@inproceedings{elsahar-etal-2018-zero,
title = "Zero-Shot Question Generation from Knowledge Graphs for Unseen Predicates and Entity Types",
author = "Elsahar, Hady and
Gravier, Christophe and
Laforest, Frederique",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1020/",
doi = "10.18653/v1/N18-1020",
pages = "218--228",
abstract = "We present a neural model for question generation from knowledge graphs triples in a {\textquotedblleft}Zero-shot{\textquotedblright} setup, that is generating questions for predicate, subject types or object types that were not seen at training time. Our model leverages triples occurrences in the natural language corpus in a encoder-decoder architecture, paired with an original part-of-speech copy action mechanism to generate questions. Benchmark and human evaluation show that our model outperforms state-of-the-art on this task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="elsahar-etal-2018-zero">
<titleInfo>
<title>Zero-Shot Question Generation from Knowledge Graphs for Unseen Predicates and Entity Types</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hady</namePart>
<namePart type="family">Elsahar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christophe</namePart>
<namePart type="family">Gravier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederique</namePart>
<namePart type="family">Laforest</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a neural model for question generation from knowledge graphs triples in a “Zero-shot” setup, that is generating questions for predicate, subject types or object types that were not seen at training time. Our model leverages triples occurrences in the natural language corpus in a encoder-decoder architecture, paired with an original part-of-speech copy action mechanism to generate questions. Benchmark and human evaluation show that our model outperforms state-of-the-art on this task.</abstract>
<identifier type="citekey">elsahar-etal-2018-zero</identifier>
<identifier type="doi">10.18653/v1/N18-1020</identifier>
<location>
<url>https://aclanthology.org/N18-1020/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>218</start>
<end>228</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Zero-Shot Question Generation from Knowledge Graphs for Unseen Predicates and Entity Types
%A Elsahar, Hady
%A Gravier, Christophe
%A Laforest, Frederique
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F elsahar-etal-2018-zero
%X We present a neural model for question generation from knowledge graphs triples in a “Zero-shot” setup, that is generating questions for predicate, subject types or object types that were not seen at training time. Our model leverages triples occurrences in the natural language corpus in a encoder-decoder architecture, paired with an original part-of-speech copy action mechanism to generate questions. Benchmark and human evaluation show that our model outperforms state-of-the-art on this task.
%R 10.18653/v1/N18-1020
%U https://aclanthology.org/N18-1020/
%U https://doi.org/10.18653/v1/N18-1020
%P 218-228
Markdown (Informal)
[Zero-Shot Question Generation from Knowledge Graphs for Unseen Predicates and Entity Types](https://aclanthology.org/N18-1020/) (Elsahar et al., NAACL 2018)
ACL