@inproceedings{khashabi-etal-2018-looking,
title = "Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences",
author = "Khashabi, Daniel and
Chaturvedi, Snigdha and
Roth, Michael and
Upadhyay, Shyam and
Roth, Dan",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1023/",
doi = "10.18653/v1/N18-1023",
pages = "252--262",
abstract = "We present a reading comprehension challenge in which questions can only be answered by taking into account information from multiple sentences. We solicit and verify questions and answers for this challenge through a 4-step crowdsourcing experiment. Our challenge dataset contains 6,500+ questions for 1000+ paragraphs across 7 different domains (elementary school science, news, travel guides, fiction stories, etc) bringing in linguistic diversity to the texts and to the questions wordings. On a subset of our dataset, we found human solvers to achieve an F1-score of 88.1{\%}. We analyze a range of baselines, including a recent state-of-art reading comprehension system, and demonstrate the difficulty of this challenge, despite a high human performance. The dataset is the first to study multi-sentence inference at scale, with an open-ended set of question types that requires reasoning skills."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khashabi-etal-2018-looking">
<titleInfo>
<title>Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Khashabi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Snigdha</namePart>
<namePart type="family">Chaturvedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shyam</namePart>
<namePart type="family">Upadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a reading comprehension challenge in which questions can only be answered by taking into account information from multiple sentences. We solicit and verify questions and answers for this challenge through a 4-step crowdsourcing experiment. Our challenge dataset contains 6,500+ questions for 1000+ paragraphs across 7 different domains (elementary school science, news, travel guides, fiction stories, etc) bringing in linguistic diversity to the texts and to the questions wordings. On a subset of our dataset, we found human solvers to achieve an F1-score of 88.1%. We analyze a range of baselines, including a recent state-of-art reading comprehension system, and demonstrate the difficulty of this challenge, despite a high human performance. The dataset is the first to study multi-sentence inference at scale, with an open-ended set of question types that requires reasoning skills.</abstract>
<identifier type="citekey">khashabi-etal-2018-looking</identifier>
<identifier type="doi">10.18653/v1/N18-1023</identifier>
<location>
<url>https://aclanthology.org/N18-1023/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>252</start>
<end>262</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences
%A Khashabi, Daniel
%A Chaturvedi, Snigdha
%A Roth, Michael
%A Upadhyay, Shyam
%A Roth, Dan
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F khashabi-etal-2018-looking
%X We present a reading comprehension challenge in which questions can only be answered by taking into account information from multiple sentences. We solicit and verify questions and answers for this challenge through a 4-step crowdsourcing experiment. Our challenge dataset contains 6,500+ questions for 1000+ paragraphs across 7 different domains (elementary school science, news, travel guides, fiction stories, etc) bringing in linguistic diversity to the texts and to the questions wordings. On a subset of our dataset, we found human solvers to achieve an F1-score of 88.1%. We analyze a range of baselines, including a recent state-of-art reading comprehension system, and demonstrate the difficulty of this challenge, despite a high human performance. The dataset is the first to study multi-sentence inference at scale, with an open-ended set of question types that requires reasoning skills.
%R 10.18653/v1/N18-1023
%U https://aclanthology.org/N18-1023/
%U https://doi.org/10.18653/v1/N18-1023
%P 252-262
Markdown (Informal)
[Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences](https://aclanthology.org/N18-1023/) (Khashabi et al., NAACL 2018)
ACL