@inproceedings{hazarika-etal-2018-modeling,
title = "Modeling Inter-Aspect Dependencies for Aspect-Based Sentiment Analysis",
author = "Hazarika, Devamanyu and
Poria, Soujanya and
Vij, Prateek and
Krishnamurthy, Gangeshwar and
Cambria, Erik and
Zimmermann, Roger",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2043/",
doi = "10.18653/v1/N18-2043",
pages = "266--270",
abstract = "Aspect-based Sentiment Analysis is a fine-grained task of sentiment classification for multiple aspects in a sentence. Present neural-based models exploit aspect and its contextual information in the sentence but largely ignore the inter-aspect dependencies. In this paper, we incorporate this pattern by simultaneous classification of all aspects in a sentence along with temporal dependency processing of their corresponding sentence representations using recurrent networks. Results on the benchmark SemEval 2014 dataset suggest the effectiveness of our proposed approach."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hazarika-etal-2018-modeling">
<titleInfo>
<title>Modeling Inter-Aspect Dependencies for Aspect-Based Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Devamanyu</namePart>
<namePart type="family">Hazarika</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soujanya</namePart>
<namePart type="family">Poria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prateek</namePart>
<namePart type="family">Vij</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gangeshwar</namePart>
<namePart type="family">Krishnamurthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Cambria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roger</namePart>
<namePart type="family">Zimmermann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Aspect-based Sentiment Analysis is a fine-grained task of sentiment classification for multiple aspects in a sentence. Present neural-based models exploit aspect and its contextual information in the sentence but largely ignore the inter-aspect dependencies. In this paper, we incorporate this pattern by simultaneous classification of all aspects in a sentence along with temporal dependency processing of their corresponding sentence representations using recurrent networks. Results on the benchmark SemEval 2014 dataset suggest the effectiveness of our proposed approach.</abstract>
<identifier type="citekey">hazarika-etal-2018-modeling</identifier>
<identifier type="doi">10.18653/v1/N18-2043</identifier>
<location>
<url>https://aclanthology.org/N18-2043/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>266</start>
<end>270</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling Inter-Aspect Dependencies for Aspect-Based Sentiment Analysis
%A Hazarika, Devamanyu
%A Poria, Soujanya
%A Vij, Prateek
%A Krishnamurthy, Gangeshwar
%A Cambria, Erik
%A Zimmermann, Roger
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F hazarika-etal-2018-modeling
%X Aspect-based Sentiment Analysis is a fine-grained task of sentiment classification for multiple aspects in a sentence. Present neural-based models exploit aspect and its contextual information in the sentence but largely ignore the inter-aspect dependencies. In this paper, we incorporate this pattern by simultaneous classification of all aspects in a sentence along with temporal dependency processing of their corresponding sentence representations using recurrent networks. Results on the benchmark SemEval 2014 dataset suggest the effectiveness of our proposed approach.
%R 10.18653/v1/N18-2043
%U https://aclanthology.org/N18-2043/
%U https://doi.org/10.18653/v1/N18-2043
%P 266-270
Markdown (Informal)
[Modeling Inter-Aspect Dependencies for Aspect-Based Sentiment Analysis](https://aclanthology.org/N18-2043/) (Hazarika et al., NAACL 2018)
ACL
- Devamanyu Hazarika, Soujanya Poria, Prateek Vij, Gangeshwar Krishnamurthy, Erik Cambria, and Roger Zimmermann. 2018. Modeling Inter-Aspect Dependencies for Aspect-Based Sentiment Analysis. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 266–270, New Orleans, Louisiana. Association for Computational Linguistics.