@inproceedings{dalvi-etal-2018-incremental,
title = "Incremental Decoding and Training Methods for Simultaneous Translation in Neural Machine Translation",
author = "Dalvi, Fahim and
Durrani, Nadir and
Sajjad, Hassan and
Vogel, Stephan",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2079",
doi = "10.18653/v1/N18-2079",
pages = "493--499",
abstract = "We address the problem of simultaneous translation by modifying the Neural MT decoder to operate with dynamically built encoder and attention. We propose a tunable agent which decides the best segmentation strategy for a user-defined BLEU loss and Average Proportion (AP) constraint. Our agent outperforms previously proposed Wait-if-diff and Wait-if-worse agents (Cho and Esipova, 2016) on BLEU with a lower latency. Secondly we proposed data-driven changes to Neural MT training to better match the incremental decoding framework.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dalvi-etal-2018-incremental">
<titleInfo>
<title>Incremental Decoding and Training Methods for Simultaneous Translation in Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fahim</namePart>
<namePart type="family">Dalvi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadir</namePart>
<namePart type="family">Durrani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hassan</namePart>
<namePart type="family">Sajjad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephan</namePart>
<namePart type="family">Vogel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We address the problem of simultaneous translation by modifying the Neural MT decoder to operate with dynamically built encoder and attention. We propose a tunable agent which decides the best segmentation strategy for a user-defined BLEU loss and Average Proportion (AP) constraint. Our agent outperforms previously proposed Wait-if-diff and Wait-if-worse agents (Cho and Esipova, 2016) on BLEU with a lower latency. Secondly we proposed data-driven changes to Neural MT training to better match the incremental decoding framework.</abstract>
<identifier type="citekey">dalvi-etal-2018-incremental</identifier>
<identifier type="doi">10.18653/v1/N18-2079</identifier>
<location>
<url>https://aclanthology.org/N18-2079</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>493</start>
<end>499</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incremental Decoding and Training Methods for Simultaneous Translation in Neural Machine Translation
%A Dalvi, Fahim
%A Durrani, Nadir
%A Sajjad, Hassan
%A Vogel, Stephan
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F dalvi-etal-2018-incremental
%X We address the problem of simultaneous translation by modifying the Neural MT decoder to operate with dynamically built encoder and attention. We propose a tunable agent which decides the best segmentation strategy for a user-defined BLEU loss and Average Proportion (AP) constraint. Our agent outperforms previously proposed Wait-if-diff and Wait-if-worse agents (Cho and Esipova, 2016) on BLEU with a lower latency. Secondly we proposed data-driven changes to Neural MT training to better match the incremental decoding framework.
%R 10.18653/v1/N18-2079
%U https://aclanthology.org/N18-2079
%U https://doi.org/10.18653/v1/N18-2079
%P 493-499
Markdown (Informal)
[Incremental Decoding and Training Methods for Simultaneous Translation in Neural Machine Translation](https://aclanthology.org/N18-2079) (Dalvi et al., NAACL 2018)
ACL