@inproceedings{buljan-etal-2018-lexical,
title = "Lexical Substitution for Evaluating Compositional Distributional Models",
author = "Buljan, Maja and
Pad{\'o}, Sebastian and
{\v{S}}najder, Jan",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2033",
doi = "10.18653/v1/N18-2033",
pages = "206--211",
abstract = "Compositional Distributional Semantic Models (CDSMs) model the meaning of phrases and sentences in vector space. They have been predominantly evaluated on limited, artificial tasks such as semantic sentence similarity on hand-constructed datasets. This paper argues for lexical substitution (LexSub) as a means to evaluate CDSMs. LexSub is a more natural task, enables us to evaluate meaning composition at the level of individual words, and provides a common ground to compare CDSMs with dedicated LexSub models. We create a LexSub dataset for CDSM evaluation from a corpus with manual {``}all-words{''} LexSub annotation. Our experiments indicate that the Practical Lexical Function CDSM outperforms simple component-wise CDSMs and performs on par with the context2vec LexSub model using the same context.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="buljan-etal-2018-lexical">
<titleInfo>
<title>Lexical Substitution for Evaluating Compositional Distributional Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maja</namePart>
<namePart type="family">Buljan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Padó</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Šnajder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Compositional Distributional Semantic Models (CDSMs) model the meaning of phrases and sentences in vector space. They have been predominantly evaluated on limited, artificial tasks such as semantic sentence similarity on hand-constructed datasets. This paper argues for lexical substitution (LexSub) as a means to evaluate CDSMs. LexSub is a more natural task, enables us to evaluate meaning composition at the level of individual words, and provides a common ground to compare CDSMs with dedicated LexSub models. We create a LexSub dataset for CDSM evaluation from a corpus with manual “all-words” LexSub annotation. Our experiments indicate that the Practical Lexical Function CDSM outperforms simple component-wise CDSMs and performs on par with the context2vec LexSub model using the same context.</abstract>
<identifier type="citekey">buljan-etal-2018-lexical</identifier>
<identifier type="doi">10.18653/v1/N18-2033</identifier>
<location>
<url>https://aclanthology.org/N18-2033</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>206</start>
<end>211</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Lexical Substitution for Evaluating Compositional Distributional Models
%A Buljan, Maja
%A Padó, Sebastian
%A Šnajder, Jan
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F buljan-etal-2018-lexical
%X Compositional Distributional Semantic Models (CDSMs) model the meaning of phrases and sentences in vector space. They have been predominantly evaluated on limited, artificial tasks such as semantic sentence similarity on hand-constructed datasets. This paper argues for lexical substitution (LexSub) as a means to evaluate CDSMs. LexSub is a more natural task, enables us to evaluate meaning composition at the level of individual words, and provides a common ground to compare CDSMs with dedicated LexSub models. We create a LexSub dataset for CDSM evaluation from a corpus with manual “all-words” LexSub annotation. Our experiments indicate that the Practical Lexical Function CDSM outperforms simple component-wise CDSMs and performs on par with the context2vec LexSub model using the same context.
%R 10.18653/v1/N18-2033
%U https://aclanthology.org/N18-2033
%U https://doi.org/10.18653/v1/N18-2033
%P 206-211
Markdown (Informal)
[Lexical Substitution for Evaluating Compositional Distributional Models](https://aclanthology.org/N18-2033) (Buljan et al., NAACL 2018)
ACL
- Maja Buljan, Sebastian Padó, and Jan Šnajder. 2018. Lexical Substitution for Evaluating Compositional Distributional Models. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 206–211, New Orleans, Louisiana. Association for Computational Linguistics.