@inproceedings{pagliardini-etal-2018-unsupervised,
title = "Unsupervised Learning of Sentence Embeddings Using Compositional n-Gram Features",
author = "Pagliardini, Matteo and
Gupta, Prakhar and
Jaggi, Martin",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1049",
doi = "10.18653/v1/N18-1049",
pages = "528--540",
abstract = "The recent tremendous success of unsupervised word embeddings in a multitude of applications raises the obvious question if similar methods could be derived to improve embeddings (i.e. semantic representations) of word sequences as well. We present a simple but efficient unsupervised objective to train distributed representations of sentences. Our method outperforms the state-of-the-art unsupervised models on most benchmark tasks, highlighting the robustness of the produced general-purpose sentence embeddings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pagliardini-etal-2018-unsupervised">
<titleInfo>
<title>Unsupervised Learning of Sentence Embeddings Using Compositional n-Gram Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Pagliardini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prakhar</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Jaggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The recent tremendous success of unsupervised word embeddings in a multitude of applications raises the obvious question if similar methods could be derived to improve embeddings (i.e. semantic representations) of word sequences as well. We present a simple but efficient unsupervised objective to train distributed representations of sentences. Our method outperforms the state-of-the-art unsupervised models on most benchmark tasks, highlighting the robustness of the produced general-purpose sentence embeddings.</abstract>
<identifier type="citekey">pagliardini-etal-2018-unsupervised</identifier>
<identifier type="doi">10.18653/v1/N18-1049</identifier>
<location>
<url>https://aclanthology.org/N18-1049</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>528</start>
<end>540</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Learning of Sentence Embeddings Using Compositional n-Gram Features
%A Pagliardini, Matteo
%A Gupta, Prakhar
%A Jaggi, Martin
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F pagliardini-etal-2018-unsupervised
%X The recent tremendous success of unsupervised word embeddings in a multitude of applications raises the obvious question if similar methods could be derived to improve embeddings (i.e. semantic representations) of word sequences as well. We present a simple but efficient unsupervised objective to train distributed representations of sentences. Our method outperforms the state-of-the-art unsupervised models on most benchmark tasks, highlighting the robustness of the produced general-purpose sentence embeddings.
%R 10.18653/v1/N18-1049
%U https://aclanthology.org/N18-1049
%U https://doi.org/10.18653/v1/N18-1049
%P 528-540
Markdown (Informal)
[Unsupervised Learning of Sentence Embeddings Using Compositional n-Gram Features](https://aclanthology.org/N18-1049) (Pagliardini et al., NAACL 2018)
ACL