent Mentions

A sentence sj will not be clearly understood in iso-
lation and may need another sentence si in its con-
text, if sj has a general reference (e.g., ‘the presi-

1166



dent’) pointing to a specific entity or event in si (e.g.,
‘President Bill Clinton’). We construct edges based
on coreference mentions, as predicted by Stanford’s
coreference system (Lee et al., 2011). We are able
to identify syntactic edge (s8, s9):
s8 Pres. Clinton expressed sympathy for Israel.
s9 He said the attack should not derail the deal.

3.6 Edge Weights

We weight each edge in the ADG by adding the
number of distinct indicators used to construct that
edge – if sentences s and s′ have an edge because
of a discourse marker and a deverbal reference, the
edge weight wG(s, s′) will be two. We also include
negative edges in the ADG. wG(s, s′) is negative if
s′ contains a deverbal noun reference, a discourse
marker, or a co-reference mention that is not fulfilled
by s. For example, if s′ contains a discourse marker,
and s is neither the sentence directly preceding s′

and there is no inferred discourse link between s and
s′, then we will add a negative edge wG(s, s′).

3.7 Preliminary Graph Evaluation

We evaluated the quality of the ADG used by G-
FLOW, which is important not only for its use in
MDS, but also because the ADG may be used for
other applications like topic tracking and decompos-
ing an event into sub-events. One author randomly
chose 750 edges and labeled an edge correct if the
pair of sentences did have a discourse relationship
between them and incorrect otherwise. 62% of the
edges accurately reflected a discourse relationship.
Our ADG has on average 31 edges per sentence for
a dataset in which each document cluster has on av-
erage 253 sentences. This evaluation includes only
the positive edges.

4 Summary Generation

We denote a candidate summary X to be a sequence
of sentences 〈x1, x2, . . . , x|X|〉. G-FLOW’s summa-
rization algorithm searches through the space of or-
dered summaries and scores each candidate sum-
mary along the dimensions of coherence (Section
4.1), salience (Section 4.2) and redundancy (Section
4.3). G-FLOW returns the summary that maximizes
a joint objective function (Section 4.4).

weight feature
-0.037 position in document
0.033 from first three sentences

-0.035 number of people mentions
0.111 contains money
0.038 sentence length > 20
0.137 length of sentence
0.109 #sentences verbs appear in (any form)
0.349 #sentences common nouns appear in
0.355 #sentences proper nouns appear in

Table 2: Linear regression features for salience.

4.1 Coherence
G-FLOW estimates coherence of a candidate sum-
mary via the ADG. We define coherence as the sum
of edge weights between successive summary sen-
tences. For disconnected sentence pairs, the edge
weight is zero.

Coh(X) =
∑

i=1..|X|−1

wG+(xi, xi+1) + λwG−(xi, xi+1)

wG+ represents positive edges and wG− represents
negative edge weights. λ is a tradeoff coefficient for
positive and negative weights, which is tuned using
the methodology described in Section 4.4.

4.2 Salience
Salience is the inherent value of each sentence to
the documents. We compute salience of a summary
(Sal(X)) as the sum of the saliences of individual
sentences (

∑
i Sal(xi)).

To estimate salience of a sentence, G-FLOW uses
a linear regression classifier trained on ROUGE
scores over the DUC’03 dataset. The classifier uses
surface features designed to identify sentences that
cover important concepts. The complete list of fea-
tures and learned weights is in Table 2. The clas-
sifier finds a sentence more salient if it mentions
nouns or verbs that are present in more sentences
across the documents. The highest ranked features
are the last three – number of other sentences that
mention a noun or a verb in the given sentence. We
use the same procedure as in deverbal nouns for de-
tecting verb mentions that appear as nouns in other
sentences (Section 3.1).

4.3 Redundancy
We also wish to avoid redundancy. G-FLOW first
processes each sentence with a state-of-the-art Open
Information extractor OLLIE (Mausam et al., 2012),
which converts a sentence into its component re-
lational tuples of the form (arg1, relational phrase,
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arg2).3 For example, it finds (Militants, bombed, a
marketplace) as a tuple from sentence s12.

Two sentences will express redundant information
if they both contain the same or synonymous com-
ponent fact(s). Unfortunately, detecting synonymy
even at relational tuple level is very hard. G-FLOW

approximates this synonymy by considering two re-
lational tuples synonymous if the relation phrases
contain verbs that are synonyms of each other, have
at least one synonymous argument, and are times-
tamped within a day of each other. Because the in-
put documents cover related events, these relatively
weak rules provide good performance. The same
algorithm is used for inferring edges for the ADG
(Section 3.4). This algorithm can detect that the fol-
lowing sentences express redundant information:
s12 Militants bombed a marketplace in Jerusalem.
s13 He alerted Arafat after assailants attacked the

busy streets of Mahane Yehuda.

4.4 Objective Function

The objective function needs to balance coherence,
salience and redundancy and also honor the given
budget, i.e., maximum summary lengthB. G-FLOW

treats redundancy and budget as hard constraints and
coherence and salience as soft. Coherence is neces-
sarily soft as the graph is approximate. While previ-
ous MDS systems specifically maximized coverage,
in preliminary experiments on a development set, we
found that adding a coverage term did not improve
G-FLOW’s performance. We optimize:

maximize: F (x) , Sal(X) + αCoh(X)− β|X|
s.t.

∑
i=1..|X| len(xi) < B

∀xi, xj ∈ X : redundant(xi, xj) = 0

Here len refers to the sentence length. We add |X|
term (the number of sentences in the summary) to
avoid picking many short sentences, which may in-
crease coherence and salience scores at the cost of
overall summary quality.

The parameters α, β and λ (see Section 4.1) are
tuned automatically using a grid search over a de-
velopment set as follows. We manually generate ex-
tractive summaries for each document cluster in our
development set (DUC’03) and choose the parame-
ter setting that minimizes |F (XG-FLOW) − F (X∗)|

3Available from http://ollie.cs.washington.edu

summed over all document clusters. F is the objec-
tive function, XG-FLOW is the summary produced by
G-FLOW and X∗ is the manual summary.

This constraint optimization problem is NP hard,
which can be shown by using a reduction of the
longest path problem. For this reason, G-FLOW uses
local search to reach an approximation of the opti-
mum. G-FLOW employs stochastic hill climbing
with random restarts as the base search algorithm.
At each step, the search either adds a sentence, re-
moves a sentence, replaces a sentence by another, or
reorders a pair of sentences. The initial summary for
random restarts is constructed as follows. We first
pick the highest salience sentence with no incoming
negative edges as the first sentence. The following
sentences are probabilistically added one at a time
based on the summary score up to that sentence. The
initial summary is complete when there are no possi-
ble sentences left to fit within the budget. Intuitively,
this heuristic chooses a good starting point by se-
lecting a first sentence that does not rely on context
and subsequent sentences that build a high scoring
summary. As with all local search algorithms, this
algorithm is highly scalable and can easily apply to
large collections of related documents, but does not
guarantee global optima.

5 Experiments

Because summaries are intended for human con-
sumption we focused on human evaluations. We
hired workers on Amazon Mechanical Turk (AMT)
to evaluate the summaries. Our evaluation addresses
the following questions: (1) how do G-FLOW sum-
maries compare against the state-of-the-art in MDS
(Section 5.2)? (2) what is G-FLOW’s performance
along important summarization dimensions such as
coherence and redundancy (Section 5.3)? (3) how
does G-FLOW perform on coverage as measured
by ROUGE (Section 5.3.1)? (4) how much do the
components of G-FLOW’s objective function con-
tribute to performance (Section 5.4)? (5) how do G-
FLOW’s summaries compare to human summaries?

5.1 Data and Systems
We evaluated the systems on the Task 2 DUC’04
multi-document summarization dataset. This dataset
consists of 50 clusters of related documents, each of
which contains 10 documents. Each cluster of doc-
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uments also includes four gold standard summaries
used for evaluation. As in the DUC’04 competition,
we allowed 665 bytes for each summary including
spaces and punctuation. We used DUC’03 as our
development set, which contains 30 document clus-
ters, again with approximately 10 documents each.

We compared G-FLOW against four systems. The
first is a recent MDS extractive summarizer, which
we choose for its state-of-the-art ROUGE scores
(Lin and Bilmes, 2011).4 The second is a pipeline
of Lin’s system followed by a reimplementation of
a state-of-the-art sentence reordering system (Li et
al., 2011a). We refer to these systems as LIN and
LIN-LI, respectively. This second baseline allows
us to quantify the advantage of using coherence as a
factor in both sentence extraction and ordering.

We also compare against the system that had the
highest coherence ratings at DUC’04 (Nobata and
Sekine, 2004), which we refer to as NOBATA. As
this system did not preform sentence ordering on its
output, we also compare against a pipeline of No-
bata’s system and the sentence reordering system.
We refer to this system as NOBATA-LI.

Lastly, to evaluate how well the system performs
against human generated summaries, we compare
against the gold standard summaries provided by
DUC.

5.2 Overall Summary Quality

Following (Haghighi and Vanderwende, 2009) and
(Celikyilmaz and Hakkani-Tur, 2010), to compare
overall summary quality, we asked AMT workers
to compare two candidate system summaries. The
workers first read a gold standard summary, fol-
lowed by the two system summaries, and were then
asked to choose the better summary from the pair.
The system summaries were shown in a random or-
der to remove any bias.

To ensure that workers provided high quality data
we added two quality checks. First, we restricted
to workers who have an overall approval rating of
over 95% on AMT. Second, we asked the workers
to briefly describe the main events of the summary.
We manually filtered out work where this descrip-
tion was incorrect.

4We thank Lin and Bilmes for providing us with their code.
Unfortunately, we were unable to obtain other recent MDS sys-
tems from their authors.

Six workers compared each pair of summaries.
We recorded the scores for each cluster, and report
three numbers: the percentages of clusters where a
system is more often preferred over the other and the
percentage where the two systems are tied. G-FLOW

is preferred almost three times as often as LIN:
G-FLOW Indifferent LIN

56% 24% 20%

Next, we compared G-FLOW and LIN-LI. Sen-
tence reordering improves performance, but G-
FLOW is still overwhelmingly preferred:

G-FLOW Indifferent LIN-LI

54% 24% 22%

These results suggest that incorporating coher-
ence in sentence extraction adds significant value to
a summarization system. In these experiments, LIN

and LIN-LI are preferred in some cases. We an-
alyzed those summaries more carefully, and found
that occasionally, G-FLOW will sacrifice a small
amount of coverage for coherence, resulting in lower
performance in those cases (see Section 5.3.1).

We also compared LIN and LIN-LI, and found
that reordering does not improve performance by
much.

LIN-LI Indifferent LIN

32% 38% 30%

While the scores presented above represent com-
parisons between G-FLOW and a summarization
system with state-of-the-art ROUGE scores, we
also compared against a summarization system with
state-of-the-art coherence scores – the system with
the highest coherence scores from DUC’04, (No-
bata and Sekine, 2004). We found that G-FLOW was
again preferred:

G-FLOW Indifferent NOBATA

68% 10% 22%

Adding in sentence ordering again improved the
scores for the comparison system somewhat:

G-FLOW Indifferent NOBATA-LI

60% 20% 20%

While these scores show a significant improve-
ment over previous sytems, they do not convey how
well G-FLOW compares to the gold standard – man-
ually generated summaries. As a final experiment,
we compared G-FLOW and a second, manually gen-
erated summary:
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G-FLOW Indifferent Gold
14% 18% 68%

While we were pleased that in 32% of the cases,
Turkers either preferred G-FLOW or were indiffer-
ent, there is clearly a lot of room for improvement
despite the gains reported over previous sytems.

5.3 Comparison along Summary Dimensions

A high quality summary needs to be good along sev-
eral dimensions. We asked AMT workers to rate
summaries using the quality questions enumerated
in DUC’04 evaluation scheme.5 These questions
concern: (1) coherence, (2) useless, confusing, or
repetitive text, (3) redundancy, (4) nouns, pronouns,
and personal names that are not well-specified (5)
entities rementioned in an overly explicit way, (6)
ungrammatical sentences, and (7) formatting errors.

We evaluated G-FLOW LIN-LI and NOBATA-LI

against the gold standard summaries, using the same
AMT scheme as in the previous section. To assess
automated performance with respect to the standards
set by human summaries, we also evaluated a (dif-
ferent) gold standard summary for each document
cluster, using the same Mechanical Turk scheme as
in the previous section. The 50 summaries produced
by each system were evaluated by four workers. The
results are shown in Figure 2.

G-FLOW was rated significantly better than LIN-
LI in all categories except ‘Redundancy’ and signif-
icant better than NOBATA-LI on ‘Coherence’ and
‘Referents’. The ratings for ‘Coherence’, ‘Refer-
ents’, and ‘OverlyExplicit’ are not surprising given
G-FLOW’s focus on coherence. The results for
‘UselessText’ may also be due to G-FLOW’s focus
on coherence which ideally prevents it from getting
off topic. Lastly, G-FLOW may perform better on
‘Grammatical’ and ‘Formatting’ because it tends to
choose longer sentences than other systems, which
are less likely to be sentence segmentation errors.
There may also be some bleeding from one dimen-
sion to the other – if a worker likes one summary she
may score it highly for many dimensions.

Finally, somewhat surprisingly, we find G-
FLOW’s performance to be nearly that of human
summaries. G-FLOW is rated statistically signifi-
cantly lower than the gold summaries on only ‘Re-

5http://duc.nist.gov/duc2004/quality.questions.txt

System R F
NOBATA 30.44 34.36

Best system in DUC-04 38.28 37.94
Takamura and Okumura (2009) 38.50 -

LIN 39.35 38.90
G-FLOW 37.33 37.43

Gold Standard Summaries 40.03 40.03

Table 3: ROUGE-1 recall and F-measure results (%) on
DUC-04. Some values are missing because not all sys-
tems reported both F-measure and recall.

dundancy’. Given the results from the previous sec-
tion, G-FLOW is likely performing worse on cate-
gories not conveyed in these scores, such as Cover-
age, which we examine next.

5.3.1 Coverage Evaluation using ROUGE
Most recent research has focused on the ROUGE

evaluation, and thus implicitly on coverage of in-
formation in a summary. To estimate the coverage
of G-FLOW, we compared the systems on ROUGE
(Lin, 2004). We calculated ROUGE-1 scores for
G-FLOW, LIN, and NOBATA.6 As sentence order-
ing does not matter for ROUGE, we do not include
LIN-LI or NOBATA-LI in this evaluation. Because
our algorithm does not explicitly maximize coverage
while LIN does, we expected G-FLOW to perform
slightly worse than LIN.

The ROUGE-1 scores for G-FLOW, LIN, NO-
BATA and other recent MDS systems are listed in Ta-
ble 3. We also include the ROUGE-1 scores for the
gold summaries (compared to the other gold sum-
maries). G-FLOW has slightly lower scores than
LIN and the gold standard summaries, but much
higher scores than NOBATA. G-FLOW only scores
significantly lower than LIN and the gold standard
summaries.

We can conclude that good summaries have both
the characteristics listed in the quality dimensions,
and good coverage. The gold standard summaries
outperform G-FLOW on both ROUGE scores and
the quality dimension scores, and therefore, out-
perform G-FLOW on overall comparison. How-
ever, G-FLOW is preferred to LIN-LI in addition to
NOBATA-LI indicating that its quality scores out-
weigh its ROUGE scores in that comparison. An
improvement to G-FLOW may focus on increasing

6ROUGE version 1.5.5 with options: -a -c 95 -b 665 -m -n
4 -w 1.2
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Figure 2: Ratings for the systems. 0 is the lowest possible score and 4 is the highest possible score. G-FLOW is rated
significantly higher than LIN-LI on all categories, except for ‘Redundancy’, and significantly higher than NOBATA-LI
on ‘Coherence’ and ‘Referents’. G-FLOW is only significantly lower than the gold standard on ‘Redundancy’.

coverage while retaining strengths such as coher-
ence.

5.4 Ablation Experiments

In this ablation study, we evaluated the contribution
of the main components of G-FLOW – coherence
and salience. The details of the experiments are the
same as in the experiment described in Section 5.2.

We first measured the importance of coherence in
summary generation. This system G-FLOW-SAL is
identical to the full system except that it does not
include the coherence term in the objective function
(see Section 4.4). The results show that coherence is
very important to G-FLOW’s performance:

G-FLOW Indifferent G-FLOW-SAL

54% 26% 20%

Similarly, we evaluated the contribution of
salience. This system G-FLOW-COH does not in-
clude the salience term in the objective function:

G-FLOW Indifferent G-FLOW-COH

60% 20% 20%

Without salience, the system produces readable,
but highly irrelevant summaries.

5.5 Agreement of Expert & AMT Workers

Because summary evaluation is a relatively complex
task, we compared AMT workers’ annotations with
expert annotations from DUC’04. We randomly
selected ten summaries from each of the seven
DUC’04 annotators, and asked four Turk workers
to annotate them on the DUC’04 quality questions.
For each DUC’04 annotator, we selected all pairs
of summaries where one summary was judged more
than one point better than the other summary. We

compared whether the workers (voting as in Sec-
tion 5.2) likewise judged that summary better than
the second summary. We found that the annotations
agreed in 75% of cases. When we looked only at
pairs more than two points different, the agreement
was 80%. Thus, given the subjective nature of the
task, we feel reasonably confident that the AMT an-
notations are informative, and that the dramatic pref-
erence of G-FLOW over the baseline systems is due
to a substantial improvement in its summaries.

6 Conclusion

In this paper, we present G-FLOW, a multi-
document summarization system aimed at generat-
ing coherent summaries. While previous MDS sys-
tems have focused primarily on salience and cov-
erage but not coherence, G-FLOW generates an or-
dered summary by jointly optimizing coherence and
salience. G-FLOW estimates coherence by using
an approximate discourse graph, where each node
is a sentence from the input documents and each
edge represents a discourse relationship between
two sentences. Manual evaluations demonstrate that
G-FLOW generates substantially better summaries
than a pipeline of state-of-the-art sentence selec-
tion and reordering components. ROUGE scores,
which measure summary coverage, show that G-
FLOW sacrifices a small amount of coverage for
overall readability and coherence. Comparisons to
gold standard summaries show that G-FLOW must
improve in coverage to equal the quality of manu-
ally written summaries. We believe this research has
applications to other areas of summarization such as
update summarization and query based summariza-
tion, and we are interested in investigating these top-
ics in future work.
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thesis, Núcleo Interinstitucional de Lingüı́stica
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Abstract

We introduce a novel algorithm for generat-
ing referring expressions, informed by human
and computer vision and designed to refer to
visible objects. Our method separates abso-
lute properties like color from relative proper-
ties like size to stochastically generate a di-
verse set of outputs. Expressions generated
using this method are often overspecified and
may be underspecified, akin to expressions
produced by people. We call such expressions
identifying descriptions. The algorithm out-
performs the well-known Incremental Algo-
rithm (Dale and Reiter, 1995) and the Graph-
Based Algorithm (Krahmer et al., 2003; Vi-
ethen et al., 2008) across a variety of images
in two domains. We additionally motivate
an evaluation method for referring expression
generation that takes the proposed algorithm’s
non-determinism into account.

1 Introduction

Referring expression generation (REG) is the task
of generating an expression that can identify a ref-
erent to a listener. These expressions generally take
the form of a definite noun phrase such as “the large
orange plate” or “the furry running dog”. Research
in REG primarily focuses on the subtask of select-
ing a set of properties that may be used to construct
the final surface expression, e.g., 〈color:orange,
size:large, type:plate〉. This property selection task
is optimized to meet different goals: for example,
to be identical to those a person would generate in
the same situation, or to be unique to the intended
referent and no other item in the discourse.

We focus on the task of generating referring ex-
pressions for visible objects, specifically with the
goal of generating descriptive, human-like referring
expressions. We are motivated by the desire to con-
nect this algorithm to input from a computer vision
system, and discuss how this may work through-
out the paper. Computer vision (CV) does not yet
reliably provide features for some of the most fre-
quent properties that people use in visual descrip-
tion (in particular, size-based features), and so we
use a gold-standard visual input, evaluating purely
on REG. The proposed algorithm, which we call
the Visible Objects Algorithm, is designed to ap-
proximate human variation identifying an object in
a group of visible, real world objects.

Our primary contributions are the following.
Background for each issue is provided in Section 2:

1. An approach accounting for overspecification,
underspecification, and some of the known ef-
fects of vision on reference.

2. A function to approximate the stochastic nature
of reference. This reflects that people will pro-
duce different references to the same object.

3. A separation between absolute properties like
color, which may be detected directly by CV,
from relative properties like size and loca-
tion, which require reasoning over visual fea-
tures to determine an appropriate form (e.g.,
height/width and distance features between
pixels are available from a visual input; saying
an object is “tall” requires further reasoning).

4. An evaluation method for non-deterministic
REG that aligns generated and observed data
and calculates accuracy over alignments.
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2 Motivation & Overview

Most implemented algorithms for referring expres-
sion generation focus on unique identification of a
referent, determining the set of properties that dis-
tinguish a particular target object from the other ob-
jects in the scene (the contrast set) (Dale, 1989; Re-
iter and Dale, 1992; Dale and Reiter, 1995; Krahmer
et al., 2003; Areces et al., 2008). This view of refer-
ence was first outlined by Olson (1970), “the spec-
ification of an intended referent relative to a set of
alternatives”. A substantial body of evidence now
shows that contrastive value relative to alternatives
is not the only factor motivating speakers’ property
choices, specifically in visual domains. The phe-
nomena of overspecification and redundancy, where
speakers select properties that have little or no con-
trastive value, was observed in early developmen-
tal studies in visual domains (Ford and Olson, 1975;
Whitehurst, 1976; Sonnenschein, 1985) as well as
later studies on adult speakers in visual domains
(Pechmann, 1989; Engelhardt et al., 2006; Koolen et
al., 2011). The related phenomenon of underspecifi-
cation, where speakers select a set of properties that
do not linguistically specify the referent, has also re-
ceived some attention, particularly in visual domains
(Clark et al., 1983; Kelleher et al., 2005).

These findings make sense in light of visual ev-
idence that some properties “pop out” in the scene
(Treisman and Gelade, 1980), and speakers may be-
gin referring before scanning the full set of scene ob-
jects (Pechmann, 1989), selecting those properties
that are salient for them (Horton and Keysar, 1996;
Bard et al., 2009) without spending a great amount
of cognitive effort considering the perception of a
hearer (Keysar and Henly, 2002).

We take this evidence to suggest an approach for
a visual reference algorithm that generates natural,
human-like reference by generating visual proper-
ties that are salient for a speaker.1 We can under-
stand what is salient visually (what does the visual
system first respond to, what guides attention?), lin-
guistically (what do people tend to mention in visual
scenes?), and cognitively, which we will not have
room to discuss in this paper (what is atypical for

1We can also add functionality to ensure that a referent is
uniquely identified against the contrast set (whether or not that
reflects what a person would do), which we will describe.

Figure 1: Relative properties, like size and location, are
difficult to obtain from a two-dimensional image. We find
it easy to perceive the background object as larger than
the one in the front; but they are technically the same size
in the image (from Murray et al. (2006)).

this object?); as well as in terms of broader notions
of salience, e.g., discourse salience (Krahmer and
Theune, 2002).

This suggests a paradigm shift in the generation
task when referring to visible objects, if the goal is
to produce human-like reference. In particular, this
suggests moving from selecting properties that rule
out other scene objects to selecting properties that
are salient for the speaker (visually, conversation-
ally, based on previous experiences, etc.). This mir-
rors related research on the tradeoff between audi-
ence design and egocentrism in language production
(Clark and Murphy, 1982; Horton and Keysar, 1996;
Bard et al., 2009; Gann and Barr, 2013). Under-
and overspecification naturally fall out from such an
approach, with no need to specifically model either
phenomenon.

Perhaps unsurprisingly, the set of properties that
are visually salient and the set of properties that are
linguistically salient largely overlap. Color is the
first property our visual system processes, followed
soon after by size (Murray et al., 2006; Fang et al.,
2008; Schwarzkopf et al., 2010); and people tend
to use color (Pechmann, 1989; Viethen et al., 2012)
and size when identifying objects, with size com-
mon when there is another object of the same type
in the scene (Brown-Schmidt and Tanenhaus, 2006).

Following this, our algorithm gives a privileged
position to these properties, processing them first.
Using computer vision techniques to determine an
object’s color works reasonably well (Berg et al.,
2011), and the relevant visual features for this task
may be useful in future work to return several pos-
sible color labels that capture differences in lexical
choice (cf. Reiter and Sripada (2002)).

Detecting size does not work well (Forsyth,
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2011); and when it does, it will likely not take the
form supposed in recent generation work. Most
REG algorithms use a predefined single-featured
value, such as “big”; however, given an image-based
input, obtaining such a value requires (1) determin-
ing how the object is situated in a three-dimensional
space, difficult to obtain from a two-dimensional im-
age (see Figure 1); and (2) determining what the
value should be: object detectors currently can pro-
vide the height and width of the location where an
object is likely to exist (its bounding box), as well as
the x- and y-axis locations of the pixels within the
object detection; but a value from these features like
“big”, “tall”, or “long” requires further reasoning.
As such, we incorporate the top-performing size al-
gorithm introduced in Mitchell et al. (2011), which
takes as input the height and widths of objects in the
image and outputs a size value or NONE, indicating
that size should not be used to describe the object.

In addition to color and size, location and orien-
tation begin to be processed early on in the visual
system (Treisman, 1985; Itti and Koch, 2001), with
our first perception of location corresponding to ba-
sic cues of where an object is relative to our focus
of attention. For an input image, this simple type of
location corresponds to surface forms such as, e.g.,
“on the right of the image” or “at the top of the im-
age”. Along with size, location and orientation make
up the three primary relative properties that we aim
to generate language for.

After the simple forms for color, size, location,
and orientation properties are processed, our visual
system feeds forward to two parallel pathways, the
so-called “what” and “where” pathways (Ungerlei-
der and Mishkin, 1982), which process properties
with growing complexity. The “what” pathway in-
cludes absolute properties like shape and material,
which computer vision has had some success de-
tecting (Ferrari and Zisserman, 2007; Farhadi et al.,
2009) while the “where” pathway corresponds to
more complex spatial orientation and location infor-
mation, such as where objects are relative to one an-
other and which way they are facing.

To begin connecting this process to the genera-
tion of human-like descriptions of visible objects,
we start with the following simplification: Color and
size have a privileged status, the first properties pro-
cessed. These are followed by the relative properties

Figure 2: Initial model for generating visual reference.

of location and orientation, which may feed forward
to more complex location and orientation properties
in one pathway; and absolute properties following
color, like material and shape, which may be pro-
cessed in another pathway.

This gives us the basic model for generating ref-
erence to visible objects shown in Figure 2. To gen-
erate reference in this model, nodes correspond to
general visual attributes and may generate forms for
visual properties (attribute:value pairs). That is, a
property such as color:red is generated from the at-
tribute node color and a property such as size:tall is
generated from the attribute node size. We are lim-
ited by existing REG corpora in which properties we
can evaluate; in this paper, we examine the effect of
the independent selection of color and size, followed
by location and orientation.2

Generating human-like expressions in this setting
begins to be possible by adopting recent propos-
als that REG handle speaker variation (Viethen and
Dale, 2010) and the non-deterministic nature of ref-
erence (van Gompel et al., 2012; van Deemter et
al., 2012b). We can capture such variation simply
by estimating αatt, the likelihood that an attribute
att generates a corresponding visual property. Dur-
ing generation, the algorithm passes through each at-
tribute node, and uses this estimate to stochastically
add each property to the output property set.

Such a non-deterministic process means that the
algorithm will not return the same output every time,
which offers new challenges for evaluation. If we
run the algorithm 1,000 times, we have a distribu-
tion over several possible output property sets. From
this we can obtain the majority set and check if it
matches the majority observed set. Similarly, we can

2We have also built an algorithm and corpus with more com-
plex properties in order to tease out further details of visual ref-
erence, but must leave these details for follow up work; for now,
we focus on the properties common to REG corpora.
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run the algorithm for as many instances as we have
in our test data, and see how well the property sets
it produces aligns to the observed property sets. We
discuss evaluation using both methods in Section 6.

3 The State of the Art in REG

3.1 Algorithms

In order to understand how this approach compares
to the state of the art in REG, we evaluate against
two of the most well-known algorithms, the Incre-
mental Algorithm (Dale and Reiter, 1995) and the
Graph-Based Algorithm (Krahmer et. al, 2003, as
implemented in Viethen et al., 2008). Details on
these algorithms are available in their corresponding
papers. As a brief summary, both algorithms formal-
ize the objects in the discourse as a set of properties
(attribute:value pairs). For example, one object may
be represented as 〈type:box, color:red, size:large〉.
The task is to find the set of properties that uniquely
specify the referent. This is known as a content se-
lection problem, and the set of properties chosen by
the algorithm is called a distinguishing description.

The Incremental Algorithm (IA) proceeds by it-
erating through attributes in a predefined order (a
preference order), and for each attribute, it checks
whether specifying a value would rule out at least
one item in the contrast set that has not already been
ruled out. If it will, the attribute:value is added to
the distinguishing description. This process contin-
ues until all contrast items (distractors) are ruled out
or all available properties have been checked. We
use the implementation of the IA available from the
NLTK (Bird et al., 2009).3

In the Graph-Based Algorithm (GB), the objects
in the discourse are represented within a labeled di-
rected graph, and content selection is a subgraph
construction problem. Each object is represented as
a vertex, with properties for an object represented as
self-edges on the object vertex, and spatial relations
between objects represented as edges between ver-
tices. The algorithm seeks to find the cheapest sub-
graph, calculated from the edge costs. We use the
implementation available from Viethen et al. (2008),
which adds a preference order to decide between
edges with the same cost during search. This has

3https://github.com/nltk/nltk contrib/blob/master/
nltk contrib/referring.py retrieved 1.Aug.2012.

been one of the best-performing systems in recent
generation challenges (Gatt and Belz, 2008; Gatt et
al., 2009).

An important commonality between these algo-
rithms, and much of the work on REG that they
have influenced, is the focus on unique identifica-
tion and operating deterministically. Both produce
one property set (and only one), and stop once a tar-
get item has been uniquely identified (or else fail).
Their driving goal is to rule out distractor objects.

In the approach introduced here, the algorithm
produces a distribution over several possible out-
puts, and the initial driving mechanism is based on
likelihood estimates for each attribute independent
of the other objects in the scene, rather than ruling
out all distractors. This offers a way to capture some
aspects of human-like reference, including under-
and overspecification and speaker variation. Due to
the fundamentally different objective of this algo-
rithm, we will call the kind of expression it generates
an identifying description, following Searle (1969).
This is a description that the system finds (1) useful
to describe the referent and (2) true of the referent.

4 The Algorithm

The Visible Objects Algorithm iterates through lists
of visible attributes, stochastically adding properties
to the property set it will generate. After this initial
search, the algorithm then scans through the objects
in the scene, roughly corresponding to how people
scan a scene when referring (Pechmann, 1989). The
target referent type, corresponding to the head noun
in the final generated description, is added to the
property set at the end of the algorithm.

We represent the basic components of the algo-
rithm graphically in Figure 3. Full code is available
online.4 After START, the algorithm proceeds in par-
allel through a list of absolute attributes and a list
of relative attributes. The likelihood of generating a
property is a function of the prior likelihood αatt and
γ, a penalty on the length of the constructed prop-
erty set up to that point. This ensures that only a few
properties are generated for a referent, and the ex-
pression will not be too complex. This is also in line
with recent research suggesting that there are rarely
more than three adjectives in a visual noun phrase

4https://github.com/itallow/VisibleObjectsAlgorithm.
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(Berg et al., 2011). Once the algorithm hits END,
it scans through the objects in the scene. If it finds
an object that is the same type as the referent object,
the algorithm checks through the attributes again in
a preference order akin to the IA, comparing the ob-
ject’s properties against the referent’s and generating
properties as a function of the length penalty alone.
If the algorithm does not find an object that it is the
same type, no further properties are added.

4.1 Requirements
The algorithm requires the following:

1. Prior likelihood estimates on the inclusion of
different attributes. Represented as αatt.

2. Ordered list of absolute attributes beyond color.
Represented as AP.

3. Ordered list of relative attributes beyond size.
Represented as RP.

4. Ordered list of all attributes. Represented as P.

5. Ordered list specifying the order in which to
scan through other scene objects. The current
implementation uses the order in which the ob-
jects are listed in the corpora it is run on.

(1) is similar to the cost functions for GB, but
attributes are selected non-deterministically using
prior likelihoods. (2), (3), and (4) are similar to
the IA’s and GB’s preference order. For our eval-
uation corpora, AP is empty and RP contains loca-
tion and orientation. (5) is novel to this algorithm,
defining an order in which to compare the target ob-
ject against other objects in the scene. This is in-
spired by the process of incremental speech produc-
tion (Pechmann, 1989), where speakers scan objects
during naming, incrementally producing properties.

4.2 The Stochastic Process
Generally speaking, we want to penalize longer de-
scriptions and encourage the attributes that we know
people are likely to use. We can encourage a likely
attribute by using its prior likelihood as an estimate
of whether to include it. We can penalize longer de-
scriptions with a penalty proportional to the length
of the property set under construction. In other
words, given a prior likelihood estimate for includ-
ing an attribute att, αatt, and the property set con-
structed so farA, we compute whether to add a prop-

a. b.

TUNA corpus GRE3D3 corpus
Figure 4: Example scenes from corpora.

erty for att toA as a function of αatt and the length-
based penalty γ:

f(A ∪ {x}) = γαatt
where

γ =

{
1

λ|A| if |A| > 0

1 otherwise

and λ is an empirically determined weight. The
algorithm then chooses a random number n, 0 ≤
n ≤ 1. If n < f(A ∪ {x}), it adds the property.

4.3 Scanning Through Objects

After the initial pass through the properties, the al-
gorithm compares each object in the scene that is
the same type as the target. If the values for an
attribute are different, then the corresponding prop-
erty is added to the property set based on the length
penalty alone; when the goal is unique identification,
the algorithm can use no penalty. In development,
we found that incrementally scanning through ob-
jects after initially adding properties resulted in bet-
ter performance than an algorithm that did not con-
tain this step.

4.4 Worked Example

Suppose the input in Figure 6 (visualized in Figure
4a), with the goal of referring to obj1 by producing
a property set A. First, the algorithm scans through
color and size in parallel. For color, it finds the cor-
responding value grey; with a computer vision in-
put, this would be possible using the object pixels
as features. There is no length penalty at this point
(|A|=0), so it adds the property color:grey to A with
likelihood αcolor. For our evaluation domains, αcolor
is around .90 across folds, and so a color property is
usually added.

For size, the algorithm finds an appropriate value
using the Size Algorithm from Mitchell et al. (2011).
The Size Algorithm uses the average height and

1178



Figure 3: Basic model for generating visual reference.

width of all objects that are the same type as the ref-
erent object; in this case, obj2, obj3, obj4. This re-
turns a size value large, and so the property size:large
is added toAwith likelihood αsize (around .40 to .70
across folds, depending on the domain).

The most likely property set at this point is sim-
ply 〈color:grey〉. The next most likely is 〈color:grey,
size:large〉, then 〈size:large〉. There are no fur-
ther absolute properties in this example, but there
are values for the relative attributes loc (location)
and ori (orientation). Assuming RP=〈location,
orientation〉, the algorithm first analyzes location,
then orientation. A location property is added to A
with likelihood αloc multiplied by the length penalty
γ= 1

(λ×1) if A=〈color:grey〉; γ= 1
(λ×2) if A=〈color:grey,

size:large〉, etc.; and an orientation property is added
to A with likelihood αori multiplied by the length
penalty γ= 1

(λ×1) if the property set is 〈color:grey〉,
etc. At this point, the likelihood of adding further
properties quickly diminishes.

Once all properties have been analyzed, the algo-
rithm scans through the objects in the scene. For
each object obj2. . . objn, if the object is the same
type as the target object obj1, then any different
property of the target referent is added to A with
a likelihood based on the length penalty alone γ.
〈type:desk〉 is added at the end.

For this example scene, the algorithm will gen-
erate the property sets 〈color:grey, type:desk〉,
〈color:grey, size:large, type:desk〉, 〈size:large,
type:desk〉, 〈color:grey, ori:front, type:desk〉,
〈color:grey, loc:(3, 1), type:desk〉, etc., with dif-
ferent frequencies. Due to the length penalty,
generated property sets will almost never have more
than 3 properties.

tg color:yellow size:(63,63) type:ball loc:right-hand
lm color:red size:(345,345) type:cube loc:right-hand
obj3 color:yellow size:(70,70) type:cube loc:left-hand

Figure 5: Example input scene: GRE3D3 corpus. For IA
And GB, gold-standard size values are provided rather
than measurements (small, large).

obj1 colour:grey size:(454,454) type:desk loc:(3,1) ori:front
obj2 colour:blue size:(454,454) type:desk loc:(2,1) ori:front
obj3 colour:red size:(454,454) type:desk loc:(3,2) ori:back
obj4 colour:green size:(254,254) type:desk loc:(4,1) ori:left
obj5 colour:blue size:(454,454) type:fan loc:(1,1) ori:front
obj6 colour:red size:(454,454) type:fan loc:(5,1) ori:back
obj7 colour:green size:(254,254) type:fan loc:(2,2) ori:left

Figure 6: Example input scene: TUNA corpus. For IA
And GB, gold-standard size values are provided rather
than measurements (small, large).

As such, although 〈color:grey, type:desk〉 would
sufficiently distinguish the intended referent, we
instead produce a variety of sets, overspecify-
ing in some instances (e.g., 〈color:grey, ori:front,
type:desk〉), and with a small chance of underspec-
ifying in others (e.g., 〈size:large, type:desk〉).

5 Evaluation Algorithms & Corpora
5.1 Corpora
We evaluate on two well-known REG corpora, the
GRE3D3 corpus (Viethen and Dale, 2008) and the
singular furniture section of the TUNA corpus (van
Deemter et al., 2006). Both corpora contain expres-
sions elicited to computer-generated objects, and so
provide a reasonable starting point for evaluating
reference to visible objects. For all algorithms, we
evaluate on the selection of referent attributes. Lex-
ical choice and word order are not taken into ac-
count. Example images from GRE3D3 and TUNA
are shown in Figure 4, and example algorithm input
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from these corpora are shown in Figures 5 and 6.
In GRE3D3, we evaluate on the selection of type,

color, size, and location, but leave aside proper-
ties of relatum objects, which are not currently ad-
dressed by this algorithm or the IA. In TUNA, we
evaluate on the selection of type, color, size and
orientation.5

5.2 Algorithms

5.2.1 The Incremental Algorithm
The Incremental Algorithm requires a preference

order list (PO) specifying the order to iterate through
scene attributes. We determine the preference or-
der from corpus frequencies using cross-validation
to hold out a test scene and list attributes from the
training scenes in descending order. We find that
color precedes size in the preference orders, in line
with recent research showing that this allows the al-
gorithm to perform optimally on the TUNA corpus
(van Deemter et al., 2012a). In development, we find
that IA performs best with type as the last attribute
in the PO, and report on numbers with this approach.

5.2.2 The Graph-Based Algorithm
The version of the Graph-Based Algorithm that

we use is available from Viethen et al. (2008). This
algorithm requires (1) a set of cost functions for each
edge, and (2) a PO for deciding between properties
in the case of a tie. For (1), we use the method from
Theune et al. (2011) to assign two costs (0, 1) to
the edges. We first determine the relative frequency
with which each property is mentioned for a target
object, and then create costs for each property using
k-means clustering (k=2) in the Weka toolkit (Hall
et al., 2009). We refer interested readers to the The-
une et al. paper for further details. For (2), we follow
the same method as for the Incremental Algorithm.

5.2.3 The Visual Objects Algorithm
The proposed algorithm requires αatt, which we

estimate as the relative frequency of each attribute
att in the training data. The ordered attribute lists for
the algorithm (AP, RP and P) are built in the same
way as the preference order list for the IA and GB,
listing attributes from the training data in order of

5We remove location from evaluation in this corpus. Lo-
cation is not annotated directly, but split such that only x-
dimension or y-dimension may be marked for a reference.

descending frequency. For these corpora, there are
not absolute properties beyond color, so AP is empty.

6 Evaluation

Previous evaluation of REG algorithms have used
measurements such as Uniqueness, Minimality,
Dice (Belz and Gatt, 2008), and Accuracy (Gatt et
al., 2009; Reiter and Belz, 2009). Uniqueness is
the proportion of outputs that identify the referent
uniquely, and Minimality is the proportion of out-
puts that are both minimal and unique. As our goal
is to mimic human reference, these metrics are not
as useful for the evaluations as the others.

The Dice metric provides a value for the similar-
ity between a generated description and a human-
produced description, and therefore serves as a rea-
sonable objective measure for how human-like the
produced sets are. Given the generated property set
(DS) and the human-produced property set (DH ),
Dice is calculated as:

2× |DS ∩DH |
|DS |+ |DH |

For each input domain, we evaluate over boolean
values (included or excluded) for the attributes D
(see Table 1). Note that this means the specific val-
ues for the attributes are not compared. In this for-
mulation based on boolean values, |DS |=|DH |=|D|
and Dice reduces to:

|DS ∩DH |
|D|

Calculating Dice over the same number of at-
tributes for both the observed and generated data
has the nice mathematical property of making Dice
equal to other common metrics for evaluating a
model, including Accuracy, Precision, and Recall.6

Since the proposed algorithm is stochastic, this in-
troduces a problem in using a metric that compares
single expressions. We therefore seek to find the
best alignment between the set of expressions pro-
duced by the algorithm and the set of expressions
produced by people. We formulate this alignment as
an assignment problem weighted by Dice. For the
corpus of observed property sets H and the corpus
of generated property sets S, we find the best align-

6A false positive is a false negative, and there are no true
negatives, so all four metrics are equivalent.

1180



Example Corresponding Evaluated
Expression Property Set Property Set
the red ball 〈color:red, type:ball〉 type:1 color:1

size:0 loc:0

Table 1: Example human expression and corresponding
boolean-valued property set for evaluation in GRE3D3,
with D={type, color, size, and location}.

ment x out of all possible alignmentsX between the
corpora:

arg maxx∈X
∑

(S,H)∈x

Dice(DS , DH )

This may be solved in polynomial time using the
Hungarian method (Kuhn, 1955; Munkres, 1957).
Note that because IA and GB are deterministic, find-
ing an optimal alignment is trivial. We call this
method ALIGNED DICE.

It is an open question whether an alignment-based
evaluation is fair: the proposed algorithm has more
than one chance to match the human descriptions.
In the second evaluation method (MAJORITY) we
address this issue, comparing how often the most
frequent generated set compares with the most fre-
quent observed set. We run the proposed algorithm
1,000 times, and the generated property sets are or-
dered by frequency. The most frequent generated
set is compared against the most frequent human-
produced set. The majority score is the percentage
of folds where these two sets match. For IA and FB,
the most frequent generated set is the only gener-
ated set. This is a simple way to fairly compare the
output of deterministic and non-deterministic algo-
rithms. There are no ties in the generated sets, but
in the case of a tie in the observed data, we count a
match if any match the most frequent generated set.

6.1 GRE3D3

We randomly select two scenes (7, 9) from Set 1
and their mirrored counterparts in Set 2 (17, 19) for
development. We empirically determine λ=5 for the
length-based penalty γ in the proposed algorithm.

We use the eight remaining scenes in each Set
for eight-fold cross-validation, estimating parame-
ters for the algorithms on the seven training scenes
in each fold, as discussed in Section 5.2.

For ALIGNED DICE, we run the proposed algo-
rithm five times in each fold and report the average

Algorithm ALIGNED DICE MAJORITY
Set 1 Set 2 Set 1 Set 2

Proposed Alg. 88.23 90.06 62.50 50.00
IA 87.71 85.13 62.50 25.00
GB 87.71 88.73 62.50 50.00

Table 2: GRE3D3: Results (in %).

Algorithm ALIGNED DICE MAJORITY
+LOC -LOC +LOC -LOC

Proposed Alg. 88.75 86.07 40.00 40.00
IA 81.79 81.55 0.00 100.00
GB 75.36 66.04 20.00 20.00

Table 3: TUNA: Results (in %).

score. Results are shown in Table 2.7

The proposed Visible Objects Algorithm achieves
higher accuracy than either version of the Incremen-
tal Algorithm or the Graph-Based Algorithm using
ALIGNED DICE. In MAJORITY, the Graph-Based
and the Visible Objects Algorithm both predict the
majority property set in this evaluation at least 50%
of the time. The algorithm is competitive with the
state of the art on this corpus.

6.2 TUNA

TUNA is split into two conditions: subjects discour-
aged to use location (-LOC) or not (+LOC). We ran-
domly hold out two scenes from both conditions (1
and 2), and find a value of λ=5 again works well on
the development data.

As in the GRE3D3 corpus, we use the TUNA
scenes in five-fold cross-validation, estimating pa-
rameters on the four training scenes in each fold. For
ALIGNED DICE, we average over five runs of the al-
gorithm, and for MAJORITY, we run the proposed
algorithm 1,000 times for each test scene.

Results are shown in Table 3. Again we see that
the proposed Visible Objects Algorithm is compet-
itive with the IA and GB for both ALIGNED DICE

and MAJORITY. GB performs poorly here, and this
may be due to the data sparsity issue that arises when
requiring the algorithm to train on properties.8 In

7We do not report statistical significance; the proposed algo-
rithm produces several possible outputs for one input, while the
IA and GB produce only one.

8The original property-based weighting approach (Theune
et al., 2011; Koolen et al., 2012, see Section 5.2) trained on ob-
ject collections that were identical to their test data in all proper-
ties except x- and y-dimension, and so this was less of an issue.
We hope to explore whether basing weights on attributes alone
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MAJORITY, the Visible Objects Algorithm is rela-
tively stable across conditions, generating the ma-
jority property set in 40% of the test scenes. It does
not outperform the IA in the -LOC condition, but the
IA has a large range across the two conditions (0%
and 100%).

7 Conclusions and Future Work

We have introduced a new algorithm for generating
referring expressions, inspired by human and com-
puter vision and aiming to refer in a human-like way
to visible objects. The algorithm successfully gener-
ates the most common attributes that people choose
for different objects, and offers a varied output to
capture speaker variation. In contrast to most algo-
rithms for the generation of referring expressions,
which have aimed to produce distinguishing descrip-
tions when these exist (Krahmer and van Deemter,
2012), the core idea behind this algorithm is to gen-
erate what is likely for a speaker in a visual domain.
Since the driving mechanism behind the algorithm
is not to uniquely identify the object, but rather to
pipeline the analysis of properties in a way similar
to human visual processing, the generated expres-
sion may be overspecified or underspecified.

We are limited by available REG corpora to re-
liably assess methods for generating more com-
plex absolute properties like shape and material, but
adding such properties would help advance the gen-
eration of human-like reference in visual scenes and
offers further points of connection between the gen-
eration process and computer vision property detec-
tion. Models for generating more complex spatial
relations are currently available, and are a natural
extension to this framework (e.g., those of Kelleher
and Costello (2009)) as object detection becomes
more robust.

We may also be able to build more sophisticated
graphical models as larger corpora become avail-
able. For example, modeling the conditional proba-
bility of generating reference for a property vn given
the previously generated context p(vn|v1 . . . vn−1)
may bring us closer to human-like output.

There are several additional issues that do not
arise in this evaluation, but we expect must be ac-
counted for when referring to naturalistic objects in

improves performance.

visual domains. These include:

• The interconnected nature of properties, where
some properties entail others; for example, a
wooden object is likely to be called wooden, re-
ferring to its material, rather than tan or brown.
• The role of typicality, where properties are se-

lected because they are atypical for the object.
• Referring to more complex properties, e.g., ma-

terial, texture, etc., and object parts.
• Better methods for determining the length

penalty and attribute likelihoods.

We hope to discuss extensions to this algorithm
covering these aspects of reference in future work.
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Abstract

We describe a supervised approach to predict-
ing the set of all inflected forms of a lexical
item. Our system automatically acquires the
orthographic transformation rules of morpho-
logical paradigms from labeled examples, and
then learns the contexts in which those trans-
formations apply using a discriminative se-
quence model. Because our approach is com-
pletely data-driven and the model is trained
on examples extracted from Wiktionary, our
method can extend to new languages without
change. Our end-to-end system is able to pre-
dict complete paradigms with 86.1% accuracy
and individual inflected forms with 94.9% ac-
curacy, averaged across three languages and
two parts of speech.

1 Introduction

For natural languages with rich morphology, knowl-
edge of how to inflect base forms is critical for both
text generation and analysis. Hand-engineered, rule-
based methods for predicting inflections can offer
extremely high accuracy, but they are laborious to
construct and do not exist with full lexical cover-
age in all languages. By contrast, a large number
of example inflections are freely available in a semi-
structured format on the Web. The English Wik-
tionary1 is a crowd-sourced lexical resource that in-
cludes complete inflection tables for many lexical
items in many languages. We present a supervised

∗Research conducted during an internship at Google.
1http://en.wiktionary.org

system that, given only data from Wiktionary, au-
tomatically discovers and learns to apply the ortho-
graphic transformations governing a language’s in-
flectional morphology.2

Our data-driven approach is designed to extend to
any language for which we have a substantial num-
ber of example inflection tables. The design of our
model is guided by three structural assumptions:

1. The inflections of many lexical items are
governed by a few repeated morphological
paradigms.

2. A morphological paradigm can be decom-
posed into independent orthographic transfor-
mation rules (including prefix, suffix, and stem
changes), which are triggered by orthographic
context.

3. A base form is transformed in consistent, cor-
related ways to produce its inflected variants.

Learning proceeds in two stages that both utilize
the same training set of labeled inflection tables.
First, an inventory of interpretable transformation
rules is generated by aligning each base form to all
of its inflected forms. Second, a semi-Markov con-
ditional random field (CRF) (Sarawagi and Cohen,
2004) is trained to apply these rules correctly to un-
seen base forms. As we demonstrate experimentally,
the CRF is most effective when jointly predicting all
inflected forms of a lexical item together, forcing the
system to adopt a single consistent analysis of each
base form.

2See http://eecs.berkeley.edu/~gdurrett for
our datasets and code.
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Previous work has also described supervised and
semi-supervised approaches to predicting inflec-
tional morphology (Yarowsky and Wicentowski,
2000; Wicentowski, 2004; Dreyer and Eisner, 2011).
Our approach differs primarily in its use of auto-
matically extracted morphological rules and our dis-
criminative prediction method which jointly mod-
els entire inflection tables. These modeling choices
are directly inspired by the data setting: Wiktionary
contains complete inflection tables for many lexical
items in each of a large number of languages, so it
is natural to make full use of this information with a
joint model of all inflected forms.

We evaluate our predictions on held-out Wik-
tionary inflection tables for three languages and two
parts of speech. Our language-independent method
predicts inflections for unseen base forms with ac-
curacies ranging from 88.9% (German nouns) to
99.7% (Spanish verbs). For comparability with pre-
vious work, we also evaluate our approach on Ger-
man verb forms in the CELEX lexical database
(Baayen et al., 1995). Our approach outperforms
the semi-supervised hierarchical Bayesian model of
Dreyer and Eisner (2011), while employing scal-
able exact inference and interpretable transforma-
tion rules.

2 Background: Inflectional Morphology

Among the valid words W and parts of speech P
in a language, the base forms B ⊂ W × P are the
canonical forms of the language’s lexical items. A
base form relates to an inflected form via an inflec-
tional relation (b, w, a), where b ∈ B is a base form,
w ∈ W is the inflected form, and a is a vector of
morphological attributes. An inflection table T (b) is
the set of all such relations for a base form b.

Two partial inflection tables are shown in Table 1,
for the base forms (infinitives) of the German verbs
machen and schleichen, containing such inflec-
tional relations as (machen, mache, [1P,PRES,SING])
and (machen, gemacht, [PAST PART.]). Only a
small sample of the valid attribute combinations are
shown; a full inflection table for a German verb in
our Wiktionary dataset contains 27 relations.

The goal of this paper is to learn how to map b
to T (b). We generate candidate inflection tables by
applying compact, interpretable orthographic trans-

INFINITIVE machen schleichen
1P,PRES,SING mache schleiche
2P,PRES,SING machst schleichst
3P,PRES,SING macht schleicht

PAST PART. gemacht geschlichen
... ... ...

Table 1: Two partial inflection tables for the German
verbs machen (to make) and schleichen (to crawl).

formation rules that have been extracted from ex-
ample tables. As an example of our rule applica-
tion process, to inflect machen appropriately in the
forms listed in Table 1, one could apply the follow-
ing rules:

1. Replace a suffix -en with -e for first person, -st
for second person, -t for third person, and -t for
the past participle.

2. Add a prefix ge- for the past participle.

To inflect schleichen, one could apply a larger set of
three rules:

1. Replace a suffix -en with -e for first person, -st
for second person, -t for third person, and -en
for the past participle.

2. Add a prefix ge- for the past participle.

3. Delete the first e for the past participle.

The inflection tables of other German verbs can be
generated using precisely the same rules above, and
different inflection patterns may share rules, such as
the repeated rule 2. This example illustrates one of
our chief assumptions, that the inflections of many
base forms can be modeled with a small number of
such rules, applied in various combinations.

3 Learning Transformation Rules

From a training set of inflection tables
{T (b1), ..., T (bn)}, our system learns a set of
orthographic transformation rules. A rule is a func-
tion R : s, a→ s′ that takes as input a substring s of
a base form and an attribute vector a and outputs a
replacement substring s′. The suffix transformation
from Section 2 for machen can be described using a
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Algorithm 1 Learning rules from examples.
Input: n training instances T (b1), . . . , T (bn)
Rule setR ← {}
for i← 1 to n do

Changed source spans C ← {}
for all a ∈ A do
Ca ← PROJECTSPANS(ALIGN(bi, Ta(bi)))
C ← UNIONSPANS(C,Ca)

end for
for all c ∈ C do
R ← R∪ {EXTRACTRULE(c)}

end for
end for
return R

rule with four entries:

R(en, [1P,PRES,SING]) = e

R(en, [2P,PRES,SING]) = st

R(en, [3P,PRES,SING]) = t

R(en, [PAST PART.]) = t

Our method for learning rules from examples is
described in Algorithm 1 and depicted in Figure 1.
We extract rules from each observed inflection table
T (bi) independently, and the final set of rules is sim-
ply the union of the sets of rules learned from each
example. The procedure for a single inflection table
has three steps:

Alignment: Align each inflected form to the base
form with an iterated edit-distance algorithm.

Span Merging: Extract the set of spans of the
base form that changed to produce the inflected
form, and take their union across all attribute vec-
tors to identify maximal changed spans.

Rule Extraction: Extract a rule for each maxi-
mal changed span.

Alignment. For each setting of attributes a, we
find the lowest-cost transformation of the base form
b into the corresponding inflected form Ta(b) using
single-character insertions, deletions, and substitu-
tions. This minimum edit distance calculation is
computed via the following recurrence, where i is
an index into the base form b and j is an index into

s c h l e i c h e  n

s c h l e i c h e

s c h l     i c h

g e s c h l     i c h e n

s c h l  e  i c h e n

s c h l e i c h e n

s c h l e i c h e

s c h l  i c h

g e s c h l  i c h e n
...

...

Alignment Span Merging

s c h l  e  i c h  e n

||||||||| D

||| ||||D D D
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Rule Extraction

...

s c h l

i c h

e n

es c h l
s c h l
s c h l

e

e e ni c h

g e
i c h
i c h

Figure 1: Demonstration of the rule extraction algorithm
with the base form schleichen and three inflected forms:
schleiche (first person singular present), schlich (first per-
son singular past), and geschlichen (past participle). We
ideally want to extract appropriate transformation rules
like those described in Section 2. In the alignment step,
we minimize the edit distance between each inflected
form and the base form to identify changed spans. In
the span merging step, we project changes onto the base
form and take the union of adjacent or overlapping spans.
In the rule extraction step, we project these spans back
onto the inflected forms to identify transformation rules.

an inflected form Ta(b):

L(i, j) = min{L(i, j − 1) + I,

L(i− 1, j) +D,

L(i− 1, j − 1) + S(i, j)}

I , D, and S are insertion, deletion, and substi-
tion costs, respectively. Tracing the computation of
L(len(b), len(Ta(b))) yields an optimal sequence of
edit operations. The alignments output by this pro-
cedure are depicted in the first panel of Figure 1.

The most typical cost scheme sets I = 1, D = 1,
and S(i, j) = (1 − I[match(i, j)]), i.e. 0 if the ith
character of b is the same as the jth character of
Ta(b), and 1 otherwise. However, this cost scheme
did not yield intuitive alignments for some of our
training instances. For example, in the case of the
verb denken aligning to its past participle gedacht,
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the initial d and g will be aligned and the follow-
ing e’s will be aligned, preventing the algorithm
from recognizing the addition of the prefix ge-. To
solve this problem, we use a dynamic edit distance
cost scheme in which I , D, and unmatched substi-
tutions all have a cost of 0. Matched substitutions
have a negative cost −ci, where i is the index in the
base form and ci is the number of other inflected
forms for which i is aligned to a matching char-
acter. The inflected forms are iteratively realigned
with the base form until the ci converge (Eisner,
2002; Oncina and Sebban, 2006). This cost scheme
encourages a single consistent analysis of the base
form as it aligns to all of its inflected forms.

Span Merging. From each aligned pair of words,
the PROJECTSPANS procedure identifies sequences
of character edit operations with contiguous spans of
the base form. We construct a set of changed spans
Ca of b as follows: include the span (i, j) if and
only if no characters between i and j were aligned
to matching characters in Ta(b) and no smaller span
captures the same set of changes. Projected spans
for the inflected forms of schleichen are shown in
the “Span Merging” panel of Figure 1.

The UNIONSPANS procedure combines two sets
of spans by iteratively merging any two spans that
are overlapping or adjacent. Repeating this proce-
dure to accumulate spans for each setting of a yields
the set C of maximal changed spans for a base form.
Any span inC is bordered either by word boundaries
or by characters that are match-aligned in every in-
flected form, meaning that we have isolated a region
characterized by a particular orthographic transfor-
mation.

Rule Extraction. The final step of Algorithm 1
extracts one rule for each maximal changed span of
the base form. The Rule Extraction panel of Figure 1
depicts how maximal changed spans in the base
form correspond to transformation rules. Because
UNIONSPANS guarantees that match-aligned char-
acters border each maximal changed span, there is
no ambiguity about the segmentation of transforma-
tions. The EXTRACTRULE procedure produces one
rule R(s, a) corresponding to each changed span.

Table 2 contains examples of the transformation
rules we extract from German verbs. The extracted

Attributes Suffix Stem Pre.
INFINITIVE en en en n e

1P,PRES,SING e e e e e
1P,PAST,SING te te te
2P,PRES,SING st t st st e
2P,PAST,SING test test st test
3P,PRES,SING t t t t e
3P,PAST,SING te te te

PAST PART. t t en t ge
... ... ... ... ... ... ...

Label Rsuf,1 Rsuf,2 Rsuf,3 Rsuf,4 Rst,1 Rpre,1

Table 2: Each column is an example of a morphological
transformation rule extracted by our approach. The first
four are suffix changes; these apply to, in order, regular
verbs such as machen, verbs ending in -zen or -sen such as
setzen, verbs such as schleichen and beheben, and verbs
ending in -ern or -eln such as sprenkeln. The stem change
occurs in strong verbs of the first class such as schleichen,
greifen, and streiten. Finally, we learn that ge- can be
added as a prefix to indicate the past participle.

rules are interpretable descriptions of common in-
flection patterns.

4 Applying Transformation Rules

For a novel base form b, the inventory of learned
transformation rules R = {R(s, a)} can typically
generate many candidate inflection tables T (b) for
us to choose between. A rule can potentially apply
to a base form in a number of places; we define an
anchored rule A = (R, i, j, b) to be the application
of R to a span (i, j) in b. A is only a valid anchoring
if the substring of b between i and j matches the
input of rule R.

Given a set A of non-overlapping anchored rules
for b, each entry of T (b) can be deterministically
produced by rewriting each anchored rule’s span
(i, j) using the ruleR. Therefore, the task of predict-
ing T (b) is equivalent to selecting a coherent subset
A of anchored rules from the set of all possible an-
chored rules for this base form. By coherent, we
mean that the selected rules are anchored to non-
overlapping, non-adjacent3 spans of b. Figure 2a
shows two coherent anchored rule subsets for schle-
ichen (the top one being correct). Underlining indi-

3During rule extraction, any adjacent changed spans are
merged into a single rule. Disallowing adjacent spans here
therefore prevents us from synthesizing new rules.
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cates length-one spans S = (i, i + 1, b) that are not
part of any anchored rule in A. We denote the set of
such spans by S(A); this set is uniquely defined for
the given base form by the selected anchored rules.

We use a log-linear model to place a conditional
distribution over valid anchored rule subsetsA given
the base form b:

pw(A|b) ∝ expwT

∑
A∈A

φ(A) +
∑

S∈S(A)

ψ(S)


where w is a weight vector, φ(A) computes a fea-
ture vector for anchored rule A, and ψ(S) computes
a feature vector for preserved spans S. We train
this model to maximize the regularized conditional
log-likelihood of the training data, which consists of
base forms bi and gold subsets of anchored rulesA∗i
derived using Algorithm 1 on the gold inflection ta-
bles.

L(w) =
n∑

i=1

log p(A∗i |bi) +
γ

2
‖w‖2.

We find w∗ = arg maxw L(w) using L-BFGS (Liu
and Nocedal, 1989), which requires computing ∂L

∂w .
This gradient takes the standard form of the differ-
ence between gold feature counts and expected fea-
ture counts under the model:

∂L

∂w
=

n∑
i=1

 ∑
A∈A∗i

φ(A) +
∑

S∈S(A∗i )

ψ(S)

 −
 ∑

A∈A(R,b)

Epwφ(A) +
∑

S∈S(b)

Epwψ(S)

− γw
where, by a slight abuse of notation, S(b) is the set
of all length-one spans of b.

In general, the normalizer of pw and the expec-
tation over pw cannot be computed directly, since
there may be exponentially many coherent subsets
of anchored rules. However, we note that A and
its corresponding S(A) form a segmentation of the
base form b, with features decomposing over indi-
vidual segments. Our model can therefore be viewed
a semi-Markov model over b (Sarawagi and Co-
hen, 2004); more precisely, a zeroth-order semi-
Markov model, since we do not include features on
state transitions. At training time, we can use the

s c h l e i c h e n
s c h l e i c h e n

a) b)

s c h l e i c h e n
Rpre,1

Rst,1

Rst,1

Rpre,1

Rst,1:l[e]

Rst,1:[e]i

Rsuf,3

S:c[h]

S:[h]e

�

�

 

 

Figure 2: a) Two possible anchored rule sets for schle-
ichen. The indicated rules are prefix, stem, and suffix
rules as found in Table 2. The top anchoring is correct,
while the bottom misplaces the stem change and does not
include a suffix change. Underlined letters indicate pre-
served spans S. b) Bigram context features computed by
φ(Rst,1), where the stem change is applied to the high-
lighted e, and similar features computed by ψ(S) for the
underlined h, which is unchanged by the applied rules.

forward-backward algorithm for semi-Markov mod-
els to compute the gradient of pw, and at test time,
the Viterbi algorithm can exactly find the best rule
subset under the model: Â = arg maxA pw(A|b).

Features. The feature function φ captures contex-
tual information in the base form surrounding the
site of the anchored rule application. It is well under-
stood that different morphological rules may require
examining different amounts of context to apply cor-
rectly (Kohonen, 1986; Torkkola, 1993; Shalonova
and Golénia, 2010); to this end, we will use local
character n-gram features, which have been success-
fully applied to related problems (Jiampojamarn et
al., 2008; Dinu et al., 2012).

A sketch of our feature computation scheme is
shown in Figure 2b. Our basic feature template is
an indicator on a character n-gram with some off-
set from the rule application site, conjoined with the
identity of the rule R being applied. Our features
look at variable amounts of context: we include fea-
tures on unigrams through 4-grams, starting up to
five letters behind the anchored rule span and end-
ing up to five letters past the anchored rule span.
These features can model most hand-coded morpho-
logical rules, but are in many cases more numerous
than necessary. However, we find that regularization
is effective at balancing high model capacity with
generalization, and reducing the size of the feature
set empirically harms overall accuracy.

We also employ factored features that only look at
predictions over particular inflected forms; these are
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coarser features that are shared between two rules
when they predict the same orthographic change for
a particular setting of attributes. These features are
indicators onRa (the restriction ofR to attributes a),
the context n-gram, and its offset from the span.

The feature function ψ is almost identical to φ,
but instead of indicating a rule appearing in some
context, it instead indicates that a particular length-
one span is being preserved in its n-gram context.
Examples of ψ features are shown in Figure 2b.

Pruning. Thus far, the only requirement on an an-
choring A is that the source side of its rule R must
match the span it is anchored to in the base form
b. We further filter the set of possible A as follows:
if every occurrence of R in the training set is pre-
ceded by the same character (including a start-of-
word character) or followed by the same character
(including an end-of-word character), any anchoring
A must be preceded or followed accordingly. This
stipulation is most useful in restricting prefixing or
suffixing insertions, which have an empty source
side, to apply only at the beginnings or ends of base
forms (rather than at arbitrary points throughout). In
doing so, we prune out many erroneous anchored
rules and speed up inference substantially without
prohibiting correct rule applications.

5 Wiktionary Morphology Data

Our primary source of supervised inflection table
data is English Wiktionary. The collective editors
of English Wiktionary have created complete, con-
sistent inflection tables for many lexical items in
many languages. Previous work has successfully
parsed other information from Wiktionary, such as
parts of speech, glosses, and etymology (Zesch et
al., 2008; Li et al., 2012); however, to our knowl-
edge, inflection tables have not previously been ex-
tracted in a format easily amenable to natural lan-
guage processing applications. These inflection ta-
bles are challenging to extract because the layout of
tables varies substantially by language (beyond the
expected changes due to differing sets of relevant
morphological attributes), and some tables contain
annotations in addition to word forms.

In order to extract this data, we built a Wiktionary
scraper which generates fully structured output by
interpreting the templates that generate the rendered

Lang/POS Base forms Infl. forms per base
DE-NOUNS 2764 8
DE-VERBS 2027 27
ES-VERBS 4055 57
FI-NOUNS 40589 28
FI-VERBS 7249 53

Table 3: Number of full morphology tables extracted
from Wiktionary for each language and part of speech
pair that we considered, as well as the number of inflected
forms associated with each base form.

inflection tables. Table 3 gives statistics for the num-
ber of base forms and inflected forms extracted from
Wikitionary. When multiple forms were listed in an
inflection table for the same base form and attribute
vector, we selected the first in linear order; applying
the same principle, we also kept only the first inflec-
tion table when more than one was listed for a given
base form. Furthermore, base forms and inflected
forms separated by spaces, hyphens, or colons were
discarded. As a result, we discarded German verb-
preposition compounds such as ablehnen4 and Span-
ish reflexives such as lavarse.

6 Experiments

We evaluate our model under two experimental con-
ditions. First, we use the German verb lexicon in
the CELEX lexical database (Baayen et al., 1995)
with the same train/test splits as Dreyer and Eisner
(2011). Second, we train on our Wiktionary data de-
scribed in Section 5 and evaluate on held-out forms
from this same dataset.

In each case, we evaluate two variants of our
model in order to examine the importance of jointly
modeling the production of the entire inflection ta-
ble. Our JOINT model is exactly as defined in Sec-
tion 4. For our FACTORED model, the dictionary of
rules is extracted separately for each setting of the
attributes a; i.e., we run the entire procedure in Sec-
tion 3 with only one inflected form at a time and
forego the UNIONSPANS step. A separate predic-
tion model is trained for each a and so features are
not shared across multiple predictions as they are in
the JOINT case. Note that this FACTORED approach

4This class of verbs was also ignored by Dreyer and Eisner
(2011).
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No. of training examples
50 100 200

NAÏVE 87.61 87.70 87.70
FACTORED 89.61 91.40 92.64

JOINT 90.47 92.31 93.18
DE11 89.9 91.5

DE11+CORPUS 90.9 92.2
ORACLE 95.47 96.09 96.77

Table 4: Accuracies on reconstructing individual in-
flected forms in CELEX, averaged over the 5415 inflec-
tion tables in each of 10 test sets. Three training set
sizes are reported. DE11 indicates a reported result from
Dreyer and Eisner (2011), with blank results unreported
in that work. Our FACTORED model is able to do approx-
imately as well as the DE11 baseline method, and our
JOINT model performs better yet, performing compara-
bly to DE11+CORPUS, which uses additional monolin-
gual text. All models substantially outperform the NAÏVE
suffixing baseline. The relatively low ORACLE accuracy
indicates that some errors arise from failing to apply rules
that are not attested in these small training sets.

can produce inflection tables that the JOINT model
cannot, due to its ability to “mix and match” ortho-
graphic changes in the same inflection table.

We also evaluate a NAÏVE method for applying
the joint rules which selects the most common suffix
rule available after pruning.5 Finally, we report the
ORACLE accuracy attainable with the morphologi-
cal rule dictionary of the JOINT model.

For our conditional likelihood objective, we use
γ = 0.0002; this parameter and the feature set were
tuned on a small development set and held fixed for
all experiments.

6.1 CELEX Experiments

Dreyer and Eisner (2011) construct ten train/test
splits of the 5615 German verb forms in the CELEX
lexical database, keeping 200 forms for training in
each case, which they further subsample. These ran-
dom splits serve to control for instability due to the
small training set sizes. Each infinitive verb form
has 22 corresponding inflected forms capturing vari-
ation such as person, number, mood, and tense.

5For example, for German verbs ending in -en, this applies
the most regular -en suffix change, that exhibited by machen
and many other verbs.

Table 4 shows our results compared to those of
Dreyer and Eisner (2011). The FACTORED model
performs on par with the DE11 baseline model, but
the stronger performance of the JOINT model in-
dicates that making joint predictions is important.
With 100 training examples, our model is able to
equal the performance of DE11+CORPUS, which
additionally uses ten million tokens of monolingual
German text.

We emphasize that this is not the data condition
for which our model was designed. It is unfavor-
able for two reasons: first, feature-rich models can
be learned more stably on larger training sets, and
second, the train/test splits are chosen randomly, and
therefore the test sets may contain completely irreg-
ular verbs using morphological rules that we have
never observed. As can be seen from the ORA-
CLE results in Table 4, a substantial fraction of the
missed test examples cannot be produced using our
extracted rules simply because we have not seen the
relevant examples; in many cases, even a human
could not generalize correctly from the given ex-
amples without exploiting external knowledge of the
German language.

6.2 Held-Out Wiktionary Data
Our algorithm was designed with the fundamental
assumption that the training set should be a com-
prehensive description of the morphology of a given
language, which is not true for the CELEX data. In
order to evaluate on a broader set of languages under
these training conditions, we turn to our Wiktionary
data. For each language and part of speech, we train
on all but 400 inflection tables, holding back 200 ex-
amples as a development set and 200 examples as a
blind test set.6 The forms selected for the develop-
ment and test data were purposely chosen not to be
among the 200 most frequently occurring forms in
the language, since these common cases can be eas-
ily memorized from Wiktionary.

Results are shown in Table 5. As with the CELEX
results, we see that the joint prediction improves ac-
curacy over the factored model, obtaining a 9% er-
ror reduction on individual forms and a 35% error
reduction on exact match. The more pronounced

6For Finnish nouns, because there were so many inflection
tables, we trained only on the first 6000 examples. Using more
examples did not significantly change performance.
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Exact table match Individual form accuracy
Lang/POS NAÏVE FACT. JOINT ORACLE NAÏVE FACT. JOINT ORACLE

DE-VERBS 42.0 74.5 85.0 99.5 89.13 94.76 96.19 99.98
DE-NOUNS 12.0 74.0 79.5 98.5 49.06 88.31 88.94 99.25
ES-VERBS 81.5 93.5 95.0 99.5 97.20 99.61 99.67 99.99
FI-VERBS 33.5 82.0 87.5 99.5 75.32 97.23 96.43 99.86
FI-NOUNS 31.0 69.0 83.5 100.0 61.23 92.14 93.41 100.00

AVG 40.0 78.6 86.1 99.4 74.39 94.41 94.93 99.81

Table 5: Accuracies on reconstructing complete inflection tables and individual inflected forms for held-out base forms
in our Wiktionary dataset. Results are shown for our fully JOINT model, a FACTORED model that predicts individual
inflected forms independently, a NAÏVE baseline that picks the most common applicable suffix rule, and an ORACLE
that selects the best inflection table within our model’s capacity. For each language and part of speech, regardless of
training set size, evaluation is based on a blind test set of 200 held-out forms.

improvement on exact match is unsurprising, since
we expect that the joint predictions should get in-
flection tables correct in an “all-or-nothing” fashion,
whereas factored predictions are more likely to re-
flect divergent feature weights of the different com-
ponent models. The NAÏVE baseline performs rather
poorly overall, indicating our algorithm is being so-
phisticated about applying more than just the most
common changes. Finally, we note that the ORA-
CLE performance is much higher in this case than
on the CELEX data, confirming our intuition that
with the appropriate level of supervision our model
at least has the capacity to make correct predictions
in almost every case.

6.3 Error Analysis

We conducted an error analysis on the output of
our JOINT model on German nouns. From 2364
paradigms, we learn 53 different orthographic trans-
formation rules, of which our 200-example develop-
ment set exhibits 14.7

On our development set, 196 inflection tables are
within the capacity of our model. Of those 196, 159
are exactly correct. In Table 6, we show the top
six rules by frequency in the development set, along

7Nineteen of our 53 extracted rules only occur on one ex-
ample; this suggests a few reasons that fewer rules are applied
than are extracted. First, very common base forms with irreg-
ular morphology may give rise to completely irregular rules.
Second, our edit distance alignment procedure can sometimes
merge two adjacent rules if the orthographic context is such that
there are multiple minimum-cost analyses. Finally, errors and
inconsistencies in Wiktionary can yield nonsense rules that are
never applied elsewhere.

NOM,SING a
NOM,PL n e ä en

ACC,SING a
ACC,PL n e ä en

DAT,SING a
DAT,PL n en ä n en

GEN,SING es a s
GEN,PL n e ä en

Example Klasse Krieg Haus Nutzer Frau
Gold 49 48 26 26 20
Prec 95.7 72.9 88.0 82.8 87.0
Rec 91.8 89.6 84.6 92.3 100.0
F1 93.8 80.4 86.3 87.3 93.0

Table 6: Breakdown of errors by morphological rule be-
ing applied by the JOINT model on the DE-NOUNS devel-
opment set. We show the rule itself, treating the nomina-
tive singular as the base form, an example of a German
word using that rule, and then the model’s accuracy at
predicting applications of that rule. Errors are spread out
over many rules, but it generally appears that common
rules are to blame for the errors that are made, due in
large part to gender confusion in this case.

with the precision, recall, and F-measure that our
model attains for each rule.8 These rules are mostly
interpretable: for example, the first two columns
correspond to common suffix rules for feminine and
masculine nouns, respectively. Our model’s per-
formance is consistently high for each of the rules
shown, including a stem change (a changing to ä
in plural forms), providing further evidence that our
model is useful for modeling rarer morphological

8Gold rules are obtained by running our rule extraction pro-
cedure over the examples in question.
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paradigms as well as more common ones.
As a concrete example of an error our model does

make, Löwe (lion) is incorrectly predicted to have
the first suffix, instead of the correct suffix (not
shown) which adds an -n for accusative, genitive,
and dative singular as well. However, making this
prediction correctly is essentially beyond the capac-
ity of a model based purely on orthography. Words
ending in -e are commonly feminine, and none of
our other training examples end in -we, so guess-
ing that Löwe follows a common feminine inflec-
tion pattern is reasonable (though Löwe is, in fact,
masculine). Disambiguating this case requires ei-
ther features on observed genders, a more complex
model of the German language, or observing the
word in a large corpus. Generally, when the model
fails, as in this case, it is because of a fundamental
linguistic information source that it does not have
access to.

7 Related Work

Much of the past work on morphology has focused
on concatenative morphology using unsupervised
methods (Goldsmith, 2001; Creutz and Lagus, 2007;
Monson, 2008; Poon et al., 2009; Goldwater et al.,
2009) or weak forms of supervision (Snyder and
Barzilay, 2008). These methods can handle aspects
of derivational morphology that we cannot, such as
compounding, but we can handle a much larger sub-
set of inflectional morphology, including more com-
plex prefix and suffix rules, stem changes, and ir-
regular forms. Some unsupervised work has specifi-
cally targeted these sorts of phenomena by, for ex-
ample, learning spelling rules for mildly noncon-
catenative cases (Dasgupta and Ng, 2007; Narad-
owsky and Goldwater, 2009) or mining lemma-base
form pairs from a corpus (Schone and Jurafsky,
2001), but it is extremely difficult to make unsu-
pervised methods perform as well as supervised ap-
proaches like ours.

Past supervised work on nonconcatenative inflec-
tional morphology has typically targeted individual
pairs of base forms and inflected forms for the pur-
poses of inflection (Clark, 2001) or lemmatization
(Yarowsky and Wicentowski, 2000; Wicentowski,
2004; Lindén, 2008; Toutanova and Cherry, 2009).
Some of these methods may use analysis (Lindén,

2008) or decoding (Toutanova and Cherry, 2009)
steps similar to those of our model, but none attempt
to jointly predict a complete inflection table based
on automatically extracted rules.

Some previous work has addressed the joint anal-
ysis (Zajac, 2001; Monson, 2008) or prediction
(Lindén and Tuovila, 2009; Dinu et al., 2012) of
whole inflection tables, as we do, but rarely are
both aspects addressed simultaneously and most ap-
proaches are tuned to one particular language or
use language-specific, curated resources. In over-
all setup, our work most closely resembles that of
Dreyer and Eisner (2011), but they focus on incor-
porating large amounts of raw text data rather than
using large training sets effectively.

Broadly similar techniques are also employed in
systems to filter candidate rules and aid in human an-
notation of paradigms (Zajac, 2001; Forsberg et al.,
2006; Détrez and Ranta, 2012) for resources such as
Grammatical Framework (Ranta, 2011).

8 Conclusion

In this work, we presented a method for inflecting
base forms in morphologically rich languages: we
first extract orthographic transformation rules from
observed inflection tables, then learn to apply these
rules to new base forms based on orthographic fea-
tures. Training examples for our supervised method
can be collected from Wiktionary for a large number
of languages and parts of speech. The changes we
extract are interpretable and can be associated with
particular classes of words. Moreover, our model
can successfully apply these changes to unseen base
forms with high accuracy, allowing us to rapidly
generate lexicons for new languages of interest.

Our Wiktionary datasets and an open-
source version of our code are available at
http://eecs.berkeley.edu/~gdurrett
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Rémi Zajac. 2001. Morpholog: Constrained and Super-
vised Learning of Morphology. In Proceedings of the
Conference on Natural Language Learning.

Torsten Zesch, Christof Müller, and Iryna Gurevych.
2008. Extracting Lexical Semantic Knowledge from
Wikipedia and Wiktionary. In Proceedings of Lan-
guage Resources and Evaluation.

1195



Proceedings of NAACL-HLT 2013, pages 1196–1205,
Atlanta, Georgia, 9–14 June 2013. c©2013 Association for Computational Linguistics

Optimal Data Set Selection: An Application to Grapheme-to-Phoneme
Conversion

Young-Bum Kim and Benjamin Snyder
University of Wisconsin-Madison

{ybkim,bsnyder}@cs.wisc.edu

Abstract

In this paper we introduce the task of unla-
beled, optimal, data set selection. Given a
large pool of unlabeled examples, our goal is
to select a small subset to label, which will
yield a high performance supervised model
over the entire data set. Our first proposed
method, based on the rank-revealing QR ma-
trix factorization, selects a subset of words
which span the entire word-space effectively.
For our second method, we develop the con-
cept of feature coverage which we optimize
with a greedy algorithm. We apply these
methods to the task of grapheme-to-phoneme
prediction. Experiments over a data-set of 8
languages show that in all scenarios, our selec-
tion methods are effective at yielding a small,
but optimal set of labelled examples. When
fed into a state-of-the-art supervised model for
grapheme-to-phoneme prediction, our meth-
ods yield average error reductions of 20% over
randomly selected examples.

1 Introduction

Over the last 15 years, supervised statistical learning
has become the dominant paradigm for building nat-
ural language technologies. While the accuracy of
supervised models can be high, expertly annotated
data sets exist for a small fraction of possible tasks,
genres, and languages. The would-be tool builder
is thus often faced with the prospect of annotating
data, using crowd-sourcing or domain experts. With
limited time and budget, the amount of data to be an-
notated might be small, especially in the prototyping
stage, when the exact specification of the prediction

task may still be in flux, and rapid prototypes are
desired.

In this paper, we propose the problem of unsuper-
vised, optimal data set selection. Formally, given
a large set X of n unlabeled examples, we must
select a subset S ⊂ X of size k � n to label.
Our goal is to select such a subset which, when
labeled, will yield a high performance supervised
model over the entire data set X . This task can be
thought of as a zero-stage version of active learn-
ing: we must choose a single batch of examples to
label, without the benefit of any prior labelled data
points. This problem definition avoids the practical
complexity of the active learning set-up (many it-
erations of learning and labeling), and ensures that
the labeled examples are not tied to one particular
model class or task, a well-known danger of active
learning (Settles, 2010). Alternatively, our methods
may be used to create the initial seed set for the ac-
tive learner.

Our initial testbed for optimal data set selec-
tion is the task of grapheme-to-phoneme conver-
sion. In this task, we are given an out-of-vocabulary
word, with the goal of predicting a sequence of
phonemes corresponding to its pronunciation. As
training data, we are given a pronunciation dic-
tionary listing words alongside corresponding se-
quences of phones, representing canonical pronun-
ciations of those words. Such dictionaries are used
as the final bridge between written and spoken lan-
guage for technologies that span this divide, such as
speech recognition, text-to-speech generation, and
speech-to-speech language translation. These dic-
tionaries are necessary: the pronunciation of words
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continues to evolve after their written form has been
fixed, leading to a large number of rules and ir-
regularities. While large pronunciation dictionaries
of over 100,000 words exist for several major lan-
guages, these resources are entirely lacking for the
majority of the world’s languages. Our goal is to
automatically select a small but optimal subset of
words to be annotated with pronunciation data.

The main intuition behind our approach is that
the subset of selected data points should efficiently
cover the range of phenomena most commonly ob-
served across the pool of unlabeled examples. We
consider two methods. The first comes from a line
of research initiated by the numerical linear algebra
community (Golub, 1965) and taken up by computer
science theoreticians (Boutsidis et al., 2009), with
the name COLUMN SUBSET SELECTION PROBLEM

(CSSP). Given a matrixA, the goal of CSSP is to se-
lect a subset of k columns whose span most closely
captures the range of the full matrix. In particu-
lar, the matrix Ã formed by orthogonally project-
ing A onto the k-dimensional space spanned by the
selected columns should be a good approximation
to A. By defining AT to be our data matrix, whose
rows correspond to words and whose columns corre-
spond to features (character 4-grams), we can apply
the CSSP randomized algorithm of (Boutsidis et al.,
2009) on A to obtain a subset of k words which best
span the entire space of words.

Our second approach is based on a notion of fea-
ture coverage. We assume that the benefit of seeing
a feature f in a selected word bears some positive
relationship to the frequency of f in the unlabeled
pool. However, we further assume that the lion’s
share of benefit accrues the first few times that we
label a word with feature f , with the marginal util-
ity quickly tapering off as more such examples have
been labeled. We formalize this notion and provide
an exact greedy algorithm for selecting the k data
points with maximal feature coverage.

To assess the benefit of these methods, we ap-
ply them to a suite of 8 languages with pronunci-
ation dictionaries. We consider ranges from 500
to 2000 selected words and train a start-of-the-art
grapheme-to-phoneme prediction model (Bisani and
Ney, 2008). Our experiments show that both meth-
ods produce significant improvements in prediction
quality over randomly selected words, with our fea-

ture coverage method consistently outperforming
the randomized CSSP algorithm. Over the 8 lan-
guages, our method produces average reductions in
error of 20%.

2 Background

Grapheme-to-phoneme Prediction The task of
grapheme-to-phoneme conversion has been consid-
ered in a variety of frameworks, including neural
networks (Sejnowski and Rosenberg, 1987), rule-
based FSA’s (Kaplan and Kay, 1994), and pronun-
ciation by analogy (Marchand and Damper, 2000).
Our goal here is not to compare these methods, so
we focus on the probabilistic joint-sequence model
of Bisani and Ney (2008). This model defines a
joint distribution over a grapheme sequence g ∈ G∗
and a phoneme sequence φ ∈ Φ∗, by way of an
unobserved co-segmentation sequence q. Each co-
segmentation unit qi is called a graphone and con-
sists of an aligned pair of zero or one graphemes and
zero or one phonemes: qi ∈ G∪{ε}×Φ∪{ε}.1 The
probability of a joint grapheme-phoneme sequence
is then obtained by summing over all possible co-
segmentations:

P (g,φ) =
∑

q∈S(g,φ)

P (q)

where S(g,φ) denotes the set of all graphone se-
quences which yield g and φ. The probability of a
graphone sequence of length K is defined using an
h-order Markov model with multinomial transitions:

P (q) =

k+1∏
i=1

P (qi|qi−h, . . . , qi−1)

where special start and end symbols are assumed for
qj<1 and qk+1, respectively.

To deal with the unobserved co-segmentation se-
quences, the authors develop an EM training regime
that avoids overfitting using a variety of smoothing
and initialization techniques. Their model produces
state-of-the-art or comparable accuracies across a

1The model generalizes easily to graphones consisting of
more than one grapheme or phoneme, but in both (Bisani and
Ney, 2008) and our initial experiments we found that the 01-to-
01 model always performed best.
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wide range of languages and data sets.2 We use the
publicly available code provided by the authors.3 In
all our experiments we set h = 4 (i.e. a 5-gram
model), as we found that accuracy tended to be flat
for h > 4.

Active Learning for G2P Perhaps most closely
related to our work are the papers of Kominek and
Black (2006) and Dwyer and Kondrak (2009), both
of which use active learning to efficiently bootstrap
pronunciation dictionaries. In the former, the au-
thors develop an active learning word selection strat-
egy for inducing pronunciation rules. In fact, their
greedy n-gram selection strategy shares some of
the some intuition as our second data set selection
method, but they were unable to achieve any accu-
racy gains over randomly selected words without ac-
tive learning.

Dwyer and Kondrak use a Query-by-Bagging
active learning strategy over decision tree learn-
ers. They find that their active learning strategy
produces higher accuracy across 5 of the 6 lan-
guages that they explored (English being the ex-
ception). They extract further performance gains
through various refinements to their model. Even
so, we found that the Bisani and Ney grapheme-to-
phoneme (G2P) model (Bisani and Ney, 2008) al-
ways achieved higher accuracy, even when trained
on random words. Furthermore, the relative gains
that we observe using our optimal data set selection
strategies (without any active learning) are much
larger than the relative gains of active learning found
in their study.

Data Set Selection and Active Learning
Eck et al (2005) developed a method for train-
ing compact Machine Translation systems by
selecting a subset of sentences with high n-gram
coverage. Their selection criterion essentially cor-
responds to our feature coverage selection method
using coverage function cov2 (see Section 3.2). As
our results will show, the use of a geometric feature
discount (cov3) provided better results in our task.

Otherwise, we are not aware of previous work

2We note that the discriminative model of Jiampojamarn and
Kondrak (2010) outperforms the Bisani and Ney model by an
average of about 0.75 percentage points across five data sets.

3http://www-i6.informatik.rwth-aachen.
de/web/Software/g2p.html

proposing optimal data set selection as a general re-
search problem. Of course, active learning strategies
can be employed for this task by starting with a small
random seed of examples and incrementally adding
small batches. Unfortunately, this can lead to data-
sets that are biased to work well for one particular
class of models and task, but may otherwise perform
worse than a random set of examples (Settles, 2010,
Section 6.6). Furthermore the active learning set-
up can be prohibitively tedious and slow. To illus-
trate, Dwyer and Kondrak (2009) used 190 iterations
of active learning to arrive at 2,000 words. Each
iteration involves bootstrapping 10 different sam-
ples, and training 10 corresponding learners. Thus,
in total, the underlying prediction model is trained
1,900 times. In contrast, our selection methods are
fast, can select any number of data points in a sin-
gle step, and are not tied to a particular prediction
task or model. Furthermore, these methods can be
combined with active learning in selecting the initial
seed set.

Unsupervised Feature Selection Finally, we note
that CSSP and related spectral methods have been
applied to the problem of unsupervised feature se-
lection (Stoppiglia et al., 2003; Mao, 2005; Wolf and
Shashua, 2005; Zhao and Liu, 2007; Boutsidis et al.,
2008). These methods are related to dimensionality
reduction techniques such as Principal Components
Analysis (PCA), but instead of truncating features in
the eigenbasis representation (where each feature is
a linear combination of all the original features), the
goal is to remove dimensions in the standard basis,
leading to a compact set of interpretable features. As
long as the discarded features can be well approxi-
mated by a (linear) function of the selected features,
the loss of information will be minimal.

Our first method for optimal data-set creation ap-
plies a randomized CSSP approach to the transpose
of the data matrix, AT . Equivalently, it selects the
optimal k rows ofA for embedding the full set of un-
labeled examples. We use a recently developed ran-
domized algorithm (Boutsidis et al., 2009), and an
underlying rank-revealing QR factorization (Golub,
1965).
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(a) (b) (c)

Figure 1: Various versions of the feature coverage function. Panel (a) shows cov1 (Equation 5). Panel (b) shows cov2

(Equation 6). Panel (c) shows cov3 (Equation 7) with discount factor η = 1.2.

3 Two Methods for Optimal Data Set
Selection

In this section we detail our two proposed methods
for optimal data set selection. The key intuition is
that we would like to pick a subset of data points
which broadly and efficiently cover the features of
the full range of data points. We assume a large pool
X of n unlabeled examples, and our goal is to se-
lect a subset S ⊂ X of size k � n for labeling.
We assume that each data point x ∈ X is a vec-
tor of m feature values. Our first method applies to
any real or complex feature space, while our second
method is specialized for binary features. We will
use the (n × m) matrix A to denote our unlabeled
data: each row is a data point and each column is
a feature. In all our experiments, we used the pres-
ence (1) or absence (0) of each character 4-gram as
our set of features.

3.1 Method 1: Row Subset Selection
To motivate this method, first consider the task of
finding a rank k approximation to the data matrix A.
The SVD decomposition yields:

A = UΣV T

• U is (n × n) orthogonal and its columns form
the eigenvectors of AAT

• V is (m×m) orthogonal and its columns form
the eigenvectors of ATA

• Σ is (n×m) diagonal, and its diagonal entries
are the singular values ofA (the square roots of
the eigenvalues of both AAT and ATA).

To obtain a rank k approximation to A, we start by
rewriting the SVD decomposition as a sum:

A =

ρ∑
i=1

σiuiv
T
i (1)

where ρ = min(m,n), σi is the ith diagonal entry of
Σ, ui is the ith column of U , and vi is the ith column
of V . To obtain a rank k approximation to A, we
simply truncate the sum in equation 1 to its first k
terms, yielding Ak. To evaluate the quality of this
approximation, we can measure the Frobenius norm
of the residual matrix ||A − Ak||F .4 The Eckart-
Young theorem (Eckart and Young, 1936) states that
Ak is optimal in the following sense:

Ak = argmin
Ã s.t. rank(Ã)=k

||A− Ã||F (2)

In other words, truncated SVD gives the best rank
k approximation to A in terms of minimizing the
Frobenius norm of the residual matrix. In CSSP,
the goal is similar, with the added constraint that the
approximation to A must be obtained by projecting
onto the subspace spanned by a k-subset of the orig-
inal rows of A.5 Formally, the goal is to produce a
(k ×m) matrix S formed from rows of A, such that

||A−AS+S||F (3)

4The Frobenius norm ||M ||F is defined as the entry-wise L2

norm:
√∑

i,j m2
ij

5Though usually framed in terms of column selection, we
switch to row selection here as our goal is to select data points
rather than features.
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is minimized over all
(
n
k

)
possible choices for S.

Here S+ is the (m × k) Moore-Penrose pseudo-
inverse of S, and S+S gives the orthogonal projec-
tor onto the rowspace of S. In other words, our goal
is to select k data points which serve as a good ap-
proximate basis for all the data points. Since AS+S
can be at most rank k, the constraint considered here
is stricter than that of Equation 1, so the truncated
SVD Ak gives a lower bound on the residual.

Boutsidis et al (2009) develop a randomized algo-
rithm that produces a submatrix S (consisting of k
rows of A) which, with high probability, achieves a
residual bound of:

||A−AS+S||F ≤ O(k
√

log k)||A−Ak||F (4)

in running time O(min{mn2,m2n}). The algo-
rithm proceeds in three steps: first by computing the
SVD of A, then by randomly sampling O(k log k)
rows of A with importance weights carefully com-
puted from the SVD, and then applying a determin-
istic rank-revealing QR factorization (Golub, 1965)
to select k of the sampled rows. To give some in-
tuition, we now provide some background on rank
revealing factorizations.

Rank revealing QR / LQ (RRQR) Every real
(n×m) matrix can be factored asA = LQ, whereQ
is (m×m) orthogonal and L is (n×m) lower trian-
gular.6 It is important to notice that in this triangular
factorization, each successive row of A introduces
exactly one new basis vector from Q. We can thus
represent row i as a linear combination of the first
i− 1 rows along with the ith row of Q.

A rank-revealing factorization is one which dis-
plays the numerical rank of the matrix — defined to
be the singular value index r such that

σr � σr+1 = O(ε)

for machine precision ε. In the case of the LQ
factorization, our goal is to order the rows of A
such that each successive row has decreasing rep-
resentational importance as a basis for the future
rows. More formally, If there exists a row permu-
tation Π such that ΠA has a triangular factorization

6We replace the standard upper triangular QR factorization
with an equivalent lower triangular factorization LQ to focus
intuition on the rowspace of A.

Language Training Test Total
Dutch 11,622 104,589 116,211
English 11209 100891 112100
French 2,748 24,721 27,469
Frisian 6,198 55,778 61,976
German 4,942 44,460 49,402
Italian 7,529 79,133 86,662
Norwegian 4,172 37,541 41,713
Spanish 3,150 28,341 31,491

Table 1: Pronunciation dictionary size for each of the lan-
guages.

ΠA = LQ with L =
[
L11 0
L21 L22

]
, where the small-

est singular value of L11 is much greater than the
spectral norm of L22, which is itself almost zero:

σmin(L11)� ||L22||2 = O(ε)

then we say that ΠA = LQ is a rank-revealing LQ
factorization. Both L11 and L22 will be lower tri-
angular matrices and if L11 is (r × r) then A has
numerical rank r (Hong and Pan, 1992).

Implementation In our implementation of the
CSSP algorithm, we first prune away 4-gram fea-
tures that appear in fewer than 3 words, then com-
pute the SVD of the pruned data matrix using
the PROPACK package,7 which efficiently handles
sparse matrixes. After sampling k log k words from
A (with sampling weights calculated from the top-k
singular vectors), we form a submatrix B consist-
ing of the sampled words. We then use the RRQR
implementation from ACM Algorithm 782 (Bischof
and Quintana-Ortı́, 1998) (routine DGEQPX) to
compute ΠB = LQ. We finally select the first k
rows of ΠB as our optimal data set. Even for our
largest data sets (English and Dutch), this entire pro-
cedure runs in less than an hour on a 3.4Ghz quad-
core i7 desktop with 32 GB of RAM.

3.2 Method 2: Feature Coverage Maximization

In our previous approach, we adopted a general
method for approximating a matrix with a subset of
rows (or columns). Here we develop a novel objec-
tive function with the specific aim of optimal data set
selection. Our key assumption is that the benefit of

7http://soi.stanford.edu/˜rmunk/PROPACK/
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seeing a new feature f in a selected data point bears
a positive relationship to the frequency of f in the
unlabeled pool of words. However, we further as-
sume that the lion’s share of benefit accrues quickly,
with the marginal utility quickly tapering off as we
label more and more examples with feature f . Note
that for this method, we assume a boolean feature
space.

To formalize this intuition, we will define the cov-
erage of a selected (k ×m) submatrix S consisting
of rows ofA, with respect to a feature index j. For il-
lustration purposes, we will list three alternative def-
initions:

cov1(S; j) = ||sj ||1 (5)

cov2(S; j) = ||aj ||1 I
(
||sj ||1 > 0

)
(6)

cov3(S; j) = ||aj ||1 −
||aj ||1
η||sj ||1

I
(
||sj ||1 < ||aj ||1

)
(7)

In all cases, sj refers the jth column of S, aj refers
the jth column of A, I(·) is a 0-1 indicator function,
and η is a scalar discount factor.8

Figure 1 provides an intuitive explanation of these
functions: cov1 simply counts the number of se-
lected data points with boolean feature j. Thus, full
coverage (||aj ||: the entire number of data points
with the feature) is only achieved when all data
points with the feature are selected. cov2 lies at the
opposite extreme. Even a single selected data point
with feature j triggers coverage of the entire feature.
Finally, cov3 is designed so that the coverage scales
monotonically as additional data points with feature
j are selected. The first selected data point will cap-
ture all but 1

η of the total coverage, and each further
selected data point will capture all but 1

η of what-
ever coverage remains. Essentially, the coverage for
a feature scales as a geometric series in the number
of selected examples having that feature.

To ensure that the total coverage (‖|aj ||1) is
achieved when all the data points are selected, we
add an indicator function for the case of ||cj ||1 =
||aj ||1 .9

8Chosen to be 5 in all our experiments. We experimented
with several values between 2 and 10, without significant dif-
ferences in results.

9Otherwise, the geometric coverage function would con-
verge to ||aj || only as ||cj || → ∞.

500 Words 2000 Words
RAND CSSP FEAT RAND CSSP FEAT

Dut 48.2 50.8 59.3 69.8 75.0 77.8
Eng 25.4 26.5 29.5 40.3 40.1 42.8
Fra 66.9 69.2 72.1 81.2 82.0 84.8
Fri 42.7 48.0 53.6 62.2 65.3 68.5
Ger 55.2 58.6 65.0 74.2 78.6 80.8
Ita 80.6 82.8 82.8 85.3 86.1 86.8
Nor 48.1 49.5 55.0 66.1 69.9 71.6
Spa 90.7 96.8 95.0 98.1 98.4 99.0
avg 57.2 60.3 64.0 72.2 74.4 76.5

Table 2: Test word accuracy across the 8 languages for
randomly selected words (RAND), CSSP matrix subset
selection (CSSP), and Feature Coverage Maximization
(FEAT). We show results for 500 and 2000 word train-
ing sets.

Setting our feature coverage function to cov3, we
can now define the overall feature coverage of the
selected points as:

coverage(S) =
1

||A||1

∑
j

cov3(S; j) (8)

where ||A||1 is the L1 entrywise matrix norm,∑
i,j |Aij |, which ensures that 0 ≤ coverage(S) ≤

1 with equality only achieved when S = A, i.e.
when all data points have been selected.

We provide a brief sketch of our optimization al-
gorithm: To pick the subset S of k words which
optimizes Equation 8, we incrementally build opti-
mal subsets S′ ⊂ S of size k′ < k. At each stage,
we keep track of the unclaimed coverage associated
with each feature j:

unclaimed(j) = ||aj ||1 − cov3(S′; j)

To add a new word, we scan through the pool of re-
maining words, and calculate the additional cover-
age that selecting word w would achieve:

∆(w) =
∑

feature j in w

unclaimed(j)

(
η − 1

η

)

We greedily select the word which adds the most
coverage, remove it from the pool, and update the
unclaimed feature coverages. It is easy to show that
this greedy algorithm is globally optimal.
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Figure 2: Test word accuracy across the 8 languages for (1) feature coverage, (2) CSSP matrix subset selection, (3)
and randomly selected words.

4 Experiments and Analysis

To test the effectiveness of the two proposed data
set selection methods, we conduct grapheme-to-
phoneme prediction experiments across a test suite
of 8 languages: Dutch, English, French, Frisian,
German, Italian, Norwegian, and Spanish. The data
was obtained from the PASCAL Letter-to-Phoneme
Conversion Challenge,10 and was processed to
match the setup of Dwyer and Kondrak (2009).
The data comes from a range of sources, includ-
ing CELEX for Dutch and German (Baayen et al.,
1995), BRULEX for French (Mousty et al., 1990),
CMUDict for English,11 the Italian Festival Dictio-
nary (Cosi et al., 2000), as well as pronunciation dic-
tionaries for Spanish, Norwegian, and Frisian (orig-
inal provenance not clear).

As Table 1 shows, the size of the dictionaries
ranges from 31,491 words (Spanish) up to 116,211
words (Dutch). We follow the PASCAL challenge
training and test folds, treating the training set as our
pool of words to be selected for labeling.

Results We consider training subsets of sizes 500,
1000, 1500, and 2000. For our baseline, we train the

10http://pascallin.ecs.soton.ac.uk/
Challenges/PRONALSYL/

11http://www.speech.cs.cmu.edu/cgi-bin/
cmudict

G2P model (Bisani and Ney, 2008) on randomly se-
lected words of each size, and average the results
over 10 runs. We follow the same procedure for
our two data set selection methods. Figure 2 plots
the word prediction accuracy for all three meth-
ods across the eight languages with varying training
sizes, while Table 2 provides corresponding numer-
ical results. We see that in all scenarios the two data
set selection strategies fare better than random sub-
sets of words.

In all but one case, the feature coverage method
yields the best performance (with the exception of
Spanish trained with 500 words, where the CSSP
yields the best results). Feature coverage achieves
average error reduction of 20% over the randomly
selected training words across the different lan-
guages and training set sizes.

Coverage variants We also experimented with
the other versions of the feature coverage function
discussed in Section 3.2 (see Figure 1). While cov1

tended to perform quite poorly (usually worse than
random), cov2 — which gives full credit for each
feature the first time it is seen — yields results just
slightly worse than the CSSP matrix method on av-
erage, and always better than random. In the 2000
word scenario, for example, cov2 achieves average
accuracy of 74.0, just a bit below the 74.4 accuracy
of the CSSP method. It is also possible that more
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RAND CSSP FEAT SVD

Fra 0.66 0.62 0.65 0.51
Fry 0.75 0.72 0.75 0.6
Ger 0.71 0.67 0.71 0.55
Ita 0.64 0.61 0.67 0.49
Nor 0.7 0.61 0.64 0.5
Spa 0.65 0.67 0.68 0.53
avg 0.69 0.65 0.68 0.53

Table 3: Residual matrix norm across 6 languages for
randomly selected words (RAND), CSSP matrix subset
selection (CSSP), feature coverage maximization (FEAT),
and the rank k SVD (SVD). Lower is better.

RAND CSSP FEAT

Dut 0.66 0.72 0.81
Eng 0.52 0.58 0.69
Fra 0.68 0.74 0.81
Fry 0.7 0.79 0.84
Ger 0.68 0.74 0.81
Ita 0.79 0.84 0.9
Nor 0.7 0.79 0.84
Spa 0.67 0.75 0.8
avg 0.68 0.74 0.81

Table 4: Feature coverage across the 8 languages for ran-
domly selected words (RAND), CSSP matrix subset selec-
tion (CSSP), and feature coverage maximization (FEAT).
Higher is better.

careful tuning of the discount factor η of cov3 would
yield further gains.

Optimization Analysis Both the CSSP and fea-
ture coverage methods have clearly defined objec-
tive functions — formulated in Equations 3 and 8,
respectively. We can therefore ask how well each
methods fares in optimizing either one of the two
objectives.

First we consider the objective of the CSSP al-
gorithm: to find k data points which can accurately
embed the entire data matrix. Once the data points
are selected, we compute the orthogonal projection
of the data matrix onto the submatrix, obtaining an
approximation matrix Ã. We can then measure the
residual norm as a fraction of the original matrix
norm:

||A− Ã||F
||A||F

(9)

As noted in Section 3.1, truncated SVD minimizes
the residual over all rank k matrices, so we can com-

CSSP FEAT FEAT-SLS

fettered internationalization rating
exceptionally underestimating overs
gellert schellinger nation
daughtry barristers scherman
blowed constellations olinger
harmonium complementing anderson
cassini bergerman inter
rupees characteristically stated
tewksbury heatherington press
ley overstated conner

Table 5: Top 10 words selected by CSSP, feature cov-
erage (FEAT), and feature coverage with stratified length
sampling (FEAT-SLS)

pare our three methods — random selections, CSSP,
and feature coverage — all of which select k exam-
ples as a basis, against the lower bound given by
SVD. Table 3 shows the result of this analysis for
k = 2000 (Note that we were unable to compute
the projection matrices for English and Dutch due
to the size of the data and memory limitations). As
expected, SVD fares the best, with CSSP as a some-
what distant second. On average, feature coverage
seems to do a bit better than random.

A similar analysis for the feature coverage objec-
tive function is shown in Table 4. Unsurprisingly,
this objective is best optimized by the feature cov-
erage method. Interestingly though, CSSP seems
to perform about halfway between random and the
feature coverage method. This makes some sense,
as good basis data points will tend to have frequent
features, while at the same time being maximally
spread out from one another. We also note that
the poor coverage result for English in Table 4 mir-
rors its overall poor performance in the G2P predic-
tion task – not only are the phoneme labels unpre-
dictable, but the input data itself is wild and hard to
compress.

Stratified length sampling As Table 5 shows,
the top 10 words selected by the feature coverage
method are mostly long and unusual, averaging 13.3
characters in length. In light of the potential an-
notation burden, we developed a stratified sampling
strategy to ensure typical word lengths. Before se-
lecting each new word, we first sample a word length
according to the empirical word length distribution.
We then choose among words of the sampled length
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according to the feature coverage criterion. This re-
sults in more typical words of average length, with
only a very small drop in performance.

5 Conclusion and Future Work

In this paper we proposed the task of optimal data
set selection in the unsupervised setting. In contrast
to active learning, our methods do not require re-
peated training of multiple models and iterative an-
notations. Since the methods are unsupervised, they
also avoid tying the selected data set to a particular
model class (or even task).

We proposed two methods for optimally select-
ing a small subset of examples for labeling. The
first uses techniques developed by the numerical lin-
ear algebra and theory communities for approximat-
ing matrices with subsets of columns or rows. For
our second method, we developed a novel notion
of feature coverage. Experiments on the task of
grapheme-to-phoneme prediction across eight lan-
guages show that our method yields performance
improvements in all scenarios, averaging 20% re-
duction in error. For future work, we intend to apply
the data set selection strategies to other NLP tasks,
such as the optimal selection of sentences for tag-
ging and parsing.
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Abstract

We present a morphology-aware nonparamet-
ric Bayesian model of language whose prior
distribution uses manually constructed finite-
state transducers to capture the word forma-
tion processes of particular languages. This
relaxes the word independence assumption
and enables sharing of statistical strength
across, for example, stems or inflectional
paradigms in different contexts. Our model
can be used in virtually any scenario where
multinomial distributions over words would
be used. We obtain state-of-the-art results in
language modeling, word alignment, and un-
supervised morphological disambiguation for
a variety of morphologically rich languages.

1 Introduction

Despite morphological phenomena’s salience in
most human languages, many NLP systems treat
fully inflected forms as the atomic units of language.
By assuming independence of lexical stems’ vari-
ous surface forms, this avoidance approach exacer-
bates the problem of data sparseness. If it is em-
ployed at all, morphological analysis of text tends
to be treated as a preprocessing step to other NLP
modules. While this latter disambiguation approach
helps address data sparsity concerns, it has substan-
tial drawbacks: it requires supervised learning from
expert-annotated corpora, and determining the op-
timal morphological granularity is labor-intensive
(Habash and Sadat, 2006).

Neither approach fully exploits the finite-state
transducer (FST) technology that has been so suc-
cessful for modeling the mapping between surface

forms and their morphological analyses (Karttunen
and Beesley, 2005), and the mature collections of
high quality transducers that already exist for many
languages (e.g., Turkish, Russian, Arabic). Much
linguistic knowledge is encoded in such FSTs.

In this paper, we develop morphology-aware non-
parametric Bayesian language models that bring to-
gether hand-written FSTs with statistical modeling
and require no token-level annotation. The sparsity
issue discussed above is addressed by hierarchical
priors that share statistical strength across different
inflections of the same stem by backing off to word
formation models that piece together morphemes us-
ing FSTs. Furthermore, because of the nonparamet-
ric formulation of our models, the regular morpho-
logical patterns found in the long tail of word types
will rely more heavily on deeper analysis, while fre-
quent and idiosyncratically behaved forms are mod-
eled opaquely.

Our prior can be used in virtually any generative
model of language as a replacement for multino-
mial distributions over words, bringing morphologi-
cal awareness to numerous applications. For various
morphologically rich languages, we show that:

• our model can provide rudimentary unsuper-
vised disambiguation for a highly ambiguous
analyzer;

• integrating morphology into n-gram language
models allows better generalization to unseen
words and can improve the performance of ap-
plications that are truly open vocabulary; and

• bilingual word alignment models also bene-
fit greatly from sharing translation information
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across stems.

We are particularly interested in low-resource sce-
narios, where one has to make the most of the
small quantity of available data, and overcoming
data sparseness is crucial. If analyzers exist in such
settings, they tend to be highly ambiguous, and an-
notated data for learning to disambiguate are also
likely to be scarce or non-existent. Therefore, in our
experiments with Russian, we compare two analyz-
ers: a rapidly-developed guesser, which models reg-
ular inflectional paradigms but contains no lexicon
or irregular forms, and a high-quality analyzer.

2 Word Models with Morphology

In this section, we describe a generative model of
word formation based on Pitman-Yor processes that
generates word types using a finite-state morpho-
logical generator. At a high level, the process first
produces lexicons of stems and inflectional patterns;
then it generates a lexicon of inflected forms us-
ing the finite-state generator. Finally, the inflected
forms are used to generate observed data. Different
independence assumptions can be made at each of
these levels to encode beliefs about where stems, in-
flections, and surface forms should share statistical
strength.

2.1 Pitman-Yor Processes
Our work relies extensively on Pitman-Yor pro-
cesses, which provide a flexible framework for ex-
pressing backoff and interpolation relationships and
extending standard models with richer word distri-
butions (Pitman and Yor, 1997). They have been
shown to match the performance of state-of-the-art
language models and to give estimates that follow
appropriate power laws (Teh, 2006).

A draw from a Pitman-Yor process (PYP), de-
noted G ∼ PY(d, θ,G0), is a discrete distribution
over a (possibly infinite) set of events, which we de-
note abstractly E . The process is parameterized by a
discount parameter 0 ≤ d < 1, a strength parameter
θ > −d, and a base distribution G0 over the event
space E .

In this work, our focus is on the base distribution
G0. We place vague priors on the hyperparameters
d ∼ U([0, 1]) and (θ + d) ∼ Gamma(1, 1). Infer-
ence in PYPs is discussed below.

2.2 Unigram Morphology Model

The most basic expression of our model is a uni-
gram model of text. So far, we only assume that
each word can be analyzed into a stem and a se-
quence of morphemes forming an inflection pattern.
LetGs be a distribution over stems,Gp be a distribu-
tion over inflectional patterns, and let GENERATE be
a deterministic mapping from 〈stem, pattern〉 pairs
to inflected word forms.1 An inflected word type is
generated with the following process, which we des-
ignate MP(Gs, Gd,GENERATE):

stem ∼ Gs

pattern ∼ Gp

word = GENERATE(stem, pattern)

For example, in Russian, we might sample stem
= прочий,2 pattern = STEM+Adj+Pl+Dat, and
obtain word = прочим.

This model could be used directly to generate ob-
served tokens. However, we have said nothing about
Gs and Gp, and the assumption that stems and pat-
terns are independent is clearly unsatisfying. We
therefore assume that both the stem and the pattern
distributions are generated from PY processes, and
that MP(Gs, Gp,GENERATE) is itself the base dis-
tribution of a PYP.

Gs ∼ PY(ds, θs, G
0
s)

Gp ∼ PY(dp, θp, G
0
p)

Gw ∼ PY(d, θ,MP(Gs, Gp,GENERATE))

A draw Gw from this PYP is a unigram distribu-
tion over tokens.

2.3 Base Stem Model G0
s

In general there are an unbounded number of stems
possible in any language, so we set G0

s to be charac-
ter trigram model, which we statically estimate, with
Kneser-Ney smoothing, from a large corpus of word
types in the language being modeled. While using
fixed parameters estimated to maximize likelihood is

1The assumption of determinism is only inappropriate in
cases of inflectional spelling variants (e.g., modeled vs. mod-
elled) or pronunciation variants (e.g., reduced forms in certain
environments).

2прочий (pronounced [pr5tCij]) = other
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questionable from the perspective of Bayesian learn-
ing, it is tremendously beneficial for computational
reasons. For some applications (e.g., word align-
ment), the set of possible stems for a corpus S can be
precomputed, so we will also experiment with using
a uniform stem distribution based on this set.

2.4 Base Pattern Model G0
p

Several choices are possible for the base pattern dis-
tribution:

MP0 We can assume a uniformG0
p when the num-

ber of patterns is small.

MP1 To be able to generalize to new patterns, we
can draw the length of the pattern from a Poisson
distribution and generate morphemes one by one
from a uniform distribution.

MP2 A more informative prior is a Markov chain
of morphemes, where each morpheme is generated
conditional on the preceding morpheme.

The choice of the base pattern distribution could
depend on the complexity of the inflectional patterns
produced by the morphological analyzer, reflecting
the type of morphological phenomena present in a
given language. For example, the number of possi-
ble patterns can practically be considered finite in
Russian, but this assumption is not valid for lan-
guages with more extensive derivational morphol-
ogy like Turkish.

2.5 Posterior Inference

For most applications, rather than directly gener-
ating from a model using the processes outlined
above, we seek to infer posterior distributions over
latent parameters and structures, given a sample of
data.

Although there is no known analytic form of
the PYP density, it is possible to marginalize the
draws from it and to work directly with observa-
tions. This marginalization produces the classi-
cal Chinese restaurant process representation (Teh,
2006). When working with the morphology mod-
els we are proposing, we also need to marginalize
the different latent forms (stems s and patterns p)
that may have given rise to a given word w. Thus,
we require that the inverse relation of GENERATE is

available to compute the marginal base word distri-
bution:

p(w | G0
w) =

∑
GENERATE(s,p)=w

p(s | Gs) p(p | Gp)

Since our approach encodes morphology using
FSTs, which are invertible, this poses no problem.

To illustrate, consider the Russian word прочим,
which may be analyzed in several ways:

прочий +Adj +Sg +Neut +Instr
прочий +Adj +Sg +Masc +Instr
прочий +Adj +Pl +Dat

прочить +Verb +Pl +1P
прочее +Pro +Sg +Ins

Because the set of possible analyses is in general
small, marginalization is fast and complex blocked
sampling is not necessary.

Finally, to infer hyperparameter values (d, θ, . . .),
a Metropolis-Hastings update is interleaved with
Gibbs sampling steps for the rest of the hidden vari-
ables.3

Having described a model for generating words,
we now show its usage in several contexts.

3 Unsupervised Morphological
Disambiguation

Given a rule-based morphological analyzer encoded
as an unweighted FST and a corpus on which the
analyzer has been run – possibly generating multi-
ple analyses for each token – we can use our un-
igram model to learn a probabilistic model of dis-
ambiguation in an unsupervised setting (i.e., with-
out annotated examples). The corpus is assumed to
be generated from the unigram distribution Gw, and
the base stem model is set to a fixed character tri-
gram model.4 After learning the parameters of the
model, we can find for each word in the vocabulary
its most likely analysis and use this as a crude dis-
ambiguation step.

3The proposal distribution for Metropolis-Hastings is a Beta
distribution (d) or a Gamma distribution (θ+d) centered on the
previous parameter values.

4Experiments suggest that this is important to constrain the
model to realistic stems.
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3.1 Morphological Guessers

Finite-state morphological analyzers are usually
specified in three parts: a stem lexicon, which de-
fines the words in the language and classifies them
into several categories according to their grammat-
ical function and their morphological properties; a
set of prefixes and suffixes that can be applied to
each category to form surface words; and possibly
alternation rules that can encode exceptions and
spelling variations. The combination of these parts
provides a powerful framework for defining a gener-
ative model of words. Such models can be reversed
to obtain an analyzer. However, while the two latter
parts can be relatively easy to specify, enumerating
a comprehensive stem lexicon is a time consuming
and necessarily incomplete process, as some cate-
gories are truly open-class.

To allow unknown words to be analyzed, one
can use a guesser that attempts to analyze words
missing in the lexicon. Can we eliminate the stem
lexicon completely and use only the guesser? This
is what we try to do by designing a lexicon-free
analyzer for Russian. A guesser was developed
in three hours; it is prone to over-generation and
produces ambiguous analyses for most words
but covers a large number of morphological phe-
nomena (gender, case, tense, etc.). For example,
the word иврите5 can be correctly analyzed as
иврит+Noun+Masc+Prep+Sg but also as the in-
correct forms: иврить+Verb+Pres+2P+Pl,
иврита+Noun+Fem+Dat+Sg, иври-
тя+Noun+Fem+Prep+Sg, and more.

3.2 Disambiguation Experiments

We train the unigram model on a 1.7M-word cor-
pus of TED talks transcriptions translated into Rus-
sian (Cettolo et al., 2012) and evaluate our ana-
lyzer against a test set consisting of 1,500 gold-
standard analyses obtained from the morphology
disambiguation task of the DIALOG 2010 confer-
ence (Lyaševskaya et al., 2010).6

Each analysis is composed of a lemma (иврит),
a part of speech (Noun), and a sequence of ad-
ditional functional morphemes (Masc,Prep,Sg).
We consider only open-class categories: nouns, ad-

5иврите = Hebrew (masculine noun, prepositional case)
6http://ru-eval.ru

jectives, adverbs and verbs, and evaluate the output
of our model with three metrics: the lemma accu-
racy, the part-of-speech accuracy, and the morphol-
ogy F -measure.7

As a baseline, we consider picking a random anal-
ysis from output of the analyzer or choosing the
most frequent lemma and the most frequent morpho-
logical pattern.8 Then, we use our model with each
of the three versions of the pattern model described
in §2.2. Finally, as an upper bound, we use the gold
standard to select one of the analyses produced by
the guesser.

Since our evaluation is not directly comparable
to the standard for this task, we use for reference
a high-quality analyzer from Xerox9 disambiguated
with the MP0 model (all of the models have very
close accuracy in this case).

Model Lemma POS Morph.
Random 29.8 70.9 50.2
Frequency 31.1 74.4 48.8
Guesser MP0 60.0 82.2 66.3
Guesser MP1 58.9 82.5 69.5
Guesser MP2 59.9 82.4 65.5
Guesser oracle 68.4 84.9 83.0
Xerox MP0 83.6 96.4 78.1

Table 1: Russian morphological disambiguation.

Considering the amount of effort put in develop-
ing the guesser, the baseline POS tagging accuracy
is relatively good. However, the disambiguation is
largely improved by using our unigram model with
respect to all the evaluation categories. We are still
far from the performance of a high-quality analyzer
but, in absence of such a resource, our technique
might be a sensible option. We also note that there is
no clear winner in terms of pattern model, and con-
clude that this choice is task-specific.

7F -measure computed for the set of additional morphemes
and averaged over the words in the corpus.

8We estimate these frequencies by assuming each analysis of
each token is uniformly likely, then summing fractional counts.

9http://open.xerox.com/Services/
fst-nlp-tools/Pages/morphology
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4 Open Vocabulary Language Models

We now integrate our unigram model in a hierar-
chical Pitman-Yor n-gram language model (Fig. 1).
The training corpus words are assumed to be
generated from a distribution Gn

w drawn from
PY(dn, θn, G

n−1
w ), where Gn−1

w is defined recur-
sively down to the base model G0

w. Previous work
Teh (2006) simply used G0

w = U(V ) where V is
the word vocabulary, but in our case G0

w is the MP
defined in §2.2.

G2
wG3

w G1
w

d3, ✓3 d2, ✓2 d1, ✓1

Gs

ds, ✓s

Gp G0
p

dp, ✓p

G0
sw

Figure 1: The trigram version of our language model rep-
resented as a graphical model. G1

w is the unigram model
of §2.2.

We are interested in evaluating our model in an
open vocabulary scenario where the ability to ex-
plain new unseen words matters. We expect our
model to be able to generalize better thanks to the
combination of a morphological analyzer and a stem
distribution which is less sparse than the word dis-
tribution (for example, for the 1.6M word Turkish
corpus, |V | ≈ 3.5|S| ≈ 140k).

To integrate out-of-vocabulary words in our eval-
uation, we use infinite base distributions: G0

w (in the
baseline model) or G0

s (in the MP) are character tri-
gram models. We define perplexity of a held-out test
corpus in the standard way:

ppl = exp

(
− 1

N

N∑
i=1

log p (wi | wi−n+1 · · ·wi−1)

)

but compared to the common practice, we do not
need to discount OOVs from this sum since the
model vocabulary is infinite. Note that we also
marginalize by summing over all the possible analy-
ses for a given word when computing its base prob-
ability according to the MP.

4.1 Language Modeling Experiments

We train several trigram models on the Russian TED
talks corpus used in the previous section. Our base-
line is a hierarchical PY trigram model with a tri-
gram character model as the base word distribution.
We compare it with our model using the same char-
acter model for the base stem distribution. Both of
the morphological analyzers described in the previ-
ous section help obtaining perplexity reductions (Ta-
ble 2). We ran a similar experiment on the Turkish
version of this corpus (1.6M words) with a high-
quality analyzer (Oflazer, 1994) and obtain even
larger gains (Table 3).

Model ppl
PY-character LM 563
Guesser MP2 530
Xerox MP2 522

Table 2: Evaluation of the Russian n-gram model.

Model ppl
PY-character LM 1,640
Oflazer MP2 1,292

Table 3: Evaluation of the Turkish n-gram model.

These results can partly be attributed to the high
OOV rate in these conditions: 4% for the Russian
corpus and 6% for the Turkish corpus.

4.2 Predictive Text Input

It is difficult to know whether a decrease in perplex-
ity, as measured in the previous section, will result in
a performance improvement in downstream applica-
tions. As a confirmation that correctly modeling new
words matters, we consider a predictive task with a
truly open vocabulary and that requires only a lan-
guage model: predictive text input.

Given some text, we encode it using a lossy de-
terministic character mapping, and try to recover the
original content by computing the most likely word
sequence. This task is inspired by predictive text
input systems available on cellphones with a 9-key
keypad. For example, the string gave me a cup
is encoded as 4283 63 2 287, which could also
be decoded as: hate of a bus.
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Silfverberg et al. (2012) describe a system de-
signed for this task in Finnish, which is composed
of a weighted finite-state morphological analyzer
trained on IRC logs. However, their system is re-
stricted to words that are encoded in the analyzer’s
lexicon and does not use context for disambiguation.

In our experiments, we use the same Turkish TED
talks corpus as the previous section. As a baseline,
we use a trigram character language model. We pro-
duce a character lattice which encodes all the pos-
sible interpretations for a word and compose it with
a finite-state representation of the character LM us-
ing OpenFST (Allauzen et al., 2007). Alternatively,
we can use a unigram word model to decode this lat-
tice, backing off to the character language model if
no solution is found. Finally, to be able to make use
of word context, we can extract the k most likely
paths according to the character LM and produce a
word lattice, which is in turn decoded with a lan-
guage model defined over the extracted vocabulary.

Model WER CER
Character LM 48.37 16.72
1-gram + character LM 8.50 3.28
1-gram MP2 6.46 2.37
3-gram + character LM 7.86 3.07
3-gram MP2 5.73 2.15

Table 4: Evaluation of Turkish predictive text input.

We measure word and character error rate (WER,
CER) on the predicted word sequence and observe
large improvements in both of these metrics by mod-
eling morphology, both at the unigram level and
when context is used (Table 4).

Preliminary experiments with a corpus of 1.6M
Turkish tweets, an arguably more appropriate do-
main this task, show smaller but consistent improv-
ing: the trigram word error rate is reduced from 26%
to 24% when our model is used.

4.3 Limitations

While our model is an important step forward in
practical modeling of OOVs using morphological
processes, we have made the linguistically naive as-
sumption that morphology applies inside the lan-
guage’s lexicon but has no effect on the process that
put inflected lexemes together into sentences. In this

regard, our model is a minor variant on traditional n-
gram models that work with “opaque” word forms.
How to best relax this assumption in a computation-
ally tractable way is an important open question left
for future work.

5 Word Alignment Model

Monolingual models of language are not the only
models that can benefit from taking into account
morphology. In fact, alignment models are a good
candidate for using richer word distributions: they
assume a target word distribution conditioned on
each source word. When the target language is mor-
phologically rich, classic independence assumptions
produce very weak models unless some kind of pre-
processing is applied to one side of the corpus. An
alternative is to use our unigram model as a word
translation distribution for each source word in the
corpus.

Our alignment model is based on a simple variant
of IBM Model 2 where the alignment distribution is
only controlled by two parameters, λ and p0 (Dyer et
al., 2013). p0 is the probability of the null alignment.
For a source sentence f of length n, a target sentence
e of lengthm and a latent alignment a, we define the
following alignment link probabilities (j 6= 0):

p(ai = j | n,m) ∝ (1− p0) exp

(
−λ
∣∣∣∣ im − j

n

∣∣∣∣)
λ controls the flatness of this distribution: larger val-
ues make the probabilities more peaked around the
diagonal of the alignment matrix.

Each target word is then generated given a source
word and a latent alignment link from the word
translation distribution p(ei | fai , Gw). Note that
this is effectively a unigram distribution over tar-
get words, albeit conditioned on the source word
fj . Here is where our model differs from classic
alignment models: the unigram distribution Gw is
assumed be generated from a PY process. There are
two choices for the base word distribution:

• As a baseline, we use a uniform base distribu-
tion over the target vocabulary: G0

w = U(V ).

• We define a stem distribution Gs[f ] for each
source word f , a shared pattern distributionGp,
and set G0

w[f ] = MP(Gs[f ], Gp). In this case,
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we obtain the model depicted in Fig. 2. The
stem and the pattern models are also given PY
priors with uniform base distribution (G0

s =
U(S)).

Finally, we put uninformative priors on the align-
ment distribution parameters: p0 ∼ Beta(α, β) is
collapsed and λ ∼ Gamma(k, θ) is inferred using
Metropolis-Hastings.

f e

a

p0�

Gw

dw, ✓w

Gp

G0
sGs

G0
p

dp, ✓p

↵, �

ds, ✓s

Figure 2: Our alignment model, represented as a graphi-
cal model.

Experiments
We evaluate the alignment error rate of our models
for two language pairs with rich morphology on the
target side. We compare to alignments inferred us-
ing IBM Model 4 trained with EM (Brown et al.,
1993),10 a version of our baseline model (described
above) without PY priors (learned using EM), and
the PY-based baseline. We consider two language
pairs.

English-Turkish We use a 2.8M word cleaned
version of the South-East European Times corpus
(Tyers and Alperen, 2010) and gold-standard align-
ments from Çakmak et al. (2012). Our morphologi-
cal analyzer is identical to the one used in the previ-
ous sections.

English-Czech We use the 1.3M word News
Commentary corpus and gold-standard alignments

10We use the default GIZA++ stage training scheme:
Model 1 + HMM + Model 3 + Model 4.

from Bojar and Prokopová (2006). The morpholog-
ical analyzer is provided by Xerox.

Results Results are shown in Table 5. Our lightly
parameterized model performs much better than
IBM Model 4 in these small-data conditions. With
an identical model, we find PY priors outperform
traditional multinomial distributions. Adding mor-
phology further reduced the alignment error rate, for
both languages.

AER
Model en-tr en-cs
Model 4 52.1 34.5
EM 43.8 28.9
PY-U(V ) 39.2 25.7
PY-U(S) 33.8 24.8

Table 5: Word alignment experiments on English-Turkish
(en-tr) and English-Czech (en-cs) data.

As an example of how our model generalizes bet-
ter, consider the sentence pair in Fig. 3, taken from
the evaluation data. The two words composing the
Turkish sentence are not found elsewhere in the cor-
pus, but several related inflections occur.11 It is
therefore trivial for the stem-base model to find the
correct alignment (marked in black), while all the
other models have no evidence for it and choose an
arbitrary alignment (gray points).

I wa
s

no
t

ab
le

to fi
ni
sh

my ho
me
wo
rk

ödevimi
bitiremedim

Figure 3: A complex Turkish-English word alignment
(alignment points in gray: EM/PY-U(V ); black: PY-
U(S)).

6 Related Work

Computational morphology has received consider-
able attention in NLP since the early work on two-
level morphology (Koskenniemi, 1984; Kaplan and

11ödevinin, ödevini, ödevleri; bitmez, bitirileceğinden,
bitmesiyle, ...
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Kay, 1994). It is now widely accepted that finite-
state transducers have sufficient power to express
nearly all morphological phenomena, and the XFST
toolkit (Beesley and Karttunen, 2003) has con-
tributed to the practical adoption of this modeling
approach. Recently, open-source tools have been re-
leased: in this paper, we used Foma (Hulden, 2009)
to develop the Russian guesser.

Since some inflected forms have several possible
analyses, there has been a great deal of work on se-
lecting the intended one in context (Hakkani-Tür et
al., 2000; Hajič et al., 2001; Habash and Rambow,
2005; Smith et al., 2005; Habash et al., 2009). Our
disambiguation model is closely related to genera-
tive models used for this purpose (Hakkani-Tür et
al., 2000).

Rule-based analysis is not the only approach
to modeling morphology, and many unsupervised
models have been proposed.12 Heuristic segmenta-
tion approaches based on the minimum description
length principle (Goldsmith, 2001; Creutz and La-
gus, 2007; de Marcken, 1996; Brent et al., 1995)
have been shown to be effective, and Bayesian
model-based versions have been proposed as well
(Goldwater et al., 2011; Snyder and Barzilay, 2008;
Snover and Brent, 2001). In §3, we suggested a third
way between rule-based approaches and fully un-
supervised learning that combines the best of both
worlds.

Morphological analysis or segmentation is crucial
to the performance of several applications: machine
translation (Goldwater and McClosky, 2005; Al-
Haj and Lavie, 2010; Oflazer and El-Kahlout, 2007;
Minkov et al., 2007; Habash and Sadat, 2006, in-
ter alia), automatic speech recognition (Creutz et al.,
2007), and syntactic parsing (Tsarfaty et al., 2010).
Several methods have been proposed to integrate
morphology into n-gram language models, includ-
ing factored language models (Bilmes and Kirch-
hoff, 2003), discriminative language modeling (Arı-
soy et al., 2008), and more heuristic approaches
(Monz, 2011).

Despite the fundamentally open nature of the lex-
icon (Heaps, 1978), there has been distressingly lit-

12Developing a high-coverage analyzer can be a time-
consuming process even with the simplicity of modern toolkits,
and unsupervised morphology learning is an attractive problem
for computational cognitive science.

tle attention to the general problem of open vocabu-
lary language modeling problem (most applications
make a closed-vocabulary assumption). The classic
exploration of open vocabulary language modeling
is Brown et al. (1992), which proposed the strategy
of interpolating between word- and character-based
models. Character-based language models are re-
viewed by Carpenter (2005). So-called hybrid mod-
els that model both words and sublexical units have
become popular in speech recognition (Shaik et al.,
2012; Parada et al., 2011; Bazzi, 2002). Open-
vocabulary language language modeling has also re-
cently been explored in the context of assistive tech-
nologies (Roark, 2009).

Finally, Pitman-Yor processes (PYPs) have be-
come widespread in natural language processing
since they are natural power-law generators. It has
been shown that the widely used modified Kneser-
Ney estimator (Chen and Goodman, 1998) for n-
gram language models is an approximation of the
posterior predictive distribution of a language model
with hierarchical PYP priors (Goldwater et al., 2011;
Teh, 2006).

7 Conclusion

We described a generative model which makes use
of morphological analyzers to produce richer word
distributions through sharing of statistical strength
between stems. We have shown how it can be in-
tegrated into several models central to NLP appli-
cations and have empirically validated the effective-
ness of these changes. Although this paper mostly
focused on languages that are well studied and for
which high-quality analyzers are available, our mod-
els are especially relevant in low-resource scenarios
because they do not require disambiguated analyses.
In future work, we plan to apply these techniques to
languages such as Kinyarwanda, a resource-poor but
morphologically rich language spoken in Rwanda.
It is our belief that knowledge-rich models can help
bridge the gap between low- and high-resource lan-
guages.
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