@inproceedings{jiang-etal-2018-effective,
title = "Effective Crowdsourcing for a New Type of Summarization Task",
author = "Jiang, Youxuan and
Finegan-Dollak, Catherine and
Kummerfeld, Jonathan K. and
Lasecki, Walter",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2099/",
doi = "10.18653/v1/N18-2099",
pages = "628--633",
abstract = "Most summarization research focuses on summarizing the entire given text, but in practice readers are often interested in only one aspect of the document or conversation. We propose targeted summarization as an umbrella category for summarization tasks that intentionally consider only parts of the input data. This covers query-based summarization, update summarization, and a new task we propose where the goal is to summarize a particular aspect of a document. However, collecting data for this new task is hard because directly asking annotators (e.g., crowd workers) to write summaries leads to data with low accuracy when there are a large number of facts to include. We introduce a novel crowdsourcing workflow, Pin-Refine, that allows us to collect high-quality summaries for our task, a necessary step for the development of automatic systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jiang-etal-2018-effective">
<titleInfo>
<title>Effective Crowdsourcing for a New Type of Summarization Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Youxuan</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Catherine</namePart>
<namePart type="family">Finegan-Dollak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="given">K</namePart>
<namePart type="family">Kummerfeld</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Walter</namePart>
<namePart type="family">Lasecki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most summarization research focuses on summarizing the entire given text, but in practice readers are often interested in only one aspect of the document or conversation. We propose targeted summarization as an umbrella category for summarization tasks that intentionally consider only parts of the input data. This covers query-based summarization, update summarization, and a new task we propose where the goal is to summarize a particular aspect of a document. However, collecting data for this new task is hard because directly asking annotators (e.g., crowd workers) to write summaries leads to data with low accuracy when there are a large number of facts to include. We introduce a novel crowdsourcing workflow, Pin-Refine, that allows us to collect high-quality summaries for our task, a necessary step for the development of automatic systems.</abstract>
<identifier type="citekey">jiang-etal-2018-effective</identifier>
<identifier type="doi">10.18653/v1/N18-2099</identifier>
<location>
<url>https://aclanthology.org/N18-2099/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>628</start>
<end>633</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Effective Crowdsourcing for a New Type of Summarization Task
%A Jiang, Youxuan
%A Finegan-Dollak, Catherine
%A Kummerfeld, Jonathan K.
%A Lasecki, Walter
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F jiang-etal-2018-effective
%X Most summarization research focuses on summarizing the entire given text, but in practice readers are often interested in only one aspect of the document or conversation. We propose targeted summarization as an umbrella category for summarization tasks that intentionally consider only parts of the input data. This covers query-based summarization, update summarization, and a new task we propose where the goal is to summarize a particular aspect of a document. However, collecting data for this new task is hard because directly asking annotators (e.g., crowd workers) to write summaries leads to data with low accuracy when there are a large number of facts to include. We introduce a novel crowdsourcing workflow, Pin-Refine, that allows us to collect high-quality summaries for our task, a necessary step for the development of automatic systems.
%R 10.18653/v1/N18-2099
%U https://aclanthology.org/N18-2099/
%U https://doi.org/10.18653/v1/N18-2099
%P 628-633
Markdown (Informal)
[Effective Crowdsourcing for a New Type of Summarization Task](https://aclanthology.org/N18-2099/) (Jiang et al., NAACL 2018)
ACL
- Youxuan Jiang, Catherine Finegan-Dollak, Jonathan K. Kummerfeld, and Walter Lasecki. 2018. Effective Crowdsourcing for a New Type of Summarization Task. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 628–633, New Orleans, Louisiana. Association for Computational Linguistics.