@inproceedings{baly-etal-2018-integrating,
title = "Integrating Stance Detection and Fact Checking in a Unified Corpus",
author = "Baly, Ramy and
Mohtarami, Mitra and
Glass, James and
M{\`a}rquez, Llu{\'i}s and
Moschitti, Alessandro and
Nakov, Preslav",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2004/",
doi = "10.18653/v1/N18-2004",
pages = "21--27",
abstract = "A reasonable approach for fact checking a claim involves retrieving potentially relevant documents from different sources (e.g., news websites, social media, etc.), determining the stance of each document with respect to the claim, and finally making a prediction about the claim`s factuality by aggregating the strength of the stances, while taking the reliability of the source into account. Moreover, a fact checking system should be able to explain its decision by providing relevant extracts (rationales) from the documents. Yet, this setup is not directly supported by existing datasets, which treat fact checking, document retrieval, source credibility, stance detection and rationale extraction as independent tasks. In this paper, we support the interdependencies between these tasks as annotations in the same corpus. We implement this setup on an Arabic fact checking corpus, the first of its kind."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baly-etal-2018-integrating">
<titleInfo>
<title>Integrating Stance Detection and Fact Checking in a Unified Corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ramy</namePart>
<namePart type="family">Baly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mitra</namePart>
<namePart type="family">Mohtarami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Glass</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Moschitti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A reasonable approach for fact checking a claim involves retrieving potentially relevant documents from different sources (e.g., news websites, social media, etc.), determining the stance of each document with respect to the claim, and finally making a prediction about the claim‘s factuality by aggregating the strength of the stances, while taking the reliability of the source into account. Moreover, a fact checking system should be able to explain its decision by providing relevant extracts (rationales) from the documents. Yet, this setup is not directly supported by existing datasets, which treat fact checking, document retrieval, source credibility, stance detection and rationale extraction as independent tasks. In this paper, we support the interdependencies between these tasks as annotations in the same corpus. We implement this setup on an Arabic fact checking corpus, the first of its kind.</abstract>
<identifier type="citekey">baly-etal-2018-integrating</identifier>
<identifier type="doi">10.18653/v1/N18-2004</identifier>
<location>
<url>https://aclanthology.org/N18-2004/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>21</start>
<end>27</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Integrating Stance Detection and Fact Checking in a Unified Corpus
%A Baly, Ramy
%A Mohtarami, Mitra
%A Glass, James
%A Màrquez, Lluís
%A Moschitti, Alessandro
%A Nakov, Preslav
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F baly-etal-2018-integrating
%X A reasonable approach for fact checking a claim involves retrieving potentially relevant documents from different sources (e.g., news websites, social media, etc.), determining the stance of each document with respect to the claim, and finally making a prediction about the claim‘s factuality by aggregating the strength of the stances, while taking the reliability of the source into account. Moreover, a fact checking system should be able to explain its decision by providing relevant extracts (rationales) from the documents. Yet, this setup is not directly supported by existing datasets, which treat fact checking, document retrieval, source credibility, stance detection and rationale extraction as independent tasks. In this paper, we support the interdependencies between these tasks as annotations in the same corpus. We implement this setup on an Arabic fact checking corpus, the first of its kind.
%R 10.18653/v1/N18-2004
%U https://aclanthology.org/N18-2004/
%U https://doi.org/10.18653/v1/N18-2004
%P 21-27
Markdown (Informal)
[Integrating Stance Detection and Fact Checking in a Unified Corpus](https://aclanthology.org/N18-2004/) (Baly et al., NAACL 2018)
ACL
- Ramy Baly, Mitra Mohtarami, James Glass, Lluís Màrquez, Alessandro Moschitti, and Preslav Nakov. 2018. Integrating Stance Detection and Fact Checking in a Unified Corpus. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 21–27, New Orleans, Louisiana. Association for Computational Linguistics.