@inproceedings{vempala-etal-2018-determining,
title = "Determining Event Durations: Models and Error Analysis",
author = "Vempala, Alakananda and
Blanco, Eduardo and
Palmer, Alexis",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2026",
doi = "10.18653/v1/N18-2026",
pages = "164--168",
abstract = "This paper presents models to predict event durations. We introduce aspectual features that capture deeper linguistic information than previous work, and experiment with neural networks. Our analysis shows that tense, aspect and temporal structure of the clause provide useful clues, and that an LSTM ensemble captures relevant context around the event.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vempala-etal-2018-determining">
<titleInfo>
<title>Determining Event Durations: Models and Error Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alakananda</namePart>
<namePart type="family">Vempala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents models to predict event durations. We introduce aspectual features that capture deeper linguistic information than previous work, and experiment with neural networks. Our analysis shows that tense, aspect and temporal structure of the clause provide useful clues, and that an LSTM ensemble captures relevant context around the event.</abstract>
<identifier type="citekey">vempala-etal-2018-determining</identifier>
<identifier type="doi">10.18653/v1/N18-2026</identifier>
<location>
<url>https://aclanthology.org/N18-2026</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>164</start>
<end>168</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Determining Event Durations: Models and Error Analysis
%A Vempala, Alakananda
%A Blanco, Eduardo
%A Palmer, Alexis
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F vempala-etal-2018-determining
%X This paper presents models to predict event durations. We introduce aspectual features that capture deeper linguistic information than previous work, and experiment with neural networks. Our analysis shows that tense, aspect and temporal structure of the clause provide useful clues, and that an LSTM ensemble captures relevant context around the event.
%R 10.18653/v1/N18-2026
%U https://aclanthology.org/N18-2026
%U https://doi.org/10.18653/v1/N18-2026
%P 164-168
Markdown (Informal)
[Determining Event Durations: Models and Error Analysis](https://aclanthology.org/N18-2026) (Vempala et al., NAACL 2018)
ACL
- Alakananda Vempala, Eduardo Blanco, and Alexis Palmer. 2018. Determining Event Durations: Models and Error Analysis. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 164–168, New Orleans, Louisiana. Association for Computational Linguistics.