@inproceedings{suhr-etal-2018-learning,
title = "Learning to Map Context-Dependent Sentences to Executable Formal Queries",
author = "Suhr, Alane and
Iyer, Srinivasan and
Artzi, Yoav",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-1203",
doi = "10.18653/v1/N18-1203",
pages = "2238--2249",
abstract = "We propose a context-dependent model to map utterances within an interaction to executable formal queries. To incorporate interaction history, the model maintains an interaction-level encoder that updates after each turn, and can copy sub-sequences of previously predicted queries during generation. Our approach combines implicit and explicit modeling of references between utterances. We evaluate our model on the ATIS flight planning interactions, and demonstrate the benefits of modeling context and explicit references.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="suhr-etal-2018-learning">
<titleInfo>
<title>Learning to Map Context-Dependent Sentences to Executable Formal Queries</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alane</namePart>
<namePart type="family">Suhr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Srinivasan</namePart>
<namePart type="family">Iyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Artzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a context-dependent model to map utterances within an interaction to executable formal queries. To incorporate interaction history, the model maintains an interaction-level encoder that updates after each turn, and can copy sub-sequences of previously predicted queries during generation. Our approach combines implicit and explicit modeling of references between utterances. We evaluate our model on the ATIS flight planning interactions, and demonstrate the benefits of modeling context and explicit references.</abstract>
<identifier type="citekey">suhr-etal-2018-learning</identifier>
<identifier type="doi">10.18653/v1/N18-1203</identifier>
<location>
<url>https://aclanthology.org/N18-1203</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>2238</start>
<end>2249</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning to Map Context-Dependent Sentences to Executable Formal Queries
%A Suhr, Alane
%A Iyer, Srinivasan
%A Artzi, Yoav
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F suhr-etal-2018-learning
%X We propose a context-dependent model to map utterances within an interaction to executable formal queries. To incorporate interaction history, the model maintains an interaction-level encoder that updates after each turn, and can copy sub-sequences of previously predicted queries during generation. Our approach combines implicit and explicit modeling of references between utterances. We evaluate our model on the ATIS flight planning interactions, and demonstrate the benefits of modeling context and explicit references.
%R 10.18653/v1/N18-1203
%U https://aclanthology.org/N18-1203
%U https://doi.org/10.18653/v1/N18-1203
%P 2238-2249
Markdown (Informal)
[Learning to Map Context-Dependent Sentences to Executable Formal Queries](https://aclanthology.org/N18-1203) (Suhr et al., NAACL 2018)
ACL
- Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018. Learning to Map Context-Dependent Sentences to Executable Formal Queries. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2238–2249, New Orleans, Louisiana. Association for Computational Linguistics.