
Proceedings of NAACL-HLT 2018, pages 1875–1885
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Adversarial Example Generation
with Syntactically Controlled Paraphrase Networks

Mohit IyyerF†‡ John WietingF♣ Kevin Gimpel♦ Luke Zettlemoyer♠

Allen Institute of Artificial Intelligence† UMass Amherst‡ Carnegie Mellon University♣

Toyota Technological Institute at Chicago♦ University of Washington♠

miyyer@cs.umass.edu jwieting@cs.cmu.edu
kgimpel@ttic.edu lsz@cs.washington.edu

Abstract

We propose syntactically controlled para-
phrase networks (SCPNs) and use them to
generate adversarial examples. Given a sen-
tence and a target syntactic form (e.g., a con-
stituency parse), SCPNs are trained to pro-
duce a paraphrase of the sentence with the de-
sired syntax. We show it is possible to create
training data for this task by first doing back-
translation at a very large scale, and then us-
ing a parser to label the syntactic transforma-
tions that naturally occur during this process.
Such data allows us to train a neural encoder-
decoder model with extra inputs to specify the
target syntax. A combination of automated
and human evaluations show that SCPNs gen-
erate paraphrases that follow their target spec-
ifications without decreasing paraphrase qual-
ity when compared to baseline (uncontrolled)
paraphrase systems. Furthermore, they are
more capable of generating syntactically ad-
versarial examples that both (1) “fool” pre-
trained models and (2) improve the robustness
of these models to syntactic variation when
used to augment their training data.

1 Introduction

Natural language processing datasets often suf-
fer from a dearth of linguistic variation, which
can hurt the generalization of models trained on
them. Recent work has shown it is possible to
easily “break” many learned models by evaluating
them on adversarial examples (Goodfellow et al.,
2015), which are generated by manually intro-
ducing lexical, pragmatic, and syntactic variation
not seen in the training set (Ettinger et al., 2017).
Robustness to such adversarial examples can po-
tentially be improved by augmenting the training
data, as shown by prior work that introduces rule-
based lexical substitutions (Jia and Liang, 2017;

FAuthors contributed equally.

I’d have to say the star
and director are the big
problems here negative

The man is standing in the
water at the base of a
waterfall

entailment

A man is standing in
the water at the base of
a waterfall

By the way, you know, the
star and director are the
big problems positive

The man, at the base of
the waterfall, is standing
in the water

A man is standing in
the water at the
base of a waterfall neutral

S

PP PRN NP VP

SCPN S

NP , PP , VP

SCPN

Figure 1: Adversarial examples for sentiment analysis
(left) and textual entailment (right) generated by our
syntactically controlled paraphrase network (SCPN) ac-
cording to provided parse templates. In both cases, a
pretrained classifier correctly predicts the label of the
original sentence but not the corresponding paraphrase.

Liang et al., 2017). However, more complex trans-
formations, such as generating syntactically ad-
versarial examples, remain an open challenge, as
input semantics must be preserved in the face of
potentially substantial structural modifications. In
this paper, we introduce a new approach for learn-
ing to do syntactically controlled paraphrase gen-
eration: given a sentence and a target syntactic
form (e.g., a constituency parse), a system must
produce a paraphrase of the sentence whose syn-
tax conforms to the target.

General purpose syntactically controlled para-
phrase generation is a challenging task. Ap-
proaches that rely on handcrafted rules and gram-
mars, such as the question generation system
of McKeown (1983), support only a limited num-
ber of syntactic targets. We introduce the first
learning approach for this problem, building on
the generality of neural encoder-decoder models to
support a wide range of transformations. In doing

1875

so, we face two new challenges: (1) obtaining a
large amount of paraphrase pairs for training, and
(2) defining syntactic transformations with which
to label these pairs.

Since no large-scale dataset of sentential para-
phrases exists publicly, we follow Wieting et al.
(2017) and automatically generate millions of
paraphrase pairs using neural backtranslation.
Backtranslation naturally injects linguistic varia-
tion between the original sentence and its back-
translated counterpart. By running the process at
a very large scale and testing for the specific vari-
ations we want to produce, we can gather ample
input-output pairs for a wide range of phenomena.
Our focus is on syntactic transformations, which
we define using templates derived from linearized
constituency parses (§2). Given such parallel data,
we can easily train an encoder-decoder model that
takes a sentence and target syntactic template as
input, and produces the desired paraphrase.1

A combination of automated and human evalu-
ations show that the generated paraphrases almost
always follow their target specifications, while
paraphrase quality does not significantly deteri-
orate compared to vanilla neural backtranslation
(§4). Our model, the syntactically controlled para-
phrase network (SCPN), is capable of generating
adversarial examples for sentiment analysis and
textual entailment datasets that significantly im-
pact the performance of pretrained models (Fig-
ure 1). We also show that augmenting train-
ing sets with such examples improves robustness
without harming accuracy on the original test sets
(§5). Together these results not only establish the
first general purpose syntactically controlled para-
phrase approach, but also suggest that this general
paradigm could be used for controlling many other
aspects of the target text.

2 Collecting labeled paraphrase pairs

In this section, we describe a general purpose pro-
cess for gathering and labeling training data for
controlled paraphrase generation.

2.1 Paraphrase data via backtranslation

Inducing paraphrases from bilingual data has long
been an effective method to overcome data lim-
itations. In particular, bilingual pivoting (Ban-
nard and Callison-Burch, 2005) finds quality para-

1Code, labeled data, and pretrained models available at
https://github.com/miyyer/scpn.

phrases by pivoting through a different language.
Mallinson et al. (2017) show that neural machine
translation (NMT) systems outperform phrase-
based MT on several paraphrase evaluation met-
rics.

In this paper, we use the PARANMT-50M cor-
pus from Wieting and Gimpel (2017). This cor-
pus consists of over 50 million paraphrases ob-
tained by backtranslating the Czech side of the
CzEng (Bojar et al., 2016) parallel corpus. The
pretrained Czech-English model used for transla-
tion came from the Nematus NMT system (Sen-
nrich et al., 2017). The training data of this system
includes four sources: Common Crawl, CzEng
1.6, Europarl, and News Commentary. The CzEng
corpus is the largest of these four and was found to
have significantly more syntactic diversity than the
other data sources (Wieting and Gimpel, 2017).2

2.2 Automatically labeling paraphrases with
syntactic transformations

We need labeled transformations in addition to
paraphrase pairs to train a controlled paraphrase
model. Manually annotating each of the millions
of paraphrase pairs is clearly infeasible. Our key
insight is that target transformations can be de-
tected (with some noise) simply by parsing these
pairs.3

Specifically, we parse the backtranslated para-
phrases using the Stanford parser (Manning et al.,
2014),4 which yields a pair of constituency parses
〈p1, p2〉 for each sentence pair 〈s1, s2〉, where s1 is
the reference English sentence in the CzEng cor-
pus and s2 is its backtranslated counterpart. For
syntactically controlled paraphrasing, we assume
s1 and p2 are inputs, and the model is trained
to produce s2. To overcome learned biases of
the NMT system, we also include reversed pairs
〈s2, s1〉 during training.

2.2.1 Syntactic templates
To provide syntactic control, we lin-
earize the bracketed parse structure with-
out leaf nodes (i.e., tokens). For exam-
ple, the corresponding linearized parse

2Syntactic diversity was measured by the entropy of the
top two levels of parse trees in the corpora.

3Similar automated filtering could be used to produce data
for many other transformations, such as tense changes, point-
of-view shifts, and even stylometric pattern differences (Feng
et al., 2012). This is an interesting area for future work.

4Because of the large dataset size, we use the faster but
less accurate shift-reduce parser written by John Bauer.

1876

tree for the sentence “She drove home.” is
(S(NP(PRP))(VP(VBD)(NP(NN)))(.)).
A system that requires a complete linearized
target parse at test-time is unwieldy; how do we
go about choosing the target parse? To simplify
test-time usage, we relax the target syntactic form
to a parse template, which we define as the top
two levels of the linearized parse tree (the level
immediately below the root along with the root);
the prior example’s template is S→NP VP. In
the next section, we design models such that users
can feed in either parse templates or full parses
depending on their desired level of control.

3 Syntactically Controlled Paraphrase
Networks

The SCPN encoder-decoder architecture is built
from standard neural modules, as we describe in
this section.

3.1 Neural controlled paraphrase generation
Given a sentential paraphrase pair 〈s1, s2〉 and a
corresponding target syntax tree p2 for s2, we
encode s1 using a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997), and our decoder is
a two-layer LSTM augmented with soft attention
over the encoded states (Bahdanau et al., 2014)
as well as a copy mechanism (See et al., 2017).
Following existing work in NMT (Sennrich et al.,
2015), we preprocess s1 and s2 into subword units
using byte pair encoding, and we perform decod-
ing using beam search. For all attention compu-
tations, we use a bilinear product with a learned
parameter matrix W: given vectors u and v, we
score them by uTWv.

We incorporate the target syntax p2 into the gen-
eration process by modifying the inputs to the de-
coder. In particular, a standard decoder LSTM re-
ceives two inputs at every time step: (1) the em-
bedding wt−1 of the ground-truth previous word
in s2, and (2) an attention-weighted average at of
the encoder’s hidden states. We additionally pro-
vide a representation zt of the target p2, so at every
time step the decoder computes

ht = LSTM([wt−1;at; zt]). (1)

Since we preserve bracketed parse structure, our
linearized parses can have hundreds of tokens.
Forcing all of the relevant information contained
by the parse tree into a single fixed representation
(i.e., the last hidden state of an LSTM) is difficult

with such large sequences. Intuitively, we want
the decoder to focus on portions of the target parse
tree that correspond with the current time step. As
such, we encode p2 using a (unidirectional) LSTM
and compute zt with an attention-weighted aver-
age of the LSTM’s encoded states at every time
step. This attention mechanism is conditioned on
the decoder’s previous hidden state ht−1.

3.2 From parse templates to full parses

As mentioned in Section 2.2.1, user-friendly sys-
tems should be able to accept high-level parse tem-
plates as input rather than full parses. Preliminary
experiments show that SCPN struggles to maintain
the semantics of the input sentence when we re-
place the full target parse with templates, and fre-
quently generates short, formulaic sentences. The
paraphrase generation model seems to rely heav-
ily on the full syntactic parse to determine out-
put length and clausal ordering, making it diffi-
cult to see how to modify the SCPN architecture
for template-only target specification.

Instead, we train another model with exactly the
same architecture as SCPN to generate complete
parses from parse templates. This allows us to do
the prediction in two steps: first predict the full
syntactic tree and then use that tree to produce the
paraphrase. Concretely, for the first step, assume
t2 is the parse template formed from the top two
levels of the target parse p2. The input to this parse
generator is the input parse p1 and t2, and it is
trained to produce p2. We train the parse generator
separately from SCPN (i.e., no joint optimization)
for efficiency purposes. At test time, a user only
has to specify an input sentence and target tem-
plate; the template is fed through the parse gener-
ator, and its predicted target parse is in turn sent to
SCPN for paraphrase generation (see Figure 2).

3.3 Template selection and post-processing

By switching from full parses to templates, we
have reduced but not completely removed the bur-
den of coming up with a target syntactic form.
Certain templates may be not be appropriate for
particular input sentences (e.g., turning a long sen-
tence with multiple clauses into a noun phrase).
However, others may be too similar to the input
syntax, resulting in very little change. Since tem-
plate selection is not a major focus of this pa-
per, we use a relatively simple procedure, selecting
the twenty most frequent templates in PARANMT-

1877

The man is standing in the water …

+

The man , at the base …

The man , at the base of …

(ROOT (S (NP (DT) (NN)) (VP (VBZ) (VP (VBG) (PP (IN) (NP (NP (DT) (NN) …

+

(ROOT (S (NP (NP (DT) (NN)) (,) (PP (IN) (NP (NP (DT) (NN)) (PP (IN) …

+
(ROOT (S (…

(ROOT (S (NP) (,) (PP) (,) (VP)))

+
parse generator

paraphrase generator

target template t2

input parse p1

input sentence s1

target sentence s2

target parse p2

Figure 2: SCPN implements parse generation from templates as well as paraphrase generation from full parses as
encoder-decoder architectures (attention depicted with dotted lines, copy mechanism with double stroked lines).
While both components are trained separately, at test-time they form a pipelined approach to produce a controlled
paraphrase from an input sentence s1, its corresponding parse p1, and a target template t2.

50M.5

Since we cannot generate a valid paraphrase for
every template, we postprocess to remove non-
sensical outputs. In particular, we filter gener-
ated paraphrases using n-gram overlap and para-
phrastic similarity, the latter of which is com-
puted using the pretrained WORD,TRIAVG sen-
tence embedding model from Wieting and Gim-
pel (2017).6 These paraphrastic sentence embed-
dings significantly outperform prior work due to
the PARANMT-50M data.

4 Intrinsic Experiments

Before using SCPN to generate adversarial exam-
ples on downstream datasets, we need to make
sure that its output paraphrases are valid and gram-
matical and that its outputs follow the specified
target syntax. In this section, we compare SCPN to
a neural backtranslation baseline (NMT-BT) on the
development set of our PARANMT-50M split us-
ing both human and automated experiments. NMT-
BT is the same pretrained Czech-English model
used to create PARANMT-50M; however, here we
use it to generate in both directions (i.e., English-
Czech and Czech-English).

5However, we do provide some qualitative examples of
rare and medium-frequency templates in Table 3.

6After qualitatively analyzing the impact of different fil-
tering choices, we set minimum n-gram overlap to 0.5 and

Model 2 1 0

SCPN w/ full parses 63.7 14.0 22.3
SCPN w/ templates 62.3 19.3 18.3

NMT-BT 65.0 17.3 17.7

Table 1: A crowdsourced paraphrase evaluation on a
three-point scale (0 = no paraphrase, 1 = ungrammat-
ical paraphrase, 2 = grammatical paraphrase) shows
both that NMT-BT and SCPN produce mostly grammat-
ical paraphrases. Feeding parse templates to SCPN in-
stead of full parses does not impact its quality.

4.1 Paraphrase quality & grammaticality

To measure paraphrase quality and grammatical-
ity, we perform a crowdsourced experiment in
which workers are asked to rate a paraphrase pair
〈s, g〉 on the three-point scale of Kok and Brock-
ett (2010), where s is the source sentence and g is
the generated sentence. A 0 on this scale indicates
no paraphrase relationship, while 1 means that g
is an ungrammatical paraphrase of s and 2 means
that g is a grammatical paraphrase of s. We select
100 paraphrase pairs from the development set of
our PARANMT-50M split (after the postprocess-
ing steps detailed in Section 3.3) and have three
workers rate each pair.7 To focus the evaluation on
the effect of syntactic manipulation on quality, we

minimum paraphrastic similarity to 0.7.
7We use the Crowdflower platform for our experiments.

1878

only select sentences whose top-level parse tem-
plates differ (i.e., ts 6= tg), ensuring that the out-
put of both systems varies syntactically from the
source sentences.

The results (Table 1) show that the uncontrolled
NMT-BT model’s outputs are comparable in qual-
ity and grammaticality to those of SCPN; neither
system has a significant edge. More interestingly,
we observe no quality drop when feeding tem-
plates to SCPN (via the parse generator as de-
scribed in Section 3.2) instead of complete parse
trees, which suggests that the parse generator is
doing a good job of generating plausible parse
trees; thus, for all of the adversarial evaluations
that follow, we only use the templated variant of
SCPN.

4.2 Do the paraphrases follow the target
specification?

We next determine how often SCPN’s generated
paraphrases conform to the target syntax: if g is
a generated paraphrase and pg is its parse, how of-
ten does pg match the ground-truth target parse p2?
We evaluate on our development set using exact
template match: g is deemed a syntactic match to
s2 only if the top two levels of its parse pg matches
those of p2. We evaluate two SCPN configurations,
where one is given the full target parse p2 and
the other is given the result of running our parse
generator on the target template t2. As a sanity
check, we also evaluate our parse generator using
the same metric.

The results (Table 2) show that SCPN does in-
deed achieve syntactic control over the majority
of its inputs. Our parse generator produces full
parses that almost always match the target tem-
plate; however, paraphrases generated using these
parses are less syntactically accurate.8 A quali-
tative inspection of the generated parses reveals
that they can differ from the ground-truth target
parse in terms of ordering or existence of lower-
level constituents (Table 6); we theorize that these
differences may throw off SCPN’s decoder.

The NMT-BT system produces paraphrases that
tend to be syntactically very similar to the input
sentences: 28.7% of these paraphrases have the
same template as that of the input sentence s1,
while only 11.1% have the same template as the
ground-truth target s2. Even though we train SCPN

8With that said, exact match is a harsh metric; these para-
phrases are more accurate than the table suggests, as often
they differ by only a single constituent.

Model Parse Acc.

SCPN w/ gold parse 64.5
SCPN w/ generated parse 51.6
Parse generator 99.9

Table 2: The majority of paraphrases generated by
SCPN conform to the target syntax, but the level of syn-
tactic control decreases when using generated target
parses instead of gold parses. Accuracy is measured
by exact template match (i.e., how often do the top two
levels of the parses match).

on data generated by NMT backtranslation, we
avoid this issue by incorporating syntax into our
learning process.

5 Adversarial example generation

The intrinsic evaluations show that SCPN produces
paraphrases of comparable quality to the uncon-
trolled NMT-BT system while also adhering to the
specified target specifications. Next, we examine
the utility of controlled paraphrases for adversar-
ial example generation. To formalize the prob-
lem, assume a pretrained model for some down-
stream task produces prediction yx given test-time
instance x. An adversarial example x′ can be
formed by making label-preserving modifications
to x such that yx 6= yx′ . Our results demonstrate
that controlled paraphrase generation with appro-
priate template selection produces far more valid
adversarial examples than backtranslation on sen-
timent analysis and entailment tasks.

5.1 Experimental setup

We evaluate our syntactically adversarial
paraphrases on the Stanford Sentiment Tree-
bank (Socher et al., 2013, SST) and SICK
entailment detection (Marelli et al., 2014). While
both are relatively small datasets, we select
them because they offer different experimental
conditions: SST contains complicated sentences
with high syntactic variance, while SICK almost
exclusively consists of short, simple sentences.
As a baseline, we compare the ten most probable
beams from NMT-BT to controlled paraphrases
generated by SCPN using ten templates randomly
sampled from the template set described in
Section 3.3.9 We also need pretrained models

9We also experimented with the diverse beam search
modification proposed by Li et al. (2016b) for NMT-BT but
found that it dramatically warped the semantics of many
beams; crowdsourced workers rated 49% of its outputs as 0

1879

template paraphrase
original with the help of captain picard , the borg will be prepared for everything .
(SBARQ(ADVP)(,)(S)(,)(SQ)) now , the borg will be prepared by picard , will it ?
(S(NP)(ADVP)(VP)) the borg here will be prepared for everything .
(S(S)(,)(CC)(S) (:)(FRAG)) with the help of captain picard , the borg will be prepared , and the borg will be

prepared for everything ... for everything .
(FRAG(INTJ)(,)(S)(,)(NP)) oh , come on captain picard , the borg line for everything .

original you seem to be an excellent burglar when the time comes .
(S(SBAR)(,)(NP)(VP)) when the time comes , you ’ll be a great thief .
(S(‘‘)(UCP)(’’)(NP)(VP)) “ you seem to be a great burglar , when the time comes . ” you said .
(SQ(MD)(SBARQ)) can i get a good burglar when the time comes ?
(S(NP)(IN)(NP)(NP)(VP) look at the time the thief comes .

Table 3: Syntactically controlled paraphrases generated by SCPN for two examples from the PARANMT-50M
development set. For each input sentence, we show the outputs of four different templates; the fourth template is
a failure case (highlighted in green) exhibiting semantic divergence and/or ungrammaticality, which occurs when
the target template is unsuited for the input.

for which to generate adversarial examples; we
use the bidirectional LSTM baseline for both
SST and SICK outlined in Tai et al. (2015) since
it is a relatively simple architecture that has
proven to work well for a variety of problems.10

Since the SICK task involves characterizing the
relationship between two sentences, for simplicity
we only generate adversarial examples for the first
sentence and keep the second sentence fixed to
the ground truth.

5.2 Breaking pretrained models

For each dataset, we generate paraphrases for
held-out examples and then run a pretrained model
over them.11 We consider a development exam-
ple x broken if the original prediction yx is cor-
rect, but the prediction yx′ for at least one para-
phrase x′ is incorrect. For SST, we evaluate on the
binary sentiment classification task and ignore all
phrase-level labels (because our paraphrase mod-
els are trained on only sentences). Table 4 shows
that for both datasets, SCPN breaks many more ex-
amples than NMT-BT. Moreover, as shown in Ta-
ble 5, NMT-BT’s paraphrases differ from the origi-
nal example mainly by lexical substitutions, while
SCPN often produces dramatically different syn-
tactic structures.

5.3 Are the adversarial examples valid?

We have shown that we can break pretrained mod-
els with controlled paraphrases, but are these para-

on the three-point scale.
10We initialize both models using pretrained GloVe em-

beddings (Pennington et al., 2014) and set the LSTM hidden
dimensionality to 300.

11Since the SICK development dataset is tiny, we addition-
ally generate adversarial examples on its test set.

phrases actually valid adversarial examples? After
all, it is possible that the syntactic modifications
cause informative clauses or words (e.g., nega-
tions) to go missing. To measure the validity of
our adversarial examples, we turn again to crowd-
sourced experiments. We ask workers to choose
the appropriate label for a given sentence or sen-
tence pair (e.g., positive or negative for SST), and
then we compare the worker’s judgment to the
original development example’s label. For both
models, we randomly select 100 adversarial ex-
amples and have three workers annotate each one.
The results (Table 4) show that on the more com-
plex SST data, a higher percentage of SCPN’s para-
phrases are valid adversarial examples than those
of NMT-BT, which is especially encouraging given
our model also generates significantly more adver-
sarial examples.

5.4 Increasing robustness to adversarial
examples

If we additionally augment the training data of
both tasks with controlled paraphrases, we can
increase a downstream model’s robustness to ad-
versarial examples in the development set. To
quantify this effect, we generate controlled para-
phrases for the training sets of SST and SICK us-
ing the same templates as in the previous exper-
iments. Then, we include these paraphrases as
additional training examples and retrain our biL-
STM task models.12 As shown by Table 4, train-
ing on SCPN’s paraphrases significantly improves
robustness to syntactic adversaries without affect-
ing accuracy on the original test sets. One im-

12We did not experiment with more complex augmenta-
tion methods (e.g., downweighting the contribution of para-
phrased training examples to the loss).

1880

No augmentation With augmentation

Model Task Validity Test Acc Dev Broken Test Acc Dev Broken

SCPN SST 77.1 83.1 41.8 83.0 31.4
NMT-BT SST 68.1 83.1 20.2 82.3 20.0

SCPN SICK 77.7 82.1 33.8 82.7 19.8
NMT-BT SICK 81.0 82.1 20.4 82.0 11.2

Table 4: SCPN generates more legitimate adversarial examples than NMT-BT, shown by the results of a crowd-
sourced validity experiment and the percentage of held-out examples that are broken through paraphrasing. Fur-
thermore, we show that by augmenting the training dataset with syntactically-diverse paraphrases, we can improve
the robustness of downstream models to syntactic adversaries (see “Dev Broken” before and after augmentation)
without harming accuracy on the original test set.

portant caveat is that this experiment only shows
robustness to the set of templates used by SCPN;
in real-world applications, careful template selec-
tion based on the downstream task, along with
using a larger set of templates, is likely to in-
crease robustness to less constrained syntactic ad-
versaries. Augmentation with NMT-BT’s para-
phrases increases robustness on SICK, but on SST,
it degrades test accuracy without any significant
gain in robustness; this is likely due to its lack of
syntactic variation compared to SCPN.

6 Qualitative Analysis

In the previous section, we quantitatively eval-
uated the SCPN’s ability to produce valid para-
phrases and adversarial examples. Here, we take a
look at actual sentences generated by the model.
In addition to analyzing SCPN’s strengths and
weaknesses compared to NMT-BT, we examine the
differences between paraphrases generated by var-
ious configurations of the model to determine the
impact of each major design decision (e.g., tem-
plates instead of full parses).

Syntactic manipulation: Table 3 demonstrates
SCPN’s ability to perform syntactic manipulation,
showing paraphrases for two sentences generated
using different templates. Many of the examples
exhibit complex transformations while preserving
both the input semantics and grammaticality, even
when the target syntax is very different from that
of the source (e.g., when converting a declarative
to question). However, the failure cases demon-
strate that not every template results in a valid
paraphrase, as nonsensical outputs are sometimes
generated when trying to squeeze the input seman-
tics into an unsuitable target form.

Adversarial examples: Table 5 shows that
SCPN and NMT-BT differ fundamentally in the
type of adversaries they generate. While SCPN

mostly avoids lexical substitution in favor of mak-
ing syntactic changes, NMT-BT does the opposite.
These examples reinforce the results of the exper-
iment in Section 4.2, which demonstrates NMT-
BT’s tendency to stick to the input syntax. While
SCPN is able to break more validation examples
than NMT-BT, it is alarming that even simple lex-
ical substitution can break such a high percentage
of both datasets we tested.

Ebrahimi et al. (2017) observe a similar phe-
nomenon with HotFlip, their gradient-based sub-
stitution method for generating adversarial exam-
ples. While NMT-BT does not receive signal from
the downstream task like HotFlip, it also does not
require external constraints to maintain grammat-
icality and limit semantic divergence. As future
work, it would be interesting to provide this down-
stream signal to both NMT-BT and SCPN; for the
latter, perhaps this signal could guide the template
selection process, which is currently fixed to a
small, finite set.

Templates vs. gold parses: Why does the level
of syntactic control decrease when we feed SCPN

parses generated from templates instead of gold
parses (Table 2)? The first two examples in Ta-
ble 6 demonstrate issues with the templated ap-
proach. In the first example, the template is not ex-
pressive enough for the parse generator to produce
slots for the highlighted clause. A potential way to
combat this type of issue is to dynamically define
templates based on factors such as the length of
the input sentence. In the second example, a pars-
ing error results in an inaccurate template which
in turn causes SCPN to generate a semantically-
divergent paraphrase. The final two examples

1881

template original paraphrase
(S(ADVP)(NP)(VP)) moody , heartbreaking , and filmed in

a natural , unforced style that makes
its characters seem entirely convincing
even when its script is not .

so he ’s filmed in a natural , unforced
style that makes his characters seem
convincing when his script is not .

(S(PP)(,)(NP)(VP)) there is no pleasure in watching a child
suffer .

in watching the child suffer , there is no
pleasure .

(S(S)(,)(CC)(S)) the characters are interesting and often
very creatively constructed from figure
to backstory .

the characters are interesting , and they
are often built from memory to back-
story .

every nanosecond of the the new guy
reminds you that you could be doing
something else far more pleasurable .

each nanosecond from the new guy re-
minds you that you could do something
else much more enjoyable .

harris commands the screen , using his
frailty to suggest the ravages of a life of
corruption and ruthlessness .

harris commands the screen , using his
weakness to suggest the ravages of life
of corruption and recklessness .

Table 5: Adversarial sentiment examples generated by SCPN (top) and NMT-BT (bottom). The predictions of a
pretrained model on the original sentences are correct (red is negative, blue is positive), while the predictions on
the paraphrases are incorrect. The syntactically controlled paraphrases of SCPN feature more syntactic modification
and less lexical substitution than NMT-BT’s backtranslated outputs.

show instances where the templated model per-
forms equally as well as the model with gold
parses, displaying the capabilities of our parse
generator.

Removing syntactic control: To examine the
differences between syntactically controlled and
uncontrolled paraphrase generation systems, we
train an SCPN without including zt, the attention-
weighted average of the encoded parse, in the de-
coder input. This uncontrolled configuration pro-
duces outputs that are very similar to its inputs, of-
ten identical syntactically with minor lexical sub-
stitution. Concretely, the uncontrolled SCPN pro-
duces a paraphrase with the same template as its
input 38.6% of the time, compared to NMT-BT’s
28.7% (Section 4.2).13

7 Related Work

Paraphrase generation (Androutsopoulos and
Malakasiotis, 2010; Madnani and Dorr, 2010)
has been tackled using many different meth-
ods, including those based on hand-crafted
rules (McKeown, 1983), synonym substitu-
tion (Bolshakov and Gelbukh, 2004), machine
translation (Quirk et al., 2004), and, most recently,
deep learning (Prakash et al., 2016; Mallinson
et al., 2017; Dong et al., 2017). Our syntacti-
cally controlled setting also relates to controlled
language generation tasks in which one desires
to generate or rewrite a sentence with particular
characteristics. We review related work in both

13A configuration without the copy mechanism copies in-
put syntax even more, with a 47.7% exact template match.

paraphrase generation and controlled language
generation below.

7.1 Data-driven paraphrase generation

Madnani and Dorr (2010) review data-driven
methods for paraphrase generation, noting two
primary families: template-based and translation-
based. The first family includes approaches
that use hand-crafted rules (McKeown, 1983),
thesaurus-based substitution (Bolshakov and Gel-
bukh, 2004; Zhang and LeCun, 2015), lattice
matching (Barzilay and Lee, 2003), and template-
based “shake & bake” paraphrasing (Carl et al.,
2005). These methods often yield grammatical
outputs but they can be limited in diversity.

The second family includes methods that
rewrite the input using methods based on parallel
text (Bannard and Callison-Burch, 2005), machine
translation (Quirk et al., 2004; Napoles et al.,
2016; Suzuki et al., 2017), or related statistical
techniques (Zhao et al., 2009). Of particular rel-
evance to our work are methods that incorporate
syntax to improve fluency of paraphrase output.
Callison-Burch (2008) constrains paraphrases to
be the same syntactic type as the input, though he
was focused on phrase-level, not sentential, para-
phrasing. Pang et al. (2003) learn finite-state au-
tomata from translation pairs that generate syn-
tactic paraphrases, though this requires multiple
translations into the same language and cannot be
used to generate paraphrases outside this dataset.
Shen et al. (2006) extend this to deeper syntactic
analysis. All of these approaches use syntax to

1882

template (S(CC)(S)(,)(NP)(ADVP)(VP))
original damian encouraged me , criticized , he ... he always made me go a little deeper .
SCPN parse but damian , he supported me , he told me , he always made me go a little deeper .
SCPN template but damian supported me , he always made me go a little deeper .

template (S(S)(,)(NP)(VP))
original zacharias did n’t deserve to die , grishanov thought , and he was aware of the huge irony of his situation
SCPN parse zacharias did not deserve to die , grishanov told himself , realizing the greatest irony of all .
SCPN template zacharias did not deserve to die , he was aware of the great irony of his situation .

template S(S)(,)(S))
original give me some water , my lips are dry , and i shall try to tell you .
SCPN parse give me some water , i have just a dry mouth .
SCPN template give me some water , my lips are dry .

template (S(NP)(,)(ADVP)(,)(VP))
original in the meantime , the house is weakened , and all its old alliances and deals are thrown into doubt .
SCPN parse the house , meanwhile , is weakening , which will be all of its old alliances and business .
SCPN template the house , meanwhile , is weakened , and its old alliances and deals are thrown into doubt .

Table 6: Examples from PARANMT-50M comparing the output of two SCPN configurations, one with gold target
parses (SCPN parse) and one with parses generated from templates (SCPN template), where templates are the top
two levels of the gold parses. The first two examples demonstrate issues with missing information caused by
inexpressive templates and parsing errors, respectively. The remaining examples, in which both configurations
produce syntactically similar paraphrases, showcase the ability of the parse generator to produce viable full parses.

improve grammaticality, which is handled by our
decoder language model.

Recent efforts involve neural methods. Iyyer
et al. (2014) generate paraphrases with depen-
dency tree recursive autoencoders by randomly se-
lecting parse trees at test time. Li et al. (2017) gen-
erate paraphrases using deep reinforcement learn-
ing. Gupta et al. (2017) use variational autoen-
coders to generate multiple paraphrases. These
methods differ from our approach in that none of-
fer fine-grained control over the syntactic form of
the paraphrase.

7.2 Controlled language generation

There is growing interest in generating language
with the ability to influence the topic, style, or
other properties of the output.

Most related to our methods are those based
on syntactic transformations, like the tree-to-tree
sentence simplification method of Woodsend and
Lapata (2011) based on quasi-synchronous gram-
mar (Smith and Eisner, 2006). Our method is
more general since we do not require a gram-
mar and there are only soft constraints. Perhaps
the closest to the proposed method is the con-
ditioned recurrent language model of Ficler and
Goldberg (2017), which produces language with
user-selected properties such as sentence length
and formality but is incapable of generating para-
phrases.

For machine translation output, Niu et al. (2017)

control the level of formality while Sennrich et al.
(2016) control the level of politeness. For dia-
logue, Li et al. (2016a) affect the output using
speaker identity, while Wang et al. (2017) develop
models to influence topic and style of the out-
put. Shen et al. (2017) perform style transfer on
non-parallel texts, while Guu et al. (2017) gener-
ate novel sentences from prototypes; again, these
methods are not necessarily seeking to gener-
ate meaning-preserving paraphrases, merely trans-
formed sentences that have an altered style.

8 Conclusion

We propose SCPN, an encoder-decoder model
for syntactically controlled paraphrase generation,
and show that it is an effective way of generat-
ing adversarial examples. Using a parser, we la-
bel syntactic variation in large backtranslated data,
which provides training data for SCPN. The model
exhibits far less lexical variation than existing un-
controlled paraphrase generation systems, instead
preferring purely syntactic modifications. It is ca-
pable of generating adversarial examples that fool
pretrained NLP models. Furthermore, by training
on such examples, we increase the robustness of
these models to syntactic variation.

Acknowledgments

We thank the reviewers for their insightful com-
ments. We would also like to thank Mark Yatskar
for many useful suggestions on our experiments.

1883

References
Ion Androutsopoulos and Prodromos Malakasiotis.

2010. A survey of paraphrasing and textual entail-
ment methods. Journal of Artificial Intelligence Re-
search 38.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Pro-
ceedings of the Association for Computational Lin-
guistics.

Regina Barzilay and Lillian Lee. 2003. Learning
to paraphrase: an unsupervised approach using
multiple-sequence alignment. In Conference of
the North American Chapter of the Association for
Computational Linguistics.

Ondřej Bojar, Ondřej Dušek, Tom Kocmi, Jindřich Li-
bovický, Michal Novák, Martin Popel, Roman Su-
darikov, and Dušan Variš. 2016. CzEng 1.6: En-
larged Czech-English Parallel Corpus with Process-
ing Tools Dockered. In Text, Speech, and Dialogue:
19th International Conference, TSD 2016.

Igor Bolshakov and Alexander Gelbukh. 2004. Syn-
onymous paraphrasing using WordNet and Internet.
Natural Language Processing and Information Sys-
tems .

Chris Callison-Burch. 2008. Syntactic constraints on
paraphrases extracted from parallel corpora. In Pro-
ceedings of Empirical Methods in Natural Language
Processing.

Michel Carl, Paul Schmidt, and Jörg Schütz. 2005. Re-
versible template-based shake & bake generation. In
MT Summit X.

Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella
Lapata. 2017. Learning to paraphrase for question
answering. In Proceedings of Empirical Methods in
Natural Language Processing.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2017. Hotflip: White-box adversarial exam-
ples for nlp. arXiv preprint arXiv:1712.06751 .

Allyson Ettinger, Sudha Rao, Hal Daumé III, and
Emily M Bender. 2017. Towards linguistically gen-
eralizable nlp systems: A workshop and shared task.
In Proceedings of the First Workshop on Building
Linguistically Generalizable NLP Systems.

Song Feng, Ritwik Banerjee, and Yejin Choi. 2012.
Characterizing stylistic elements in syntactic struc-
ture. In Proceedings of Empirical Methods in Natu-
ral Language Processing.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. arXiv preprint arXiv:1707.02633 .

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adver-
sarial examples. In Proceedings of the International
Conference on Learning Representations.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2017. A deep generative frame-
work for paraphrase generation. arXiv preprint
arXiv:1709.05074 .

Kelvin Guu, Tatsunori B Hashimoto, Yonatan
Oren, and Percy Liang. 2017. Generating sen-
tences by editing prototypes. arXiv preprint
arXiv:1709.08878 .

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation .

Mohit Iyyer, Jordan Boyd-Graber, and Hal Daumé III.
2014. Generating sentences from semantic vector
space representations. In NIPS Workshop on Learn-
ing Semantics.

Robin Jia and Percy Liang. 2017. Adversarial ex-
amples for evaluating reading comprehension sys-
tems. In Proceedings of Empirical Methods in Nat-
ural Language Processing.

Stanley Kok and Chris Brockett. 2010. Hitting the
right paraphrases in good time. In Conference of
the North American Chapter of the Association for
Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016a. A
persona-based neural conversation model. In Pro-
ceedings of the Association for Computational Lin-
guistics.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016b. A
simple, fast diverse decoding algorithm for neural
generation. arXiv preprint arXiv:1611.08562 .

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li.
2017. Paraphrase generation with deep reinforce-
ment learning. arXiv preprint arXiv:1711.00279 .

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian,
Xirong Li, and Wenchang Shi. 2017. Deep
text classification can be fooled. arXiv preprint
arXiv:1704.08006 .

Nitin Madnani and Bonnie J Dorr. 2010. Generating
phrasal and sentential paraphrases: A survey of data-
driven methods. Computational Linguistics 36(3).

Jonathan Mallinson, Rico Sennrich, and Mirella Lap-
ata. 2017. Paraphrasing revisited with neural ma-
chine translation. In Proceedings of the European
Chapter of the Association for Computational Lin-
guistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Com-
putational Linguistics System Demonstrations.

1884

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. Semeval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. SemEval 2014 .

Kathleen R McKeown. 1983. Paraphrasing questions
using given and new information. Computational
Linguistics 9(1).

Courtney Napoles, Chris Callison-Burch, and Matt
Post. 2016. Sentential paraphrasing as black-box
machine translation. In Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Demonstrations.

Xing Niu, Marianna Martindale, and Marine Carpuat.
2017. A study of style in machine translation: Con-
trolling the formality of machine translation out-
put. In Proceedings of Empirical Methods in Nat-
ural Language Processing.

Bo Pang, Kevin Knight, and Daniel Marcu. 2003.
Syntax-based alignment of multiple translations:
Extracting paraphrases and generating new sen-
tences. In Conference of the North American Chap-
ter of the Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of Empirical Meth-
ods in Natural Language Processing.

Aaditya Prakash, Sadid A Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji Farri.
2016. Neural paraphrase generation with stacked
residual LSTM networks. In Proceedings of Inter-
national Conference on Computational Linguistics.

Chris Quirk, Chris Brockett, and William Dolan.
2004. Monolingual machine translation for para-
phrase generation. In Proceedings of Empirical
Methods in Natural Language Processing.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the Associa-
tion for Computational Linguistics.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Vale-
rio Miceli Barone, Jozef Mokry, et al. 2017. Nema-
tus: a toolkit for neural machine translation. arXiv
preprint arXiv:1703.04357 .

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. In Proceedings of the Association for
Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Controlling politeness in neural machine
translation via side constraints. In Conference of
the North American Chapter of the Association for
Computational Linguistics.

Siwei Shen, Dragomir R Radev, Agam Patel, and
Güneş Erkan. 2006. Adding syntax to dynamic pro-
gramming for aligning comparable texts for the gen-
eration of paraphrases. In Proceedings of Interna-
tional Conference on Computational Linguistics.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Proceedings of Advances in
Neural Information Processing Systems.

David A Smith and Jason Eisner. 2006. Quasi-
synchronous grammars: Alignment by soft projec-
tion of syntactic dependencies. In Proceedings of
the Workshop on Statistical Machine Translation.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of Empirical Methods in
Natural Language Processing.

Yui Suzuki, Tomoyuki Kajiwara, and Mamoru Ko-
machi. 2017. Building a non-trivial paraphrase cor-
pus using multiple machine translation systems. In
Proceedings of ACL Student Research Workshop.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the Association for Com-
putational Linguistics.

Di Wang, Nebojsa Jojic, Chris Brockett, and Eric Ny-
berg. 2017. Steering output style and topic in neural
response generation. In Proceedings of Empirical
Methods in Natural Language Processing.

John Wieting and Kevin Gimpel. 2017. Pushing the
limits of paraphrastic sentence embeddings with
millions of machine translations. arXiv preprint
arXiv:1711.05732 .

John Wieting, Jonathan Mallinson, and Kevin Gimpel.
2017. Learning paraphrastic sentence embeddings
from back-translated bitext. In Proceedings of Em-
pirical Methods in Natural Language Processing.

Kristian Woodsend and Mirella Lapata. 2011. Learn-
ing to simplify sentences with quasi-synchronous
grammar and integer programming. In Proceedings
of Empirical Methods in Natural Language Process-
ing.

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. arXiv preprint arXiv:1502.01710
.

Shiqi Zhao, Xiang Lan, Ting Liu, and Sheng Li. 2009.
Application-driven statistical paraphrase generation.
In Proceedings of the Association for Computational
Linguistics.

1885

