Improving unsupervised vector-space thematic fit evaluation via role-filler prototype clustering

Clayton Greenberg, Asad Sayeed, Vera Demberg


Anthology ID:
N15-1003
Volume:
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Month:
May–June
Year:
2015
Address:
Denver, Colorado
Editors:
Rada Mihalcea, Joyce Chai, Anoop Sarkar
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
21–31
Language:
URL:
https://aclanthology.org/N15-1003
DOI:
10.3115/v1/N15-1003
Bibkey:
Cite (ACL):
Clayton Greenberg, Asad Sayeed, and Vera Demberg. 2015. Improving unsupervised vector-space thematic fit evaluation via role-filler prototype clustering. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 21–31, Denver, Colorado. Association for Computational Linguistics.
Cite (Informal):
Improving unsupervised vector-space thematic fit evaluation via role-filler prototype clustering (Greenberg et al., NAACL 2015)
Copy Citation:
PDF:
https://aclanthology.org/N15-1003.pdf