@inproceedings{fu-feng-2018-natural,
title = "Natural Answer Generation with Heterogeneous Memory",
author = "Fu, Yao and
Feng, Yansong",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1017/",
doi = "10.18653/v1/N18-1017",
pages = "185--195",
abstract = "Memory augmented encoder-decoder framework has achieved promising progress for natural language generation tasks. Such frameworks enable a decoder to retrieve from a memory during generation. However, less research has been done to take care of the memory contents from different sources, which are often of heterogeneous formats. In this work, we propose a novel attention mechanism to encourage the decoder to actively interact with the memory by taking its heterogeneity into account. Our solution attends across the generated history and memory to explicitly avoid repetition, and introduce related knowledge to enrich our generated sentences. Experiments on the answer sentence generation task show that our method can effectively explore heterogeneous memory to produce readable and meaningful answer sentences while maintaining high coverage for given answer information."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fu-feng-2018-natural">
<titleInfo>
<title>Natural Answer Generation with Heterogeneous Memory</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yansong</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Memory augmented encoder-decoder framework has achieved promising progress for natural language generation tasks. Such frameworks enable a decoder to retrieve from a memory during generation. However, less research has been done to take care of the memory contents from different sources, which are often of heterogeneous formats. In this work, we propose a novel attention mechanism to encourage the decoder to actively interact with the memory by taking its heterogeneity into account. Our solution attends across the generated history and memory to explicitly avoid repetition, and introduce related knowledge to enrich our generated sentences. Experiments on the answer sentence generation task show that our method can effectively explore heterogeneous memory to produce readable and meaningful answer sentences while maintaining high coverage for given answer information.</abstract>
<identifier type="citekey">fu-feng-2018-natural</identifier>
<identifier type="doi">10.18653/v1/N18-1017</identifier>
<location>
<url>https://aclanthology.org/N18-1017/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>185</start>
<end>195</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Natural Answer Generation with Heterogeneous Memory
%A Fu, Yao
%A Feng, Yansong
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F fu-feng-2018-natural
%X Memory augmented encoder-decoder framework has achieved promising progress for natural language generation tasks. Such frameworks enable a decoder to retrieve from a memory during generation. However, less research has been done to take care of the memory contents from different sources, which are often of heterogeneous formats. In this work, we propose a novel attention mechanism to encourage the decoder to actively interact with the memory by taking its heterogeneity into account. Our solution attends across the generated history and memory to explicitly avoid repetition, and introduce related knowledge to enrich our generated sentences. Experiments on the answer sentence generation task show that our method can effectively explore heterogeneous memory to produce readable and meaningful answer sentences while maintaining high coverage for given answer information.
%R 10.18653/v1/N18-1017
%U https://aclanthology.org/N18-1017/
%U https://doi.org/10.18653/v1/N18-1017
%P 185-195
Markdown (Informal)
[Natural Answer Generation with Heterogeneous Memory](https://aclanthology.org/N18-1017/) (Fu & Feng, NAACL 2018)
ACL
- Yao Fu and Yansong Feng. 2018. Natural Answer Generation with Heterogeneous Memory. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 185–195, New Orleans, Louisiana. Association for Computational Linguistics.