@inproceedings{aufrant-etal-2018-exploiting,
title = "Exploiting Dynamic Oracles to Train Projective Dependency Parsers on Non-Projective Trees",
author = "Aufrant, Lauriane and
Wisniewski, Guillaume and
Yvon, Fran{\c{c}}ois",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2066",
doi = "10.18653/v1/N18-2066",
pages = "413--419",
abstract = "Because the most common transition systems are projective, training a transition-based dependency parser often implies to either ignore or rewrite the non-projective training examples, which has an adverse impact on accuracy. In this work, we propose a simple modification of dynamic oracles, which enables the use of non-projective data when training projective parsers. Evaluation on 73 treebanks shows that our method achieves significant gains (+2 to +7 UAS for the most non-projective languages) and consistently outperforms traditional projectivization and pseudo-projectivization approaches.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="aufrant-etal-2018-exploiting">
<titleInfo>
<title>Exploiting Dynamic Oracles to Train Projective Dependency Parsers on Non-Projective Trees</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lauriane</namePart>
<namePart type="family">Aufrant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guillaume</namePart>
<namePart type="family">Wisniewski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Yvon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Because the most common transition systems are projective, training a transition-based dependency parser often implies to either ignore or rewrite the non-projective training examples, which has an adverse impact on accuracy. In this work, we propose a simple modification of dynamic oracles, which enables the use of non-projective data when training projective parsers. Evaluation on 73 treebanks shows that our method achieves significant gains (+2 to +7 UAS for the most non-projective languages) and consistently outperforms traditional projectivization and pseudo-projectivization approaches.</abstract>
<identifier type="citekey">aufrant-etal-2018-exploiting</identifier>
<identifier type="doi">10.18653/v1/N18-2066</identifier>
<location>
<url>https://aclanthology.org/N18-2066</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>413</start>
<end>419</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploiting Dynamic Oracles to Train Projective Dependency Parsers on Non-Projective Trees
%A Aufrant, Lauriane
%A Wisniewski, Guillaume
%A Yvon, François
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F aufrant-etal-2018-exploiting
%X Because the most common transition systems are projective, training a transition-based dependency parser often implies to either ignore or rewrite the non-projective training examples, which has an adverse impact on accuracy. In this work, we propose a simple modification of dynamic oracles, which enables the use of non-projective data when training projective parsers. Evaluation on 73 treebanks shows that our method achieves significant gains (+2 to +7 UAS for the most non-projective languages) and consistently outperforms traditional projectivization and pseudo-projectivization approaches.
%R 10.18653/v1/N18-2066
%U https://aclanthology.org/N18-2066
%U https://doi.org/10.18653/v1/N18-2066
%P 413-419
Markdown (Informal)
[Exploiting Dynamic Oracles to Train Projective Dependency Parsers on Non-Projective Trees](https://aclanthology.org/N18-2066) (Aufrant et al., NAACL 2018)
ACL