@inproceedings{cotterell-eisner-2018-deep,
title = "A Deep Generative Model of Vowel Formant Typology",
author = "Cotterell, Ryan and
Eisner, Jason",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1004",
doi = "10.18653/v1/N18-1004",
pages = "37--46",
abstract = "What makes some types of languages more probable than others? For instance, we know that almost all spoken languages contain the vowel phoneme /i/; why should that be? The field of linguistic typology seeks to answer these questions and, thereby, divine the mechanisms that underlie human language. In our work, we tackle the problem of vowel system typology, i.e., we propose a generative probability model of which vowels a language contains. In contrast to previous work, we work directly with the acoustic information{---}the first two formant values{---}rather than modeling discrete sets of symbols from the international phonetic alphabet. We develop a novel generative probability model and report results on over 200 languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cotterell-eisner-2018-deep">
<titleInfo>
<title>A Deep Generative Model of Vowel Formant Typology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Eisner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>What makes some types of languages more probable than others? For instance, we know that almost all spoken languages contain the vowel phoneme /i/; why should that be? The field of linguistic typology seeks to answer these questions and, thereby, divine the mechanisms that underlie human language. In our work, we tackle the problem of vowel system typology, i.e., we propose a generative probability model of which vowels a language contains. In contrast to previous work, we work directly with the acoustic information—the first two formant values—rather than modeling discrete sets of symbols from the international phonetic alphabet. We develop a novel generative probability model and report results on over 200 languages.</abstract>
<identifier type="citekey">cotterell-eisner-2018-deep</identifier>
<identifier type="doi">10.18653/v1/N18-1004</identifier>
<location>
<url>https://aclanthology.org/N18-1004</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>37</start>
<end>46</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Deep Generative Model of Vowel Formant Typology
%A Cotterell, Ryan
%A Eisner, Jason
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F cotterell-eisner-2018-deep
%X What makes some types of languages more probable than others? For instance, we know that almost all spoken languages contain the vowel phoneme /i/; why should that be? The field of linguistic typology seeks to answer these questions and, thereby, divine the mechanisms that underlie human language. In our work, we tackle the problem of vowel system typology, i.e., we propose a generative probability model of which vowels a language contains. In contrast to previous work, we work directly with the acoustic information—the first two formant values—rather than modeling discrete sets of symbols from the international phonetic alphabet. We develop a novel generative probability model and report results on over 200 languages.
%R 10.18653/v1/N18-1004
%U https://aclanthology.org/N18-1004
%U https://doi.org/10.18653/v1/N18-1004
%P 37-46
Markdown (Informal)
[A Deep Generative Model of Vowel Formant Typology](https://aclanthology.org/N18-1004) (Cotterell & Eisner, NAACL 2018)
ACL
- Ryan Cotterell and Jason Eisner. 2018. A Deep Generative Model of Vowel Formant Typology. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 37–46, New Orleans, Louisiana. Association for Computational Linguistics.