@inproceedings{cohan-etal-2018-discourse,
    title = "A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents",
    author = "Cohan, Arman  and
      Dernoncourt, Franck  and
      Kim, Doo Soon  and
      Bui, Trung  and
      Kim, Seokhwan  and
      Chang, Walter  and
      Goharian, Nazli",
    editor = "Walker, Marilyn  and
      Ji, Heng  and
      Stent, Amanda",
    booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/N18-2097/",
    doi = "10.18653/v1/N18-2097",
    pages = "615--621",
    abstract = "Neural abstractive summarization models have led to promising results in summarizing relatively short documents. We propose the first model for abstractive summarization of single, longer-form documents (e.g., research papers). Our approach consists of a new hierarchical encoder that models the discourse structure of a document, and an attentive discourse-aware decoder to generate the summary. Empirical results on two large-scale datasets of scientific papers show that our model significantly outperforms state-of-the-art models."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cohan-etal-2018-discourse">
    <titleInfo>
        <title>A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Arman</namePart>
        <namePart type="family">Cohan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Franck</namePart>
        <namePart type="family">Dernoncourt</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Doo</namePart>
        <namePart type="given">Soon</namePart>
        <namePart type="family">Kim</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Trung</namePart>
        <namePart type="family">Bui</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Seokhwan</namePart>
        <namePart type="family">Kim</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Walter</namePart>
        <namePart type="family">Chang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Nazli</namePart>
        <namePart type="family">Goharian</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Marilyn</namePart>
            <namePart type="family">Walker</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Heng</namePart>
            <namePart type="family">Ji</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Amanda</namePart>
            <namePart type="family">Stent</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">New Orleans, Louisiana</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Neural abstractive summarization models have led to promising results in summarizing relatively short documents. We propose the first model for abstractive summarization of single, longer-form documents (e.g., research papers). Our approach consists of a new hierarchical encoder that models the discourse structure of a document, and an attentive discourse-aware decoder to generate the summary. Empirical results on two large-scale datasets of scientific papers show that our model significantly outperforms state-of-the-art models.</abstract>
    <identifier type="citekey">cohan-etal-2018-discourse</identifier>
    <identifier type="doi">10.18653/v1/N18-2097</identifier>
    <location>
        <url>https://aclanthology.org/N18-2097/</url>
    </location>
    <part>
        <date>2018-06</date>
        <extent unit="page">
            <start>615</start>
            <end>621</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents
%A Cohan, Arman
%A Dernoncourt, Franck
%A Kim, Doo Soon
%A Bui, Trung
%A Kim, Seokhwan
%A Chang, Walter
%A Goharian, Nazli
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F cohan-etal-2018-discourse
%X Neural abstractive summarization models have led to promising results in summarizing relatively short documents. We propose the first model for abstractive summarization of single, longer-form documents (e.g., research papers). Our approach consists of a new hierarchical encoder that models the discourse structure of a document, and an attentive discourse-aware decoder to generate the summary. Empirical results on two large-scale datasets of scientific papers show that our model significantly outperforms state-of-the-art models.
%R 10.18653/v1/N18-2097
%U https://aclanthology.org/N18-2097/
%U https://doi.org/10.18653/v1/N18-2097
%P 615-621
Markdown (Informal)
[A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents](https://aclanthology.org/N18-2097/) (Cohan et al., NAACL 2018)
ACL
- Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang, and Nazli Goharian. 2018. A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 615–621, New Orleans, Louisiana. Association for Computational Linguistics.