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Abstract

We argue that semantic meanings of a sentence
or clause can not be interpreted independently
from the rest of a paragraph, or independently
from all discourse relations and the overall
paragraph-level discourse structure. With the
goal of improving implicit discourse relation
classification, we introduce a paragraph-level
neural networks that model inter-dependencies
between discourse units as well as discourse
relation continuity and patterns, and predict a
sequence of discourse relations in a paragraph.
Experimental results show that our model out-
performs the previous state-of-the-art systems
on the benchmark corpus of PDTB.

1 Introduction

PDTB-style discourse relations, mostly defined
between two adjacent text spans (i.e., discourse
units, either clauses or sentences), specify how
two discourse units are logically connected (e.g.,
causal, contrast). Recognizing discourse relations
is one crucial step in discourse analysis and can be
beneficial for many downstream NLP applications
such as information extraction, machine transla-
tion and natural language generation.

Commonly, explicit discourse relations were
distinguished from implicit ones, depending on
whether a discourse connective (e.g., “because”
and “after”) appears between two discourse
units (Prasad et al., 2008a). While explicit dis-
course relation detection can be framed as a dis-
course connective disambiguation problem (Pitler
and Nenkova, 2009; Lin et al., 2014) and has
achieved reasonable performance (F1 score >
90%), implicit discourse relations have no dis-
course connective and are especially difficult to
identify (Lin et al., 2009, 2014; Xue et al., 2015).
To fill the gap, implicit discourse relation pre-
diction has drawn significant research interest re-
cently and progress has been made (Chen et al.,

2016; Liu and Li, 2016) by modeling composi-
tional meanings of two discourse units and ex-
ploiting word interactions between discourse units
using neural tensor networks or attention mecha-
nisms in neural nets. However, most of existing
approaches ignore wider paragraph-level contexts
beyond the two discourse units that are examined
for predicting a discourse relation in between.

To further improve implicit discourse relation
prediction, we aim to improve discourse unit rep-
resentations by positioning a discourse unit (DU)
in its wider context of a paragraph. The key obser-
vation is that semantic meaning of a DU can not
be interpreted independently from the rest of the
paragraph that contains it, or independently from
the overall paragraph-level discourse structure that
involve the DU. Considering the following para-
graph with four discourse relations, one relation
between each two adjacent DUs:
(1): [The Butler, Wis., manufacturer went pub-
lic at $15.75 a share in August 1987,]DU1

and (Explicit-Expansion) [Mr. Sim’s goal
then was a $29 per-share price by 1992.]DU2

(Implicit-Expansion) [Strong earnings growth
helped achieve that price far ahead of sched-
ule, in August 1988.]DU3 (Implicit-Comparison)
[The stock has since softened, trading around
$25 a share last week and closing yesterday at
$23 in national over-the-counter trading.]DU4 But
(Explicit-Comparison) [Mr. Sim has set a fresh
target of $50 a share by the end of reaching that
goal.]DU5

Clearly, each DU is an integral part of the para-
graph and not independent from other units. First,
predicting a discourse relation may require under-
standing wider paragraph-level contexts beyond
two relevant DUs and the overall discourse struc-
ture of a paragraph. For example, the implicit
“Comparison” discourse relation between DU3
and DU4 is difficult to identify without the back-
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ground information (the history of per-share price)
introduced in DU1 and DU2. Second, a DU may
be involved in multiple discourse relations (e.g.,
DU4 is connected with both DU3 and DU5 with
a “Comparison” relation), therefore the pragmatic
meaning representation of a DU should reflect
all the discourse relations the unit was involved
in. Third, implicit discourse relation prediction
should benefit from modeling discourse relation
continuity and patterns in a paragraph that in-
volve easy-to-identify explicit discourse relations
(e.g., “Implicit-Comparison” relation is followed
by “Explicit-Comparison” in the above example).

Following these observations, we construct a
neural net model to process a paragraph each time
and jointly build meaning representations for all
DUs in the paragraph. The learned DU represen-
tations are used to predict a sequence of discourse
relations in the paragraph, including both implicit
and explicit relations. Although explicit relations
are not our focus, predicting an explicit relation
will help to reveal the pragmatic roles of its two
DUs and reconstruct their representations, which
will facilitate predicting neighboring implicit dis-
course relations that involve one of the DUs.

In addition, we introduce two novel designs
to further improve discourse relation classifica-
tion performance of our paragraph-level neural net
model. First, previous work has indicated that
recognizing explicit and implicit discourse rela-
tions requires different strategies, we therefore un-
tie parameters in the discourse relation prediction
layer of the neural networks and train two separate
classifiers for predicting explicit and implicit dis-
course relations respectively. This unique design
has improved both implicit and explicit discourse
relation identification performance. Second, we
add a CRF layer on top of the discourse relation
prediction layer to fine-tune a sequence of pre-
dicted discourse relations by modeling discourse
relation continuity and patterns in a paragraph.

Experimental results show that the intu-
itive paragraph-level discourse relation prediction
model achieves improved performance on PDTB
for both implicit discourse relation classification
and explicit discourse relation classification.

2 Related Work

2.1 Implicit Discourse Relation Recognition

Since the PDTB (Prasad et al., 2008b) corpus was
created, a surge of studies (Pitler et al., 2009; Lin

et al., 2009; Liu et al., 2016; Rutherford and Xue,
2016) have been conducted for predicting dis-
course relations, primarily focusing on the chal-
lenging task of implicit discourse relation clas-
sification when no explicit discourse connective
phrase was presented. Early studies (Pitler et al.,
2008; Lin et al., 2009, 2014; Rutherford and Xue,
2015) focused on extracting linguistic and seman-
tic features from two discourse units. Recent re-
search (Zhang et al., 2015; Rutherford et al., 2016;
Ji and Eisenstein, 2015; Ji et al., 2016) tried to
model compositional meanings of two discourse
units by exploiting interactions between words in
two units with more and more complicated neu-
ral network models, including the ones using neu-
ral tensor (Chen et al., 2016; Qin et al., 2016; Lei
et al., 2017) and attention mechanisms (Liu and
Li, 2016; Lan et al., 2017; Zhou et al., 2016). An-
other trend is to alleviate the shortage of annotated
data by leveraging related external data, such as
explicit discourse relations in PDTB (Liu et al.,
2016; Lan et al., 2017; Qin et al., 2017) and un-
labeled data obtained elsewhere (Rutherford and
Xue, 2015; Lan et al., 2017), often in a multi-task
joint learning framework.

However, nearly all the previous works assume
that a pair of discourse units is independent from
its wider paragraph-level contexts and build their
discourse relation prediction models based on only
two relevant discourse units. In contrast, we model
inter-dependencies of discourse units in a para-
graph when building discourse unit representa-
tions; in addition, we model global continuity and
patterns in a sequence of discourse relations, in-
cluding both implicit and explicit relations.

Hierarchical neural network models (Liu and
Lapata, 2017; Li et al., 2016) have been applied to
RST-style discourse parsing (Carlson et al., 2003)
mainly for the purpose of generating text-level hi-
erarchical discourse structures. In contrast, we
use hierarchical neural network models to build
context-aware sentence representations in order to
improve implicit discourse relation prediction.

2.2 Paragraph Encoding

Abstracting latent representations from a long se-
quence of words, such as a paragraph, is a chal-
lenging task. While several novel neural net-
work models (Zhang et al., 2017b,a) have been
introduced in recent years for encoding a para-
graph, Recurrent Neural Network (RNN)-based
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methods remain the most effective approaches.
RNNs, especially the long-short term memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
models, have been widely used to encode a para-
graph for machine translation (Sutskever et al.,
2014), dialogue systems (Serban et al., 2016) and
text summarization (Nallapati et al., 2016) be-
cause of its ability in modeling long-distance de-
pendencies between words. In addition, among
four typical pooling methods (sum, mean, last
and max) for calculating sentence representations
from RNN-encoded hidden states for individ-
ual words, max-pooling along with bidirectional
LSTM (Bi-LSTM) (Schuster and Paliwal, 1997)
yields the current best universal sentence repre-
sentation method (Conneau et al., 2017). We
adopted a similar neural network architecture for
paragraph encoding.

3 The Neural Network Model for
Paragraph-level Discourse Relation
Recognition

3.1 The Basic Model Architecture
Figure 1 illustrates the overall architecture of the
discourse-level neural network model that consists
of two Bi-LSTM layers, one max-pooling layer in
between and one softmax prediction layer. The
input of the neural network model is a paragraph
containing a sequence of discourse units, while the
output is a sequence of discourse relations with
one relation between each pair of adjacent dis-
course units1.

Given the words sequence of one paragraph
as input, the lower Bi-LSTM layer will read the
whole paragraph and calculate hidden states as
word representations, and a max-pooling layer
will be applied to abstract the representation of
each discourse unit based on individual word rep-
resentations. Then another Bi-LSTM layer will
run over the sequence of discourse unit repre-
sentations and compute new representations by
further modeling semantic dependencies between
discourse units within paragraph. The final soft-
max prediction layer will concatenate representa-
tions of two adjacent discourse units and predict
the discourse relation between them.

Word Vectors as Input: The input of the
paragraph-level discourse relation prediction

1In PDTB, most of discourse relations were annotated be-
tween two adjacent sentences or two adjacent clauses. For
exceptional cases, we applied heuristics to convert them.

model is a sequence of word vectors, one vector
per word in the paragraph. In this work, we used
the pre-trained 300-dimension Google English
word2vec embeddings2. For each word that
is not in the vocabulary of Google word2vec,
we will randomly initialize a vector with each
dimension sampled from the range [−0.25, 0.25].
In addition, recognizing key entities and discourse
connective phrases is important for discourse
relation recognition, therefore, we concatenate
the raw word embeddings with extra linguistic
features, specifically one-hot Part-Of-Speech
tag embeddings and one-hot named entity tag
embeddings3.

Building Discourse Unit Representations: We
aim to build discourse unit (DU) representations
that sufficiently leverage cues for discourse re-
lation prediction from paragraph-wide contexts,
including the preceding and following discourse
units in a paragraph. To process long paragraph-
wide contexts, we take a bottom-up two-level ab-
straction approach and progressively generate a
compositional representation of each word first
(low level) and then generate a compositional rep-
resentation of each discourse unit (high level),
with a max-pooling operation in between. At both
word-level and DU-level, we choose Bi-LSTM
as our basic component for generating composi-
tional representations, mainly considering its ca-
pability to capture long-distance dependencies be-
tween words (discourse units) and to incorporate
influences of context words (discourse units) in
each side.

Given a variable-length words sequence X =
(x1, x2, ..., xL) in a paragraph, the word-level Bi-
LSTM will process the input sequence by using
two separate LSTMs, one process the word se-
quence from the left to right while the other fol-
lows the reversed direction. Therefore, at each
word position t, we obtain two hidden states−→
ht ,
←−
ht . We concatenate them to get the word rep-

resentation ht = [
−→
ht ,
←−
ht ]. Then we apply max-

pooling over the sequence of word representations
for words in a discourse unit in order to get the
discourse unit embedding:

2Downloaded from https://docs.google.com/
uc?id=0B7XkCwpI5KDYNlNUTTlSS21pQmM

3Our feature-rich word embeddings are of dimension 343,
including 300 dimensions for word2vec embeddings + 36 di-
mensions for Part-Of-Speech (POS) tags + 7 dimensions for
named entity tags. We used the Stanford CoreNLP to gener-
ate POS tags and named entity tags.
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Figure 1: The Basic Model Architecture for Paragraph-level Discourse Relations Sequence Prediction.

MPDU [j] =
DU end
max

i=DU start
hi[j] (1)

where, 1 ≤ j ≤ hidden node size (2)

Next, the DU-level Bi-LSTM will process the
sequence of discourse unit embeddings in a para-
graph and generate two hidden states

−−−→
hDUt and←−−−

hDUt at each discourse unit position. We concate-
nate them to get the discourse unit representation
hDUt = [

−−−→
hDUt,

←−−−
hDUt].

The Softmax Prediction Layer: Finally, we con-
catenate two adjacent discourse unit representa-
tions hDUt−1 and hDUt and predict the discourse
relation between them using a softmax function:

yt−1 = softmax(Wy ∗ [hDUt−1, hDUt] + by)
(3)

3.2 Untie Parameters in the Softmax
Prediction Layer (Implicit vs. Explicit)

Previous work (Pitler and Nenkova, 2009; Lin
et al., 2014; Rutherford and Xue, 2016) has re-

Figure 2: Untie Parameters in the Prediction Layer

vealed that recognizing explicit vs. implicit dis-
course relations requires different strategies. Note
that in the PDTB dataset, explicit discourse rela-
tions were distinguished from implicit ones, de-
pending on whether a discourse connective exists
between two discourse units. Therefore, explicit
discourse relation detection can be simplified as a
discourse connective phrase disambiguation prob-
lem (Pitler and Nenkova, 2009; Lin et al., 2014).
On the contrary, predicting an implicit discourse
relation should rely on understanding the overall
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contents of its two discourse units (Lin et al., 2014;
Rutherford and Xue, 2016).

Considering the different natures of explicit vs.
implicit discourse relation prediction, we decide
to untie parameters at the final discourse relation
prediction layer and train two softmax classifiers,
as illustrated in Figure 2. The two classifiers have
different sets of parameters, with one classifier for
only implicit discourse relations and the other for
only explicit discourse relations.

yt−1 =

{
softmax(Wexp[hDUt−1, hDUt] + bexp), exp

softmax(Wimp[hDUt−1, hDUt] + bimp), imp

(4)

The loss function used for the neural network
training considers loss induced by both implicit re-
lation prediction and explicit relation prediction:

Loss = Lossimp + α ∗ Lossexp (5)

The α, in the full system, is set to be 1, which
means that minimizing the loss in predicting either
type of discourse relations is equally important.
In the evaluation, we will also evaluate a system
variant, where we will set α = 0, which means
that the neural network will not attempt to predict
explicit discourse relations and implicit discourse
relation prediction will not be influenced by pre-
dicting neighboring explicit discourse relations.

3.3 Fine-tune Discourse Relation Predictions
Using a CRF Layer

Data analysis and many linguistic studies (Pitler
et al., 2008; Asr and Demberg, 2012; Lascarides
and Asher, 1993; Hobbs, 1985) have repeatedly
shown that discourse relations feature continuity
and patterns (e.g., a temporal relation is likely to
be followed by another temporal relation). Es-
pecially, Pitler et al. (2008) firstly reported that
patterns exist between implicit discourse relations
and their neighboring explicit discourse relations.

Motivated by these observations, we aim to
improve implicit discourse relation detection by
making use of easily identifiable explicit discourse
relations and taking into account global patterns of
discourse relation distributions. Specifically, we
add an extra CRF layer at the top of the softmax
prediction layer (shown in figure 3) to fine-tune
predicted discourse relations by considering their
inter-dependencies.

The Conditional Random Fields (Lafferty et al.,
2001) (CRF) layer updates a state transition ma-
trix, which can effectively adjust the current la-

Figure 3: Fine-tune Discourse Relations with a CRF
layer.

bel depending on proceeding and following la-
bels. Both training and decoding of the CRF layer
can be solved efficiently by using the Viterbi al-
gorithm. With the CRF layer, the model jointly
assigns a sequence of discourse relations between
each two adjacent discourse units in a paragraph,
including both implicit and explicit relations, by
considering relevant discourse unit representations
as well as global discourse relation patterns.

4 Evaluation

4.1 Dataset and Preprocessing

The Penn Discourse Treebank (PDTB): We ex-
perimented with PDTB v2.0 (Prasad et al., 2008b)
which is the largest annotated corpus contain-
ing 36k discourse relations in 2,159 Wall Street
Journal (WSJ) articles. In this work, we fo-
cus on the top-level4 discourse relation senses
which are consist of four major semantic classes:
Comparison (Comp), Contingency (Cont), Expan-
sion (Exp) and Temporal (Temp). We followed
the same PDTB section partition (Rutherford and
Xue, 2015) as previous work and used sections 2-
20 as training set, sections 21-22 as test set, and
sections 0-1 as development set. Table 1 presents
the data distributions we collected from PDTB.

Preprocessing: The PDTB dataset documents
its annotations as a list of discourse relations, with
each relation associated with its two discourse
units. To recover the paragraph context for a dis-
course relation, we match contents of its two an-
notated discourse units with all paragraphs in cor-
responding raw WSJ article. When all the match-
ing was completed, each paragraph was split into
a sequence of discourse units, with one discourse
relation (implicit or explicit) between each two ad-

4In PDTB, the sense label of discourse relation was anno-
tated hierarchically with three levels.
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Type Class Train Dev Test Total

Implicit

Comp 1942 197 152 2291
Cont 3339 292 279 3910
Exp 7003 671 574 8248
Temp 760 64 85 909

Explicit

Comp 4184 422 364 4970
Cont 2837 286 213 3336
Exp 4612 481 424 5517
Temp 2742 254 297 3293

Table 1: Distributions of Four Top-level Discourse Re-
lations in PDTB.

# of DUs 2 3 4 5 >5
ratio 44% 25% 15% 7.3% 8.7%

Table 2: Distributions of Paragraphs.

jacent discourse units5. Following this method, we
obtained 14,309 paragraphs in total, each contains
3.2 discourse units on average. Table 2 shows the
distribution of paragraphs based on the number of
discourse units in a paragraph.

4.2 Parameter Settings and Model Training

We tuned the parameters based on the best per-
formance on the development set. We fixed the
weights of word embeddings during training. All
the LSTMs in our neural network use the hidden
state size of 300. To avoid overfitting, we applied
dropout (Hinton et al., 2012) with dropout ratio of
0.5 to both input and output of LSTM layers. To
prevent the exploding gradient problem in training
LSTMs, we adopt gradient clipping with gradient
L2-norm threshold of 5.0. These parameters re-
main the same for all our proposed models as well
as our own baseline models.

We chose the standard cross-entropy loss func-
tion for training our neural network model and
adopted Adam (Kingma and Ba, 2014) optimizer
with the initial learning rate of 5e-4 and a mini-
batch size of 1286. If one instance is annotated
with two labels (4% of all instances), we use both
of them in loss calculation and regard the predic-
tion as correct if model predicts one of the anno-
tated labels. All the proposed models were imple-

5In several hundred discourse relations, one discourse unit
is complex and can be further separated into two elementary
discourse units, which can be illustrated as [DU1-DU2]-DU3.
We simplify such cases to be a relation between DU2 and
DU3.

6Counted as the number of discourse relations rather than
paragraph instances.

mented with Pytorch7 and converged to the best
performance within 20-40 epochs.

To alleviate the influence of randomness in neu-
ral network model training and obtain stable ex-
perimental results, we ran each of the proposed
models and our own baseline models ten times and
report the average performance of each model in-
stead of the best performance as reported in many
previous works.

4.3 Baseline Models and Systems

We compare the performance of our neural net-
work model with several recent discourse relation
recognition systems that only consider two rele-
vant discourse units.

• (Rutherford and Xue, 2015): improves im-
plicit discourse relation prediction by creat-
ing more training instances from the Giga-
word corpus utilizing explicitly mentioned
discourse connective phrases.

• (Chen et al., 2016): a gated relevance net-
work (GRN) model with tensors to capture
semantic interactions between words from
two discourse units.

• (Liu et al., 2016): a convolutional neural net-
work model that leverages relations between
different styles of discourse relations annota-
tions (PDTB and RST (Carlson et al., 2003))
in a multi-task joint learning framework.

• (Liu and Li, 2016): a multi-level attention-
over-attention model to dynamically exploit
features from two discourse units for recog-
nizing an implicit discourse relation.

• (Qin et al., 2017): a novel pipelined adver-
sarial framework to enable an adaptive imi-
tation competition between the implicit net-
work and a rival feature discriminator with
access to connectives.

• (Lei et al., 2017): a Simple Word Interac-
tion Model (SWIM) with tensors that cap-
tures both linear and quadratic relations be-
tween words from two discourse units.

• (Lan et al., 2017): an attention-based LSTM
neural network that leverages explicit dis-
course relations in PDTB and unannotated
external data in a multi-task joint learning
framework.

7http://pytorch.org/
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Implicit Explicit
Model Macro Acc Comp Cont Exp Temp Macro Acc

(Rutherford and Xue, 2015) 40.50 57.10 - - - - - -
(Liu et al., 2016) 44.98 57.27 - - - - - -
(Liu and Li, 2016) 46.29 57.57 - - - - - -
(Lei et al., 2017) 46.46 - - - - - - -
(Lan et al., 2017) 47.80 57.39 - - - - - -

DU-pair level Discourse Relation Recognition (Our Own Baselines)
Bi-LSTM 40.01 53.50 30.52 42.06 65.52 21.96 - -
+ tensors 45.36 57.18 36.88 44.85 68.70 30.74 - -

Paragraph level Discourse Relation Recognition
Basic System Variant (α = 0) 47.56 56.88 37.12 46.47 67.72 38.92 - -
Basic System (α = 1) 48.10 57.52 37.33 47.89 68.39 38.80 91.93 92.89
+ Untie Parameters 48.69 58.20 37.68 49.19 68.86 39.04 93.70 94.46
+ the CRF Layer 48.82 57.44 37.72 49.39 67.45 40.70 93.21 93.98

Table 3: Multi-class Classification Results on PDTB. We report accuracy (Acc) and macro-average F1-scores for
both explicit and implicit discourse relation predictions. We also report class-wise F1 scores.

4.4 Evaluation Settings

On the PDTB corpus, both binary classification
and multi-way classification settings are com-
monly used to evaluate the implicit discourse rela-
tion recognition performance. We noticed that all
the recent works report class-wise implicit relation
prediction performance in the binary classification
setting, while none of them report detailed per-
formance in the multi-way classification setting.
In the binary classification setting, separate “one-
versus-all” binary classifiers were trained, and
each classifier is to identify one class of discourse
relations. Although separate classifiers are gener-
ally more flexible in combating with imbalanced
distributions of discourse relation classes and ob-
tain higher class-wise prediction performance, one
pair of discourse units may be tagged with all four
discourse relations without proper conflict resolu-
tion. Therefore, the multi-way classification set-
ting is more appropriate and natural in evaluat-
ing a practical end-to-end discourse parser, and
we mainly evaluate our proposed models using the
four-way multi-class classification setting.

Since none of the recent previous work reported
class-wise implicit relation classification perfor-
mance in the multi-way classification setting, for
better comparisons, we re-implemented the neu-
ral tensor network architecture (so-called SWIM
in (Lei et al., 2017)) which is essentially a Bi-
LSTM model with tensors and report its detailed
evaluation result in the multi-way classification
setting. As another baseline, we report the per-

formance of a Bi-LSTM model without tensors as
well. Both baseline models take two relevant dis-
course units as the only input.

For additional comparisons, We also report the
performance of our proposed models in the binary
classification setting.

4.5 Experimental Results

Multi-way Classification: The first section of ta-
ble 3 shows macro average F1-scores and accu-
racies of previous works. The second section of
table 3 shows the multi-class classification results
of our implemented baseline systems. Consis-
tent with results of previous works, neural tensors,
when applied to Bi-LSTMs, improved implicit
discourse relation prediction performance. How-
ever, the performance on the three small classes
(Comp, Cont and Temp) remains low.

The third section of table 3 shows the
multi-class classification results of our proposed
paragraph-level neural network models that cap-
ture inter-dependencies among discourse units.
The first row shows the performance of a variant of
our basic model, where we only identify implicit
relations and ignore identifying explicit relations
by setting the α in equation (5) to be 0. Compared
with the baseline Bi-LSTM model, the only differ-
ence is that this model considers paragraph-wide
contexts and model inter-dependencies among dis-
course units when building representation for indi-
vidual DU. We can see that this model has greatly
improved implicit relation classification perfor-
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Model Comp Cont Exp Temp
(Chen et al., 2016) 40.17 54.76 - 31.32
(Liu et al., 2016) 37.91 55.88 69.97 37.17

(Liu and Li, 2016) 36.70 54.48 70.43 38.84
(Qin et al., 2017) 40.87 54.56 72.38 36.20
(Lei et al., 2017) 40.47 55.36 69.50 35.34
(Lan et al., 2017) 40.73 58.96 72.47 38.50

Paragraph level Discourse Relation Recognition
Basic System (α = 1) 42.68 55.17 68.94 41.03
+ Untie Parameters 46.79 57.09 70.41 45.61

Table 4: Binary Classification Results on PDTB. We report F1-scores for implicit discourse relations.

Implicit Explicit
Model Macro Acc Macro Acc

Basic System (α = 1) 49.92 59.08 93.05 93.83
+ Untie Parameters 50.47 59.85 93.95 94.74
+ the CRF Layer 51.84 59.75 94.17 94.82

Table 5: Multi-class Classification Results of Ensemble Models on PDTB.

mance across all the four relations and improved
the macro-average F1-score by over 7 percents.
In addition, compared with the baseline Bi-LSTM
model with tensor, this model improved implicit
relation classification performance across the three
small classes, with clear performance gains of
around 2 and 8 percents on contingency and tem-
poral relations respectively, and overall improved
the macro-average F1-score by 2.2 percents.

The second row shows the performance of our
basic paragraph-level model which predicts both
implicit and explicit discourse relations in a para-
graph. Compared to the variant system (the first
row), the basic model further improved the classi-
fication performance on the first three implicit re-
lations. Especially on the contingency relation, the
classification performance was improved by an-
other 1.42 percents. Moreover, the basic model
yields good performance for recognizing explicit
discourse relations as well, which is comparable
with previous best result (92.05% macro F1-score
and 93.09% accuracy as reported in (Pitler et al.,
2008)).

After untying parameters in the softmax pre-
diction layer, implicit discourse relation classifi-
cation performance was improved across all four
relations, meanwhile, the explicit discourse re-
lation classification performance was also im-
proved. The CRF layer further improved im-
plicit discourse relation recognition performance
on the three small classes. In summary, our full

paragraph-level neural network model achieves
the best macro-average F1-score of 48.82% in pre-
dicting implicit discourse relations, which out-
performs previous neural tensor network models
(e.g., (Lei et al., 2017)) by more than 2 percents
and outperforms the best previous system (Lan
et al., 2017) by 1 percent.

Binary Classification: From table 4, we can see
that compared against the best previous systems,
our paragraph-level model with untied parameters
in the prediction layer achieves F1-score improve-
ments of 6 points on Comparison and 7 points
on Temporal, which demonstrates that paragraph-
wide contexts are important in detecting minority
discourse relations. Note that the CRF layer of the
model is not suitable for binary classification.

4.6 Ensemble Model

As we explained in section 4.2, we ran our mod-
els for 10 times to obtain stable average perfor-
mance. Then we also created ensemble models by
applying majority voting to combine results of ten
runs. From table 5, each ensemble model obtains
performance improvements compared with sin-
gle model. The full model achieves performance
boosting of (51.84 - 48.82 = 3.02) and (94.17 -
93.21 = 0.96) in macro F1-scores for predicting
implicit and explicit discourse relations respec-
tively. Furthermore, the ensemble model achieves
the best performance for predicting both implicit
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Figure 4: Impact of Paragraph Length. We plot the macro-average F1-score of implicit discourse relation classifi-
cation on instances with different paragraph length.

and explicit discourse relations simultaneously.

4.7 Impact of Paragraph Length

To understand the influence of paragraph lengths
to our paragraph-level models, we divide para-
graphs in the PDTB test set into several sub-
sets based on the number of DUs in a para-
graph, and then evaluate our proposed models
on each subset separately. From Figure 4, we
can see that our paragraph-level models (the lat-
ter three) overall outperform DU-pair baselines
across all the subsets. As expected, the paragraph-
level models achieve clear performance gains on
long paragraphs (with more than 5 DUs) by ex-
tensively modeling mutual influences of DUs in
a paragraph. But somewhat surprisingly, the
paragraph-level models achieve noticeable perfor-
mance gains on short paragraphs (with 2 or 3 DUs)
as well. We hypothesize that by learning more ap-
propriate discourse-aware DU representations in
long paragraphs, our paragraph-level models re-
duce bias of using DU representations in predict-
ing discourse relations, which benefits discourse
relation prediction in short paragraphs as well.

4.8 Example Analysis

For the example (1), the baseline neural tensor
model predicted both implicit relations wrongly
(“Implicit-Contingency” between DU2 and DU3;
“Implicit-Expansion” between DU3 and DU4),
while our paragraph-level model predicted all the
four discourse relations correctly, which indicates
that paragraph-wide contexts play a key role in im-
plicit discourse relation prediction.

For another example:
(2): [Marshall came clanking in like Marley’s
ghost dragging those chains of brigades and
air wings and links with Arab despots.]DU1

(Implicit-Temporal) [He wouldn’t leave]DU2 until
(Explicit-Temporal) [Mr. Cheney promised to
do whatever the Pentagon systems analysts told
him.]DU3

Our basic paragraph-level model wrongly pre-
dicted the implicit discourse relation between
DU1 and DU2 to be “Implicit-Comparison”, with-
out being able to effectively use the succeeding
“Explicit-Temporal” relation. On the contrary, the
full model corrected this mistake by modeling dis-
course relation patterns with the CRF layer.

5 Conclusion

We have presented a paragraph-level neural net-
work model that takes a sequence of discourse
units as input, models inter-dependencies between
discourse units as well as discourse relation con-
tinuity and patterns, and predicts a sequence of
discourse relations in a paragraph. By building
wider-context informed discourse unit representa-
tions and capturing the overall discourse structure,
the paragraph-level neural network model outper-
forms the best previous models for implicit dis-
course relation recognition on the PDTB dataset.
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