@inproceedings{augenstein-etal-2018-multi,
title = "Multi-Task Learning of Pairwise Sequence Classification Tasks over Disparate Label Spaces",
author = "Augenstein, Isabelle and
Ruder, Sebastian and
S{\o}gaard, Anders",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1172",
doi = "10.18653/v1/N18-1172",
pages = "1896--1906",
abstract = "We combine multi-task learning and semi-supervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of tasks with disparate label spaces. We outperform strong single and multi-task baselines and achieve a new state of the art for aspect-based and topic-based sentiment analysis.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="augenstein-etal-2018-multi">
<titleInfo>
<title>Multi-Task Learning of Pairwise Sequence Classification Tasks over Disparate Label Spaces</title>
</titleInfo>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Ruder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We combine multi-task learning and semi-supervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of tasks with disparate label spaces. We outperform strong single and multi-task baselines and achieve a new state of the art for aspect-based and topic-based sentiment analysis.</abstract>
<identifier type="citekey">augenstein-etal-2018-multi</identifier>
<identifier type="doi">10.18653/v1/N18-1172</identifier>
<location>
<url>https://aclanthology.org/N18-1172</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1896</start>
<end>1906</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Task Learning of Pairwise Sequence Classification Tasks over Disparate Label Spaces
%A Augenstein, Isabelle
%A Ruder, Sebastian
%A Søgaard, Anders
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F augenstein-etal-2018-multi
%X We combine multi-task learning and semi-supervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of tasks with disparate label spaces. We outperform strong single and multi-task baselines and achieve a new state of the art for aspect-based and topic-based sentiment analysis.
%R 10.18653/v1/N18-1172
%U https://aclanthology.org/N18-1172
%U https://doi.org/10.18653/v1/N18-1172
%P 1896-1906
Markdown (Informal)
[Multi-Task Learning of Pairwise Sequence Classification Tasks over Disparate Label Spaces](https://aclanthology.org/N18-1172) (Augenstein et al., NAACL 2018)
ACL