@inproceedings{nguyen-etal-2018-introducing,
title = "Introducing Two {V}ietnamese Datasets for Evaluating Semantic Models of (Dis-)Similarity and Relatedness",
author = "Nguyen, Kim Anh and
Schulte im Walde, Sabine and
Vu, Ngoc Thang",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2032/",
doi = "10.18653/v1/N18-2032",
pages = "199--205",
abstract = "We present two novel datasets for the low-resource language Vietnamese to assess models of semantic similarity: ViCon comprises pairs of synonyms and antonyms across word classes, thus offering data to distinguish between similarity and dissimilarity. ViSim-400 provides degrees of similarity across five semantic relations, as rated by human judges. The two datasets are verified through standard co-occurrence and neural network models, showing results comparable to the respective English datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-etal-2018-introducing">
<titleInfo>
<title>Introducing Two Vietnamese Datasets for Evaluating Semantic Models of (Dis-)Similarity and Relatedness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kim</namePart>
<namePart type="given">Anh</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabine</namePart>
<namePart type="family">Schulte im Walde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ngoc</namePart>
<namePart type="given">Thang</namePart>
<namePart type="family">Vu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present two novel datasets for the low-resource language Vietnamese to assess models of semantic similarity: ViCon comprises pairs of synonyms and antonyms across word classes, thus offering data to distinguish between similarity and dissimilarity. ViSim-400 provides degrees of similarity across five semantic relations, as rated by human judges. The two datasets are verified through standard co-occurrence and neural network models, showing results comparable to the respective English datasets.</abstract>
<identifier type="citekey">nguyen-etal-2018-introducing</identifier>
<identifier type="doi">10.18653/v1/N18-2032</identifier>
<location>
<url>https://aclanthology.org/N18-2032/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>199</start>
<end>205</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Introducing Two Vietnamese Datasets for Evaluating Semantic Models of (Dis-)Similarity and Relatedness
%A Nguyen, Kim Anh
%A Schulte im Walde, Sabine
%A Vu, Ngoc Thang
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F nguyen-etal-2018-introducing
%X We present two novel datasets for the low-resource language Vietnamese to assess models of semantic similarity: ViCon comprises pairs of synonyms and antonyms across word classes, thus offering data to distinguish between similarity and dissimilarity. ViSim-400 provides degrees of similarity across five semantic relations, as rated by human judges. The two datasets are verified through standard co-occurrence and neural network models, showing results comparable to the respective English datasets.
%R 10.18653/v1/N18-2032
%U https://aclanthology.org/N18-2032/
%U https://doi.org/10.18653/v1/N18-2032
%P 199-205
Markdown (Informal)
[Introducing Two Vietnamese Datasets for Evaluating Semantic Models of (Dis-)Similarity and Relatedness](https://aclanthology.org/N18-2032/) (Nguyen et al., NAACL 2018)
ACL