@inproceedings{cocos-etal-2018-comparing,
title = "Comparing Constraints for Taxonomic Organization",
author = "Cocos, Anne and
Apidianaki, Marianna and
Callison-Burch, Chris",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1030/",
doi = "10.18653/v1/N18-1030",
pages = "323--333",
abstract = "Building a taxonomy from the ground up involves several sub-tasks: selecting terms to include, predicting semantic relations between terms, and selecting a subset of relational instances to keep, given constraints on the taxonomy graph. Methods for this final step {--} taxonomic organization {--} vary both in terms of the constraints they impose, and whether they enable discovery of synonymous terms. It is hard to isolate the impact of these factors on the quality of the resulting taxonomy because organization methods are rarely compared directly. In this paper, we present a head-to-head comparison of six taxonomic organization algorithms that vary with respect to their structural and transitivity constraints, and treatment of synonymy. We find that while transitive algorithms out-perform their non-transitive counterparts, the top-performing transitive algorithm is prohibitively slow for taxonomies with as few as 50 entities. We propose a simple modification to a non-transitive optimum branching algorithm to explicitly incorporate synonymy, resulting in a method that is substantially faster than the best transitive algorithm while giving complementary performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cocos-etal-2018-comparing">
<titleInfo>
<title>Comparing Constraints for Taxonomic Organization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anne</namePart>
<namePart type="family">Cocos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Callison-Burch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Building a taxonomy from the ground up involves several sub-tasks: selecting terms to include, predicting semantic relations between terms, and selecting a subset of relational instances to keep, given constraints on the taxonomy graph. Methods for this final step – taxonomic organization – vary both in terms of the constraints they impose, and whether they enable discovery of synonymous terms. It is hard to isolate the impact of these factors on the quality of the resulting taxonomy because organization methods are rarely compared directly. In this paper, we present a head-to-head comparison of six taxonomic organization algorithms that vary with respect to their structural and transitivity constraints, and treatment of synonymy. We find that while transitive algorithms out-perform their non-transitive counterparts, the top-performing transitive algorithm is prohibitively slow for taxonomies with as few as 50 entities. We propose a simple modification to a non-transitive optimum branching algorithm to explicitly incorporate synonymy, resulting in a method that is substantially faster than the best transitive algorithm while giving complementary performance.</abstract>
<identifier type="citekey">cocos-etal-2018-comparing</identifier>
<identifier type="doi">10.18653/v1/N18-1030</identifier>
<location>
<url>https://aclanthology.org/N18-1030/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>323</start>
<end>333</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparing Constraints for Taxonomic Organization
%A Cocos, Anne
%A Apidianaki, Marianna
%A Callison-Burch, Chris
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F cocos-etal-2018-comparing
%X Building a taxonomy from the ground up involves several sub-tasks: selecting terms to include, predicting semantic relations between terms, and selecting a subset of relational instances to keep, given constraints on the taxonomy graph. Methods for this final step – taxonomic organization – vary both in terms of the constraints they impose, and whether they enable discovery of synonymous terms. It is hard to isolate the impact of these factors on the quality of the resulting taxonomy because organization methods are rarely compared directly. In this paper, we present a head-to-head comparison of six taxonomic organization algorithms that vary with respect to their structural and transitivity constraints, and treatment of synonymy. We find that while transitive algorithms out-perform their non-transitive counterparts, the top-performing transitive algorithm is prohibitively slow for taxonomies with as few as 50 entities. We propose a simple modification to a non-transitive optimum branching algorithm to explicitly incorporate synonymy, resulting in a method that is substantially faster than the best transitive algorithm while giving complementary performance.
%R 10.18653/v1/N18-1030
%U https://aclanthology.org/N18-1030/
%U https://doi.org/10.18653/v1/N18-1030
%P 323-333
Markdown (Informal)
[Comparing Constraints for Taxonomic Organization](https://aclanthology.org/N18-1030/) (Cocos et al., NAACL 2018)
ACL
- Anne Cocos, Marianna Apidianaki, and Chris Callison-Burch. 2018. Comparing Constraints for Taxonomic Organization. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 323–333, New Orleans, Louisiana. Association for Computational Linguistics.