@inproceedings{maharjan-etal-2018-letting,
title = "Letting Emotions Flow: Success Prediction by Modeling the Flow of Emotions in Books",
author = "Maharjan, Suraj and
Kar, Sudipta and
Montes, Manuel and
Gonz{\'a}lez, Fabio A. and
Solorio, Thamar",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2042/",
doi = "10.18653/v1/N18-2042",
pages = "259--265",
abstract = "Books have the power to make us feel happiness, sadness, pain, surprise, or sorrow. An author`s dexterity in the use of these emotions captivates readers and makes it difficult for them to put the book down. In this paper, we model the flow of emotions over a book using recurrent neural networks and quantify its usefulness in predicting success in books. We obtained the best weighted F1-score of 69{\%} for predicting books' success in a multitask setting (simultaneously predicting success and genre of books)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maharjan-etal-2018-letting">
<titleInfo>
<title>Letting Emotions Flow: Success Prediction by Modeling the Flow of Emotions in Books</title>
</titleInfo>
<name type="personal">
<namePart type="given">Suraj</namePart>
<namePart type="family">Maharjan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manuel</namePart>
<namePart type="family">Montes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="given">A</namePart>
<namePart type="family">González</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Books have the power to make us feel happiness, sadness, pain, surprise, or sorrow. An author‘s dexterity in the use of these emotions captivates readers and makes it difficult for them to put the book down. In this paper, we model the flow of emotions over a book using recurrent neural networks and quantify its usefulness in predicting success in books. We obtained the best weighted F1-score of 69% for predicting books’ success in a multitask setting (simultaneously predicting success and genre of books).</abstract>
<identifier type="citekey">maharjan-etal-2018-letting</identifier>
<identifier type="doi">10.18653/v1/N18-2042</identifier>
<location>
<url>https://aclanthology.org/N18-2042/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>259</start>
<end>265</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Letting Emotions Flow: Success Prediction by Modeling the Flow of Emotions in Books
%A Maharjan, Suraj
%A Kar, Sudipta
%A Montes, Manuel
%A González, Fabio A.
%A Solorio, Thamar
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F maharjan-etal-2018-letting
%X Books have the power to make us feel happiness, sadness, pain, surprise, or sorrow. An author‘s dexterity in the use of these emotions captivates readers and makes it difficult for them to put the book down. In this paper, we model the flow of emotions over a book using recurrent neural networks and quantify its usefulness in predicting success in books. We obtained the best weighted F1-score of 69% for predicting books’ success in a multitask setting (simultaneously predicting success and genre of books).
%R 10.18653/v1/N18-2042
%U https://aclanthology.org/N18-2042/
%U https://doi.org/10.18653/v1/N18-2042
%P 259-265
Markdown (Informal)
[Letting Emotions Flow: Success Prediction by Modeling the Flow of Emotions in Books](https://aclanthology.org/N18-2042/) (Maharjan et al., NAACL 2018)
ACL
- Suraj Maharjan, Sudipta Kar, Manuel Montes, Fabio A. González, and Thamar Solorio. 2018. Letting Emotions Flow: Success Prediction by Modeling the Flow of Emotions in Books. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 259–265, New Orleans, Louisiana. Association for Computational Linguistics.