@inproceedings{grundkiewicz-junczys-dowmunt-2018-near,
title = "Near Human-Level Performance in Grammatical Error Correction with Hybrid Machine Translation",
author = "Grundkiewicz, Roman and
Junczys-Dowmunt, Marcin",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2046/",
doi = "10.18653/v1/N18-2046",
pages = "284--290",
abstract = "We combine two of the most popular approaches to automated Grammatical Error Correction (GEC): GEC based on Statistical Machine Translation (SMT) and GEC based on Neural Machine Translation (NMT). The hybrid system achieves new state-of-the-art results on the CoNLL-2014 and JFLEG benchmarks. This GEC system preserves the accuracy of SMT output and, at the same time, generates more fluent sentences as it typical for NMT. Our analysis shows that the created systems are closer to reaching human-level performance than any other GEC system reported so far."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="grundkiewicz-junczys-dowmunt-2018-near">
<titleInfo>
<title>Near Human-Level Performance in Grammatical Error Correction with Hybrid Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Grundkiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcin</namePart>
<namePart type="family">Junczys-Dowmunt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We combine two of the most popular approaches to automated Grammatical Error Correction (GEC): GEC based on Statistical Machine Translation (SMT) and GEC based on Neural Machine Translation (NMT). The hybrid system achieves new state-of-the-art results on the CoNLL-2014 and JFLEG benchmarks. This GEC system preserves the accuracy of SMT output and, at the same time, generates more fluent sentences as it typical for NMT. Our analysis shows that the created systems are closer to reaching human-level performance than any other GEC system reported so far.</abstract>
<identifier type="citekey">grundkiewicz-junczys-dowmunt-2018-near</identifier>
<identifier type="doi">10.18653/v1/N18-2046</identifier>
<location>
<url>https://aclanthology.org/N18-2046/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>284</start>
<end>290</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Near Human-Level Performance in Grammatical Error Correction with Hybrid Machine Translation
%A Grundkiewicz, Roman
%A Junczys-Dowmunt, Marcin
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F grundkiewicz-junczys-dowmunt-2018-near
%X We combine two of the most popular approaches to automated Grammatical Error Correction (GEC): GEC based on Statistical Machine Translation (SMT) and GEC based on Neural Machine Translation (NMT). The hybrid system achieves new state-of-the-art results on the CoNLL-2014 and JFLEG benchmarks. This GEC system preserves the accuracy of SMT output and, at the same time, generates more fluent sentences as it typical for NMT. Our analysis shows that the created systems are closer to reaching human-level performance than any other GEC system reported so far.
%R 10.18653/v1/N18-2046
%U https://aclanthology.org/N18-2046/
%U https://doi.org/10.18653/v1/N18-2046
%P 284-290
Markdown (Informal)
[Near Human-Level Performance in Grammatical Error Correction with Hybrid Machine Translation](https://aclanthology.org/N18-2046/) (Grundkiewicz & Junczys-Dowmunt, NAACL 2018)
ACL