@inproceedings{koper-schulte-im-walde-2018-analogies,
title = "Analogies in Complex Verb Meaning Shifts: the Effect of Affect in Semantic Similarity Models",
author = {K{\"o}per, Maximilian and
Schulte im Walde, Sabine},
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2024/",
doi = "10.18653/v1/N18-2024",
pages = "150--156",
abstract = "We present a computational model to detect and distinguish analogies in meaning shifts between German base and complex verbs. In contrast to corpus-based studies, a novel dataset demonstrates that {\textquotedblleft}regular{\textquotedblright} shifts represent the smallest class. Classification experiments relying on a standard similarity model successfully distinguish between four types of shifts, with verb classes boosting the performance, and affective features for abstractness, emotion and sentiment representing the most salient indicators."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="koper-schulte-im-walde-2018-analogies">
<titleInfo>
<title>Analogies in Complex Verb Meaning Shifts: the Effect of Affect in Semantic Similarity Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maximilian</namePart>
<namePart type="family">Köper</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabine</namePart>
<namePart type="family">Schulte im Walde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a computational model to detect and distinguish analogies in meaning shifts between German base and complex verbs. In contrast to corpus-based studies, a novel dataset demonstrates that “regular” shifts represent the smallest class. Classification experiments relying on a standard similarity model successfully distinguish between four types of shifts, with verb classes boosting the performance, and affective features for abstractness, emotion and sentiment representing the most salient indicators.</abstract>
<identifier type="citekey">koper-schulte-im-walde-2018-analogies</identifier>
<identifier type="doi">10.18653/v1/N18-2024</identifier>
<location>
<url>https://aclanthology.org/N18-2024/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>150</start>
<end>156</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analogies in Complex Verb Meaning Shifts: the Effect of Affect in Semantic Similarity Models
%A Köper, Maximilian
%A Schulte im Walde, Sabine
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F koper-schulte-im-walde-2018-analogies
%X We present a computational model to detect and distinguish analogies in meaning shifts between German base and complex verbs. In contrast to corpus-based studies, a novel dataset demonstrates that “regular” shifts represent the smallest class. Classification experiments relying on a standard similarity model successfully distinguish between four types of shifts, with verb classes boosting the performance, and affective features for abstractness, emotion and sentiment representing the most salient indicators.
%R 10.18653/v1/N18-2024
%U https://aclanthology.org/N18-2024/
%U https://doi.org/10.18653/v1/N18-2024
%P 150-156
Markdown (Informal)
[Analogies in Complex Verb Meaning Shifts: the Effect of Affect in Semantic Similarity Models](https://aclanthology.org/N18-2024/) (Köper & Schulte im Walde, NAACL 2018)
ACL