@inproceedings{kashefi-etal-2018-semantic,
title = "Semantic Pleonasm Detection",
author = "Kashefi, Omid and
Lucas, Andrew T. and
Hwa, Rebecca",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2036",
doi = "10.18653/v1/N18-2036",
pages = "225--230",
abstract = "Pleonasms are words that are redundant. To aid the development of systems that detect pleonasms in text, we introduce an annotated corpus of semantic pleonasms. We validate the integrity of the corpus with interannotator agreement analyses. We also compare it against alternative resources in terms of their effects on several automatic redundancy detection methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kashefi-etal-2018-semantic">
<titleInfo>
<title>Semantic Pleonasm Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Omid</namePart>
<namePart type="family">Kashefi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Lucas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pleonasms are words that are redundant. To aid the development of systems that detect pleonasms in text, we introduce an annotated corpus of semantic pleonasms. We validate the integrity of the corpus with interannotator agreement analyses. We also compare it against alternative resources in terms of their effects on several automatic redundancy detection methods.</abstract>
<identifier type="citekey">kashefi-etal-2018-semantic</identifier>
<identifier type="doi">10.18653/v1/N18-2036</identifier>
<location>
<url>https://aclanthology.org/N18-2036</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>225</start>
<end>230</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Pleonasm Detection
%A Kashefi, Omid
%A Lucas, Andrew T.
%A Hwa, Rebecca
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F kashefi-etal-2018-semantic
%X Pleonasms are words that are redundant. To aid the development of systems that detect pleonasms in text, we introduce an annotated corpus of semantic pleonasms. We validate the integrity of the corpus with interannotator agreement analyses. We also compare it against alternative resources in terms of their effects on several automatic redundancy detection methods.
%R 10.18653/v1/N18-2036
%U https://aclanthology.org/N18-2036
%U https://doi.org/10.18653/v1/N18-2036
%P 225-230
Markdown (Informal)
[Semantic Pleonasm Detection](https://aclanthology.org/N18-2036) (Kashefi et al., NAACL 2018)
ACL
- Omid Kashefi, Andrew T. Lucas, and Rebecca Hwa. 2018. Semantic Pleonasm Detection. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 225–230, New Orleans, Louisiana. Association for Computational Linguistics.