@inproceedings{lee-etal-2018-higher,
title = "Higher-Order Coreference Resolution with Coarse-to-Fine Inference",
author = "Lee, Kenton and
He, Luheng and
Zettlemoyer, Luke",
editor = "Walker, Marilyn and
Ji, Heng and
Stent, Amanda",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-2108/",
doi = "10.18653/v1/N18-2108",
pages = "687--692",
abstract = "We introduce a fully-differentiable approximation to higher-order inference for coreference resolution. Our approach uses the antecedent distribution from a span-ranking architecture as an attention mechanism to iteratively refine span representations. This enables the model to softly consider multiple hops in the predicted clusters. To alleviate the computational cost of this iterative process, we introduce a coarse-to-fine approach that incorporates a less accurate but more efficient bilinear factor, enabling more aggressive pruning without hurting accuracy. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the English OntoNotes benchmark, while being far more computationally efficient."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2018-higher">
<titleInfo>
<title>Higher-Order Coreference Resolution with Coarse-to-Fine Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kenton</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luheng</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marilyn</namePart>
<namePart type="family">Walker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Stent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a fully-differentiable approximation to higher-order inference for coreference resolution. Our approach uses the antecedent distribution from a span-ranking architecture as an attention mechanism to iteratively refine span representations. This enables the model to softly consider multiple hops in the predicted clusters. To alleviate the computational cost of this iterative process, we introduce a coarse-to-fine approach that incorporates a less accurate but more efficient bilinear factor, enabling more aggressive pruning without hurting accuracy. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the English OntoNotes benchmark, while being far more computationally efficient.</abstract>
<identifier type="citekey">lee-etal-2018-higher</identifier>
<identifier type="doi">10.18653/v1/N18-2108</identifier>
<location>
<url>https://aclanthology.org/N18-2108/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>687</start>
<end>692</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Higher-Order Coreference Resolution with Coarse-to-Fine Inference
%A Lee, Kenton
%A He, Luheng
%A Zettlemoyer, Luke
%Y Walker, Marilyn
%Y Ji, Heng
%Y Stent, Amanda
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F lee-etal-2018-higher
%X We introduce a fully-differentiable approximation to higher-order inference for coreference resolution. Our approach uses the antecedent distribution from a span-ranking architecture as an attention mechanism to iteratively refine span representations. This enables the model to softly consider multiple hops in the predicted clusters. To alleviate the computational cost of this iterative process, we introduce a coarse-to-fine approach that incorporates a less accurate but more efficient bilinear factor, enabling more aggressive pruning without hurting accuracy. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the English OntoNotes benchmark, while being far more computationally efficient.
%R 10.18653/v1/N18-2108
%U https://aclanthology.org/N18-2108/
%U https://doi.org/10.18653/v1/N18-2108
%P 687-692
Markdown (Informal)
[Higher-Order Coreference Resolution with Coarse-to-Fine Inference](https://aclanthology.org/N18-2108/) (Lee et al., NAACL 2018)
ACL
- Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018. Higher-Order Coreference Resolution with Coarse-to-Fine Inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 687–692, New Orleans, Louisiana. Association for Computational Linguistics.